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Lateral line-profiles in fast-atom diffraction at surfaces

Grazing incidence fast atom diffraction (GIFAD) uses keV atoms to probe the topmost layer of crystalline surfaces. The atoms are scattered by the potential energy landscape of the surface onto elastic diffraction spots located at the Bragg angles and on the Laue circle. However, atoms transfer a significant momentum to the surface, giving rise to possible phonon excitation. This causes the inelastic intensity to spread above and below the circle along the direction of the surface normal. The relative intensity of the elastic contribution is well-fitted by the Debye-Waller model adapted to GIFAD, but the composite azimuthal line profile governing the ability to resolve diffraction spots has not been investigated in detail. The paper reports a series of diffraction measurements of helium on a LiF(001) surface revealing marked differences in the polar (θ) and lateral (ϕ) inelastic profiles but also similarities in the evolution of their line widths σ θ and σ ϕ . We observe two regimes: When elastic diffraction is significant, the Laue circle appears as a reference for inelastic diffraction; the azimuthal inelastic line shape is an exponential decay and its width increases almost linearly as the scattering angle deviates from the specular condition. When elastic diffraction weakens, the inelastic line shape evolves towards a Gaussian and its width is no longer minimum on the Laue circle. As a possible difference with X-ray, neutrons, and electrons, the in-plane motion of surface atoms may not be the dominant cause of the broadening of the lateral profile in GIFAD.

I. INTRODUCTION

Grazing incidence fast atom diffraction at crystal surfaces (GIFAD or FAD) uses atoms in the keV energy range at incidence angles around 1 • , so that the largest component of the velocity or wave-vector is parallel to the surface (see Fig. 1 and Table IV). When the surface coherence permits, a rich diffraction pattern containing up to a hundred well-resolved diffraction orders can be obtained [START_REF] Debiossac | Combined experimental and theoretical study of fast atom diffraction on the β2(2 × 4) reconstructed GaAs(001) surface[END_REF] on a position-sensitive detector [START_REF] Lupone | A large area high resolution imaging detector for fast atom diffraction[END_REF]. GIFAD is fast enough to produce several images per second allowing online tracking of thin film growth in UHV conditions [START_REF] Atkinson | Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs[END_REF]. Both detection and collection efficiencies are close to one because the large projectile kinetic energy gives rise to a small value of the Bragg angle ϕ B ≃ G ⊥ /k ∥ (see Table I) where G ⊥ is the reciprocal lattice vector and k ∥ the projectile wave-vector along the probed crystal axis.

The drawback is that the diffraction spots are close to each other requiring an angular resolution of a few mdeg. In addition, the large mass of the projectile gives rise to important inelastic effects so that the elastic diffraction peaks are accompanied by an inelastic component. The resulting azimuthal line shape is therefore composite but has never been addressed as such. This is in part because the elastic diffraction was not observed until Ref. [START_REF] Debiossac | Combined experimental and theoretical study of fast atom diffraction on the β2(2 × 4) reconstructed GaAs(001) surface[END_REF][START_REF] Debiossac | Transient quantum trapping of fast atoms at surfaces[END_REF][START_REF] Debiossac | Image processing for grazing incidence fast atom diffraction[END_REF][START_REF] Busch | Evidence for longitudinal coherence in fast atom diffraction[END_REF][START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF], probably due to a limited surface coherence in earlier work. The investigation of the azimuthal (lateral) line shape and in particular the inelastic component is the main focus of the present paper. As with all diffraction techniques, the location of the diffraction spot only indicates the surface periodicity while the detailed information on what constitutes the unit cell is associated with the relative intensity I m of the elastic diffraction orders (Σ m I m = 1). An accurate comparison with theory requires a careful evaluation of intensities taking into account the spot profile contaminated by the inelastic profile and the possible overlap of adjacent diffraction orders. In addition, a better description of the inelastic profile might provide a better understanding of the inelastic processes at play. The elastic profile is represented by a delta function δ(x) with a weight a and the inelastic one by a function f (ϕ) listed in Table II and a weight (1 -a). The sum is then convoluted (noted *) by a Gaussian of width σ b fitted to the beam profile measured immediately before or after the experiment. The composite profile, noted f * is given in eq. [START_REF] Debiossac | Combined experimental and theoretical study of fast atom diffraction on the β2(2 × 4) reconstructed GaAs(001) surface[END_REF]. 
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The paper is organized as follows: Sections II and III are a brief presentation of the GIFAD technique and elastic diffraction. Section IV reports the present status of inelastic diffraction and polar and azimuthal line profiles before analyzing experimental results. The overall line profile is characterized in section V where its evolution with the projectile energy and angle of incidence as well as with the surface temperature and crystallographic direction is reported in dedicated subsections. In particular, subsection V B presents evidence that the overall azimuthal line shape does not depend on the probed crystal direction. The subsection V C compares the different forms of line profiles to data recorded in the quasiclassical region where elastic diffraction is weak and in the quasi-elastic region where it is dominant. It emphasizes that the proposed two-component profile representing the elastic and inelastic components allows a fair estimate of the Debye-Waller factor (DWF) from the azimuthal line shape close to the one derived from the decomposition of the polar profile. Similarities and differences between the overall polar and azimuthal profiles are also discussed. Section VI corresponds to restrictions of the above discussions to the azimuthal profile located on the Laue circle defined by

| ⃗ k f | = | ⃗ k i |
where the elastic component is located so that the contrast with inelastic diffraction is maximal. The influence of the line profile on the determination of the diffracted intensities I m is discussed here. Section VII extends to any value of the polar angle by investigating internal dependencies along θ f and ϕ f within a diffraction image. The quasi-elastic and quasi-classical regimes are characterized by different correlation schemes switching from a linear regime with the Laue circle as an absolute reference to a more complex polynomial behavior. Section VIII discusses the results from the perspective of simple models. Table III aggregates definitions of the geometry and angles used in this manuscript while Table IV reports definitions from previous simplified collision models.

II. THE GIFAD TECHNIQUE

The technique has been described in detail in Ref. [START_REF] Pan | A setup for grazing incidence fast atom diffraction[END_REF] and only a brief presentation is sketched here. An ion beam of energy in the keV range is neutralized and drastically collimated to reduce its angular divergence below 0.01 • before impacting on the target crystal surface at an incidence angle θ i ∼ 1 • . The particles reflected around the specular direction are collected onto a position-sensitive detector placed ∼ 1 m downstream. By construction, this detector is perpendicular to the direction of the primary beam so that within minor corrections, the spatial coordinates (y, z) can be related to the final projectile velocity v y , v z (see Fig. 1). For convenience, we often use the associated wave-vectors k y , k z . If the quality of the crystal surface is good enough, diffraction is present in the form of sharp spots on the Laue circle separated in the y direction by multiples of the reciprocal lattice vector

G ⊥ ≡ G y , k f y = k iy + mG ⊥ ,
where m is the diffraction order and the subscript i or f stands for the initial or final value. For well-aligned conditions (k iy = 0), the Kapitza-Dirac obliquity factor [START_REF] Henkel | Atomic diffraction by a thin phase grating[END_REF][START_REF] Debiossac | Atomic diffraction under oblique incidence: An analytical expression[END_REF] indicates that diffraction is present only along the y direction explaining that only one diffraction circle is observed (see also [START_REF] Zugarramurdi | Transition from fast to slow atom diffraction[END_REF][START_REF] Muzas | Diffraction of H from LiF(001): From slow normal incidence to fast grazing incidence[END_REF] for a quantum treatment or [START_REF] Danailov | Simulation of ballistic effects during scattering under glancing angles of incidence from crystal surfaces[END_REF][START_REF] Farías | Pronounced out-of-plane diffraction of H2 molecules from a Pd(111) surface[END_REF] for a classical approach). As a consequence, the relative intensities I m can be measured at various combinations of the primary energy E 0 and θ i giving the same value of E ⊥ = E 0 sin 2 θ i [START_REF] Debiossac | Grazing incidence fast atom diffraction, similarities and differences with thermal energy atom scattering (TEAS)[END_REF]. A few degrees away from a low index direction, only the specular spot (m = 0) is present as with a perfectly flat mirror [START_REF] Winter | Fast atom diffraction during grazing scattering from surfaces[END_REF][START_REF] Zugarramurdi | Surface-grating deflection of fast atom beams[END_REF]. On LiF, only two crystallographic directions give rise to diffraction with m ̸ = 0, the [100] and the [110] directions. The periodicity d ⊥ ≡ d y , reciprocal lattice vector G ⊥ = 2π/d ⊥ , and associated Bragg angles ϕ B are given in Table I. Taking the crystal normal as the z axis, the incidence and outgoing angles are listed in Table III.

III. ELASTIC DIFFRACTION

The elastic diffracted intensity derives from fully coherent scattering from perfectly periodic conditions. This corresponds to atoms at the equilibrium position, as if these were immobile. Using the Debye model, the sur-face atomic motion is described by a local oscillator, also called Debye oscillator or high-frequency limit, that after coupling between neighbors, gives rise to the phonon modes as Eigenstates of the system. The quantum aspect here is that the vibration is represented by a vibrational wave function and the probability that a surface atom exchanges the momentum δk, needed to deflect the fast projectile without changing its vibrational wave-function, is the Lamb-Dicke probability [START_REF] Roncin | Energy loss and inelastic diffraction of fast atoms at grazing incidence[END_REF]. In this case, the scattering by δk takes place from the center of the wave-function, i.e. from the equilibrium position. Consistently, quantum scattering calculations are usually performed directly from the equilibrium position [START_REF] Rousseau | Quantum scattering of fast atoms and molecules on surfaces[END_REF][START_REF] Zugarramurdi | Transition from fast to slow atom diffraction[END_REF][START_REF] Muzas | Diffraction of H from LiF(001): From slow normal incidence to fast grazing incidence[END_REF][START_REF] Aigner | Suppression of decoherence in fast-atom diffraction at surfaces[END_REF][START_REF] Sanz | A trajectory-based understanding of quantum interference[END_REF][START_REF] Brand | Coherent diffraction of hydrogen through the 246 pm lattice of graphene[END_REF] to represent elastic diffraction. Classical trajectories on this potential energy landscape (PEL) lead to a surprisingly well-defined Laue circle even with simplified binary collision models [START_REF] Roncin | Energy loss and inelastic diffraction of fast atoms at grazing incidence[END_REF][START_REF] Danailov | Computer simulation of the reflection of energetic ions from crystal surfaces at glancing incidence[END_REF]. The diffraction spots are replaced by a continuous azimuthal profile showing a main rainbow and possibly secondary rainbows in the form of sharp singularities [START_REF] Danailov | Angular spectra of rainbow scattering at glancing keV He + bombardment of NiAl(100) surface with transverse energies in the range 1 to 10eV[END_REF][START_REF] Connor | Rainbow scattering in atomic collisions: A regge pole analysis[END_REF]. Attaching a semi-classical phase to the trajectories reveals the discrete structure of Bragg peaks and the modulation of the elastic diffracted intensity due to interference within the lattice unit. Supernumerary rainbows become visible when the phase difference below the rainbow angle exceeds multiples of 2π [START_REF] Debiossac | Grazing incidence fast atom diffraction, similarities and differences with thermal energy atom scattering (TEAS)[END_REF][START_REF] Winter | Fast atom diffraction during grazing scattering from surfaces[END_REF][START_REF] Schüller | Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(001) surface[END_REF][START_REF] Gravielle | Fast atom diffraction for grazing scattering of Ne atoms from a LiF(001) surface[END_REF]. However, ad-hoc additional treatments are needed to smooth the rainbow singularities [START_REF] Gravielle | Semiquantum approach for fast atom diffraction: Solving the rainbow divergence[END_REF] by an Airy-like profile or to account for the Gouy phase when passing through a focus [START_REF] Briggs | Trajectories and the perception of classical motion in the free propagation of wave packets[END_REF]. For restricted shapes of the PEL, perturbation theory has also shown interesting results and delivered analytic expressions to describe atomic diffraction [START_REF] Pollak | Second-order semiclassical perturbation theory for diffractive scattering from a surface[END_REF][START_REF] Allison | Perturbation theory of scattering for grazing-incidence fast-atom diffraction[END_REF].

Diffraction of fast atoms has always been observed to be accompanied by an inelastic component, but the elastic intensity can be isolated and the slowly varying inelastic intensity suppressed by applying a simply doubly differential polar filter. This empirical approach produces an intensity located only on the Laue circle [START_REF] Debiossac | Image processing for grazing incidence fast atom diffraction[END_REF][START_REF] Debiossac | Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination[END_REF][START_REF] Lalmi | High resolution imaging of superficial mosaicity in single crystals using grazing incidence fast atom diffraction[END_REF]. The associated azimuthal elastic profiles were found to be close to pure Gaussians having a width identical to the direct beam profile and justifying the use of the delta function δ(ϕ) in eq. (1).

IV. INELASTIC DIFFRACTION

Though most published results show a dominant inelastic intensity, the inelastic lateral profile has never been investigated extensively. Various empirical forms were proposed to fit the measured diffraction profiles. One is a combination of two Gaussians, a narrow one on top of a broader one with a relative weight a equal for all diffraction orders but evolving with incidence angle [START_REF] Rousseau | Surface analysis with grazing incidence fast atom diffraction (GIFAD)[END_REF]. Another proposal was to use a Lorentzian [START_REF] Winter | Fast atom diffraction during grazing scattering from surfaces[END_REF][START_REF] Rubiano | Ab initio potential for the He-Ag (110) interaction investigated using grazing-incidence fast-atom diffraction[END_REF] or a Voigt profile [START_REF] Seifert | Studies on coherence and decoherence in fast atom diffraction[END_REF] irrespective of the elastic to inelastic ratio. In the present paper, new forms are introduced (as summarized in Table II) and the lateral profile is discussed in detail taking into account explicitly elastic and FIG. 2. The raw plot in Fig. 1 is polar transformed following Ref. [START_REF] Debiossac | Image processing for grazing incidence fast atom diffraction[END_REF]. The yellow lines are the overall polar and azimuthal profiles corresponding to intensity projections (full integration) while the red one is the intensity (x20) of a 0.015 • band at the specular angle (θ f = θi). inelastic components.

The 2D color plot corresponds to the raw image in Fig. 1 after the polar transform of Ref. [START_REF] Debiossac | Image processing for grazing incidence fast atom diffraction[END_REF].

With a large band-gap insulator as LiF, probed with helium, the inelastic processes are expected to be governed by the interaction with surface phonons. At thermal energies and large incidences (TEAS) where the projectile hits a single surface atom, this gives rise to the well-known Debye-Waller factor describing the ratio of elastic intensity as proportional to e -Er/ℏ where E r is the recoil energy deriving from momentum conservation and ω D is the Debye frequency (see Table IV). This is equivalent to the recoil-less Lamb-Dicke probability used to trap cold atoms.

In GIFAD, it was soon realized that the multiple collision regime specific to grazing incidences leads to a much more favorable DWF due to the fact that several (say N ) tiny binary deflections by θ b produce less decoherence than a single deflection by 2θ i = N • θ b . The DWF is now proportional to Π N 1 e -Er/ℏω D = e -Σ N 1 Er/ℏω D = e -E loss /ℏω D . It is the same formula but the recoil energy of a single binary collision is replaced by E loss , the sum of all the classical recoils energies along the trajectories. It that can be calculated as

E loss ≃ N • E r ∝ Eθ 3
i assuming a purely repulsive form of the PEL [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Rousseau | Surface analysis with grazing incidence fast atom diffraction (GIFAD)[END_REF][START_REF] Manson | Theory of grazing incidence diffraction of fast atoms and molecules from surfaces[END_REF] or a Morse form to account for attractive forces (see Table IVc).

The inelastic diffraction intensity is still partly coherent, as illustrated in Fig. 12 of Ref. [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF], which shows that the intensities I m can be extracted outside of the Laue circle, i.e. from purely inelastic intensity assuming an effective incident wavevector k eff = (k f ⊥ -k i⊥ )/2 in the perpendicular plane. In other words, the relative intensities recorded on the circle of diameter k eff encompassing the direct beam position (see e.g. Ref. [START_REF] Debiossac | Image processing for grazing incidence fast atom diffraction[END_REF] for details) are close to the elastic one that could be recorded on the Laue circle if the angle of incidence would be θ eff = arctan(k eff /k). The consequence is that on the Laue circle, both elastic and inelastic diffraction point to the same relative intensities I m . This is compatible with the fact that all diffraction orders seem to have the same azimuthal line shape.

A. The inelastic polar profile

In terms of data analysis, the overall polar profile is defined in two steps. First, a simple polar transform of the 2D intensity I(k y , k z )→ I(k y , k ⊥ ), preserving the scattering plane and the direct beam position as invariant spot [START_REF] Debiossac | Image processing for grazing incidence fast atom diffraction[END_REF][START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF]. Secondly, a projection on k ⊥ i.e. an integration along k y adding the polar profiles of all diffraction orders. Within a surprising accuracy, this polar profile visible in Fig. 2 was found independent on the probed crystal axis (see Fig. 4 of Ref. [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF]). The polar profile is decomposed into a sharp central peak having a width similar to that of the primary beam sitting on top of a much broader one, well fitted by a log-normal shape (defined in Table II) as observed in fully inelastic conditions [START_REF] Villette | Subsurface-channeling-like energy loss structure of the skipping motion on an ionic crystal[END_REF][START_REF] Villette | Etude expérimentale de l'intéraction rasante d'atomes et d'ions sur des surfaces isolantes[END_REF]. Interpreting these components as the elastic and the inelastic contribution, the log(DW F ) was found to scale with Eθ 3

i T [START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF] as expected from Ref. [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Rousseau | Surface analysis with grazing incidence fast atom diffraction (GIFAD)[END_REF][START_REF] Manson | Theory of grazing incidence diffraction of fast atoms and molecules from surfaces[END_REF]. The standard deviation σ θ of this inelastic component was found to increase almost linearly with the angle of incidence θ i so that the relative width w ∼ σ θ /2θ i (see Tables II is almost constant for 120 meV⩽ E ⊥ ⩽ 500 meV while it increases rapidly below 120 meV [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF][START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF]. These behaviors could be ascribed to classical scattering on thermally displaced surface atoms. The increase for E ⊥ ⩽ 120 meV could be related to the effect of attractive forces bringing the turning point of the trajectory closer to the surface and increasing the effective repulsion at this point. An effective surface stiffness Γ eff (see Table IV(b)) was defined to describe this effect [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF] first identified by Rieder et al. [START_REF] Rieder | Energy dependence and softness of the potential for He Scattering from Ni(110)[END_REF]. In GIFAD, the force at the turning point governs the momentum transfer to each surface atom and the inelastic effects. This will be discussed further with the results and in section VIII.

V. THE OVERALL LATERAL LINE-SHAPE A. The overall lateral profile

The overall azimuthal scattering distributions either on the Laue circle or integrated over the polar angle are governed by the number of diffraction peaks rather than by their shapes [START_REF] Kalashnyk | Atom beam triangulation of organic layers at 100mev normal energy: self-assembled perylene on Ag(110) at room temperature[END_REF]. It strongly depends on the probed crystal direction and the intensities I m are a signature of the shape of the PEL [START_REF] Debiossac | Grazing incidence fast atom diffraction, similarities and differences with thermal energy atom scattering (TEAS)[END_REF][START_REF] Winter | Fast atom diffraction during grazing scattering from surfaces[END_REF][START_REF] Debiossac | Refraction of fast Ne atoms in the attractive well of a LiF(001) surface[END_REF] formed by the wellaligned rows of surface atoms. Monitoring the width of this overall azimuthal profile is enough to identify the crystal axis and corresponds to the concept of atomic triangulation [START_REF] Debiossac | Grazing incidence fast atom diffraction, similarities and differences with thermal energy atom scattering (TEAS)[END_REF][START_REF] Kalashnyk | Atom beam triangulation of organic layers at 100mev normal energy: self-assembled perylene on Ag(110) at room temperature[END_REF]. We focus here, not on the intensity I m but on the line shape of these diffraction peaks. Since the first GIFAD observations, this later was reported to be identical for all diffraction orders of a given diffraction pattern [START_REF] Rousseau | Surface analysis with grazing incidence fast atom diffraction (GIFAD)[END_REF][START_REF] Seifert | Studies on coherence and decoherence in fast atom diffraction[END_REF].

B. Dependence on the crystal axis, ϕ-scan

The independence of the lateral profile on the crystal axis was first suggested by Seifert et al. [START_REF] Seifert | Studies on coherence and decoherence in fast atom diffraction[END_REF] who showed that the azimuthal profile recorded along a random direction could be used to fit the line shape of a low-index direction. No elastic diffraction was identified in this early work, but we found identical results with well-resolved elastic diffraction peaks. The finding could be due to the fact that when diffraction is observed the transverse coherence of the projectile is necessarily much larger than the unit cell so that only the mean number of collisions, directly connected with the target surface density is important. Independently of the exact mechanism, this seems to be true for the weakly corrugated LiF surface, as illustrated in Fig. 3 and Fig. 4 corresponding to perpendicular energies E ⊥ =66 meV and 365 meV respectively. The overall profile recorded along a [Rnd] direction is compared with different lineshapes in Fig. 3(a) to 3(d) all convoluted by the direct beam profile (Table II). The Lorentzian L * form in Fig. 3(a) has a too-large tail while the Gaussian one G * in Fig. 3(b) has a too-short tail. In Fig. 3 (c,d), the data are equally well fitted by an exponential decay form E * or The Fig. 3 (e,f) display in log-scale and linear scale, respectively, the overall azimuthal profile recorded at the same energy and incidence angle but along the [100] direction. The blue line reproduces the profile Fig. 3(a-d) recorded along the [Rnd] direction, while the green lines are the line shape used to fit the data. This line shape is identical to the one used to fit the [Rnd] direction in Fig. 3

(c).

A similar comparison is repeated for an incidence angle of 1.54 • and displayed in Fig. 4. The perpendicular energy E ⊥ is now 365 meV and inelastic diffraction dominates. Here again, the scattering profile recorded along a [Rnd] direction is well fitted by either an E * or L•G * profile. Using the exponential decay form, the decay range is now ϕ 0 = 0.06 • (compared to ϕ 0 = 0.03 • at a lower energy in Fig. 3) and the weight of inelastic diffraction is 83%, almost twice as large as in Fig. 3. Figures 4(c,d) show the overall azimuthal profiles recorded along the [100] direction for identical beam parameters together with the fit by the profile derived from the [Rnd] direction. The quality of the fit, both in linear and log-scale suggests that indeed, the line profile does not depend significantly on the probed crystal axis. From Figure 3 and Figure 4, it is clear that the shape of the far wings of the lateral profile can only be investigated along a [Rnd] direction. 1 form provides the best fit. Depending on the line shape, the elastic intensity (a in eq.( 1)) varies by a factor ∼ 3.

C. Choice of functional form

Figure 3 and Figure 4 show that for perpendicular energies of up to 400 meV, both the pure exponential decay and the bounded Lorentzian profiles give a very good description after convolution by the beam profile. For larger values of E ⊥ , as shown in Fig. 5 recorded at θ i =2.36 • i.e. E ⊥ =850 meV, a clear departure from the simple exponential decay can be observed. The L • G * 2 gives the best fit but slightly overestimates the length of the tail. The L • G * 1 form in Table II produces a faster attenuation of the tail. At even larger values of E ⊥ , around 2 eV, the lateral profile is best fitted by a simple Gaussian form (not shown).

D. Dependence on the primary energy: E-scan

Figure 6 reports the azimuthal linewidth measured during an E-scan performed along a [Rnd] direction and with a fixed incidence angle of 0.66 • with primary energy varied between 300 eV and 3 keV. For all energies, the overall scattering profiles of the single diffraction peak is well fitted either by E * or by the two L • G * forms. The ratio of elastic diffraction (a in Table II or DWF) drops by two orders of magnitude, from around 60% at 300 eV (E ⊥ ∼ 40 meV) below a fraction of a percent at 3 keV (E ⊥ ∼ 400 meV), but the width σ ϕ of the inelastic contribution appears almost constant over the whole energy range. This is also the case for the polar width σ θ over the same energy range. The surprise is that σ ϕ and σ θ have a comparable magnitude. This contradicts the visual aspect of a very elongated spot as visible in the inset at 850 meV in Fig. 8 corresponding to the maximum energy where the elastic contribution is still FIG. 6. The Polar (σ θ ▽) and azimuthal (σ ϕ ) widths of the overall inelastic profile recorded along a [Rnd] direction during an E-scan at a fixed incidence angle θi=0.66 • are reported as a function of the perpendicular energy E ⊥ with lines to guide the eyes. The scale on the right-hand side shows the dimensionless unit σ/2θi used in Ref. [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF][START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF].

clearly visible but very weak. The reason is that the associated line shapes are very different, log-normal polar profile [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF] has a flat top but short wings, whereas the azimuthal one, has a sharper peak but a broader base giving different visual aspects but comparable variances or standard deviations.

As a simplifying summary, during an E-scan, the inelastic component has almost constant polar and azimuthal width so that the overall line shape is simply a variable combination of this fixed inelastic shape plus the narrow elastic one. We now try to investigate the evolution of the line shape with the angle of incidence.

E. Dependence on the angle of incidence: θ-scan

Using the same procedure and functional forms, Fig. 7 reports the evolution of σ ϕ and σ θ vs E ⊥ corresponding to a comparatively large angular range, between 0.3 • and 2.5 • for 500 eV helium on a LiF surface at 180K oriented along a [Rnd] direction. Here again, σ ϕ and σ θ have a comparable magnitude and now increase rapidly with E ⊥ above 200 meV. The elastic ratio derived from the fit of the polar and azimuthal profiles do not coincide perfectly but show comparable trends compatible with previous investigations using only the analysis of the polar profile [START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF].The horizontal lines at ϕ=0.13 and 0.186 • in Fig. 7 correspond to the value of the Bragg azimuthal angle ϕ B associated with the [100] and [110] directions. Typically, inelastic diffraction features should become difficult to observe when the inelastic width σ ϕ exceeds the peak separation ϕ B . Note that the width of the elastic diffraction remains narrow, but its relative intensity given by the Debye-Waller factor becomes very weak. To summarize the θ-scan, above E ⊥ ∼ 200 meV, FIG. 7. Evolution of the azimuthal σ ϕ ( ) and polar σ θ (▽) widths during a θ-scan at E=500 eV along a [Rnd] direction where only the specular peak is present. The coefficient a in eq. ( 1) represents the elastic ratio extracted from a fit of the azimuthal ( ) or of the polar profile ( ). The lines are to guide the eyes.

the inelastic azimuthal width σ ϕ scales linearly with E ⊥ at a rate given by dσ ϕ /dE ⊥ = 0.222 • /eV .

To explore beyond this linear dependence, Fig. 8 reports the width σ θ and σ ϕ relative to the angle of incidence θ i (or to the specular scattering angle θ s = 2θ i ) canceling the linear increase in Fig. 7. The evolution now compares with the one observed in Fig. 6 during an E-scan. As a difference, the comparatively flat section above E ⊥ =200 meV is replaced by a smooth increase of both σ θ and σ ϕ with a possible convergence around E ⊥ = 1 eV.

The log-normal shape was introduced empirically for its good description of the asymmetric polar profile [START_REF] Villette | Etude expérimentale de l'intéraction rasante d'atomes et d'ions sur des surfaces isolantes[END_REF]. It was later derived as the natural scattering distribution emerging from a binary collision with a Gaussian thermally distributed surface atom [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Manson | Theory of grazing incidence diffraction of fast atoms and molecules from surfaces[END_REF]. The constant ratio of w ≃ σ ϕ /2θ i is therefore linked to a simple scattering property. The azimuthal relative width σ ϕ /2θ i introduced here can be interpreted as the azimuthal width σ φ expressed in the polar coordinates (φ, θ) instead of (ϕ, θ) as depicted in Fig. 1.

The 2D(θ, ϕ) scattering profiles at E ⊥ =200 meV and 850 meV are reported in Fig. 8 and show the evolution towards a more circular pattern with increasing perpendicular energy. Here again, the difference in line shape along θ and ϕ explains that, even when σ ϕ is close to σ θ , the impression of an elongated spot prevails. Exploring much larger energies and angles we could find situations where σ ϕ becomes larger than σ θ (upper right insert in Fig. 8).

Focusing on the DWF, the evaluations from the polar profile using eq. ( 1) with a LN (θ) or from the lateral profile with L • G(ϕ) are completely independent and should give identical values. The results indicated by ( ) and ( ) symbols in Fig. 7 show similar tendencies but also sig-FIG. 8. The same polar and azimuthal widths as in Fig. 7 are plotted as a dimensionless relative widths σ ϕ /2θi ( ) and σ θ /2θi (▽) used in Ref. [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF]. The lines are to guide the eyes. Inserts are 2D(ϕ, θ) profiles at E ⊥ =200 and 850 meV, the one in the upper right corner was recorded separately at 3 keV and 3.5 • (E ⊥ ≃ 10 eV) and is compressed 9 times. nificant differences at low values of DWF probably due to shape-specific difficulties to isolate an elastic contribution below a few % from the polar or azimuthal profile. It should also be noted that taking the exact value σ b measured on the direct beam to fit the elastic lateral profile always gives a good result, whereas, for very grazing incidence, Ref. [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF] indicates a tendency that a good fit of the polar profile requires a weak broadening of σ b .

F. Summary on the overall azimuthal width

The overall azimuthal scattering profiles have been analyzed in terms of the line shape of the diffraction peaks. For the conditions investigated here, the line profile does not depend on the diffraction order so a unique line shape can be used to fit the overall azimuthal profile. This inelastic line shape has a comparatively sharp peak and long tails. At low incidence angles where the elastic contribution dominates, it is almost impossible to assess the exact shape of the peak, a simple exponential decay provides a good fit. We found that the inelastic azimuthal line shape is well reproduced by a Lorentzian profile multiplied (attenuated) by a gaussian function and convoluted by the beam resolution L • G * [7] (Table II). During an E-scan, the line width σ ϕ appears rather stable while during a θ-scan, it also appears stable for values of E ⊥ < 200 meV but increases rapidly above. When divided by the specular scattering angle θ s = 2θ i , the polar and azimuthal widths have a comparable behavior illustrated in Fig. 8. The next sections will investigate the same properties but restricted to the Laue circle, i.e. without integrating over the polar direction.

VI. LINE SHAPE ON THE LAUE CIRCLE

We now focus on the intensity sitting on the Laue circle where the elastic intensity is maximum. Considering a narrow polar band of approximately the beam width σ b on the Laue circle (in practice a narrow crescent disk [START_REF] Debiossac | Image processing for grazing incidence fast atom diffraction[END_REF]), the weight of the elastic peak is on the order of σ θ /σ b larger than on the overall azimuthal profile investigated in the previous section. We first recall that, when elastic diffraction is observed, the elastic and inelastic relative intensity I m on the Laue circle were found to be equal [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF]. Therefore, it is not needed to separate elastic and inelastic contributions precisely. We use the same procedure and functional forms but the coefficient a in Table II describing the relative weight of the elastic peak is now interpreted as the visibility of elastic diffraction, not as the DWF. In general, the inelastic width σ ϕ measured on the Laue circle is smaller than when measured on the overall profile but it differs only by 10-20%. Taking the example of the overall azimuthal profile displayed in Fig. 4(c,d) where a 17% DWF was estimated, the same fit restricted to the Laue circle gives a visibility of 49% instead, while the inelastic azimuthal width σ ϕ is reduced by 10%. Hence, the dominant effect on the peak profile is the drastic increase in the ratio of the elastic component.

We explore below two situations where neighboring diffraction peaks overlap due to a small Bragg angle and/or to a significant inelastic broadening. Measuring a small diffracted intensity in the vicinity of intense peaks becomes difficult and sensitive to the line shape. For simple crystals where only one maximum and one minimum of the electronic density are present in the lattice unit, only two semi-classical trajectories interfere at a given scattering angle ϕ f as illustrated in Fig. 2-4 of Ref. [START_REF] Winter | Fast atom diffraction during grazing scattering from surfaces[END_REF]. A simple ray-tracing model indicates that for small lateral deflection, i.e. the rays emitted from the top of F - or Li + ions and separated along y by d ⊥ /2 are π shifted so that the intensity of the odd orders oscillates in opposition to that of the even diffraction orders [START_REF] Debiossac | Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination[END_REF]. On LiF and for values of E ⊥ < 1 eV, this is true both along the [100] and [110] directions (see e.g. the diffraction charts in Fig. 3.21 of Ref. [START_REF] Winter | Fast atom diffraction during grazing scattering from surfaces[END_REF] or Fig. 2 of Ref. [START_REF] Debiossac | Refraction of fast Ne atoms in the attractive well of a LiF(001) surface[END_REF] where each bright diffraction order is surrounded by dark one in the central region). It means that for these directions, whenever a central peak reaches its maximum intensity, the adjacent peaks should be weak and vice versa.

Figure 9 displays the central part of the azimuthal profile recorded with 5 keV helium along the [110] direction at 0.75 • incidence where all even diffraction orders (m = 0, ±2, ±4) are quite intense. We have tried to evaluate the influence of the lineshapes on the extracted intensities with the idea that the odd diffraction orders should have an intensity as low as possible without turning negative. This is only qualitative but the mean level of the odd diffraction orders is low with the L • G * and the exponential decay profile E * whereas it is quite large with the Gaussian G * line shape and produces some negative values with the Lorentzian profile L * (not shown). Another indication that the Lorentzian profile produces too broad wings was identified close to the rainbow scattering angle corresponding to a maximum of the classical deflection function [START_REF] Debiossac | Grazing incidence fast atom diffraction, similarities and differences with thermal energy atom scattering (TEAS)[END_REF][START_REF] Schüller | Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(001) surface[END_REF]. At this angle, several classical trajectories are scattered at the same angle and, quantum mechanically the associated diffraction orders tend to have comparable phases and a significant intensity. The use of a Lorentzian profile was found to produce an exaggerated intensity level extending to scattering angles beyond the rainbow angle [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF].

A more quantitative strategy to evaluate the quality of the line shape is to compare intensities I m recorded at very different E 0 and θ i conditions but with identical values of E ⊥ = E 0 sin 2 θ i so that I m should be identical [START_REF] Zugarramurdi | Transition from fast to slow atom diffraction[END_REF]. Figure 10 reports diffracted intensities recorded at 300 eV and 5000 eV and incidence angles of 1.35 • and 0.33 • respectively so that the energy E ⊥ is close to 165 meV in both cases. The angular resolutions are both around 0.007 • , but they appear quite different on the detector as the radius of their Laue circle varies by a factor ∼ 4. In Fig. 10(a), the diffraction peaks are well separated and even a poor description of the profile will not alter the derived I m . Oppositely, Fig. 10 II. The contribution of the specular peak (blue line) depends on the line shape.

only 10% from the value determined in Fig. 10(a) where the peaks are well separated.

VII. CORRELATIONS BETWEEN θ f AND ϕ f

By investigating either the overall distribution or the one on the Laue circle, we have bypassed the internal correlation of the 2D intensity distribution.We analyze here this correlation for diffraction along a random direction. For each value of θ f , the distribution of ϕ f has properties that are different on the Laue circle (θ f = θ i ) and far away from the Laue circle. We observe no dependence of the mean azimuthal scattering angle ϕ f with the final polar angle θ f and a weak evolution of the mean polar angle θ f with the final azimuthal angle ϕ f . This is not the case for the width σ ϕ . In section VI, we indicated that within typically 10%, the widths σ ϕ measured on the Laue circle compare with the ones measured on the overall azimuthal profile. This is mainly due to the fact that the intensity on the Laue circle is maximum and its contribution dominates the average. We try below to analyze in more detail the specificity of the Laue circle.

A. Lateral width σ ϕ versus θ f At small values of Eθ 3 i T /300 where elastic diffraction dominates, the evolution of the inelastic line shape above or below the Laue circle is quasi-symmetric, the line width increases almost linearly with the distance to the Laue circle; σ ϕ = σ ϕs + α|dθ| where σ ϕs is the value measured on the Laue circle (at specular angle θ spec ) and dθ = θ f -θ i is the distance to the Laue circle. This indicates that the specular condition is indeed a reference for the inelastic process. Any departure from this reference either upward or downward is accompanied by a significant increase in the width. This is illustrated in Fig. 11(a) where the blue triangles represent the standard deviation of the azimuthal distribution as a function of the polar angle θ f . The width is measured by simple statistical evaluation of the variance σ 2 ϕ = Σ ϕ I(ϕ)ϕ 2 /I tot without trying to separate the elastic and inelastic contributions. As a consequence, the sharp dip around the specular polar angle simply outlines that, at this location, the azimuthal distribution is dominated by the narrow elastic spot. This dip, outlining the elastic contribution, could be bypassed by fitting the profiles to isolate the inelastic contribution but the fit is partly unstable, probably because the elastic component is so large that a variation as small as 0.1 pixel of its line shape (σ b in eq. ( 1)) significantly affects the fit. For Fig. 11(a), the width σ ϕs at the specular angle is estimated by interpolation as σ ϕs ≃0.015 • and the slope α is close to 0.1 meaning that the σ ϕ increases by 0.01 • every 0.1 • away from the Laue circle.

At larger values of Eθ 3 i T /300 where the elastic component is much weaker than the inelastic one, the evolution of the line width becomes asymmetric. The position of the minimum line-widths shifts to underspecular conditions (θ f < θ i ) as illustrated in Fig. 12(a) recorded with a surface at 700 K. Fig. 13 recorded at room temperature but with 4 keV projectiles explores fully inelastic condition with Eθ 3 above 40 meV where the DWF is probably less than 10 -8 [START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF]. The shift δθ between the maximum intensity and the minimum of the line width is more pronounced than that of Fig. 12 in spite of a smaller angle of incidence.

B. Polar width σ θ versus ϕ f

This section is in part beyond the main focus of the paper but is reported here for completeness. We investigate the evolution of the polar width σ θ as a function of the departure from the Bragg condition ϕ f = mG y . Under a random direction where only m = 0 is present, the reference is the scattering plane ϕ f = ϕ m=0 = 0.

The mean value of the polar distribution θ f /θ i depends only slightly on the azimuthal angle ϕ f as indicated by red hollow square symbols ( ) in Fig. 11(b) 12(b) and 13(b). For values of ϕ f within the FWHM of the azimuthal profile, the variation of θ f /θ i is less than 5%.

The variation of the polar width σ θ with ϕ f (▽) is more pronounced and is comparable to that of the azimuthal width σ θ with θ f ( ). At low values of Eθ 3 in Fig. 11(b) the dependence is linear while it shows a flat minimum close to Eθ 3 ≃ 10 meV, the observation threshold of elastic diffraction in Fig. 12(b). In Fig. 11 fit was needed to isolate the inelastic contribution while a straightforward statistical evaluation was performed in Fig. 12(b). At much larger values of Eθ 3 , a regime where elastic diffraction cannot be observed, Fig. 13(b) indicates a pronounced quadratic behavior.

VIII. DISCUSSION

For large band-gap insulators like LiF, the inelastic effect in diffraction is dominated by interaction with phonons [START_REF] Manson | Theory of grazing incidence diffraction of fast atoms and molecules from surfaces[END_REF]. With atoms at thermal energies and quasinormal incidence, energy-resolved inelastic diffraction reveals the specific surface phonon modes [START_REF] Tamtögl | Elastic and inelastic scattering of he atoms from Bi (111)[END_REF] and, for metals, the coupling could be traced to the strength of the electron-phonon interaction [START_REF] Anemone | Electron-phonon coupling constant of 2H-MoS2 (0001) from helium-atom scattering[END_REF][START_REF] Benedek | Origin of the electron-phonon interaction of topological semimetal surfaces measured with helium atom scattering[END_REF][START_REF] Benedek | Evidence for a spin acoustic surface plasmon from inelastic atom scattering[END_REF]. In GIFAD, the total energy cannot be resolved in the meV range and, so far, only the scattering in the perpendicular plane can be analyzed.

The theory also is much less developed due to the more complex regime where the projectile interacts with many surface atoms. An attempt to account for the actual phonons modes involved in the scattering within a quantum treatment [START_REF] Schram | Approach to coherent interference fringes in helium-surface scattering[END_REF][START_REF] Schram | Hitting a ball on a spring: a simple model for understanding decoherence with wavefunctions[END_REF] seems to indicate a dominant contribution of long wavelength acoustic modes but no scattering distribution was produced to be compared with experiments. Random kicks to the projectile wavepacket were proposed to simulate inelastic profiles [START_REF] Aigner | Suppression of decoherence in fast-atom diffraction at surfaces[END_REF][START_REF] Schüller | Rumpling of LiF(001) surface from fast atom diffraction[END_REF] with properties resembling experimental data but elastic diffraction is absent and quantitative agreement was not demonstrated. Using a semi-classical approach, other authors proposed [START_REF] Frisco | Phonon contribution in grazing-incidence fast atom diffraction from insulator surfaces[END_REF][START_REF] Frisco | Thermal effects on helium scattering from LiF (001) at grazing incidence[END_REF][START_REF] Frisco | Decoherent phonon effects in fast atom-surface scattering[END_REF] to expand the surface thermal motion in terms of the number n of exchanged phonons labeled Pn-SIVR (for surface initial value rep-resentation). However, from our point of view, the P0-SIVR, assumed elastic, produces a distribution having all the properties of inelastic diffraction: It has a lognormal profile with a relative polar width w = σ θ /2θ i only slightly lower than the measured ones [START_REF] Frisco | Phonon contribution in grazing-incidence fast atom diffraction from insulator surfaces[END_REF]. It stays remarkably constant during an E-scan [START_REF] Frisco | Decoherent phonon effects in fast atom-surface scattering[END_REF] for E ⊥ above 200 meV as in Fig. 6 and it follows the observed evolution with the surface temperature [START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF]. Here also, there is no sign of a narrow elastic peak and, if the P0-SIVR is interpreted as inelastic, then all the other terms of the expansion should be present. More problematic, in terms of application, the approach predicts a very strong variation of the diffracted intensities I m on the Laue circle with the temperature [START_REF] Frisco | Thermal effects on helium scattering from LiF (001) at grazing incidence[END_REF][START_REF] Frisco | Decoherent phonon effects in fast atom-surface scattering[END_REF] which is not observed in GIFAD [START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF] neither in TEAS [START_REF] Ekinci | Thermal expansion of the LiF (001) surface[END_REF], apart from lattice thermal expansion. This can probably be traced back to the fact that neither the random kick nor the SIVR approaches do consider the Mösbauer-Lamb-Dicke effect [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF] which is a quantum effect (without classical equivalence but uses thermally displaced atoms so that the mean potential probed by the trajectories is different from the one at equilibrium [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Schüller | Rumpling of LiF(001) surface from fast atom diffraction[END_REF] and becomes temperature dependent.

Simplified models have been developed to connect the polar and azimuthal profiles to thermal surface properties. The interaction with the complex phonon system is replaced by successive independent quantum binary collisions with the local (Debye) harmonic oscillator representing the surface atom, taking place along the elastic trajectory [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Manson | Theory of grazing incidence diffraction of fast atoms and molecules from surfaces[END_REF]. Each is contributing (if inelastic) to the final inelastic angular widths σ ϕ and σ θ by an elementary (binary) broadening calculated in the classical eikonal approximation. For a purely repulsive exponential PEL, the scattering profile of a single binary collision is a lognormal profile with a relative width w b = Γσ z ≃ σ θ b /θ b where σ z is the amplitude of the thermal motion of a surface atom along z [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF]. The DWF is derived from the assumption that one such inelastic collision is enough to drive the trajectory inelastic. This seems to fit the experiment [START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF] but the expansion of the polar inelastic profile in terms of the number of inelastic collisions proposed in Ref. [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF] does not. Instead, the inelastic polar profile was found to have always the maximum width σ 2 θ = N σ 2 θ b . As if a single inelastic collision (among N ) is enough to induce a quasi-classical scattering profile where all N binary collisions become inelastic and contribute to the broadening [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF]. In this respect this is equivalent to the near-classical scattering with spatial correlations of Ref. [START_REF] Manson | Theory of grazing incidence diffraction of fast atoms and molecules from surfaces[END_REF].

When investigating the effect of attractive forces, two additional effects were found important [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF]: The Beeby correction factor [START_REF] Beeby | The scattering of helium atoms from surfaces[END_REF] considers that the impact energy E ⊥ should be replaced by E ⊥ + D where D is the depth of the attractive well (see Table IV(d)). As in TEAS [START_REF] Farías | Atomic beam diffraction from solid surfaces[END_REF], this correction is significant for elastic diffraction only at low energy, when E ⊥ ∼ D [START_REF] Debiossac | Helium diffraction on SiC grown graphene: Qualitative and quantitative descriptions with the hard-corrugated-wall model[END_REF] which is here less than 10 meV [START_REF] Jardine | Ultrahigh-resolution spin-echo measurement of surface potential energy landscapes[END_REF]. It also influences the DWF in TEAS but hardly does so in GIFAD due to the multiple collision regime [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF]. The effective stiffness Γ eff describing the modification of the repulsive forces due to the attractive terms at the turning point z t has no major consequence in TEAS [START_REF] Rieder | Energy dependence and softness of the potential for He Scattering from Ni(110)[END_REF] whereas, in GIFAD, it was found responsible for the rapid increase of σ θ /θ i at values of E ⊥ below 200 meV [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF][START_REF] Debiossac | Refraction of fast Ne atoms in the attractive well of a LiF(001) surface[END_REF] as visible here in Fig. 6 and Fig. 8. In these figures, σ ϕ and σ θ have a comparable behavior suggesting that attractive forces are also responsible for the increase of σ ϕ /θ i below E ⊥ =200 meV. Both Γ eff and z t are detailed in Ref. [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF].

Focusing on the differences between azimuthal and polar line widths, we return to the perturbative approach [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF] where these scattering profiles result from the selfconvolution of the binary collision profile. The lognormal inelastic polar profile was first derived assuming only a surface atomic motion along z and a projectile trajectory exactly on top of an atomic row where the force is only vertical so that no lateral deflection is possible (σ ϕ =0).

Considering in-plane motion along y produces a narrow azimuthal Gaussian profile with σ ϕ of only a few mdeg. It was then proposed to average the scattering properties over all possible impact parameters y within the transverse coherence [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Roncin | Energy loss and inelastic diffraction of fast atoms at grazing incidence[END_REF] (in practice over the lattice unit d ⊥ ). On one hand, the azimuthal profile became significantly broader and was modeled as having a general L•G shape [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF] i.e. a comparatively sharp Lorentzian peak but with attenuated wings (Table II). On the other hand, the polar profile keeps its log-normal character but with a width reduced by 30% because the momentum transfer is not exactly vertical anymore. This redistribution between lateral and vertical deflection, quantified by the ratio of σ ϕ to σ θ , depends in part on the elevation z t of the turning point and should therefore increase from low to high values of E ⊥ . On the low energy side, the ratio should be stable because the attractive force brings the turning point z t close to z c , the edge of the attractive well (which is reached even for E ⊥ = 0). On the high energy side, Fig. 8 indicates that σ ϕ gets closer to σ θ and the top right inset, taken at E ⊥ ≃ 10 eV shows that σ ϕ becomes larger than σ θ . This happens for deeply inelastic conditions where the trajectories could become "localized" and where the validity of the above model constructed around elastic trajectories with surface atoms at equilibrium is probably limited. These very qualitative features remain to be confirmed by numerical simulations and quantitative comparisons but they suggest a possible difference to the diffraction of X-rays, neutrons, electrons, and positrons where the in-plane motion of surface atoms is considered as the dominant contribution to lateral broadening of the inelastic peaks. The physical origin suggested here would be that the scattering of atoms does not take place close to the nuclei of the surface atoms. 

(z) = De -Γ(z-z 0 ) -2De -Γ(z-z 0 )/2 Γ eff
defined as -VM /VM at the turning point zt [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF] IX. SUMMARY AND CONCLUSION

We have investigated the lateral lineshape both associated with the overall scattering profile or restricted to the Laue circle. The first important conclusion is a clear confirmation of the previous findings by Seifert et al. [START_REF] Seifert | Studies on coherence and decoherence in fast atom diffraction[END_REF] that the azimuthal diffraction line shape does not depend on the crystallographic axis. We have clarified the issue by separating the elastic and inelastic contribution and by using, for the inelastic component, analytic forms convoluted by the primary beam profile (see eq. ( 1)). A broad range of physical conditions within the quantum and semi-classical regime where elastic diffraction can be observed has been investigated. With the present helium-LiF system, this regime corresponds to values of Eθ 3 ≤ 10 meV. For very low values of Eθ 3 ≤ 3 meV, the inelastic line shape is equally well described by either a pure exponential decay (E * in Table II) or by the product of a Lorentzian by a Gaussian (L • G * 1 or L • G * 2 in Table II). At values of Eθ 3 exceeding several ten's of meV only inelastic diffraction is present and the azimuthal width increases progressively beyond the Bragg angle ϕ B leaving only a smooth modulations of the azimuthal intensity [START_REF] Debiossac | Grazing incidence fast atom diffraction, similarities and differences with thermal energy atom scattering (TEAS)[END_REF][START_REF] Schüller | Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(001) surface[END_REF] and progressively vanishing. At even larger values, the line shape evolves to a Gaussian profile with a width σ ϕ much larger than ϕ B and the last quantum effect is the principal rainbow azimuthal profile which eventually becomes weaker than the azimuthal width. Following the analysis of the polar profile with temperature between 177 K and 1017 K [START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF], the above Eθ 3 criteria derived at room temperature (T∼ 300K)shouldscalewithT/300whereT isthesurf acetemperatureinKelvin.

When analyzing the overall azimuthal profile, i.e. integrated over the polar direction, we found a general behavior of the azimuthal width σ ϕ rather similar to that previously observed for the overall polar profile σ θ [START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF].

During an E-scan where the angle of incidence is fixed, the absolute widths σ ϕ and σ θ seem to be remarkably stable for energies E ⊥ above a few 100 meV while they increase rapidly for values of E ⊥ approaching a few meV (see Fig. 6). During a θ-scan, the overall tendency is a linear increase of σ ϕ and σ θ for E ⊥ above 200 meV and a leveling below this value (Fig. 7). The relative values σ ϕ /2θ i and σ θ /2θ i in Fig. 8 show the sharp increase below E ⊥ =200 meV and a smooth increase above. The ratio of purely elastic diffraction was extracted from the overall azimuthal profile and is interpreted as a measure of the DWF. The derived values in Fig. 7 are found close to, but systematically larger than the ones measured from the polar profiles. Both appear compatible with the specific DWF adapted to GIFAD [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Rousseau | Surface analysis with grazing incidence fast atom diffraction (GIFAD)[END_REF][START_REF] Manson | Theory of grazing incidence diffraction of fast atoms and molecules from surfaces[END_REF][START_REF] Pan | Temperature dependence in fast-atom diffraction at surfaces[END_REF].

The inelastic profile measured on the Laue circle compares with that measured on the overall profile. However, we have a few situations where an accurate determination of the intensities I m , needed to access the potential energy surface, requires a precise azimuthal line shape. This implies a good description of the inelastic component together with a decent evaluation of the DWF. In addition to the increase of the width, the exact shape was also found to evolve with E ⊥ , starting from a pure exponential decay (E * ) to a quasi-Gaussian profile, but the L • G * 1 and L • G * 2 suggested in Ref. [START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF] provides a decent fit both in the quasi-elastic and quasi-classical regimes as long as elastic diffraction is larger than 1%. The most salient observation presented here is the evolution of the inelastic width as a function of the distance to the Laue circle suggesting that inelastic diffraction models can be developed from elastic diffraction. By comparing with previous work on the inelastic polar profile, the section VIII suggests that the lateral inelastic profile is more influenced by the surface thermal movement along z and by the location of the turning point z t than by the in-plane thermal movement. This appears as another specificity of atomic diffraction but remains to be confirmed by more detailed analysis and simulations.

So far the random direction was mainly considered uninteresting. The above investigations strongly suggest that if an accurate line shape is needed for quantitative analysis of diffraction, a reference scattering profile should be recorded along a random direction. The evolution of this profile could probably help to track specific surface defects such as ad-atoms or terraces, enriching the ability of GIFAD to diagnose the surface quality before, during, and after the growth process [START_REF] Debiossac | Combined experimental and theoretical study of fast atom diffraction on the β2(2 × 4) reconstructed GaAs(001) surface[END_REF][START_REF] Atkinson | Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs[END_REF].

As to the limitations, we have indications that the above results are probably not valid for more complex surfaces, for instance, GaAs(001) β 2 (2 × 4) [START_REF] Atkinson | Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs[END_REF][START_REF] Debiossac | Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination[END_REF] or Ag(001) [START_REF] Rubiano | Ab initio potential for the He-Ag (110) interaction investigated using grazing-incidence fast-atom diffraction[END_REF][START_REF] Bundaleski | Grazing incidence diffraction of keV Helium atoms on a Ag(110) surface[END_REF], where deep trenches become visible only along specific directions. For metallic surfaces, soft electronic excitations close to the Fermi level could also contribute to the inelastic signal [START_REF] Khemliche | Electron excitations in grazing diffraction of fast He on a Ag (110) surface. A tribute to Hannspeter Winter[END_REF][START_REF] Busch | Fast atom diffraction at metal surface[END_REF][START_REF] Bundaleski | Decoherence in fast atom diffraction from surfaces[END_REF].
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 1 FIG. 1. Schematic view of a GIFAD experiment. The image is for 500 eV helium at θi=1.56 • along LiF[100] at T=167 K.

FIG. 3 .

 3 FIG. 3. The scattering patterns of 500 eV He atoms impinging at θi=0.66 • (E ⊥ =66 meV, Eθ 3 =0.76 meV) on LiF at T=180K. The left panels (a)-(d) are for a random direction [Rnd] compared with a Lorentzian, Gaussian, Exponential, and bounded Lorentzian, respectively. The right ones are for a [100] direction in linear (f) and log scale (e). The blue line in (e) is the raw profile in (a)-(d) while the green lines in (e) and (d) are the convolution of a pure exponential decay with a range ϕ0 = 0.031 • by the beam profile with σ b =0.006 • . f (ϕ) * = (0.52 δ(ϕ) + 0.48 Ae -|ϕ/ϕ 0 | ) * e -ϕ 2 /2σ 2 b .

FIG. 4 .

 4 FIG. 4. The scattering pattern of 500 eV He atoms impinging at θi=1.54 • (E ⊥ =365 meV) on LiF at T=180K. Left panels (a,b) are for a random direction while the right ones (c,d) are for a [100] direction. Top panels (a,c) are in log scale. Both directions are well-fitted with a unique lineshape, the a value indicates an inelastic ratio of 83% while the exponential decay range ϕ0 is here 0.06 • .

FIG. 5 .

 5 FIG. 5. Overall line profile of 500 eV He atoms impinging at θi=2.35 • on LiF at T=180K. The same data are plotted in linear ( on left) and log-scale ( on right). The L.G *1 form provides the best fit. Depending on the line shape, the elastic intensity (a in eq.(1)) varies by a factor ∼ 3.
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 9 FIG. 9. The central part of the diffracted intensities along LiF [110] at 5 keV and 0.75 • (E ⊥ =865 meV) is fitted by two line profiles of Table II. (a) L.G * (E * gives equivalent results) (b) G * . The odd diffraction orders in blue are expected to be weak (see text) and this is better reproduced by the fit in (a).The elastic weight is estimated at around 5% from the polar profile and is hardly visible here.

  FIG. 10. Diffracted intensities recorded with He on LiF [110] at (a) 300 eV, θi=1.35 • and (b,c) 5000 eV and θi=0.33 • . Both correspond to E ⊥ ∼165 meV and were recorded with an angular resolution 0.007 • (0.016 • FWHM). The red lines correspond to a fit through the data using a common line shape for all peaks. (b) is fitted by a pure Gaussian while (a) and (c) correspond to the profile E * (ϕ) in TableII. The contribution of the specular peak (blue line) depends on the line shape.

FIG. 11 .

 11 FIG. 11. For 500 eV helium scattered along a [Rnd] direction at θi=0.628 • incidence (E ⊥ = 60 meV and Eθ 3 =0.66 meV), the polar (a) and azimuthal (b) profiles are decomposed into elastic and inelastic components. The standard deviation of the azimuthal and polar ▽ distributions show a linear increase away from elastic conditions, dotted lines are to guide the eyes. The symbol represents θ f /θi and shows the weak variation of the mean polar scattering angle.

  FIG. 13. Same as Fig. 11 and 12 with 4 keV He projectiles at 1.25 • (Eθ 2 =1.9 eV, Eθ 3 =41 meV). No elastic component is visible in the polar (a) and azimuthal (b) profiles. The standard deviation σ ϕ of the azimuthal distribution associated with a polar angle θ f shows a minimum located at θmin well below the specular scattering angle θspec. The polar width σ θ ▽ has a quadratic behavior (σ ϕ ∼ 0.14 + 1.4 ϕ 2 f ). The mean scattering angle θ f /θi( ) varies weakly with ϕ as in Figs. 11-12.

TABLE I .

 I Bragg angles ϕB under different conditions.

TABLE II .

 II Forms f (x) used to describe the inelastic profiles. A is a normalization factor such that

				∞ -∞ f (x)dx = 1.
	Name	Symbol Formula	Variance
	Exp. decay E	A • e -|x/w|	2w 2

TABLE III .

 III Definitions used in this manuscript. kix, kiy, kiz initial values of the projectile wave-vector ⃗ ki k f x , k f y , k f z final values, we assume k f x ≃ kix k

	⊥	k 2 y + k 2 z , wave-vector in the perpendicular plane
	k ∥	kix ≃ k f x , wave-vector along x
	θi	arctan (kiz/kix), incidence angle if kiy = 0
	θ f	arctan (k f ⊥ /k f x ), polar scattering angle
	ϕ f	arctan (k f y /k f x ) lateral deflection angle Lab.frame
	φ f	arctan (k f y /k f z ) see Fig. 1
	Laue circle k f ⊥ = k i⊥ := energy conservation in y, z plane
		see dotted white circle in Fig. 1
	θs	2θi, overall elastic scattering angle
	E ⊥	E0 sin 2 θi, perpendicular energy [8, 9]
	d ⊥	periodicity of the atomic rows ⊥ to x

TABLE IV .

 IV Definitions and formulas introduced in simplified collisions models[START_REF] Roncin | Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime[END_REF][START_REF] Rousseau | Surface analysis with grazing incidence fast atom diffraction (GIFAD)[END_REF][START_REF] Manson | Theory of grazing incidence diffraction of fast atoms and molecules from surfaces[END_REF][START_REF] Pan | Polar inelastic profiles in fast-atom diffraction at surfaces[END_REF] and mentioned in the discussion.

	----a) Surface description	
	TD, ωD	Debye temperature and frequency ℏωD = kBTD
	σ 2 z	variance of z position at a temperature T: ⟨z 2 ⟩T
	V1D(z)	mean planar potential: x y PEL(x, y, z)
	----b) binary collision model	
	mp, mt	projectile and target mass, µ =	mp m t
	Er	µE0θ 2 b , classical binary recoil energy where θ b
		is the projectile deflection in this binary coll.
	E loss	ΣEr, Classical energy loss	
	DWF	e -E loss /ℏω D Debye-Waller factor for GIFAD
	----c) Purely repulsive collision model [7, 9, 37]
	Vr(z)	V1D(z) is assumed to have the form V0e -Γz with Γ ∼ 2 √ 2W and W the work-function
	Γ	Stiffness, logarithmic derivative -Vr(z)/Vr(z)
	E loss	2 3 µE0Γθ 3 i , Classical energy loss	
	N	:= E loss /Er, effective number of binary coll.
	----d) Collision model with attractive forces [38]
	D	well depth of V1D(z)	
	E ⊥ + D	Beeby correction to the impact energy [56]
	Morse pot. VM	
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