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A century and a half precipitation 
oxygen isoscape for China 
generated using data fusion and 
bias correction
Jiacheng Chen   1,2, Jie Chen   1,2 ✉, Xunchang J. Zhang3, Peiyi Peng4 & Camille Risi5

The precipitation oxygen isotopic composition is a useful environmental tracer for climatic and 
hydrological studies. However, accurate and high-resolution precipitation oxygen isoscapes are 
currently lacking in China. In this study, a precipitation oxygen isoscape in China for a period of 148 years 
is built by integrating observed and iGCMs-simulated isotope compositions using an optimal hybrid 
approach of three data fusion and two bias correction methods. The temporal and spatial resolutions 
of the isoscape are monthly and 50–60 km, respectively. Results show that the Convolutional Neural 
Networks (CNN) fusion method performs the best (correlation coefficient larger than 0.95 and root 
mean square error smaller than 1‰), and the other two data fusion methods perform slightly better 
than the bias correction methods. Thus, the isoscape is generated by using the CNN fusion method 
for the common 1969–2007 period and by using the bias correction methods for remaining years. The 
generated isoscape, which shows similar spatio-temporal distributions to observations, is reliable and 
useful for providing strong support for tracking atmospheric and hydrological processes.

Background & Summary
Taking advantage of the fact that isotope composition varies sensitively with environmental conditions, envi-
ronmental isotopes play an important role in the identification and characterization of the Earth’s systems pro-
cesses1. The study of the hydrologic cycle is one of the most important applications of stable isotopes. Firstly, the 
isotope composition of water provides an effective tracking method of water sources. In the process of moisture 
transport, the isotope composition changes with atmospheric processes, which can reflect moisture contribu-
tion2–4. In addition, for surface runoff, soil water and groundwater, the isotope composition can also reflect the 
water source, infiltration mechanism and evaporation consumption of each system5–8. Secondly, isotope compo-
sition can also reveal hydrological processes that cannot be achieved by other methods9. For example, evapora-
tion processes can be better diagnosed by dual hydrogen-oxygen or triple oxygen isotope, which can be used to 
quantify the raindrop re-evaporation10,11. Thirdly, isotopes can be incorporated into surface hydrology models 
as diagnostic tools. The isotope composition of evapotranspiration, soil moisture, and runoff can be predicted 
by incorporating the isotope cycle, thus the distribution of isotopic variation in evapotranspiration and runoff 
can be better understood12. What’s more, isotope composition can quantify evaporation rates, which is useful for 
understanding water balance and climate change from catchment to continental scales1. Precipitation isotopes 
can also be used to estimate the precipitation isotopic lapse rate by establishing relationships with climatic ele-
ments or elevation, so as to study paleoclimate and paleoelevation13,14.

The international observation of stable isotopes in precipitation began in the 1950s, and the Global Network 
of Isotopes in Precipitation (GNIP) established in 1961 provides first-hand data for the study of stable isotopes 
in precipitation. Since then, Austria (Austrian Network of Isotopes in Precipitation, ANIP)15, the United States 
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(United State Network of Isotopes in Precipitation, USNIP)16, Switzerland (Swiss National Network for the 
Observation of Isotopes in the Water Cycle, NISOT)17, Canada (Canadian Network of Isotopes in Precipitation, 
CNIP)18 and other countries have also established their national networks, which provide strong data support 
for promoting and deepening the study of stable precipitation isotope.

The establishment of the isotope observation network in China was relatively late. Before 1985, GNIP had 
only one station in Hong Kong of China, and it was not until 1985 that more stations were selected for inclu-
sion in GNIP. Due to the scarcity of stations on the Tibetan Plateau, the Chinese Academy of Sciences (CAS) 
launched the Tibetan Plateau Network of Isotopes in Precipitation (TNIP) in 199119. However, most Chinese 
stations in GNIP stopped monitoring in the early 2000s20, and until 2004 only one station remained. In order to 
continue the systematic study, the CAS established the Chinese Network of Isotopes in Precipitation (CHNIP) 
based on the Chinese Ecosystem Research Network (CERN) in 200421. Due to the difficulty and high cost of 
measuring precipitation isotope ratios22, most of the observed data are short in length. The spatial distribution 
of observation stations is uneven, with few stations in inaccessible areas23.

The stable isotopes in precipitation can also be simulated by isotope-equipped general circulation models 
(iGCMs). In contrast to observations, iGCMs can provide time-continuous and space-regular isotope data24. 
Joussaume, et al.25 incorporated the fractionation process of water stable isotope into GCM for the first time. They 
used the GCM of the Laboratoire de Météorologie Dynamique (LMD) to simulate the distribution of global water 
stable isotope, and the relationship between simulated precipitation oxygen isotope and meteorological elements 
was in good agreement with the measured results. Since then, an increasing number of GCMs have incorpo-
rated isotope cycles, for example, the ECHAM4 developed by the Max Planck Institute for Meteorology (MPI) in 
Germany26, the GISS E developed by the NASA Goddard Institute for Space Studies (GISS) in the United States27,28, 
the HadAM3 developed by the Hadley Centre for Climate Prediction and Research in the United Kingdom29, the 
LMDZ4 developed by the Laboratoire de Météorologie Dynamique in France30, and the MIROC32 developed by 
the Center for Climate System Research (CCSR) of the University of Tokyo in Japan31, etc.

On the basis of these, the comparison and evaluation of iGCMs in simulating isotopes have been conducted 
in many studies. Yoshimura, et al.32 indicated that due to the limitation of spatial and temporal resolution, 
iGCMs are poor in simulating the short-term (days) variability of stable isotopes in precipitation, while they are 
good at the monthly or annual scale. Conroy, et al.33 evaluated the spatio-temporal pattern of precipitation iso-
tope variability in the tropical Pacific for iGCM simulations, and found that nudging models by reanalysis wind 
has a certain effect on precipitation isotope values, and the performance of models varies with regions. Zhang, 
et al.34 selected four iGCMs to evaluate the average precipitation isotopic composition in East Asia. The results 
showed that the characteristics of measured values were well reproduced by iGCM simulation, but the simulated 
values were all lower in the inland areas at middle and high latitudes, and the amount effect in arid areas was 
incorrectly simulated. Wang, et al.23 verified iGCM-simulated stable isotopes in precipitation in arid Central 
Asia. In general, the seasonality of stable isotopes in precipitation could be well simulated, but the values of oxy-
gen isotopes were higher in summer and lower in winter, lower in the eastern section and higher in the western 
section. Che, et al.35 concluded that nudged simulation by LMDZ has the best comprehensive performance by 
comparing the simulated values of different models with the measured values of GNIP in China. In terms of 
altitude effects, CAM and GISS E perform better, while in terms of continental effects, the free simulations by 
GISS E and LMDZ perform better.

To comprehensively consider the error characteristics and advantages of different sources of data to reduce 
uncertainty, data fusion is usually used. One of the common methods for data fusion is to use in-situ obser-
vations as baselines to correct estimates from other sources. Several data fusion methods such as cokriging36, 
probability matching37, statistical objective analysis38, Bayesian correction39, probability density function–opti-
mal interpolation40, and variational41 are usually used to fuse in-situ observation information. The key of these 
methods is to deal with the estimation errors directly based on weighted average, regression analysis, filtering 
analysis and other mathematical approaches. In contrast, neural network methods have stronger learning and 
generalization abilities, and have advantages in discovering complex relationships in data and processing large 
amounts of data42. So far, the neural network was mainly applied to precipitation data fusion in the field of 
hydrology but very little in isotopic hydrology. For example, Turlapaty, et al.43 used Artificial Neural Network 
to fuse various satellite precipitation products, and found the fusion performance was statistically superior to 
each individual dataset for all seasons. Sun and Tang44 combined information from satellite precipitation prod-
ucts and reanalysis data in Central Texas, U.S., by using an attention-based deep convolutional neural network 
(AU-Net), and found the Au-net models have achieved varying degrees of success under different climatic con-
ditions. Wu, et al.45 combined Convolutional Neural Network with Long Short-Term Memory Network to fuse 
the TRMM satellite data, thermal infrared images of Gridded satellite, rain gauge data and elevation data. The 
results showed that this method can improve the accuracy of original TRMM data in China, even for regions 
with different precipitation intensities or sparse gauges.

Overall, both observations and iGCM simulations have advantages and disadvantages. The effort of con-
structing a database by taking advantages and circumventing disadvantages of both becomes a challenge. With 
the motivations of resolving the lack and uneven distribution of observations, as well as the coarse and biased 
iGCM simulations, this study aims to take a hybrid approach that makes full use of observations to integrate the 
advantages of various iGCMs by using the optimal combination of data fusion and bias correction methods. In 
order to determine the best scheme to build the dataset, two bias correction methods (BCMs) and three neural 
network data fusion methods (DFMs) are first compared in terms of bias correcting and fusing iGCM simula-
tions. The new isoscape in monthly temporal and approximately 0.5° spatial resolutions is produced by com-
bining the optimal data fusion and bias correction methods for the 1870–2017 period. The spatial and temporal 
distribution characteristics of oxygen isotopes in precipitation are then analysed for China.
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Methods
Study area.  China is located in the east of Eurasia and on the west coast of the Pacific Ocean. The topogra-
phy of China generally presents three steps descending to the east. The climate is complex and diverse in China. 
Heavily influenced by the continents and oceans, the monsoon climate is significant, especially for the east of 
China. The spatiotemporal variation of precipitation stable isotopes is very complex due to the significant changes 
in winter and summer circulation46. The mainland of China can be geographically classified into three sub-re-
gions, the eastern monsoon region, the arid northwest region and the Qinghai-Tibet Plateau region, according 
to topography, climate, soil and vegetation. The eastern monsoon region is further divided into four sub-regions 
by taking terrain and climatic conditions into account, as well as ensuring the sufficient number of stations and 
data volumes in a sub-region. To sum up, the study area is divided into six sub-regions for our analysis: Northeast 
China (NE), North China (NC), Southeast China (SE), Southwest China (SW), Qinghai-Tibet Plateau (TP) and 
Northwest China (NW), as shown in Fig. 1.

Datasets.  There are 107 oxygen isotope observation stations in the study area (Fig. 1), including 29 GNIP 
stations47 (available at https://nucleus.iaea.org/wiser), 27 CHNIP stations46, 13 TNIP stations48,49 and 38 stations 
from other sources (mainly from references). Monthly oxygen isotope composition of precipitation (δ18Op) is used 
for analysis. For a few references providing event isotope data, monthly precipitation weighted data are used. The 
time span of GNIP data mostly ranges from 1980 to 2000, and the length of the time period is basically 5–15 years.  
For CHNIP, most time periods are about 2–5 years ranging from 2005 to 2010. Most TNIP data are between 1995 
and 2005, with varying lengths. More details about the observation stations can be found in Table S1.

Some physical-based ancillary data are introduced in the fusion methods, including elevation and mete-
orological data, to enrich the climate and terrain information in the process of data fusion. For regions with 
high spatial autocorrelation of isotope values, and regions with large variability in topography or climate, it is 
very necessary to introduce ancillary data50,51. Moreover, the neural network methods have the ability to inte-
grate simulated data, observed data and ancillary data to extract enough spatial variability to generate more 
accurate oxygen isoscape52. The Digital Elevation Model (DEM) with a spatial resolution of 90 m is derived 
from the USGS/NASA Shuttle Radar Topographic Mission53 (SRTM, https://srtm.csi.cgiar.org/). The monthly 
temperature and precipitation gridded datasets on 0.5° spatial resolution in China developed by the National 
Meteorological Information Centre (http://www.nmic.cn/) are also used. The data are generated by the Thin 
Plate Spline interpolation method based on in-situ temperature and precipitation data in China. It should be 
noted the DEM ancillary data is not used for data fusion in TP, because the observation stations are distributed 
at lower altitudes, some isotope simulations of the grid points with higher altitudes are unreasonable in the 
fusion methods.

Seven δ18Op spatio-temporal fields simulated by five iGCMs (CAM2, GISS E, HadAM3, LMDZ4 and 
MIROC32) are used, which are selected from the SWING2 archive (available at https://data.giss.nasa.
gov/swing2/). Five of eight simulations are free-running, performed following the Atmospheric Model 
Intercomparison Project (AMIP) protocol, using prescribed sea surface temperatures (SST) and sea ice30,54. The 
remaining three (GISS E, IsoGSM2 and LMDZ4) are nudged to constrains of large-scale atmosphere circulation, 
so that the dynamical fields in simulations are close to the observations54. In addition to SWING2 simulations, a 
zoomed simulation by LMDZ4, with the horizontal resolution of 50–60 km30,55 and nudged to reanalyses, is used. 
The zoomed LMDZ4 simulations used the HPC resources of IDRIS under the allocation 0292 made by GENCI. 

Fig. 1  Map of the station locations and topography in the mainland of China. The dots indicate the distribution 
of isotope observation stations, with different colours representing different sources. The six sub-regions are 
plotted (NE – Northeast China, NC – North China, SE – Southeast China, SW – Southwest China, TP – Tibetan 
Plateau, NW – Northwest China).
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The isoGSM version 2 nudged to reanalysis with the horizontal resolution of 1° is also used54,56,57. Totally, nine 
simulations from six iGCMs are used, and detailed information about these iGCMs can be found in Table 1. In 
general, this study makes the maximum extent to use isotope observations and simulation in data fusion.

The time span of the isoscape built in this study covers the union set of all simulations ranging from 1870 to 
2017. Since the temporal lengths of nine iGCM are not identical, the number of iGCM simulations used to build 
the isoscape varies. Specifically, for 1979–2001, a total of nine simulations from all six iGCMs in Table 1 are used; 
for 2002–2007, seven simulations from four iGCMs (GISS E, IsoGSM2, LMDZ4 and MIROC32) are used; and 
for 1969–1978, four simulations from three iGCMs (CAM2, GISS E and HadAM3) are used. For the remaining 
periods, there is only one simulation or two: for 1958–1968, CAM2 and HadAM3 are used; for 1870–1957, 
HadAM3 is used; and for 2008–2017, IsoGSM2 and zoomed LMDZ4 are used.

The stable isotope composition of precipitation is expressed in the relative permillage (‰) derived from the 
standard sample58 as:

δ =





−





×
−

R

R
1 1000‰

(1)
sample

V SMOW

where R is the ratio of heavier isotope to common isotope (18O/16O), and the subscripts sample and V-SMOW 
represent standard sample and Vienna Standard Mean Ocean Water, respectively.

Generation of isoscape.  Generally, the generation of isoscape can be divided into five steps.
(1) �Prior to generating the dataset, the inverse distance weighting (IDW) method is used to interpolate all 

iGCM simulations and ancillary data to observation stations.
(2) �Three neural network data fusion and two bias correction methods are trained using observations and 

iGCM simulations for all months within a season and all stations within a sub-region. In other words, 
observed and simulated monthly isotopes within a season and all stations within a region are pooled to 
train the data fusion and bias correction methods to ensure that the model is well trained with enough 
samples. For the fusion methods, ancillary data are also included in the training process, which is not 
necessary for bias correction methods.

(3) �The performance of each model is evaluated for the validation period by the cross-validation method to 
find the optimal data fusion and bias correction methods. Correlation coefficient (CC) and root mean 
square error (RMSE) are used as metrics to validate these methods for the common period of 1969–2007.

(4) �All iGCM simulations and ancillary data are interpolated to the LMDZ4 zoomed grid with a spatial res-
olution of approximately 50 km by the IDW method.

(5) �The optimal trained model and bias correction methods are applied to all grid points within a sub-region 
and all months within a season. Since the length of iGCM simulations is not identical, the optimal com-
bination of data fusion and bias correction methods are used to generate the isoscape for a long period. 
In other words, for the common period of observations and iGCM simulations, the optimal data fusion 
method is used, while for the period with no observations, the bias correction methods are used.

Neural network data fusion.  The neural network is a kind of mathematical model, which imitate the behav-
iour characteristics of human neural network and carry out distributed parallel computing59,60. Performing calcu-
lations and spreading information through large numbers of interconnected neurons, neural networks are often 
used to describe complex relationships between inputs and outputs, or to explore the internal structure and pat-
terns of data61,62. In this study, Back Propagation Neural Network (BP), Long Short-Term Memory (LSTM) Neural 
Network and Convolutional Neural Network (CNN) are adopted for data fusion, considering BP’s simplicity and 
practicality, LSTM’s advantages in time series prediction and CNN’s outstanding performance in various fields.

The structure and hyperparameters of these neural network methods are carefully considered and validated. 
Considering that previous studies63–66 on hyperparameter sensitivity of neural networks have shown similar 
results, the hyperparameter selection scheme is determined based on these studies using a hierarchical step-
wise search method to determine hyperparameter values. Specifically, the hyperparameters are divided into 
three parts, structural hyperparameters, sensitive algorithm hyperparameters and other algorithm hyperpa-
rameters, which are determined step by step. At each step, the performance of all hyperparameter combinations 
is tested using the grid search method. Referring to previous studies45,67–69, some conventional hyperparameter 
settings (such as filters are usually set to the power of 2) are considered. The details of hyperparameter selection 

GCM Simulation method
Horizontal resolution 
(longitude × latitude) Time period Key references

CAM2 Free-running 2.8° × 2.8° 1958–2003 Lee, et al.111

GISS E Free-running and nudged by NCEP 2.5° × 2° 1969–2009 Schmidt, et al.27

HadAM3 Free-running 3.75° × 2.5° 1870–2001 Tindall, et al.29

IsoGSM2 nudged by NCEP 1° × 1° 1979–2017 Yoshimura, et al.54

LMDZ4
Free-running and nudged by ECMWF 3.75° × 2.5° 1979–2007 Risi, et al.30

Zoomed (nudged by ECMWF) 50–60 km 1979–2017 Gao, et al.55

MIROC32 Free-running 2.8° × 2.8° 1979–2007 Kurita, et al.31

Table 1.  Time periods and basic outputs information of selected iGCMs.
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are shown in Table 2. Furthermore, when structural hyperparameter values produce similar performance, the 
simpler structure (i.e., the one with fewer hyperparameters) is chosen to avoid overfitting. When algorithm 
hyperparameter values produce similar performance, the one that is more efficient for computing is chosen. The 
structures of these three neural network DFMs are presented in Fig. 2.

BP, first proposed by Rumelhart, et al.70, is a multilayer feed-forward network trained by the error 
back-propagation algorithm. BP is one of the most widely used neural network models with high simulation 
accuracy for nonlinear functions. The main characteristic of BP is that the input signal is processed layer by layer 
from the input layer to the hidden layer and then to the output layer, and each neuron carries out the weighted 
sum of the input signal through the activation function. If the error between the actual output and the expected 
output is larger than the set value, the weight and bias of the network are continuously corrected by the back-
propagation to minimize the loss function. The isotope simulations of iGCMs are selected as the input of BP and 
the observations as the expected output to calculate the loss function. The input layer is the corresponding input 
parameter, and the output layer is the fusion isotope value.

LSTM is very efficient for sequential data and is derived from Recurrent Neural Network (RNN) with mem-
ory function. RNN has a sequential feed-forward connection, so that the information of the past moment can 
affect the output of the present moment71. The traditional RNN has the problems of vanishing gradient and 
exploding gradient72. To solve these problems, the LSTM Neural Network was proposed73. A basic LSTM neuron 
usually consists of a memory cell and three gates (i.e. input gate, forget gate and output gate). Memory cells are 
used to store past information, realizing long-distance dependent learning of sequence features. The input gate 
determines which inputs are saved to the cell; the forget gate determines what information is retained from the 
previous moment; output gate determines what information needs to be output. In this study, a fully connected 
layer is added after three LSTM layers to generate fusion results. Dropout layers are applied to the three LSTM 
layers of the network to make the model more robust.

CNN was first proposed by LeCun74, for the problem of handwritten digit recognition. CNN combines three 
advantages of local connectivity, weight sharing and pooling. On one hand, it reduces the number of weights, 
making the network easy to optimize. On the other hand, it reduces the complexity of the model and alleviates 
the overfitting problem. It is one of the most widely used neural networks with the best performance. The con-
volutional layer and pooling layer of the hidden layer are the core modules of CNN. The function of the convo-
lutional layer is to extract features of the input data by convolutional kernels. The pooling layer performs feature 
selection and information filtering on the feature map output by the convolution layer. In this study, CNN is 
mainly composed of two convolutional layers and pooling layers. Two fully connected layers are added at the 
end to remove the spatial topology and output the results. The convolutional layer and the fully connected layer 
are connected by flattening the output of the convolutional layer through the flatten layer. Batch normalization 
layers are inserted into the model to improve the speed, performance and stability of the neural network.

Bias correction methods.  BCMs aim to correct the mean, variance and/or quantile of the climate model 
time series, so that the corrected model time series can better match those of the observations75. In this study, two 
typical methods (i.e. linear scaling (LS) and distribution translation (DT)) are used to correct the bias of iGCM at 

Model Steps Hyperparameters Range tested Selected

BP

Step 1. Structural hyperparameters Hidden layers 2, 3, 4 3

Step 2. Sensitive algorithm hyperparameters

Learning rate 0.0001–0.005 0.005

Batch size 10–50 20

Dense neurons 8, 16, 32, 64 16/32/64

Step 3. Other algorithm hyperparameters Activation ReLU, TanH ReLU

LSTM

Step 1. Structural hyperparameters LSTM layers 2, 3, 4 3

Step 2. Sensitive algorithm hyperparameters

Learning rate 0.0001–0.005 0.001

Batch size 10–50 50

LSTM neurons 8, 16, 32, 64 32

Step 3. Other algorithm hyperparameters

Time steps 1–5 2

Dropout rate 0–0.3 0.1

Activation ReLU, TanH TanH

CNN

Step 1. Structural hyperparameters
Convolutional layers 1, 2, 3 2

Dense layers 1, 2 1

Step 2. Sensitive algorithm hyperparameters

Learning rate 0.0001–0.005 0.0005

Batch size 10–50 50

Kernel size 3, 4, 5 4

Step 3. Other algorithm hyperparameters

Filters 8, 16, 32, 64 8/32

Dense neurons 8, 16, 32, 64 16

Dropout rate 0–0.3 0

Activation ReLU, TanH ReLU

Table 2.  Details of the hyperparameter selection in three neural network fusion methods. The complete 
hyperparameter setting of the neural network fusion methods can be seen in Table S2.
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the monthly timescale. These two BCMs can be classified into mean-based scaling (i.e. LS) and distribution-based 
correction (i.e. DT) approaches76. The mean-based scaling uses a constant correction factor for the entire 
time series, while the distribution-based approach uses correction factors that vary with the quantiles of the 
distribution77.

The LS method is the simplest bias correction method. The differences between observations and raw iGCM 
simulations are applied to simulations to obtain the bias-corrected isotope time series for each season and 
sub-region. Specifically, for a particular sub-region, the differences (defined as correction factors) in mean val-
ues between observed and simulated isotopes are first calculated at the seasonal basis using Eq. (2). The calcu-
lated correction factors are then applied to simulated isotopes for the entire period using Eq. (3).

δ δ= −R O O (2)LS,s,sr obs,s,sr
ref

raw,s,sr
ref

O O R (3)cor,s,sr raw,s,sr LS,s,srδ δ= +

where RLS is the correction factor; Oδ  is the mean value of isotope composition; the superscript ref represents the 
reference period; the subscripts obs, raw and cor represent observations, raw simulations and corrected simula-
tions, respectively; and s and sr represent a specific season and a sub-region, respectively.

The implementation of the DT method is similar to the LS method. However, the differences (i.e. correction 
factors) between observed and simulated isotopes are calculated for each of 100 integral percentiles as shown in 
Eqs. (4–6), to represent the distribution for each season in each sub-region. The correction factors of grid points 
are obtained by interpolating or extrapolating the factors of observation stations using Eq. (5).

R O O (4)DT,s,sr
ref

obs,q,s,sr
ref

raw,q,s,sr
refδ δ= −

 →R R
Interpolation/Extrapolation

(5)DT,s,sr
ref

DT,s,sr

δ δ= +O O R (6)cor,s,sr raw,s,sr DT,s,sr

Fig. 2  Network structure of BP, LSTM and CNN fusion method. The complete hyperparameter setting of the 
neural network fusion methods can be seen in Table S2.
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where the subscript q is a percentile for a specific season in a sub-region. Other superscripts and subscripts are 
the same as Eqs. (2, 3).

Model performance.  Correlation coefficient (CC) and root mean square error (RMSE) are used as metrics 
to quantify model performance.
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where S and O are the simulated and observed value, respectively; N is the number of samples; and μ and σ are 
the mean and standard deviation, respectively.

Cross-validation experiments.  In order to make full use of the data and reduce the variation of model 
accuracy caused by the difference between the training set and the test set, K-fold cross-validation is adopted. In 
the K-fold (K = 5 in this study) experiment, the data set is randomly divided into K groups, and one of them is 
used as the test set each time, leaving K-1 groups as the training set. To fully consider the variations of random 
division, K-fold cross-validation is repeated 100 times.

Data Records
The dataset includes the stable oxygen isotope of precipitation for the mainland of China over the 1870–2017 
period, at a spatial resolution of 50–60 km and a monthly temporal resolution. In order to make full use of 
observations to integrate the advantages of various iGCMs, the combination of data fusion and bias correc-
tion methods are used (as shown in Fig. 3). Specifically, (1) for the 1979–2001 period, nine simulations from 
six iGCMs (CAM2, GISS E, HadAM3, IsoGSM2, LMDZ4, and MIROC32) and ancillary data are fused with 
observations by using CNN fusion method; (2) for the 2002–2007 period, seven simulations from four iGCMs 
(GISS E, IsoGSM2, LMDZ4, and MIROC32) and ancillary data are fused by using CNN fusion method; (3) for 
the 1969–1978 period, four simulations from three iGCMs (CAM2, GISS E, and HadAM3) and ancillary data 
are fused by using CNN fusion method; (4) for the 1958–1968 and 2008–2017 periods, two iGCM simulations 
(CAM2 and HadAM3 for 1958–1968 and IsoGSM2 and LMDZ4 zoomed for 2008–2017) are corrected by using 
two BCMs, and ensemble mean (mean of four simulations) is then calculated; (5) for the 1870–1957period, one 
iGCM simulation (HadAM3) is corrected by using two BCMs, and ensemble mean (mean of two simulations) is 
then calculated. The dataset78 is freely available in Zenodo repository (https://doi.org/10.5281/zenodo.7306199) 
with the format of netCDF4.

Technical Validation
Evaluation of bias correction and data fusion methods.  Prior to applying BCMs and DFMs to build 
the isoscape, the performance of iGCM simulations is evaluated by comparing gauged observations for the com-
mon period of 1969–2007. Figure 4 shows the cumulative distribution functions (CDFs) of δ18Op for observations 
and iGCMs simulations in each sub-region. Generally, the CDFs of observed δ18Op can be well represented by 
iGCM simulations for each sub-region, as the observed CDFs distribute in the centre of simulated ones. For spe-
cific regions, the envelope of CDFs is the narrowest for SE, indicating that iGCMs perform consistently better for 
this region. For NE, NC, SW and NW, the CDFs of IsoGSM2 and LMDZ4 (free and nudged) simulated δ18Op are 
relatively close to the observations, while other iGCM simulations generally overestimate the δ18Op. For TP, the 
differences between CDFs of observed and simulated δ18Op are the largest, indicating the prominent variability 
of δ18Op simulations. This is expected, as climate models generally perform worse for TP than other regions79,80. 
For NW, the variability of δ18Op simulations is also large. This is because, on the one hand, the sparse coverage 
of stations coupled with complex topography over northwest China cannot well represent the full range of pre-
cipitation isotope conditions. This can lead to biases in the distribution of observations. On the other hand, the 
arid northwest region is one of the most sensitive regions to climate change due to its fragile ecosystem, which 
affects sub-cloud evaporation and local moisture re-cycling, leading to the large uncertainty in isotope simulation 
between different iGCMs23,81.

Fig. 3  The generation mode of dataset in each period.
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Root mean square error (RMSE) and correlation coefficient (CC) are also calculated to evaluate the accuracy 
of iGCM simulated δ18Op. DFMs that introduce ancillary data generally perform better than DFMs that do not 
introduce that, with larger CC and smaller RMSE. Therefore, ancillary data are introduced into all DFMs in this 
study. Figure 5 presents the RMSE and CC for raw iGCM simulations, bias corrected and fused simulations for 
six sub-regions over the validation periods (1979–2001). Generally, DFMs perform better than BCMs, and both 
perform better than raw iGCM simulations. In addition, all the simulations are correlated with the observations 
with CC ranging between 0.12 and 0.99.

The CC and RMSE vary considerably for raw iGCM simulations, with CC ranging from 0.12 to 0.84 and 
RMSE ranging from 1.9‰ to 9.1‰. The simulations of IsoGSM2, nudged GISS E and nudged LMDZ4 have the 
strongest correlation with the observations, and their CC is basically above 0.5, ranging from 0.30–0.84. The 
error of IsoGSM2 and nudged LMDZ4 is the smallest, and their RMSE ranges between 1.9‰ and 6.8‰.

Generally, the performance of LS and DT is similar, even though the LS method performs slightly better than 
the DT method for some regions. The CCs range from 0.49 to 0.81 for the LS and DT corrected simulations, with 
an average increase from 0.53 to 0.66 relative to raw simulations; the RMSEs are between 1.9‰ and 5.7‰, with 
an average decrease of 23.7%.

Fig. 4  Cumulative distribution functions of δ18Op for eight iGCM simulations in six sub-regions.

Fig. 5  Average correlation coefficient (CC) and root mean square error (RMSE) metrics of raw, bias-corrected 
and fused δ18Op in six sub-regions.
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For DFMs, BP and LSTM show similar performance, while CNN consistently performs the best. The CC of 
CNN-generated simulations is all greater than 0.97, increasing from 0.53 to 0.99 on average compared with the 
raw simulations. The RMSE of CNN-generated simulations is all smaller than 1.1‰, showing an 84.3% reduc-
tion relative to the raw simulation on average.

Figure 5 shows that CC and RMSE of simulations in different sub-regions are quite different. For all raw, 
fused, and bias corrected simulations, CC is smaller for NC and TP while RMSE is larger for TP and NW than 
other sub-regions. For DFMs, especially CNN, the differences of CC and RMSE between different regions are 
smaller.

Generally, all simulations perform worse in NC, TP and NW than in other sub-regions. The poor simulation 
performance in NC may be due to complex air mass movements82,83, which are difficult to be accurately sim-
ulated by iGCMs. The poor simulation performance in TP and NW may be due to the fact that GCMs cannot 
accurately describe the atmospheric physical process and simulate precipitation and other meteorological fac-
tors in these regions84–86.

The performance of BCMs and DFMs is also evaluated for three periods (1969–1978, 1979–2001 and 2002–2007)  
and six sub-regions on a seasonal basis. The seasonal average CC and RMSE for two BCMs and three neu-
ral network DFMs are presented in Figs. 6, 7. The seasons are divided into spring (SPR), summer (SUM), 
autumn (AUT) and winter (WIN), respectively defined as March-May, June-August, September-November, and 
December-February. Generally, all BCMs and DFMs perform very similarly for all three periods.

As for CC, the simulations in the northern region (NE, NC, and NW) show strong correlations with obser-
vations in spring, while those in the southern region (SE, SW) show strong correlations in summer and autumn. 
The correlation of CNN fusion simulations is significantly higher than that of the other methods, with CC being 
mostly above 0.95. The correlation of BP and LSTM fusion simulations is slightly higher than that of LS and DT 
corrected simulations, with CC being mostly between 0.3 and 0.7, varying with sub-regions and seasons. The BP 
and LSTM fusion methods perform slightly worse in NE, but better in other sub-regions, compared with BCMs.

As for RMSE, the errors of simulations in NE, TP and NW are relatively large, with an average error of about 
5‰, while those in other sub-regions have an average error of about 3‰ or less. The northern region shows a 
small error of about 2‰ in summer, except for NW with a larger error of 3‰; while the southern region shows 
relatively small seasonal differences in error, mostly ranging between 1‰ and 3‰. On the whole, the DFMs 
perform better than the two BCMs. The errors of CNN simulations are the smallest in all regions and seasons, 
which are mostly smaller than 1‰. The errors of BP and LSTM simulations are slightly smaller than those of LS 
and DT simulations.

The plotted +/− one standard deviation shows the dispersion degree of CC and RMSE for the simulated 
results of all bias correction and data fusion methods over 100 trials. The standard deviations of CC and RMSE 
calculated by LS and DT corrected simulations are smaller, while those calculated by BP, LSTM and CNN fused 
simulations are relatively larger. Generally, the standard deviation of CC and RMSE calculated by the CNN 
fused simulations is the smallest among fusion methods. It can be considered that the correction methods show 
smaller uncertainties than the fusion methods in terms of CC and RMSE. This is as expected, since the simula-
tions of DFMs show uncertainties brought by the neural network itself, in addition to the uncertainties brought 
by cross-validation. Furthermore, CNN fusion methods show smaller uncertainties than the other two fusion 
methods.

The above results show that the CNN fusion method consistently performs better than the other methods. 
To further confirm this conclusion, scatter plots of fused and corrected against observed δ18Op are presented 
in Fig. 8 for the 1979–2001 period. The overall mean CC and RMSE corresponding to the figure are shown in 
Table 3. It can be seen that the CNN fusion method shows a stronger correlation with the observations than the 
other fusion methods and BCMs. The CNN fused δ18Op consistently shows the largest CC and smallest RMSE, 
showing a strong positive linear correlation with the observations with CC being almost all larger than 0.99.

Based on the above performances of the correction and fusion methods, the best combination to build the 
dataset can be determined. Since the CNN fusion method consistently performs better than other methods, 
the CNN was used for the common period of all climate simulation and observations, while the bias correction 
methods were used for the periods with only one or two climate simulations, and with no observations. The 
specific generation mode of the dataset for each period can be found in the Data Records section.

To evaluate the dataset for all stations, CC and RMSE are calculated for δ18Op series between observations 
and raw iGCM simulations, and between observations and the fused isoscape for all stations over the com-
mon period (Tables S3-4). Also, the distributions of these CCs and RMSEs are shown in the form of histogram 
(Fig. S1). The results show that the built isoscape performs excellent for the vast majority of stations, with much 
larger CCs and smaller RMSEs than iGCM simulations. Specifically, the CCs between the isoscape simulations 
and observations are larger than 0.8 for 77.6% of stations and larger than 0.9 for 57.0% of stations. The RMSEs 
between the isoscape simulations and observations are smaller than 3‰ for 80.4% of stations and less than 2‰ 
for 56.1% of stations.

To further demonstrate the dataset quality, twenty stations with appropriate lengths of observation are 
selected with two stations randomly selected from each sub-region. The time series of δ18Op are plotted for 
observations, iGCM simulations, and the generated isoscape (Fig. 9). Figure 9 shows that the variations of fused 
δ18Op time series show consistent patterns with observations, and it also performs much better than raw iGCM 
simulations. In particular, for the period before 2007, the CNN model integrates the advantages of various sim-
ulations and captures most features of the observed data. These results generally prove the reliability of fused 
isoscape.

Fig. S2 shows the spatial distribution of monthly mean observed, fused, and best-performing iGCM raw 
δ18Op for their common period (i.e. 1979–2007). The spatial pattern presented by the isoscape shows the best 
consistency with observations. The strength of the CNN model has been demonstrated, which can make good 
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use of the advantages of each simulation to accurately capture the characteristics of observations. For example, 
nudged LMDZ4 model shows a strong ability to reproduce the spatial distribution of δ18Op for the eastern region 
in summer and autumn, but a slightly poor performance in the Qinghai-Tibet Plateau. The built isoscape com-
bines nudged LMDZ4, GISS E, IsoGSM2 and other simulations, which show reasonable performance for the 
Qinghai-Tibet Plateau, and well reproduces the spatial distribution of δ18Op for the mainland of China. In addi-
tion, the spatial and seasonal variability presented in the built isoscape is consistent with the monthly isoscape 
(C-Isoscape) created by Wang, et al.87 based on regionalized fuzzy clustering, with only minor differences that 

Fig. 6  Seasonal average results of correlation coefficient (CC) metrics for BCMs and DFMs in six sub-regions. 
The whiskers denote +/− one standard deviation.
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may be due to different data or methods. Compared with C-Isoscape, the δ18Op of our isoscape is generally lower 
in the Qinghai-Tibet Plateau, and the seasonal variation of δ18Op in northwest China is smaller.

Spatial variability of precipitation oxygen isotope.  To further evaluate the isoscape fused by the CNN 
method, the observations and the isoscape simulations are compared at the seasonal scale for analysing the spatial var-
iability. Figure 10 presents the spatial variability of mean δ18Op for observed and fused data for the 1969–2007 period. 
Generally, the CNN fused δ18Op shows similar spatial distribution to observations for all four seasons.

Fig. 7  Seasonal average results of root mean square error (RMSE) metrics (‰) for BCMs and DFMs in six sub-
regions. The whiskers denote +/− one standard deviation.
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In NE, δ18Op decreases with increasing latitude for all seasons, and its spatial variation is basically parallel to 
the latitude, which reflects the latitude effect88. Indeed, most of the water vapour in the atmosphere is formed at 
low latitudes, and Rayleigh distillation continuously depletes the residual water vapour as air masses move toward 
higher latitudes, thus depleting the δ18Op of the residual water vapour and thus of the rain forming in clouds.

In SE and SW, δ18Op decreases from the southeast coast to inland. This phenomenon is consistent with the 
continental effect. As water vapour transfers from the ocean to the interior of the continent, precipitation is 
formed along the way. The separation process of heavy isotopes takes place preferentially than that of light iso-
topes, which leads to the gradual dilution of heavy isotopes in the cloud, and thus makes the proportion of heavy 
isotopes in the subsequent precipitation lower.

Fig. 8  Scatter plots of seasonal δ18Op from bias-corrected and fused output against observations in six sub-regions.
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The δ18Op in TP is low in general except for the southeast corner, which is mainly due to the special effect of 
large landforms89. The low δ18Op in TP is mainly due to its high altitude, with an average altitude being above 
4,000 m. The moisture in the air mass is gradually removed during the orographic uplift, with heavy isotopes 
preferred to be removed during the condensation process, which leads to the dilution of heavy isotopes in water 
vapour88. Higher δ18Op in the southeast corner of TP indicates closer vapour sources such as the Bay of Bengal 
and the Arabian Sea in the Indian Ocean. Due to the terrain barrier of the Himalayas, most of the water vapour 
can only pass through its southeast corner, along the valley of the major rivers (Nujiang River, Jinsha River, etc.) 
into the plateau, or through the Yarlung Zangbo River valley into the plateau90.

The δ18Op in NW is lower than that in the southern region, but higher than that in NE and TP. This is because 
NW is far away from the ocean and has a dry climate, so the amount of heavy isotope in water vapour from the 
ocean is limited. However, a large part of water vapour to generate precipitation in NW comes from terrestrial 
evaporation91. The δ18Op in surface water in the arid area is high, resulting in high δ18Op in evaporation water 
vapour and heavy isotope enrichment in precipitation. Another process is the re-evaporation of raindrop in 
arid climate, enriching heavy isotopes in precipitation water92. Under the joint control of both, the δ18Op in this 
sub-region varies greatly. In the southern part of the Taklimakan Desert, Xinjiang, δ18Op is obviously higher. This 
is because, the Taklimakan Desert is located in the heart of Eurasia, and it is surrounded by high mountains and 
has extremely low rainfall93. In the southern part of the desert, there is more precipitation in the Kashi-Hotan 
line, and the water vapour mainly comes from the evaporation of local lakes and rivers94, so the ratio of isotopes 
in precipitation is high.

The seasonality of δ18Op varies in sub-regions and is influenced by various factors. For NE and NC, δ18Op 
is lower in winter than in other seasons. NE and NC are influenced by westerly wind and polar continental air 
mass constantly, with no convergence or strong convection with isotope-depleted air mass. Compared with 
Pacific air mass, westerly wind and polar air mass are drier and have higher δ18Op

95. The seasonal distribution 
pattern of δ18Op in NE and NC is consistent with the temperature effect96. Although the amount effect is not 
significant at the annual scale in these regions, it cannot be ignored in the wet season97. In particular, the maxi-
mum value of δ18Op is observed in spring for NC, when a large part of the precipitation vapour comes from local 
re-evaporation. The temperature effect is also reflected in NW. Due to the long-term influence of continental 
air mass, the temperature difference between winter and summer is large, and the δ18Op changes synchronously 
with temperature in these two seasons.

For SE and SW, δ18Op is lower in summer than in other seasons. The climate features of SE and SW are related 
to the deep convection driven by the East Asian monsoon98, which brings water vapour from the Pacific Ocean 
to eastern China and dominates the sub-regions in summer. Air masses from the Pacific Ocean are more isotop-
ically depleted than those from SE and SW83,89, so convergence with the Pacific depleted air masses will dilute 
the isotopic content of precipitation in SE and SW. Therefore, although the temperature in summer is generally 

Sub-region Season

LS DT BP LSTM CNN

CC RMSE CC RMSE CC RMSE CC RMSE CC RMSE

NE

SPR 0.791 4.058 0.774 3.769 0.784 3.642 0.799 3.030 0.996 0.628

SUM 0.433 1.457 0.379 1.497 0.448 1.445 0.361 1.507 0.995 0.156

AUT 0.578 4.030 0.530 4.203 0.468 4.513 0.331 4.059 0.993 0.623

WIN 0.024 6.508 0.067 6.834 0.277 5.696 0.079 6.289 0.992 0.770

NC

SPR 0.510 2.665 0.521 2.612 0.556 2.550 0.556 2.654 0.995 0.315

SUM 0.213 2.297 0.199 2.348 0.504 1.979 0.485 1.991 0.991 0.329

AUT 0.151 2.806 0.167 2.800 0.422 2.509 0.396 2.382 0.997 0.237

WIN 0.386 3.388 0.425 3.337 0.434 3.302 0.376 3.571 0.997 0.310

SE

SPR 0.529 1.771 0.540 1.777 0.701 1.474 0.683 1.519 0.995 0.208

SUM 0.520 1.596 0.516 1.607 0.616 1.472 0.576 1.547 0.995 0.197

AUT 0.568 2.432 0.567 2.468 0.674 2.182 0.680 2.225 0.994 0.355

WIN 0.597 1.958 0.593 1.980 0.607 1.938 0.579 1.999 0.990 0.372

SW

SPR 0.021 3.051 0.078 2.953 0.325 2.568 0.346 2.560 0.993 0.364

SUM 0.462 2.970 0.456 2.967 0.696 2.387 0.704 2.466 0.999 0.186

AUT 0.330 2.771 0.380 2.791 0.801 1.728 0.774 1.778 0.998 0.176

WIN 0.343 2.189 0.339 2.206 0.442 2.075 0.413 2.319 0.997 0.199

TP

SPR 0.560 4.742 0.563 4.977 0.619 4.476 0.643 4.495 0.997 0.467

SUM 0.169 5.926 0.260 6.090 0.709 4.171 0.703 4.483 0.996 0.514

AUT 0.189 5.585 0.211 5.791 0.714 3.884 0.667 4.216 0.998 0.427

WIN 0.676 4.836 0.676 4.887 0.697 4.705 0.645 5.307 0.996 0.639

NW

SPR 0.738 3.799 0.702 3.746 0.763 3.389 0.749 3.426 0.998 0.402

SUM 0.044 3.341 0.205 3.231 0.596 2.594 0.545 2.748 0.998 0.282

AUT 0.553 3.628 0.506 3.766 0.734 2.957 0.684 3.250 0.997 0.323

WIN 0.441 5.015 0.437 5.090 0.533 4.730 0.449 5.030 0.997 0.448

Table 3.  Correlation coefficient (CC) and root mean square error (RMSE, ‰) metrics corresponding to the Fig. 8.
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higher, depletion of δ18Op is usually larger during the monsoon season than winter season. The effect of surface 
temperature on isotopic fractionation during precipitation is masked by the effect of precipitation amount90. The 
temporal distribution pattern of δ18Op in SE and SW is influenced by heavy monsoon precipitation and follows 
the amount effect88,96.

In TP, δ18Op is positively correlated with temperature in the non-monsoon region (northern part of the pla-
teau), with high δ18Op in summer and low in winter, reflecting the temperature effect. For the monsoon region 
(southern part of the plateau), δ18Op is high in winter and spring and low in summer and autumn, which is 

Fig. 9  Time-series comparisons of δ18Op among the built isoscape, iGCM simulations, and in-situ observations 
at selected stations in each sub-region.
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obviously influenced by marine air mass and shows obvious amount effect. These results are similar to previous 
studies48,99.

Temporal variability of precipitation oxygen isotope.  As mentioned earlier, the isoscape is generated 
by a combination of bias correction and data fusion methods for the 1870–2017 period. The CNN fusion is used 
for 1969–2007, and BCMs (mean of LS and DT) are used for the rest of the period. Figure 11 shows the monthly 
time series of generated δ18Op and their 12-month moving averages for eight sub-regions over the 1870–2017 
period. TP is divided into monsoon and non-monsoon regions, according to the research of Yu, et al.99. In our 
study, the region with significant correlations between δ18Op and temperature is the non-monsoon region, while 
the rest is the monsoon region.

The Mann-Kendall tests show that the δ18Op significantly increased in NE and NC for the recent 40 years at 
the P = 0.01 level. These two regions are consistent with the temperature effect, and it can be inferred that the 
temperature of these sub-regions has a rising trend during this period. This has been proved in many studies. For 
example, the studies of Ren, et al.100 and Ding, et al.101 have shown that the temperature in China has had a rising 
trend in recent years, especially in northeast, north and northwest China. A slight upward trend is also observed 
in NW from the 1930s to the 1970s (significant at the 0.1 level). The temperature effect is more significant in 
inland areas at middle and high latitudes. In winter, NW is mainly controlled by the westerlies, and the amount 
effect can be ignored102,103. Therefore, the temperature effect in NW is more significant in winter. From 2001 to 
2012, the δ18Op values in NW showed a decreasing trend, mainly in winter. Some studies have shown that the 
temperature in NW during this period is consistent with the global land warming hiatus phenomenon, and even 
shows obvious cooling, especially in winter104,105.

The δ18Op in SE presents a gentle decline trend for the past 80 years (significant at the 0.05 level), indicating 
that precipitation has an upward trend in this period, since the δ18Op conforms to the rule of amount effect in 
this region. While the δ18Op in SW shows no significant trend in recent years, which indicates no significant 
trend in precipitation. These trends are consistent with existing researches that precipitation increased in the 
east coast and northwest of China, decreased in the north and northeast, and showed no significant changes in 
the southwest106,107.

There is no significant trend for δ18Op in TP. However, δ18Op shows a significant decreasing trend for the 
monsoon region of TP from the 1950s to the 2000s (significant at the 0.01 level), while it shows a significant 
increasing trend for the non-monsoon region (significant at the 0.05 level). This is because the non-monsoon 
region shows the temperature effect, while the monsoon region shows the amount effect, which is consistent 

Fig. 10  Seasonal averaged observations and CNN fused simulations of δ18Op in the mainland of China.
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with the increasing trend of temperature and precipitation in the Qinghai-Tibet region in recent years48,99. 
Overall, the changing trend of temperature and precipitation derived from the isotope effect analysis is consist-
ent with that analysed directly using temperature and precipitation data in the mainland of China. This further 
proved the reasonable performance of the isoscape built in this study.

Summary.  Long-time sequences of δ18Op are of great significance for hydrological and meteorological studies. 
In view of the lack of long and reliable δ18Op datasets in China, this study generates a new dataset by integrating 
multi-iGCM data to overcome the limitations of short duration and uneven distribution of observed data. This 
dataset contains monthly δ18Op over the mainland of China for the 1870–2017 period with a spatial resolution of 
50–60 km. The dataset from 1969 to 2007 is generated by using the CNN fusion method, when the observed time 
series and multiple iGCM simulations are available. For other periods, it is generated by bias correcting iGCMs 
simulations. Two BCMs (i.e. LS and DT) with similar performances are used to produce the ensemble mean. 
Prior to building the isoscape, the performance of two BCMs (LS and DT) and three DFMs (BP, LSTM and CNN) 
is evaluated using RMSE and CC as criteria. The results show that the CNN fusion method consistently performs 
the best for all sub-regions in China, and BP and LSTM fusion methods perform slightly better than LS and DT 
(BCMs). The performance of the LS and DT methods is similar. In terms of spatial distribution and temporal var-
iability of δ18Op, the generated data show very similar spatial distributions to observations, and the temporal trend 
of δ18Op is consistent with the observed changes in precipitation and temperature for different regions in China. 
All these show that the built isoscape is reliable and useful to extend the time and space of observations in China.

Usage Notes
Advantages and limitations.  The generated isoscape dataset has high spatio-temporal resolution and a 
long series covering 1870–2017. Compared with the existing iGCMs, the isoscape has high quality and stability 
for a large region in China at the monthly scale. Benefiting from the characteristics of optimal neural network 
and bias correction methods, the isoscape makes full use of observations to integrate the advantages of various 
iGCMs. In other words, by using the combination of data fusion and bias correction methods, all observations 
and iGCM simulations are used to the utmost extent to ensure the highest accuracy throughout the entire time 
period. Studies have shown that the CNN model has strong abilities for generalization and information synthe-
sis61,108, while the bias correction methods have commonly used in climate change studies. Moreover, the hybrid 

Fig. 11  Monthly time series of the generated δ18Op (‰) and their 12-month moving average in eight sub-
regions from 1870 to 2017. (g) shows the monsoon region of TP. (h) shows the non-monsoon region of TP.
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generation method of the isoscape has the characteristics of high accuracy and simplicity, which can be easily 
extended to the generation of isoscape datasets in other regions. Even though the methods used in this study 
have been widely used, this is the first time to generate a high-quality isoscape with a long time period in China. 
The generated isoscape would be very used for hydro-meteorological studies. However, it should be noted that 
the isoscape may be more reliable for the common periods of most iGCMs (1969–2007), but mediocre for other 
periods. What’s more, affected by the data quality and representativeness of observation stations, the accuracy of 
the isoscape in some regions still needs to be improved. It is believed that this problem will be solved as observed 
data become more abundant.

Data applications.  Based on this built isoscape, the physical mechanisms driving the spatio-temporal vari-
ation of δ18Op can be deeply explored. This dataset is useful for tracing atmospheric and hydrological processes. It 
can be used to study the effect of meteorological variables and air mass trajectory on stable isotope distribution, 
and quantify the source and fate of moisture55,109,110. For example, over East Asia, where the length of observed 
isotope data is short, or over the Tibetan Plateau, where data are unevenly distributed, the influence of climate 
change on moisture source and contribution can be studied based on this long series precipitation isoscape. The 
isoscape can also be used with regional climate models through data assimilation. For example, the precipitation 
isoscape can be combined with the physical constraints of regional climate models to reconstruct hydrological 
and climatic elements such as water vapour and precipitation. It can be a useful attempt to advance the study of 
climatic and hydrological data.

Code availability
The codes for two bias correction methods (LS and DT) and three neural network data fusion methods (BP, LSTM 
and CNN) are available at https://doi.org/10.5281/zenodo.7306199. The codes were programmed using MATLAB 
version 2022a and Python 3.8.
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