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Abstract—This report summarizes the recent development of magnetic materials search using artificial intelligence (AI) 
and machine learning (ML). The report briefly introduces ML and AI approaches to materials discovery, and the au-
thors offer a flowchart to aid the selection of relevant approaches for their material search. The report also covers the 
authors' recent research activities in magnetism and quantum materials, including topological materials, Heusler alloys, 
interfaces and permanent magnets. This overview is based on a recent symposium at IEEE Intermag 2023. 

 
Index Terms—Half-metallic materials; Hard magnetic materials; Magnetic alloys; Magnetic and spintronic materials.  

 
I.  INTRODUCTION 

Our society has relied on the discovery and development of func-
tional materials to create new functionality with improved efficiency. 
For example, a permanent magnet has been improving its energy 
product, known as BHmax, by moving from binary iron-oxide to 
more sophisticated Nd-Fe-B magnet [Coey 2020]. In spintronics, a 
ferromagnetic material with higher spin polarization has been devel-
oped [Elphick 2020]. Such research in materials science emerged in 
the 1990s thanks to the development of vacuum and growth technol-
ogies. The collection of these studies created a considerably-sized 
and reliable database, such as MatNavi [NIMS web] and Springer-
Materials [Springer web], which can be accessed and processed via 
the recent advancement in computational capability. This allows 
artificial intelligence (AI) and/or machine learning (ML) approaches 
for the material search, so-called materials informatics (MI) [Hu 
2022]. MI was initiated by the Materials Genome Initiative in 2011, 
which successfully predicted a new electrode for a battery and fabri-
cated it experimentally in the following year. Since then, many initi-
atives have been introduced by governments and companies to dis-
cover and develop new functional materials with high throughputs. 

Table 1 summarizes ML methods for materials research. As listed, 
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some methods do not predict the stability of an alloy, requiring addi-
tional calculations of energy to confirm the stability or refer to the 
corresponding phase diagrams. To guide to select a relevant method, 
Figure 1 shows a simplified flowchart, illustrating the decision-
making process involved in determining the appropriate ML model 
for investigating the magnetic properties of materials. It is worth-
while mentioning that the choice is never unique, and one task can 
be accomplished by as many models as possible. The first step en-
tails verifying the availability of an adequate amount of training data 
with reasonable quality, with the presence of physical descriptors, 
chosen manually/automatically, that allow the model to learn the 
underlying physical properties from the given features. 

Based on the specific objectives of a study, different types of ML 
algorithms can be selected, including clustering, classification, re-
gression, and dimensionality reduction techniques. It is important to 
note that the algorithms depicted in the flowchart represent a small 
subset of the available options, and researchers have the flexibility to 
explore additional algorithms based on their specific requirements. 
Due to the availability of the data labels, either supervised learning 
(with data labels) or unsupervised learning can be chosen as parallel 
guidance of the flowchart. For regression problems, supervised 
learning can be used, while for dimensionality reduction, it belongs 
to unsupervised learning. Moreover, depending on whether the mod-
el complexity grows with the data, we can also guide the choice 
through parametric models or non-parametric models. Parametric 
models like NNs or linear regression have more “fixed” model struc-
tures and have made assumptions about the data distribution, while 
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non-parametric models like random forest, although can still contain 
parameters, will grow the model complexity when the data size 
grows. Among these options, NNs stand out as a highly versatile 

approach for capturing complex features. The architecture of the NN 
can be tailored to the data representation at hand, enabling effective 
modeling of intricate relationships between variables. 

Table 1.  List of major AI/ML approaches for material search.  

 
Fig. 1.  Flowchart to select an appropriate method for ML. 

II. CASE STUDIES 

A. Magnetic Ordering 

We introduce a research work that focuses on developing a model 
to predict the category of magnetism based on their crystal structures. 
The motivation is to enhance our understanding of magnetic materi-
als and enable faster and more efficient discovery of new magnetic 

materials for various applications [Merker 2022]. 
To build the model, we used material structures as input data, 

which include information such as lattice parameters, atomic coordi-
nates, and atomic species. The material structures were converted 
into graph structures in a graph neural network (GNN). Intuitively, a 
GNN can be considered as a more flexible version of the more 
common convolutional NN, where each pixel and its neighbors ex-

AI/ML ap-
proaches Advantages Disadvantages) 

Neural networks 
(NNs) 

Protected by the universal approximation Theorem, NNs can 
learn intricate patterns from data including non-linear rela-
tionships for arbitrary functions in principle. They enable 
end-to-end learning, adapted to well-generalized model to 
capture feature hierarchies. 

NNs require a lot of computational resources (e.g., central 
processing unit (CPU) with a clock speed of at least 2 GHz 
and multiple cores, graphics processing unit (GPU) with a 
base clock frequency of at least 1 GHz or higher [Li 2023]) 
“Black box” nature can lose the interpretability of the model. 

Support vector 
machine (SVM) 

SVM is effective in high-dimensional spaces, even when the 
number of dimensions is greater than the number of samples.  

SVM underperforms where the number of features for each 
data point exceeds the number of training data samples. 

Linear regres-
sion 

Linear regression is simple and provides a clear, interpreta-
ble model structure. With the data size n and number of fea-
tures d, the training time and training space complexity of 
linear regression are O(nd), whereas the testing time and 
space complexity are O(d) [Singh 2022].  

It can be sensitive to outliers and may perform poorly with 
non-linear data or when there are interactions between fea-
tures. 

Logistic regres-
sion 

Logic regression provides a probabilistic interpretation and it 
can be regularized to avoid overfitting. 

It cannot solve non-linear problems because it is a linear 
classifier. 

K-means clus-
tering 

K-means clustering is simple to understand and implement. 
It is also efficient in terms of computational cost. 

It requires to specify the number of clusters, which is not 
always feasible. It is sensitive to initial conditions and outli-
ers. It also assumes spherical clusters of equal sizes. 

K-nearest 
neighbors 

K-nearest neighbors is a non-parametric method and can 
capture complex patterns in the data. 

It is sensitive to the local structure of the data, irrelevant 
features, and the scale of the data. It does not know which 
attributes are more important. 

Decision trees 
Decision trees are simple to understand and interpret. They 
can handle both numerical and categorical data and can 
model non-linear relationships. 

They can create over-complex trees that do not generalize 
well from the training data. They can be unstable because 
small variations may generate a completely different tree. 

Random forests 

Random forests reduce overfitting problems in decision 
trees. They can handle large datasets with higher dimension-
ality. Gradient-boosted trees (GBT), such as XGBoost, can 
improve the optimization process via a weak prediction 
model. 

They may be seen like a black-box approach for statistical 
modelers as you have very little control over what the model 
does. They can be slow to evaluate. 

Principal com-
ponent analysis 
(PCA) 

PCA can simplify a dataset by reducing a large set of varia-
bles to a smaller one that still contains most of the infor-
mation.  

The original variables are replaced by a set of principal com-
ponents, which are not as interpretable as the original data.  
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perience convolution operation with a mask function. In a GNN, 
graph nodes and the neighbor nodes perform similar operations. In 
this example, the desired output of the model is the class of mag-
netism exhibited by the material. For magnetic propagation vector 
classification, we collected 1,562 material structures with known 
magnetic properties from experiments to train and validate the mod-
el. NN was chosen as the model architecture due to its ability to 
incorporate complex interactions present in the materials. For mag-
netic order classification, a larger density-functional-theory (DFT)-
based database from Materials Project [Jain 2013] is used. Com-
pared to other methods such as decision trees, NNs can capture intri-
cate relationships between input features and output labels, even in 
cases where it is challenging to separate the contributions to mag-
netism from different factors. In particular, we utilized a specialized 
NN called GNN for their model architecture. GNNs are well-suited 
for modeling material structures as crystal graphs, and in this partic-
ular case, with added symmetry to the GNN, it allows for the inclu-
sion of Euclidean symmetry considerations. 

 
Fig. 2.  Illustration of the neural network architectures for propaga-

tion vector (top block) and magnetic order classification [Merker 2022]. 
The results demonstrate the effectiveness of the developed model 

in predicting the category of magnetism with an average accuracy of 
77.8%, and with 73.6% for propagation vector prediction. By train-
ing the model on a large dataset of material structures, it achieved 
high accuracy in correctly classifying the magnetic properties of new 
materials. This suggests that the model is capable of capturing the 
complex relationships between material structures and their magnet-
ic behaviors, though there is still room for further improvement. The 
findings contribute to the field of materials science by providing a 
valuable tool for predicting magnetism in various materials, thereby 
facilitating the discovery and design of new magnetic materials. 

B. Topological Properties 

Topological insulators (TIs) or topological semimetals (TSMs) are 
condensed matter systems exhibiting robust edge or surface modes 
and quantized bulk response functions due to the topological proper-
ties of their electronic wavefunctions. The advent of symmetry-
based indicators probing topology or topological quantum chemistry 
allowed the creation of large catalogs of topological materials 
[Vergniory 2019], with high throughput DFT calculations 
[Vergniory 2022]. The graphical user interface (GUI) is shown in 
Fig. 3(a). Predicting topology through ML faces several challenges: 
a relatively small dataset (in this study 38,298 stoichiometric unique 
compounds), the outcome being a label rather than an “energetic” 
quantity and the usage of unstructured features. Our results 
[Claussen 2020] use a simplified approach based on GBTs, an im-
proved version of the binary tree classifiers depicted in Fig. 3(b), 

though some other approaches such as those based on x-ray absorp-
tion data to predict topological class also exist [Andrejevic 2022]. 

(a)  

(b)  
Fig. 3.  (a) Illustration of the neural network architectures for propa-

gation vector and (b) magnetic order classification [Merker 2922]. 
Our ML model can predict the DFT-computed topology of a giv-

en material with an overall accuracy of almost 90% (based on the F1 
score, a measure of the accuracy of a test). A breakdown per type of 
topology shows that our classifier outperforms for trivial materials 
(F1: 94%) and TSMs (F1: 92%) and underperforms for TIs (F1: 
70%). This latest score is a consequence of the imbalance of training 
sample size between these different categories. Still, our analysis 
sheds light on the most relevant features that are required to obtain a 
predictive model. For example, the positions of the atoms do not 
improve the F1 score. Additionally, GBTs (or simplified versions of 
them) offer a unique perspective on how the classification is per-
formed. For example, it finds back rules that predict when a system 
should host a temporal shift module (TSM) based on the number of 
valence electrons and space group. 

C. Interfacial Properties 

Magnetic tunnel junctions (MTJs) have been utilized as the read-
out head of magnetic storage devices and as the memory cell of 
nonvolatile magnetoresistive random access memories (MRAMs). 
An MTJ is composed of two ferromagnetic electrodes separated by 
an insulating barrier and the resistance of MTJ depends on the rela-
tive magnetization direction of the electrodes. In this study, by using 
ab-initio calculations with the aid of ML, we explored MgO-based 
MTJs, which exhibit high tunneling magnetoresistance (TMR) ratio 
at room temperature [Shirai 2023]. We focused on quaternary Heu-
sler alloys, XX’YZ, where X, X’ and Y denote transition-metal ele-
ments and Z represents main-group elements. We employed light 
gradient-boosting machine (LightGBM, based on decision trees) [Ke 
2017] for a predictor and considered atomic number, atomic radius, 
valence-electron number, electron affinity, ionization energy, and 
thermal conductivity of each element in XX’YZ for descriptors. 

First, we explored XX’YZ having higher Curie temperature (TC) to 
suppress thermal fluctuation of magnetic moments at room tempera-
ture. We performed ab-initio calculations for about 4,500 sorts of 
cubic and tetragonal XX’YZ composed of randomly selected ele-
ments. We successfully constructed an ML model to predict TC of 
XX’YZ. Figure 4 shows the result of regression analysis for TC of 
XX’YZ (>1,000K). We obtained a relatively high correlation between 
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predicted and ab-initio values, the accuracy of prediction: ~80%. We 
carried out a virtual screening of XX’YZ having higher TC among 
whole candidates of about 100,000 sorts. As a result, we found that 
about 350 sorts of XX’YZ possess TC>800 K. 

 
Fig. 4.  Correlation between TC predicted by ML (vertical axis) and 

that obtained by ab-initio calculations (horizontal axis) for XX’YZ. 
Next, we explored XX’YZ/MgO(001) junctions having higher ex-

change stiffness at the interface to prevent thermal fluctuation of 
magnetic moments in the interfacial region. We developed a ML 
model to predict the interfacial magnetic stiffness by using the ab-
initio data for about 600 sorts. The regression analysis revealed that 
the correlation coefficient between the predicted and ab-initio values 
is 0.70 for test data. As a result of virtual screening, we found the 
junctions composed of inverse Heusler alloys Fe2CoZ (Z=Al, Ga and 
In) have higher stiffness at the FeZ-terminated interfaces with MgO. 

D. New Magnetic Materials 

Highly magnetic materials are critical in the manufacturing of in-
formation storage systems, motors, sensors, actuators, and other 
electronic devices. Traditionally, the binary alloy Fe3Co with the 
highest magnetization among stable alloys (referred to as the Slater-
Pauling limit [Kakehashi 2012] depicted in Fig. 5(a)) has been used. 
However, efforts are ongoing to discover alloys with magnetization 
that surpass this limit. These investigations focus on multi-element 
alloys, but their combinatorial explosion requires numerous simula-
tions and experiments, making comprehensive studies challenging. 

Addressing this issue, we used an autonomous materials search 
system, combining ML and ab-initio simulations, to examine multi-
element materials [Sawada 2018]. Figure 5(b) shows the autono-
mous system, which mimics the traditional process of manual mate-
rials search including fabrication of materials (step A), evaluation of 
properties (step B), and deciding on the next target materials (step 
C). Steps A and B are virtually simulated by ab-initio calculation, 
predicting material properties from the composition and crystal 
structure information. Bayesian optimization assists in deciding the 
next target composition/structure (step C). This procedure balances 
the exploration of new materials and exploitation of known infor-
mation, allowing for the selection of target materials with better 
properties. With each cycle, the increase in learning data progres-
sively refines the ML model, leading to suggest superior materials. 

The autonomous materials search system was operated continu-
ously over a period of 9 weeks. The system's progressive develop-
ment is visually captured in Fig. 5(c), wherein data representing the 
magnetic moment of materials that the autonomous system tried is 
plotted for each cycle. As the system accumulated learning data, it 
became increasingly proficient in proposing alloy compositions 
exhibiting greater magnetic moments. Importantly, the system 
demonstrated its strategic approach by intermittently testing alloy 

compositions with diminished magnetic moments. This strategy 
highlights the system's capacity to balance the exploration of new 
possibilities with the exploitation of known data throughout the mul-
tifaceted virtual search. After six weeks, the system proposed an 
alloy with the highest recorded magnetic moment, Fe82Co13Ir4Pt. 
This alloy, dominated by Fe and Co, surprisingly also contains small 
amounts of Ir and Pt, elements typically associated with low magnet-
ic moments. The performance of these alloys was confirmed by both 
experiments and theories [Iwasaki 2021]. Our autonomous materials 
search system for materials discovery is quite versatile and can be 
used in the development of various materials. 

 
Fig. 5.  Discovery of high-magnetization alloy by autonomous mate-

rials search system combining ab-initio calculation and ML. (a) The 
Slater-Pauling curve. (b) Autonomous materials search system in 
which the conventional process of materials search is simulated using 
computation technologies including ab-initio simulation and ML. (c) 
Growth of the autonomous materials search system for an alloy with a 
large magnetic moment [Iwasaki 2021]. 

E. New Permanent Magnets 
A method similar to case study D was used in the first part of this 

study. It involved using regression and principal components for 
dimensionality reduction to create a model. This model (ML1), par-
tial least squares regression (PLSRegression [Höskuldson 1988), 
could predict the intrinsic material properties of permanent magnet 
materials, spontaneous magnetization µ0MS and uniaxial anisotropy 
constant Ku, based on the chemical formula of the 2-14-1 system 
[Marinescu 2002]. The training data came from an experimental 
database and was further enhanced with a large database of DFT 
calculations for different chemical combinations of the elements, Nd, 
Pr, La, Ce, Ni, Fe, Co and B, within the same system. When a mag-
net engineer/developer needs to find the most suitable material com-
bination for their application, they can use this trained model in-
versely. Such that they solve an optimization problem with the 
trained model to identify the best material candidates while carefully 
considering the model's confidence intervals for each prediction. 

Furthermore, the study combined this model (ML1) with another 
model (ML2) operating at a larger length scale, a model that predicts 
the coercive of the permanent magnet. This single grain model, a 
shallow neural network, predicts the coercive field based on the 
geometrical parameters of a single core-shell-grain-boundary grain 
and the chemical composition of the three phases involved. By doing 
so, multi-objective optimizations become feasible, allowing scenari-
os where coercivity needs to be maximized while simultaneously 
minimizing costs. For instance, this could be applicable when deal-
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ing with unavoidable defects, such as a fixed thickness of a defect 
shell around the grains, like 5 nm (large defect) or 2 nm (thin defect). 

 
Fig. 6.  Sketch of multi-objective optimization scheme, in which ge-

ometrical parameters and intrinsic material properties of a single grain 
model are optimized. The right shows two optimization results, two 
Pareto frontiers, one with a thin defect and one with a thick soft mag-
netic defect shell surrounding a single grain [Kovas 2022]. 

Model (ML1) has been trained with 200 experimental entries of 
chemical composition and anisotropy field measured at different 
temperatures (300~473K). It has been combined with data from 
first-principles simulations including exchange integral values, such 
as approximations of the magnetic moment at 0K, TC and lattice 
constants along the same chemical concentration of 2-14-1 systems. 
Model (ML1) after training achieves a coefficient of determination 
(R2 score) of 0.961 in which the mean absolute error for magneto-
crystalline anisotropy constant is 0.31 MJ/m³ and 0.04 T for the 
saturation magnetization. Model (ML2) achieves R2=0.975 and a 
mean absolute error of 0.15 T for predicting coercivity [Kovas 2022]. 

 
III. CONCLUDING REMARKS 

We have reviewed major AI/ML approaches available in the study 
on magnetic materials and devices. The flowchart offers a simplified 
way to select an appropriate approach for a certain subject. These AI 
and ML approaches have shown great promise in predicting new 
materials with specific properties, but they hold several limitations 
that researchers must keep in mind. (i) Data availability: Machine 
learning models require large amounts of high-quality data to make 
accurate predictions. In materials science, there are limited data 
available for certain types of materials or properties. Symmetry-
aware NNs is one promising approach to reduce the data intensity. 
(ii) Quality of data: Even when data is available, it is not of high 
quality or may contain errors or biases that can impact the accuracy 
of machine learning predictions. To improve the quality, data pre-
screening, anomaly detection, noise reduction can be performed as 
standard practice. (iii) Interpretability: Machine learning models are 
often considered “black boxes”, which can make it challenging for 
researchers to understand how the model arrived at a particular pre-
diction. For this, interpretable ML is making rapid progress. (iv) 
Computational requirements: The computational resources required 
to train and run machine learning models can be substantial, which 
may limit their accessibility to those with limited resources. 
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