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Grazing incidence fast atom diffraction (GIFAD) uses keV atoms to probe the topmost layer of
crystalline surfaces. The atoms are scattered by the potential energy landscape of the surface onto
elastic diffraction spots located at the Bragg angles and on the Laue circle. However, atoms transfer
a significant momentum to the surface, giving rise to possible phonon excitation. This causes the
inelastic intensity to spread above and below the circle along the direction of the surface normal.
The relative intensity of the elastic contribution is well-fitted by the Debye-Waller model adapted
to GIFAD, but the composite azimuthal line profile governing the ability to resolve diffraction spots
has not been investigated in detail. The paper reports a series of diffraction measurements of helium
on a LiF(001) surface revealing marked differences in the polar (θ) and lateral (ϕ) inelastic profiles
but also similarities in the evolution of their line widths σθ and σϕ. We observe two regimes: When
elastic diffraction is significant, the Laue circle appears as a reference for inelastic diffraction; the
azimuthal inelastic line shape is an exponential decay and its width increases almost linearly as
the scattering angle deviates from the specular condition. When elastic diffraction weakens, the
inelastic line shape evolves towards a Gaussian and its width is no longer minimum on the Laue
circle. As a possible difference with X-ray, neutrons, and electrons, the in-plane motion of surface
atoms may not be the dominant cause of the broadening of the lateral profile in GIFAD.

I. INTRODUCTION

Grazing incidence fast atom diffraction at crystal sur-
faces (GIFAD or FAD) uses atoms in the keV energy
range at incidence angles around 1◦, so that the largest
component of the velocity or wave-vector is parallel to
the surface (see Fig. 1 and Table IV). When the surface
coherence permits, a rich diffraction pattern containing
up to a hundred well-resolved diffraction orders can be
obtained [1] on a position-sensitive detector [2]. GIFAD
is fast enough to produce several images per second allow-
ing online tracking of thin film growth in UHV conditions
[3]. Both detection and collection efficiencies are close to
one because the large projectile kinetic energy gives rise
to a small value of the Bragg angle ϕB ≃ G⊥/k∥ (see
Table I) where G⊥ is the reciprocal lattice vector and k∥
the projectile wave-vector along the probed crystal axis.

The drawback is that the diffraction spots are close to
each other requiring an angular resolution of a few mdeg.
In addition, the large mass of the projectile gives rise to
important inelastic effects so that the elastic diffraction
peaks are accompanied by an inelastic component. The
resulting azimuthal line shape is therefore composite but
has never been addressed as such. This is in part be-
cause the elastic diffraction was not observed until Ref.
[1, 4–7], probably due to a limited surface coherence in
earlier work. The investigation of the azimuthal (lateral)
line shape and in particular the inelastic component is
the main focus of the present paper. As with all diffrac-
tion techniques, the location of the diffraction spot only
indicates the surface periodicity while the detailed in-
formation on what constitutes the unit cell is associated
with the relative intensity Im of the elastic diffraction
orders (ΣmIm = 1). An accurate comparison with the-
ory requires a careful evaluation of intensities taking into

TABLE I. Bragg angles ϕB under different conditions.

Direction d⊥ G⊥ = 2π/d⊥ ϕB at 500 eV ϕB at 5 keV

[100] 2.02 Å 3.11 Å−1 0.183◦ 0.058◦

[110] 2.85 Å 2.20 Å−1 0.13◦ 0.04◦

FIG. 1. Schematic view of a GIFAD experiment. The image
is for 500 eV helium at θi=1.56◦ along LiF[100] at T=167 K.

account the spot profile contaminated by the inelastic
profile and the possible overlap of adjacent diffraction
orders. In addition, a better description of the inelas-
tic profile might provide a better understanding of the
inelastic processes at play.

The elastic profile is represented by a delta function
δ(x) with a weight a and the inelastic one by a function
f(ϕ) listed in Table II and a weight (1 − a). The sum
is then convoluted (noted *) by a Gaussian of width σb

fitted to the beam profile measured immediately before
or after the experiment. The composite profile, noted f∗

is given in eq. (1).

f∗(ϕ) = [aδ(ϕ) + (1− a)f(ϕ)] ∗ e−ϕ2/2σ2
b (1)
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TABLE II. Forms f(x) used to describe the inelastic profiles.
A is a normalization factor such that

∫∞
−∞ f(x)dx = 1.

Name Symbol Formula Variance

Exp. decay E A · e−|x/w| 2w2

Gaussian G A · e−x2/2σ2

σ2

Lorentzian L A/(x2 + w2/4) undefined

L(w)·G(2w) L ·G2 A · e−x2/4w2

/(x2 + w2/4) ≃ 0.48w2

L(w)·G(w) L ·G1 A · e−x2/2w2

/(x2 + w2/4) ≃ 0.32w2

Log-normal LN A
xw

exp(− ln2( x
x0

)/2w2) ≃ w2x2
0

The paper is organized as follows: Sections II and III
are a brief presentation of the GIFAD technique and elas-
tic diffraction. Section IV reports the present status of
inelastic diffraction and polar and azimuthal line pro-
files before analyzing experimental results. The overall
line profile is characterized in section V where its evolu-
tion with the projectile energy and angle of incidence as
well as with the surface temperature and crystallographic
direction is reported in dedicated subsections. In par-
ticular, subsection VB presents evidence that the over-
all azimuthal line shape does not depend on the probed
crystal direction. The subsection VC compares the dif-
ferent forms of line profiles to data recorded in the quasi-
classical region where elastic diffraction is weak and in
the quasi-elastic region where it is dominant. It em-
phasizes that the proposed two-component profile rep-
resenting the elastic and inelastic components allows a
fair estimate of the Debye-Waller factor (DWF) from the
azimuthal line shape close to the one derived from the
decomposition of the polar profile. Similarities and dif-
ferences between the overall polar and azimuthal profiles
are also discussed. Section VI corresponds to restrictions
of the above discussions to the azimuthal profile located

on the Laue circle defined by |k⃗f | = |k⃗i| where the elastic
component is located so that the contrast with inelastic
diffraction is maximal. The influence of the line profile
on the determination of the diffracted intensities Im is
discussed here. Section VII extends to any value of the
polar angle by investigating internal dependencies along
θf and ϕf within a diffraction image. The quasi-elastic
and quasi-classical regimes are characterized by differ-
ent correlation schemes switching from a linear regime
with the Laue circle as an absolute reference to a more
complex polynomial behavior. Section VIII discusses the
results from the perspective of simple models. Table III
aggregates definitions of the geometry and angles used in
this manuscript while Table IV reports definitions from
previous simplified collision models.

II. THE GIFAD TECHNIQUE

The technique has been described in detail in Ref.
[10] and only a brief presentation is sketched here. An
ion beam of energy in the keV range is neutralized and

TABLE III. Definitions used in this manuscript.

kix, kiy, kiz initial values of the projectile wave-vector k⃗i

kfx, kfy, kfz final values, we assume kfx ≃ kix

k⊥
√

k2
y + k2

z , wave-vector in the perpendicular plane

k∥ kix ≃ kfx, wave-vector along x

θi arctan (kiz/kix), incidence angle if kiy = 0

θf arctan (kf⊥/kfx), polar scattering angle

ϕf arctan (kfy/kfx) lateral deflection angle Lab.frame

φf arctan (kfy/kfz) see Fig. 1

Laue circle kf⊥ = ki⊥ := energy conservation in y, z plane

see dotted white circle in Fig. 1

θs 2θi, overall elastic scattering angle

E⊥ E0 sin
2 θi, perpendicular energy [8, 9]

d⊥ periodicity of the atomic rows ⊥ to x

drastically collimated to reduce its angular divergence
below 0.01◦ before impacting on the target crystal sur-
face at an incidence angle θi ∼ 1◦. The particles re-
flected around the specular direction are collected onto
a position-sensitive detector placed ∼ 1 m downstream.
By construction, this detector is perpendicular to the di-
rection of the primary beam so that within minor cor-
rections, the spatial coordinates (y, z) can be related to
the final projectile velocity vy, vz (see Fig. 1). For conve-
nience, we often use the associated wave-vectors ky, kz. If
the quality of the crystal surface is good enough, diffrac-
tion is present in the form of sharp spots on the Laue
circle separated in the y direction by multiples of the
reciprocal lattice vector G⊥ ≡ Gy, kfy = kiy + mG⊥,
where m is the diffraction order and the subscript i or
f stands for the initial or final value. For well-aligned
conditions (kiy = 0), the Kapitza-Dirac obliquity factor
[11, 12] indicates that diffraction is present only along
the y direction explaining that only one diffraction circle
is observed (see also [13, 14] for a quantum treatment
or [15, 16] for a classical approach). As a consequence,
the relative intensities Im can be measured at various
combinations of the primary energy E0 and θi giving
the same value of E⊥ = E0 sin

2 θi [17]. A few degrees
away from a low index direction, only the specular spot
(m = 0) is present as with a perfectly flat mirror [18, 19].
On LiF, only two crystallographic directions give rise to
diffraction with m ̸= 0, the [100] and the [110] direc-
tions. The periodicity d⊥ ≡ dy, reciprocal lattice vector
G⊥ = 2π/d⊥, and associated Bragg angles ϕB are given
in Table I. Taking the crystal normal as the z axis, the
incidence and outgoing angles are listed in Table III.

III. ELASTIC DIFFRACTION

The elastic diffracted intensity derives from fully coher-
ent scattering from perfectly periodic conditions. This
corresponds to atoms at the equilibrium position, as if
these were immobile. Using the Debye model, the sur-
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face atomic motion is described by a local oscillator, also
called Debye oscillator or high-frequency limit, that af-
ter coupling between neighbors, gives rise to the phonon
modes as Eigenstates of the system. The quantum as-
pect here is that the vibration is represented by a vi-
brational wave function and the probability that a sur-
face atom exchanges the momentum δk, needed to de-
flect the fast projectile without changing its vibrational
wave-function, is the Lamb-Dicke probability [20]. In
this case, the scattering by δk takes place from the cen-
ter of the wave-function, i.e. from the equilibrium posi-
tion. Consistently, quantum scattering calculations are
usually performed directly from the equilibrium position
[8, 13, 14, 21–23] to represent elastic diffraction. Classi-
cal trajectories on this potential energy landscape (PEL)
lead to a surprisingly well-defined Laue circle even with
simplified binary collision models [20, 24]. The diffrac-
tion spots are replaced by a continuous azimuthal profile
showing a main rainbow and possibly secondary rainbows
in the form of sharp singularities [25, 26]. Attaching a
semi-classical phase to the trajectories reveals the dis-
crete structure of Bragg peaks and the modulation of
the elastic diffracted intensity due to interference within
the lattice unit. Supernumerary rainbows become visible
when the phase difference below the rainbow angle ex-
ceeds multiples of 2π [17, 18, 27, 28]. However, ad-hoc
additional treatments are needed to smooth the rainbow
singularities [29] by an Airy-like profile or to account for
the Gouy phase when passing through a focus [30]. For
restricted shapes of the PEL, perturbation theory has
also shown interesting results and delivered analytic ex-
pressions to describe atomic diffraction [31, 32].

Diffraction of fast atoms has always been observed to
be accompanied by an inelastic component, but the elas-
tic intensity can be isolated and the slowly varying in-
elastic intensity suppressed by applying a simply doubly
differential polar filter. This empirical approach produces
an intensity located only on the Laue circle [5, 33, 34].
The associated azimuthal elastic profiles were found to
be close to pure Gaussians having a width identical to
the direct beam profile and justifying the use of the delta
function δ(ϕ) in eq. (1).

IV. INELASTIC DIFFRACTION

Though most published results show a dominant in-
elastic intensity, the inelastic lateral profile has never
been investigated extensively. Various empirical forms
were proposed to fit the measured diffraction profiles.
One is a combination of two Gaussians, a narrow one on
top of a broader one with a relative weight a equal for
all diffraction orders but evolving with incidence angle
[9]. Another proposal was to use a Lorentzian [18, 35] or
a Voigt profile [36] irrespective of the elastic to inelastic
ratio. In the present paper, new forms are introduced
(as summarized in Table II) and the lateral profile is dis-
cussed in detail taking into account explicitly elastic and

FIG. 2. The raw plot in Fig. 1 is polar transformed following
Ref. [5]. The yellow lines are the overall polar and azimuthal
profiles corresponding to intensity projections (full integra-
tion) while the red one is the intensity (x20) of a 0.015◦ band
at the specular angle (θf = θi).

inelastic components.
The 2D color plot corresponds to the raw image in

Fig.1 after the polar transform of Ref. [5].
With a large band-gap insulator as LiF, probed with

helium, the inelastic processes are expected to be gov-
erned by the interaction with surface phonons. At ther-
mal energies and large incidences (TEAS) where the pro-
jectile hits a single surface atom, this gives rise to the
well-known Debye-Waller factor describing the ratio of
elastic intensity as proportional to e−Er/ℏ where Er is
the recoil energy deriving from momentum conservation
and ωD is the Debye frequency (see Table IV). This is
equivalent to the recoil-less Lamb-Dicke probability used
to trap cold atoms.
In GIFAD, it was soon realized that the multiple colli-

sion regime specific to grazing incidences leads to a much
more favorable DWF due to the fact that several (say
N) tiny binary deflections by θb produce less decoher-
ence than a single deflection by 2θi = N · θb. The DWF

is now proportional to ΠN
1 e−Er/ℏωD = e−ΣN

1 Er/ℏωD =
e−Eloss/ℏωD . It is the same formula but the recoil energy
of a single binary collision is replaced by Eloss, the sum of
all the classical recoils energies along the trajectories. It
that can be calculated as Eloss ≃ N ·Er ∝ Eθ3i assuming
a purely repulsive form of the PEL [7, 9, 37] or a Morse
form to account for attractive forces (see Table IVc).

The inelastic diffraction intensity is still partly coher-
ent, as illustrated in Fig. 12 of Ref. [7], which shows
that the intensities Im can be extracted outside of the
Laue circle, i.e. from purely inelastic intensity assum-
ing an effective incident wavevector keff = (kf⊥ − ki⊥)/2
in the perpendicular plane. In other words, the relative
intensities recorded on the circle of diameter keff encom-
passing the direct beam position (see e.g. Ref. [5] for de-
tails) are close to the elastic one that could be recorded
on the Laue circle if the angle of incidence would be
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θeff = arctan(keff/k). The consequence is that on the
Laue circle, both elastic and inelastic diffraction point to
the same relative intensities Im. This is compatible with
the fact that all diffraction orders seem to have the same
azimuthal line shape.

A. The inelastic polar profile

In terms of data analysis, the overall polar profile is de-
fined in two steps. First, a simple polar transform of the
2D intensity I(ky, kz)→ I(ky, k⊥), preserving the scatter-
ing plane and the direct beam position as invariant spot
[5, 7]. Secondly, a projection on k⊥ i.e. an integration
along ky adding the polar profiles of all diffraction orders.
Within a surprising accuracy, this polar profile visible in
Fig.2 was found independent on the probed crystal axis
(see Fig.4 of Ref.[38]). The polar profile is decomposed
into a sharp central peak having a width similar to that
of the primary beam sitting on top of a much broader
one, well fitted by a log-normal shape (defined in Ta-
ble II) as observed in fully inelastic conditions [39, 40].
Interpreting these components as the elastic and the in-
elastic contribution, the log(DWF ) was found to scale
with Eθ3i T [41] as expected from Ref.[7, 9, 37]. The stan-
dard deviation σθ of this inelastic component was found
to increase almost linearly with the angle of incidence θi
so that the relative width w ∼ σθ/2θi (see Tables II is
almost constant for 120 meV⩽ E⊥ ⩽ 500 meV while it
increases rapidly below 120 meV [38, 41]. These behav-
iors could be ascribed to classical scattering on thermally
displaced surface atoms. The increase for E⊥ ⩽ 120 meV
could be related to the effect of attractive forces bringing
the turning point of the trajectory closer to the surface
and increasing the effective repulsion at this point. An
effective surface stiffness Γeff (see Table IV(b)) was de-
fined to describe this effect [38] first identified by Rieder
et al. [42]. In GIFAD, the force at the turning point gov-
erns the momentum transfer to each surface atom and
the inelastic effects. This will be discussed further with
the results and in section VIII.

V. THE OVERALL LATERAL LINE-SHAPE

A. The overall lateral profile

The overall azimuthal scattering distributions either
on the Laue circle or integrated over the polar angle are
governed by the number of diffraction peaks rather than
by their shapes [43]. It strongly depends on the probed
crystal direction and the intensities Im are a signature
of the shape of the PEL [17, 18, 44] formed by the well-
aligned rows of surface atoms. Monitoring the width of
this overall azimuthal profile is enough to identify the
crystal axis and corresponds to the concept of atomic
triangulation [17, 43]. We focus here, not on the intensity
Im but on the line shape of these diffraction peaks. Since

FIG. 3. The scattering patterns of 500 eV He atoms imping-
ing at θi=0.66◦ (E⊥=66 meV, Eθ3=0.76 meV) on LiF at
T=180K. The left panels (a)-(d) are for a random direction
[Rnd] compared with a Lorentzian, Gaussian, Exponential,
and bounded Lorentzian, respectively. The right ones are for
a [100] direction in linear (f) and log scale (e). The blue line
in (e) is the raw profile in (a)-(d) while the green lines in
(e) and (d) are the convolution of a pure exponential decay
with a range ϕ0 = 0.031◦ by the beam profile with σb=0.006◦.

f(ϕ)∗ = (0.52 δ(ϕ) + 0.48 Ae−|ϕ/ϕ0|) ∗ e−ϕ2/2σ2
b .

the first GIFAD observations, this later was reported to
be identical for all diffraction orders of a given diffraction
pattern [9, 36].

B. Dependence on the crystal axis, ϕ-scan

The independence of the lateral profile on the crys-
tal axis was first suggested by Seifert et al. [36] who
showed that the azimuthal profile recorded along a ran-
dom direction could be used to fit the line shape of a
low-index direction. No elastic diffraction was identified
in this early work, but we found identical results with
well-resolved elastic diffraction peaks. The finding could
be due to the fact that when diffraction is observed the
transverse coherence of the projectile is necessarily much
larger than the unit cell so that only the mean number
of collisions, directly connected with the target surface
density is important. Independently of the exact mech-
anism, this seems to be true for the weakly corrugated
LiF surface, as illustrated in Fig. 3 and Fig. 4 cor-
responding to perpendicular energies E⊥=66 meV and
365 meV respectively. The overall profile recorded along
a [Rnd] direction is compared with different lineshapes
in Fig. 3(a) to 3(d) all convoluted by the direct beam
profile (Table II). The Lorentzian L∗ form in Fig. 3(a)
has a too-large tail while the Gaussian one G∗ in Fig.
3(b) has a too-short tail. In Fig. 3 (c,d), the data are
equally well fitted by an exponential decay form E∗ or
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FIG. 4. The scattering pattern of 500 eV He atoms impinging
at θi=1.54◦ (E⊥=365 meV) on LiF at T=180K. Left panels
(a,b) are for a random direction while the right ones (c,d) are
for a [100] direction. Top panels (a,c) are in log scale. Both
directions are well-fitted with a unique lineshape, the a value
indicates an inelastic ratio of 83% while the exponential decay
range ϕ0 is here 0.06◦.

by the bounded Lorentzian (L.G∗ in Table II) where the
Lorentzian function of width w is multiplied by a gaus-
sian function forcing the extinction of the long Lorentzian
tail. L ·G∗

1 is for a gaussian with σ = w while L ·G∗
2 is for

σ = 2w and both produce a decent fit with comparable
values of σϕ.

The Fig. 3 (e,f) display in log-scale and linear scale,
respectively, the overall azimuthal profile recorded at the
same energy and incidence angle but along the [100] di-
rection. The blue line reproduces the profile Fig. 3(a-d)
recorded along the [Rnd] direction, while the green lines
are the line shape used to fit the data. This line shape
is identical to the one used to fit the [Rnd] direction in
Fig. 3(c).

A similar comparison is repeated for an incidence an-
gle of 1.54◦ and displayed in Fig. 4. The perpendicular
energy E⊥ is now 365 meV and inelastic diffraction domi-
nates. Here again, the scattering profile recorded along a
[Rnd] direction is well fitted by either an E∗ or L·G∗ pro-
file. Using the exponential decay form, the decay range
is now ϕ0 = 0.06◦ (compared to ϕ0 = 0.03◦ at a lower
energy in Fig. 3) and the weight of inelastic diffraction
is 83%, almost twice as large as in Fig. 3. Figures 4(c,d)
show the overall azimuthal profiles recorded along the
[100] direction for identical beam parameters together
with the fit by the profile derived from the [Rnd] direc-
tion. The quality of the fit, both in linear and log-scale
suggests that indeed, the line profile does not depend sig-
nificantly on the probed crystal axis. From Figure 3 and
Figure 4, it is clear that the shape of the far wings of
the lateral profile can only be investigated along a [Rnd]
direction.

FIG. 5. Overall line profile of 500 eV He atoms impinging at
θi=2.35◦ on LiF at T=180K. The same data are plotted in
linear ( on left) and log-scale ( on right). The L.G∗

1 form
provides the best fit. Depending on the line shape, the elastic
intensity (a in eq.(1)) varies by a factor ∼ 3.

C. Choice of functional form

Figure 3 and Figure 4 show that for perpendicular en-
ergies of up to 400 meV, both the pure exponential decay
and the bounded Lorentzian profiles give a very good de-
scription after convolution by the beam profile. For larger
values of E⊥, as shown in Fig. 5 recorded at θi=2.36◦

i.e. E⊥=850 meV, a clear departure from the simple ex-
ponential decay can be observed. The L · G∗

2 gives the
best fit but slightly overestimates the length of the tail.
The L ·G∗

1 form in Table II produces a faster attenuation
of the tail. At even larger values of E⊥, around 2 eV, the
lateral profile is best fitted by a simple Gaussian form
(not shown).

D. Dependence on the primary energy: E-scan

Figure 6 reports the azimuthal linewidth measured
during an E-scan performed along a [Rnd] direction and
with a fixed incidence angle of 0.66◦ with primary energy
varied between 300 eV and 3 keV. For all energies, the
overall scattering profiles of the single diffraction peak
is well fitted either by E∗ or by the two L · G∗ forms.
The ratio of elastic diffraction (a in Table II or DWF)
drops by two orders of magnitude, from around 60% at
300 eV (E⊥ ∼ 40 meV) below a fraction of a percent at
3 keV (E⊥ ∼ 400 meV), but the width σϕ of the inelas-
tic contribution appears almost constant over the whole
energy range. This is also the case for the polar width
σθ over the same energy range. The surprise is that σϕ

and σθ have a comparable magnitude. This contradicts
the visual aspect of a very elongated spot as visible in
the inset at 850 meV in Fig. 8 corresponding to the
maximum energy where the elastic contribution is still
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FIG. 6. The Polar (σθ ▽) and azimuthal (σϕ ) widths of the
overall inelastic profile recorded along a [Rnd] direction during
an E-scan at a fixed incidence angle θi=0.66◦ are reported
as a function of the perpendicular energy E⊥ with lines to
guide the eyes. The scale on the right-hand side shows the
dimensionless unit σ/2θi used in Ref. [7, 38, 41].

clearly visible but very weak. The reason is that the as-
sociated line shapes are very different, log-normal polar
profile [38] has a flat top but short wings, whereas the
azimuthal one, has a sharper peak but a broader base
giving different visual aspects but comparable variances
or standard deviations.

As a simplifying summary, during an E-scan, the in-
elastic component has almost constant polar and az-
imuthal width so that the overall line shape is simply
a variable combination of this fixed inelastic shape plus
the narrow elastic one. We now try to investigate the
evolution of the line shape with the angle of incidence.

E. Dependence on the angle of incidence: θ-scan

Using the same procedure and functional forms, Fig.
7 reports the evolution of σϕ and σθ vs E⊥ correspond-
ing to a comparatively large angular range, between 0.3◦

and 2.5◦ for 500 eV helium on a LiF surface at 180K
oriented along a [Rnd] direction. Here again, σϕ and σθ

have a comparable magnitude and now increase rapidly
with E⊥ above 200 meV. The elastic ratio derived from
the fit of the polar and azimuthal profiles do not coin-
cide perfectly but show comparable trends compatible
with previous investigations using only the analysis of
the polar profile [41].The horizontal lines at ϕ=0.13 and
0.186◦ in Fig. 7 correspond to the value of the Bragg
azimuthal angle ϕB associated with the [100] and [110]
directions. Typically, inelastic diffraction features should
become difficult to observe when the inelastic width σϕ

exceeds the peak separation ϕB . Note that the width
of the elastic diffraction remains narrow, but its relative
intensity given by the Debye-Waller factor becomes very
weak. To summarize the θ-scan, above E⊥ ∼ 200 meV,

FIG. 7. Evolution of the azimuthal σϕ ( ) and polar σθ (▽)
widths during a θ-scan at E=500 eV along a [Rnd] direction
where only the specular peak is present. The coefficient a in
eq. (1) represents the elastic ratio extracted from a fit of the
azimuthal ( ) or of the polar profile ( ). The lines are to guide
the eyes.

the inelastic azimuthal width σϕ scales linearly with E⊥
at a rate given by dσϕ/dE⊥ = 0.222◦/eV .
To explore beyond this linear dependence, Fig. 8 re-

ports the width σθ and σϕ relative to the angle of inci-
dence θi (or to the specular scattering angle θs = 2θi)
canceling the linear increase in Fig. 7. The evolution
now compares with the one observed in Fig. 6 during an
E-scan. As a difference, the comparatively flat section
above E⊥=200 meV is replaced by a smooth increase of
both σθ and σϕ with a possible convergence around E⊥=
1 eV.
The log-normal shape was introduced empirically for

its good description of the asymmetric polar profile [40].
It was later derived as the natural scattering distribu-
tion emerging from a binary collision with a Gaussian
thermally distributed surface atom [7, 37]. The constant
ratio of w ≃ σϕ/2θi is therefore linked to a simple scat-
tering property. The azimuthal relative width σϕ/2θi in-
troduced here can be interpreted as the azimuthal width
σφ expressed in the polar coordinates (φ, θ) instead of
(ϕ, θ) as depicted in Fig. 1.
The 2D(θ, ϕ) scattering profiles at E⊥=200 meV and

850 meV are reported in Fig. 8 and show the evolution
towards a more circular pattern with increasing perpen-
dicular energy. Here again, the difference in line shape
along θ and ϕ explains that, even when σϕ is close to σθ,
the impression of an elongated spot prevails. Exploring
much larger energies and angles we could find situations
where σϕ becomes larger than σθ (upper right insert in
Fig. 8).
Focusing on the DWF, the evaluations from the polar

profile using eq. (1) with a LN(θ) or from the lateral pro-
file with L ·G(ϕ) are completely independent and should
give identical values. The results indicated by ( ) and ( )
symbols in Fig. 7 show similar tendencies but also sig-
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FIG. 8. The same polar and azimuthal widths as in Fig. 7
are plotted as a dimensionless relative widths σϕ/2θi ( ) and
σθ/2θi (▽) used in Ref. [7, 38]. The lines are to guide the
eyes. Inserts are 2D(ϕ, θ) profiles at E⊥=200 and 850 meV,
the one in the upper right corner was recorded separately at
3 keV and 3.5◦ (E⊥ ≃ 10 eV) and is compressed 9 times.

nificant differences at low values of DWF probably due
to shape-specific difficulties to isolate an elastic contribu-
tion below a few % from the polar or azimuthal profile. It
should also be noted that taking the exact value σb mea-
sured on the direct beam to fit the elastic lateral profile
always gives a good result, whereas, for very grazing in-
cidence, Ref. [38] indicates a tendency that a good fit of
the polar profile requires a weak broadening of σb.

F. Summary on the overall azimuthal width

The overall azimuthal scattering profiles have been an-
alyzed in terms of the line shape of the diffraction peaks.
For the conditions investigated here, the line profile does
not depend on the diffraction order so a unique line shape
can be used to fit the overall azimuthal profile. This in-
elastic line shape has a comparatively sharp peak and
long tails. At low incidence angles where the elastic con-
tribution dominates, it is almost impossible to assess the
exact shape of the peak, a simple exponential decay pro-
vides a good fit. We found that the inelastic azimuthal
line shape is well reproduced by a Lorentzian profile mul-
tiplied (attenuated) by a gaussian function and convo-
luted by the beam resolution L ·G∗ [7] (Table II). During
an E-scan, the line width σϕ appears rather stable while
during a θ-scan, it also appears stable for values of E⊥ <
200 meV but increases rapidly above. When divided by
the specular scattering angle θs = 2θi, the polar and az-
imuthal widths have a comparable behavior illustrated
in Fig. 8. The next sections will investigate the same
properties but restricted to the Laue circle, i.e. without
integrating over the polar direction.

VI. LINE SHAPE ON THE LAUE CIRCLE

We now focus on the intensity sitting on the Laue cir-
cle where the elastic intensity is maximum. Considering
a narrow polar band of approximately the beam width
σb on the Laue circle (in practice a narrow crescent disk
[5]), the weight of the elastic peak is on the order of σθ/σb

larger than on the overall azimuthal profile investigated
in the previous section. We first recall that, when elastic
diffraction is observed, the elastic and inelastic relative
intensity Im on the Laue circle were found to be equal
[7]. Therefore, it is not needed to separate elastic and
inelastic contributions precisely. We use the same proce-
dure and functional forms but the coefficient a in Table
II describing the relative weight of the elastic peak is now
interpreted as the visibility of elastic diffraction, not as
the DWF. In general, the inelastic width σϕ measured
on the Laue circle is smaller than when measured on the
overall profile but it differs only by 10-20%. Taking the
example of the overall azimuthal profile displayed in Fig.
4(c,d) where a 17% DWF was estimated, the same fit
restricted to the Laue circle gives a visibility of 49% in-
stead, while the inelastic azimuthal width σϕ is reduced
by 10%. Hence, the dominant effect on the peak profile is
the drastic increase in the ratio of the elastic component.

We explore below two situations where neighboring
diffraction peaks overlap due to a small Bragg angle
and/or to a significant inelastic broadening. Measuring a
small diffracted intensity in the vicinity of intense peaks
becomes difficult and sensitive to the line shape. For sim-
ple crystals where only one maximum and one minimum
of the electronic density are present in the lattice unit,
only two semi-classical trajectories interfere at a given
scattering angle ϕf as illustrated in Fig. 2-4 of Ref. [18].
A simple ray-tracing model indicates that for small lat-
eral deflection, i.e. the rays emitted from the top of F−

or Li+ ions and separated along y by d⊥/2 are π shifted
so that the intensity of the odd orders oscillates in oppo-
sition to that of the even diffraction orders [33]. On LiF
and for values of E⊥ < 1 eV, this is true both along the
[100] and [110] directions (see e.g. the diffraction charts
in Fig. 3.21 of Ref. [18] or Fig. 2 of Ref. [44] where
each bright diffraction order is surrounded by dark one
in the central region). It means that for these directions,
whenever a central peak reaches its maximum intensity,
the adjacent peaks should be weak and vice versa.

Figure 9 displays the central part of the azimuthal
profile recorded with 5 keV helium along the [110] di-
rection at 0.75◦ incidence where all even diffraction or-
ders (m = 0,±2,±4) are quite intense. We have tried to
evaluate the influence of the lineshapes on the extracted
intensities with the idea that the odd diffraction orders
should have an intensity as low as possible without turn-
ing negative. This is only qualitative but the mean level
of the odd diffraction orders is low with the L · G∗ and
the exponential decay profile E∗ whereas it is quite large
with the Gaussian G∗ line shape and produces some neg-
ative values with the Lorentzian profile L∗ (not shown).
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FIG. 9. The central part of the diffracted intensities along
LiF [110] at 5 keV and 0.75◦ (E⊥=865 meV) is fitted by two
line profiles of Table II. (a) L.G∗ (E∗ gives equivalent results)
(b) G∗. The odd diffraction orders in blue are expected to be
weak (see text) and this is better reproduced by the fit in (a).
The elastic weight is estimated at around 5% from the polar
profile and is hardly visible here.

Another indication that the Lorentzian profile produces
too broad wings was identified close to the rainbow scat-
tering angle corresponding to a maximum of the classical
deflection function [17, 27]. At this angle, several classical
trajectories are scattered at the same angle and, quan-
tum mechanically the associated diffraction orders tend
to have comparable phases and a significant intensity.
The use of a Lorentzian profile was found to produce an
exaggerated intensity level extending to scattering angles
beyond the rainbow angle [7].

A more quantitative strategy to evaluate the quality
of the line shape is to compare intensities Im recorded
at very different E0 and θi conditions but with identical
values of E⊥ = E0 sin

2 θi so that Im should be identical
[13]. Figure 10 reports diffracted intensities recorded at
300 eV and 5000 eV and incidence angles of 1.35◦ and
0.33◦ respectively so that the energy E⊥ is close to 165
meV in both cases. The angular resolutions are both
around 0.007◦, but they appear quite different on the de-
tector as the radius of their Laue circle varies by a factor
∼ 4. In Fig. 10(a), the diffraction peaks are well sepa-
rated and even a poor description of the profile will not
alter the derived Im. Oppositely, Fig. 10(b) and 10(c)
correspond to the smaller Laue circle recorded at 5 keV
where the diffraction peaks overlap enough to influence
their maximum intensity. The quality of the fit by a
Gaussian G∗ in Fig. 10(b) is less than by E∗ or L ·G∗ in
10(c) but the main result is that only the intensities Im
derived from the E∗ or L ·G∗ functional forms compare
quantitatively with the values derived at 300 eV in Fig.
10(a). For instance, the intensity I0 of the specular peak
(m = 0 in blue) is overestimated by almost 50% in Fig.
10(b) whereas the value measured in Fig. 10(c) differs by

FIG. 10. Diffracted intensities recorded with He on LiF [110]
at (a) 300 eV, θi=1.35◦ and (b,c) 5000 eV and θi=0.33◦. Both
correspond to E⊥ ∼165 meV and were recorded with an an-
gular resolution 0.007◦ (0.016◦ FWHM). The red lines corre-
spond to a fit through the data using a common line shape for
all peaks. (b) is fitted by a pure Gaussian while (a) and (c)
correspond to the profile E∗(ϕ) in Table II. The contribution
of the specular peak (blue line) depends on the line shape.

only 10% from the value determined in Fig. 10(a) where
the peaks are well separated.

VII. CORRELATIONS BETWEEN θf AND ϕf

By investigating either the overall distribution or the
one on the Laue circle, we have bypassed the internal cor-
relation of the 2D intensity distribution.We analyze here
this correlation for diffraction along a random direction.
For each value of θf , the distribution of ϕf has proper-
ties that are different on the Laue circle (θf = θi) and
far away from the Laue circle. We observe no dependence
of the mean azimuthal scattering angle ϕf with the final
polar angle θf and a weak evolution of the mean polar

angle θf with the final azimuthal angle ϕf . This is not
the case for the width σϕ. In section VI, we indicated
that within typically 10%, the widths σϕ measured on
the Laue circle compare with the ones measured on the
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overall azimuthal profile. This is mainly due to the fact
that the intensity on the Laue circle is maximum and
its contribution dominates the average. We try below to
analyze in more detail the specificity of the Laue circle.

A. Lateral width σϕ versus θf

At small values of Eθ3i T/300 where elastic diffraction
dominates, the evolution of the inelastic line shape above
or below the Laue circle is quasi-symmetric, the line
width increases almost linearly with the distance to the
Laue circle; σϕ = σϕs

+α|dθ| where σϕs
is the value mea-

sured on the Laue circle (at specular angle θspec) and
dθ = θf − θi is the distance to the Laue circle. This in-
dicates that the specular condition is indeed a reference
for the inelastic process. Any departure from this ref-
erence either upward or downward is accompanied by a
significant increase in the width. This is illustrated in
Fig. 11(a) where the blue triangles represent the stan-
dard deviation of the azimuthal distribution as a function
of the polar angle θf . The width is measured by simple
statistical evaluation of the variance σ2

ϕ = ΣϕI(ϕ)ϕ
2/Itot

without trying to separate the elastic and inelastic con-
tributions. As a consequence, the sharp dip around the
specular polar angle simply outlines that, at this loca-
tion, the azimuthal distribution is dominated by the nar-
row elastic spot. This dip, outlining the elastic contribu-
tion, could be bypassed by fitting the profiles to isolate
the inelastic contribution but the fit is partly unstable,
probably because the elastic component is so large that a
variation as small as 0.1 pixel of its line shape (σb in eq.
(1)) significantly affects the fit. For Fig. 11(a), the width
σϕs

at the specular angle is estimated by interpolation as
σϕs

≃0.015◦ and the slope α is close to 0.1 meaning that
the σϕ increases by 0.01◦ every 0.1◦ away from the Laue
circle.

At larger values of Eθ3i T/300 where the elastic compo-
nent is much weaker than the inelastic one, the evolution
of the line width becomes asymmetric. The position of
the minimum line-widths shifts to underspecular condi-
tions (θf < θi) as illustrated in Fig. 12(a) recorded with
a surface at 700 K. Fig. 13 recorded at room temperature
but with 4 keV projectiles explores fully inelastic condi-
tion with Eθ3 above 40 meV where the DWF is probably
less than 10−8 [41]. The shift δθ between the maximum
intensity and the minimum of the line width is more pro-
nounced than that of Fig. 12 in spite of a smaller angle
of incidence.

B. Polar width σθ versus ϕf

This section is in part beyond the main focus of the
paper but is reported here for completeness. We inves-
tigate the evolution of the polar width σθ as a function
of the departure from the Bragg condition ϕf = mGy.

FIG. 11. For 500 eV helium scattered along a [Rnd] direction
at θi=0.628 ◦ incidence (E⊥ = 60 meV and Eθ3=0.66 meV),
the polar (a) and azimuthal (b) profiles are decomposed
into elastic and inelastic components. The standard de-
viation of the azimuthal and polar ▽ distributions show a
linear increase away from elastic conditions, dotted lines are
to guide the eyes. The symbol represents θf/θi and shows
the weak variation of the mean polar scattering angle.

FIG. 12. For 500 eV helium scattered along a [Rnd] direction
at θi=1.45 ◦ incidence (E⊥ = 320 meV and Eθ3=8.1 meV),
the polar (a) and azimuthal (b) profiles are reported show-
ing no clear elastic component. The standard deviation of the
azimuthal and polar ▽ distributions show a diffuse minimum
and a possible quadratic dependence. The symbols repre-
sent θf/θi and show the weak variation of the mean polar
scattering angle.

Under a random direction where only m = 0 is present,
the reference is the scattering plane ϕf = ϕm=0 = 0.

The mean value of the polar distribution θf/θi depends
only slightly on the azimuthal angle ϕf as indicated by
red hollow square symbols ( ) in Fig. 11(b) 12(b) and
13(b). For values of ϕf within the FWHM of the az-

imuthal profile, the variation of θf/θi is less than 5%.

The variation of the polar width σθ with ϕf (▽) is
more pronounced and is comparable to that of the az-
imuthal width σθ with θf ( ). At low values of Eθ3 in
Fig. 11(b) the dependence is linear while it shows a flat
minimum close to Eθ3 ≃ 10 meV, the observation thresh-
old of elastic diffraction in Fig. 12(b). In Fig. 11(b), a
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FIG. 13. Same as Fig. 11 and 12 with 4 keV He projectiles
at 1.25◦ (Eθ2=1.9 eV, Eθ3 =41 meV). No elastic compo-
nent is visible in the polar (a) and azimuthal (b) profiles.
The standard deviation σϕ of the azimuthal distribution as-
sociated with a polar angle θf shows a minimum located at
θmin well below the specular scattering angle θspec. The po-
lar width σθ ▽ has a quadratic behavior (σϕ ∼ 0.14+1.4ϕ2

f ).

The mean scattering angle θf/θi( ) varies weakly with ϕ as
in Figs. 11-12.

fit was needed to isolate the inelastic contribution while
a straightforward statistical evaluation was performed in
Fig. 12(b). At much larger values of Eθ3, a regime where
elastic diffraction cannot be observed, Fig. 13(b) indi-
cates a pronounced quadratic behavior.

VIII. DISCUSSION

For large band-gap insulators like LiF, the inelastic
effect in diffraction is dominated by interaction with
phonons [37]. With atoms at thermal energies and quasi-
normal incidence, energy-resolved inelastic diffraction re-
veals the specific surface phonon modes [45] and, for met-
als, the coupling could be traced to the strength of the
electron-phonon interaction [46–48]. In GIFAD, the to-
tal energy cannot be resolved in the meV range and, so
far, only the scattering in the perpendicular plane can be
analyzed.

The theory also is much less developed due to the
more complex regime where the projectile interacts with
many surface atoms. An attempt to account for the ac-
tual phonons modes involved in the scattering within a
quantum treatment [49, 50] seems to indicate a dom-
inant contribution of long wavelength acoustic modes
but no scattering distribution was produced to be com-
pared with experiments. Random kicks to the projectile
wavepacket were proposed to simulate inelastic profiles
[21, 51] with properties resembling experimental data but
elastic diffraction is absent and quantitative agreement
was not demonstrated. Using a semi-classical approach,
other authors proposed [52–54] to expand the surface
thermal motion in terms of the number n of exchanged
phonons labeled Pn-SIVR (for surface initial value rep-

resentation). However, from our point of view, the P0-
SIVR, assumed elastic, produces a distribution having
all the properties of inelastic diffraction: It has a log-
normal profile with a relative polar width w = σθ/2θi
only slightly lower than the measured ones [52]. It stays
remarkably constant during an E-scan [54] for E⊥ above
200 meV as in Fig. 6 and it follows the observed evolu-
tion with the surface temperature [41]. Here also, there
is no sign of a narrow elastic peak and, if the P0-SIVR
is interpreted as inelastic, then all the other terms of
the expansion should be present. More problematic, in
terms of application, the approach predicts a very strong
variation of the diffracted intensities Im on the Laue cir-
cle with the temperature [53, 54] which is not observed
in GIFAD [41] neither in TEAS [55], apart from lattice
thermal expansion. This can probably be traced back to
the fact that neither the random kick nor the SIVR ap-
proaches do consider the Mösbauer-Lamb-Dicke effect [7]
which is a quantum effect (without classical equivalence
but uses thermally displaced atoms so that the mean po-
tential probed by the trajectories is different from the
one at equilibrium [7, 51] and becomes temperature de-
pendent.

Simplified models have been developed to connect the
polar and azimuthal profiles to thermal surface proper-
ties. The interaction with the complex phonon system
is replaced by successive independent quantum binary
collisions with the local (Debye) harmonic oscillator rep-
resenting the surface atom, taking place along the elastic
trajectory [7, 37]. Each is contributing (if inelastic) to the
final inelastic angular widths σϕ and σθ by an elementary
(binary) broadening calculated in the classical eikonal
approximation. For a purely repulsive exponential PEL,
the scattering profile of a single binary collision is a log-
normal profile with a relative width wb = Γσz ≃ σθb/θb
where σz is the amplitude of the thermal motion of a
surface atom along z [7]. The DWF is derived from the
assumption that one such inelastic collision is enough to
drive the trajectory inelastic. This seems to fit the exper-
iment [41] but the expansion of the polar inelastic profile
in terms of the number of inelastic collisions proposed in
Ref. [7] does not. Instead, the inelastic polar profile was
found to have always the maximum width σ2

θ = Nσ2
θb
.

As if a single inelastic collision (among N) is enough
to induce a quasi-classical scattering profile where all N
binary collisions become inelastic and contribute to the
broadening [38]. In this respect this is equivalent to the
near-classical scattering with spatial correlations of Ref.
[37].

When investigating the effect of attractive forces, two
additional effects were found important [38]: The Beeby
correction factor [56] considers that the impact energy
E⊥ should be replaced by E⊥ +D where D is the depth
of the attractive well (see Table IV(d)). As in TEAS [57],
this correction is significant for elastic diffraction only at
low energy, when E⊥ ∼ D [58] which is here less than
10 meV [59]. It also influences the DWF in TEAS but
hardly does so in GIFAD due to the multiple collision
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regime [38]. The effective stiffness Γeff describing the
modification of the repulsive forces due to the attractive
terms at the turning point zt has no major consequence in
TEAS [42] whereas, in GIFAD, it was found responsible
for the rapid increase of σθ/θi at values of E⊥ below
200 meV [38, 44] as visible here in Fig. 6 and Fig. 8.
In these figures, σϕ and σθ have a comparable behavior
suggesting that attractive forces are also responsible for
the increase of σϕ/θi below E⊥=200 meV. Both Γeff and
zt are detailed in Ref. [38].

Focusing on the differences between azimuthal and po-
lar line widths, we return to the perturbative approach
[7] where these scattering profiles result from the self-
convolution of the binary collision profile. The log-
normal inelastic polar profile was first derived assuming
only a surface atomic motion along z and a projectile tra-
jectory exactly on top of an atomic row where the force
is only vertical so that no lateral deflection is possible
(σϕ=0).

Considering in-plane motion along y produces a narrow
azimuthal Gaussian profile with σϕ of only a few mdeg.
It was then proposed to average the scattering properties
over all possible impact parameters y within the trans-
verse coherence [7, 20] (in practice over the lattice unit
d⊥). On one hand, the azimuthal profile became signifi-
cantly broader and was modeled as having a general L ·G
shape [7] i.e. a comparatively sharp Lorentzian peak but
with attenuated wings (Table II). On the other hand,
the polar profile keeps its log-normal character but with
a width reduced by 30% because the momentum trans-
fer is not exactly vertical anymore. This redistribution
between lateral and vertical deflection, quantified by the
ratio of σϕ to σθ, depends in part on the elevation zt of
the turning point and should therefore increase from low
to high values of E⊥. On the low energy side, the ratio
should be stable because the attractive force brings the
turning point zt close to zc, the edge of the attractive well
(which is reached even for E⊥ = 0). On the high energy
side, Fig. 8 indicates that σϕ gets closer to σθ and the top
right inset, taken at E⊥ ≃ 10 eV shows that σϕ becomes
larger than σθ. This happens for deeply inelastic con-
ditions where the trajectories could become ”localized”
and where the validity of the above model constructed
around elastic trajectories with surface atoms at equi-
librium is probably limited. These very qualitative fea-
tures remain to be confirmed by numerical simulations
and quantitative comparisons but they suggest a possi-
ble difference to the diffraction of X-rays, neutrons, elec-
trons, and positrons where the in-plane motion of sur-
face atoms is considered as the dominant contribution
to lateral broadening of the inelastic peaks. The phys-
ical origin suggested here would be that the scattering
of atoms does not take place close to the nuclei of the
surface atoms.

TABLE IV. Definitions and formulas introduced in simplified
collisions models [7, 9, 37, 38] and mentioned in the discussion.

———– a) Surface description

TD, ωD Debye temperature and frequency ℏωD = kBTD

σ2
z variance of z position at a temperature T: ⟨z2⟩T

V1D(z) mean planar potential:
∫
x

∫
y
PEL(x, y, z)

———– b) binary collision model

mp,mt projectile and target mass, µ =
mp

mt

Er µE0θ
2
b , classical binary recoil energy where θb

is the projectile deflection in this binary coll.

Eloss ΣEr, Classical energy loss

DWF e−Eloss/ℏωD Debye-Waller factor for GIFAD

———– c) Purely repulsive collision model [7, 9, 37]

Vr(z) V1D(z) is assumed to have the form V0e
−Γz

with Γ ∼ 2
√
2W and W the work-function

Γ Stiffness, logarithmic derivative −V̇r(z)/Vr(z)

Eloss
2
3
µE0Γθ

3
i , Classical energy loss

N := Eloss/Er, effective number of binary coll.

———– d) Collision model with attractive forces [38]

D well depth of V1D(z)

E⊥ +D Beeby correction to the impact energy [56]

Morse pot. VM (z) = De−Γ(z−z0) − 2De−Γ(z−z0)/2

Γeff defined as −V̇M/VM at the turning point zt [38]

IX. SUMMARY AND CONCLUSION

We have investigated the lateral lineshape both asso-
ciated with the overall scattering profile or restricted to
the Laue circle. The first important conclusion is a clear
confirmation of the previous findings by Seifert et al. [36]
that the azimuthal diffraction line shape does not depend
on the crystallographic axis. We have clarified the issue
by separating the elastic and inelastic contribution and
by using, for the inelastic component, analytic forms
convoluted by the primary beam profile (see eq. (1)). A
broad range of physical conditions within the quantum
and semi-classical regime where elastic diffraction can
be observed has been investigated. With the present
helium-LiF system, this regime corresponds to values of
Eθ3 ≤ 10 meV. For very low values of Eθ3 ≤ 3 meV,
the inelastic line shape is equally well described by
either a pure exponential decay (E∗ in Table II) or by
the product of a Lorentzian by a Gaussian (L · G∗

1 or
L · G∗

2 in Table II). At values of Eθ3 exceeding several
ten’s of meV only inelastic diffraction is present and
the azimuthal width increases progressively beyond the
Bragg angle ϕB leaving only a smooth modulations
of the azimuthal intensity [17, 27] and progressively
vanishing. At even larger values, the line shape evolves
to a Gaussian profile with a width σϕ much larger than
ϕB and the last quantum effect is the principal rainbow
azimuthal profile which eventually becomes weaker than
the azimuthal width. Following the analysis of the polar
profile with temperature between 177 K and 1017 K [41],
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the above Eθ3 criteria derived at room temperature (T∼
300K)shouldscalewithT/300whereT isthesurfacetemperatureinKelvin.

When analyzing the overall azimuthal profile, i.e. in-
tegrated over the polar direction, we found a general be-
havior of the azimuthal width σϕ rather similar to that
previously observed for the overall polar profile σθ [38].
During an E-scan where the angle of incidence is fixed,
the absolute widths σϕ and σθ seem to be remarkably
stable for energies E⊥ above a few 100 meV while they
increase rapidly for values of E⊥ approaching a few meV
(see Fig. 6). During a θ-scan, the overall tendency is a
linear increase of σϕ and σθ for E⊥ above 200 meV and
a leveling below this value (Fig. 7). The relative val-
ues σϕ/2θi and σθ/2θi in Fig. 8 show the sharp increase
below E⊥=200 meV and a smooth increase above. The
ratio of purely elastic diffraction was extracted from the
overall azimuthal profile and is interpreted as a measure
of the DWF. The derived values in Fig. 7 are found
close to, but systematically larger than the ones mea-
sured from the polar profiles. Both appear compatible
with the specific DWF adapted to GIFAD [7, 9, 37, 41].

The inelastic profile measured on the Laue circle com-
pares with that measured on the overall profile. However,
we have a few situations where an accurate determina-
tion of the intensities Im, needed to access the potential
energy surface, requires a precise azimuthal line shape.
This implies a good description of the inelastic compo-
nent together with a decent evaluation of the DWF. In
addition to the increase of the width, the exact shape was
also found to evolve with E⊥, starting from a pure expo-
nential decay (E∗) to a quasi-Gaussian profile, but the
L ·G∗

1 and L ·G∗
2 suggested in Ref. [7] provides a decent

fit both in the quasi-elastic and quasi-classical regimes
as long as elastic diffraction is larger than 1%. The most
salient observation presented here is the evolution of the
inelastic width as a function of the distance to the Laue
circle suggesting that inelastic diffraction models can be

developed from elastic diffraction. By comparing with
previous work on the inelastic polar profile, the section
VIII suggests that the lateral inelastic profile is more in-
fluenced by the surface thermal movement along z and by
the location of the turning point zt than by the in-plane
thermal movement. This appears as another specificity of
atomic diffraction but remains to be confirmed by more
detailed analysis and simulations.

So far the random direction was mainly considered un-
interesting. The above investigations strongly suggest
that if an accurate line shape is needed for quantita-
tive analysis of diffraction, a reference scattering profile
should be recorded along a random direction. The evo-
lution of this profile could probably help to track specific
surface defects such as ad-atoms or terraces, enriching the
ability of GIFAD to diagnose the surface quality before,
during, and after the growth process [1, 3].

As to the limitations, we have indications that the
above results are probably not valid for more complex
surfaces, for instance, GaAs(001) β2(2 × 4) [3, 33] or
Ag(001) [35, 60], where deep trenches become visible only
along specific directions. For metallic surfaces, soft elec-
tronic excitations close to the Fermi level could also con-
tribute to the inelastic signal [61–63].
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[16] D. Faŕıas, C. Dı́az, P. Nieto, A. Salin, and F. Mart́ın,
Pronounced out-of-plane diffraction ofH2 molecules from
a Pd(111) surface, Chem. Phys. Lett. 390, 250 (2004).

[17] M. Debiossac, P. Pan, and P. Roncin, Grazing incidence
fast atom diffraction, similarities and differences with
thermal energy atom scattering (TEAS), Phys. Chem.
Chem. Phys. 11, 4564 (2021).

[18] H. Winter and A. Schüller, Fast atom diffraction dur-
ing grazing scattering from surfaces, Progress in Surface
Science 86, 169 (2011).

[19] A. Zugarramurdi, M. Debiossac, P. Lunca-Popa,
L. Alarcón, A. Momeni, H. Khemliche, P. Roncin, and
A. G. Borisov, Surface-grating deflection of fast atom
beams, Phys. Rev. A 88, 012904 (2013).

[20] P. Roncin, M. Debiossac, H. Oueslati, and F. Raouafi,
Energy loss and inelastic diffraction of fast atoms at graz-
ing incidence, NIM-B 427, 100 (2018).

[21] F. Aigner, N. Simonović, B. Solleder, L. Wirtz, and
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sis, Université Paris sud-XI (2000).

[41] P. Pan, M. Debiossac, and P. Roncin, Temperature
dependence in fast-atom diffraction at surfaces, Phys.
Chem. Chem. Phys. 24, 12319 (2022).

[42] K. H. Rieder and N. Garcia, Energy dependence and
softness of the potential for He Scattering from Ni(110),
Phys. Rev. Lett. 49, 43 (1982).

[43] N. Kalashnyk, H. Khemliche, and P. Roncin, Atom beam
triangulation of organic layers at 100mev normal energy:
self-assembled perylene on Ag(110) at room temperature,
Applied Surface Science 364, 235 (2016).

[44] M. Debiossac, P. Roncin, and A. G. Borisov, Refraction of
fast Ne atoms in the attractive well of a LiF(001) surface,
J. Phys. Chem. Lett. 11, 4564 (2020).
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