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 Abstract: The pervasiveness and mortality associated with methamphetamine abuse have doubled 
during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the patho-
physiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neuro-
toxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use 
of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's 
disease is one such neurological disorder, which significantly and evidently not only shares a number 
of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both 
structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine 
homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and 
drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson’s dis-
ease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neu-
roinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically re-
semble to what is observed in Parkinson’s disease cases. Therefore, the present review comprehensive-
ly cumulates a holistic illustration of various genetic and molecular mechanisms putting across the no-
tion of how methamphetamine administration and intoxication might lead to Parkinson’s disease-like 
pathology and Parkinsonism. 
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1. INTRODUCTION 

 Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder after Alzheimer’s disease (AD), 
affecting approximately 1% of the population over the age of 
60 and 4% over 80 [1]. As such, neurological disorders like 
PD are a global cause of disability worldwide [2]. The patho-
logical hallmarks of PD are a loss of dopaminergic neurons 
in the substantia nigra pars compacta (SNpc) and the pres-
ence of fibrillary cytoplasmic inclusions, known as Lewy 
bodies containing α-synuclein, which eventually extend to 
limbic and neocortical brain regions, consequently decreas-
ing brain dopamine (DA) levels and leading to a severe dete-
rioration of cognitive functions [3]. Alpha-synuclein is ge-
netically and pathologically linked to PD. It is a presynaptic 
neuronal protein, and in its native form, it is mostly unfolded 
without a defined tertiary structure in the brain [4]. Still,  
its soluble aberrant oligomeric conformations mediate the  
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disruption of cellular homeostasis and neuronal death [5]. In 
PD, α-synuclein becomes prone to aggregate by adapting β-
sheet-rich amyloid-like structures, thus forming protofibrils 
[6].  
 At the biochemical level, DA accounts significantly for 
the neuronal communication between the substantia nigra 
and basal ganglia, which is responsible for the fine-tuning of 
voluntary movements. PD is characterized by the degenera-
tion of neurons in the SNpc, resulting in substantial loss of 
DA [7], thus impairing the overall DA metabolism, as ob-
served in PD pathogenesis [8]. Moreover, the role of DA 
receptors (D1/D2) has been considerably discussed concern-
ing the pathogenicity of PD [9]. Clinical manifestations of 
PD include prototypal motor symptoms, such as resting 
tremor, rigidity, bradykinesia, postural instability and slow-
ness of movements, along with cognitive impairment and 
depression [10]. Apart from abnormal protein aggregation 
and degradation, multiple pathways are explicitly involved in 
PD pathogenesis [11], including mitochondrial dysfunction, 
oxidative and endoplasmic reticulum (ER) stress, neuroin-
flammation and immune disruption, autophagic dysregula-
tion and apoptosis. 
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 Methamphetamine (meth) is a potent addictive, stimulant 
drug. The neurobiology of meth is not manacled to be a 
monoaminergic modulator but extends beyond complex neu-
ral systems and biological pathways, where both cerebrovas-
cular and cardiovascular pathologies mitigate the mortality 
associated with meth abuse [12]. Most importantly, condi-
tions like suicidality, psychosis, depression, and violence 
contribute to the poor mental health associated with stimu-
lant use, and continuous abuse of such drugs enhances the 
incidence of HIV and hepatitis C infection, thus upraising 
the mortality rate [13]. Additionally, patients with prolonged 
abuse of drugs like meth exhibit a severe phase of meth 
withdrawal syndrome [14], where clinical analysis reveals 
drug craving as a salient extrapolate factor in meth-
dependent patients with sustained drug abuse [15]. Moreo-
ver, a postmodern syndrome called “substance-related exog-
enous psychosis” (SREP), which has been ratified as a dis-
tinct psychotic disorder with psychopathological specifici-
ties, has been recently delineated [16]. This notion aids in 
differentiating this condition from schizophrenia and assists 
in the differential diagnosis between comorbid conditions, 
persistent and transient substance-related psychotic states, as 
well as the preference of treatment interventions with 
marked specificity as observed in subjects with acute psychi-
atric presentations post-use of psychoactive substances [17]. 
Given the broad-spectrum abuse of addictive drugs in urban 
and rural areas, it becomes essential to focus on preventive 
strategies concerning the hazardous consequences of unceas-
ing drug intoxication. Novel psychoactive substances (NPS) 
are a heterogeneous group of substances posing public health 
threat, thus sabotaging the socio-economic status [18].  
 As a matter of fact, these substances are analogous to 
existing controlled drugs and pharmaceutical products mim-
icking the psychoactive effects of licensed medicines and 
other controlled substances. The number of drugs that shares 
the same pharmacodynamic properties is huge and needs to 
be reported. In many cases, meth is sold as NPS with varied 
names, and such compounds which share common character-
istics with meth have been implicated in cases of psychosis, 
suicidality [19] and serotonin syndrome [20]. As a matter of 
concern, NPSs are recurrently sold online as "legal" and 
"safer" alternatives to internationally controlled drugs [21]. 
Therefore, web mapping of drug-related issues with preven-
tive strategies must hold immense attention and interest in 
order to better assess the characteristics and diagnostic chal-
lenges of such substances [22, 23]. 
 Strikingly, the genetic propinquity and patterns of neu-
ronal loss and atrophy are quite similar at the gross anatomi-
cal level in people who abuse meth and PD patients. Most 
importantly, besides the fact that chronic meth abuse leads to 
several neurodegenerative changes in the human brain, meth 
intoxication resembles symptoms similar to those observed 
in neurodegenerative disorders like AD [24], PD and early-
onset stroke [25]. Even the movement disorders seen in PD 
resemble what is observed in human meth abusers [26] as 
well as in animal models like macaque monkeys [27] and 
rodents [28]. It has been noticed in adult human meth abus-
ers that the prevalence of tremors and abnormal fine hand 
control was significantly higher than in normal control 
groups [29], and patients suffering from meth use disorder 
significantly exhibit extrapyramidal side-effects with evi-

dence for a dose-response effect [30]. Finally, meth abusers 
present severe defects in hippocampal-related learning and 
memory performance due to an alteration of the dopaminer-
gic system [31]. 
 Concerning DA homeostasis, a molecular docking analy-
sis revealed that meth and amphetamine act as potential in-
hibitors of DA receptor for DA uptake [32] and block DA 
transporter (DAT) and vesicular transport and, therefore, 
etiologically important in the cytosolic DA mediation of neu-
rodegeneration in PD/Parkinsonism [33]. Additionally, both 
DA receptors (D1 and D2) are involved in meth-induced 
neurotoxic mechanisms [34]. Finally, a recent investigation 
carried out in mice and neuronal cells has revealed that meth 
induces a loss of dopaminergic neurons and activation of 
autophagy mediated by D1 receptors and involving the 
AMPK/FOXO3A signaling pathway (He et al., 2022).  
 Among other related receptors, the sigma receptor has the 
ability to act on different monoaminergic pathways for 
which it is considered to affect both motor and non-motor 
PD symptoms [35] and interestingly sigma receptor has a 
key role in meth-induced deregulation of DA release and 
DA-related behaviours [36]. Comprehensive descriptions of 
meth-induced dopaminergic neurodegeneration and its rele-
vance to PD from pertinent findings from human and animal 
studies have been relatively documented [37]. 
 Pertaining to α-synuclein pathology, it has been shown 
that meth significantly increased the expression of α-
synuclein in the substantia nigra of the rats [38]. Additional-
ly, it has been evidenced that chronic meth exposure in-
creased α-synuclein levels in the stratum oriens, pyramidal 
layer, stratum radiatum and stratum moleculare of hippo-
campal CA1, CA2 and CA3, polymorph layer of the hippo-
campal dentate gyrus, and substantia nigra of mice [39]. 
Moreover, chronic meth abusers demonstrate significant α-
synuclein overexpression and aggregation in dopaminergic 
neurons in the substantia nigra, similar to the α-synuclein 
cytotoxicity in PD cases [40], which is remarkably associat-
ed with neuronal loss and motor dysfunction in patients with 
PD. 
 Considering the above-mentioned imperative explora-
tions, the present review exemplifies a comprehensive illus-
tration of meth-induced pathogenic mechanisms similar to 
PD pathology, thus establishing a link for further investiga-
tions and directed therapeutic implementations.  

2. GENETIC LINKAGE BETWEEN DRUG ADDIC-
TION AND PD  

 Effective development of gene therapies requires not 
only the identification of specific molecular and anatomic 
targets but also specific brain regions or networks to modu-
late with genetic intervention [41]. In this context, it is of 
utmost interest to note that polymorphism in the synuclein 
alpha (SNCA) gene is also associated with meth psychosis 
[42]. Thus, given the fact that amyloid beta (Aβ), tau and α-
synuclein interact, modulate and enhance each other’s [43], 
an additional synergistic contribution of meth could further 
accelerate cognitive dysfunction during the time-course of 
AD, PD, and dementia with Lewy bodies (DLB). Now re-
garding specific genetic variations linking drug abuse and 
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PD, although PD has been described as a prototypical spo-
radic disease, advancement in molecular genetic studies has 
revealed this neurodegenerative disorder as a genetic disor-
der [44], with the traditional model of PD being SNCA-
centric, although the microtubule-associated protein tau 
(MAPT) gene locus has come out to be also a risk factor for 
PD [45]. 
 Interestingly, abusing meth increases threefold the risk of 
developing PD by inducing conformational changes in α-
synuclein structure [46] and augments α-synuclein protein 
levels in the hippocampus of adolescent mice [47]. From a 
genetic point of view, when considering that single nucleo-
tide polymorphisms in the a-synuclein gene SNCA are 
strongly associated with PD risk [48, 49], it is of utmost in-
terest to underline here that, as mentioned previously, poly-
morphism in the SNCA gene is also associated with meth 
psychosis [42]. Moreover, meth exposure causes persistent 
demethylation within the SNCA promoter, corresponding to 
the stoichiometric steady augmentation of α-synuclein pro-
tein levels within the striatal neurons [50].  
 In addition, the Val/Met single nucleotide polymorphism 
at codon 66 of the brain-derived neurotrophic factor (BDNF) 
gene has been associated with a higher risk for meth abuse 
[51], while it has also been linked to cognitive decline in PD 
[52]. Interestingly, the link between BDNF, PD and drug 
abuse was further supported by the fact that serum levels of 
BDNF, which regulates not only synaptic plasticity but also 
fulfills diverse roles in addiction-related behaviours [53], are 
associated with the cognitive state in PD patients with mild 
cognitive impairment (MCI) [54]. Moreover, a recent meta-
analysis of human meth users revealed a significant correla-
tion between meth users and BDNF Val66Met polymor-
phism [55]. Ultimately, in addition to BDNF and extending 
beyond purely genetic factors, modifications in the levels of 
other proteins have been observed in both PD and meth-
related conditions. Hence, levels of regulator of G-protein 
signalling 2 (RGS9) are abnormally high in PD [56], while 
its involvement in schizophrenia and the development of 
meth-induced psychosis has been clearly established [57]. 
 Importantly, among the known genes associated with PD 
(SNCA, Parkinsonism Associated Deglycase (PARK)7, Leu-
cine-rich repeat kinase 2 (LRRK2), PARK2, or PTEN-
induced kinase 1 (PINK1), most of them require thorough 
investigations to establish a link between them and meth 
abuse, however, some relevant links cannot be ruled out. 
Mutations in the PARK7 gene are known to cause rare forms 
of early-onset PD, and interestingly PARK7 interacts with 
p47phox to direct nicotinamide adenine dinucleotide phos-
phate hydrogen (NADPH) oxidase-dependent reactive oxy-
gen species (ROS) production [58]. Therefore, it would be 
challenging to speculate whether or not meth’s interaction 
with p47phox involves PARK7. Yet another gene is the glu-
cocerebrosidase (GBA1), encoding the lysosomal enzyme 
glucocerebrosidase, which heterozygous mutations have 
been linked to PD development and related synucleinopa-
thies [59]. Moreover, along with SNCA and apolipoprotein 
(APOE), epigenetic modifications and genetic variations in 
GBA1 are involved in DLB [60]. Meth dose-dependently not 
only decreased the expressions of the α-synuclein-specific 
degradative enzyme glucocerebrosidase but simultaneously 

also reduced the levels of its regulator lysosomal integral 
membrane protein type-2 in pheochromocytoma (PC12) cells 
[61], indicating a relevant annexation in between. 
 Overall, the association of addiction-related variants with 
enhanced risk for developing degenerative brain disorders 
[62, 63], decline in cognitive performances [64] and differ-
ences in brain structure [64, 65] are key factors in under-
standing the pathobiological link between them (Table 1). 

3. METHAMPHETAMINE-INDUCED STRUCTURAL 
ALTERATIONS IN THE BRAIN WITH REFERENCE 
TO PD 

 Meth-induced neurotoxicity is reflected by the structural 
abnormalities in the brain exposed to its chronic use. One 
striking resemblance between meth pathology and PD con-
cerns the superposition or at least the interconnectivity of the 
affected brain areas. Firstly, the nucleus accumbens, a key 
structure of the reward centre and addiction, is part of the 
striatum and displays close interconnections with both limbic 
structures (hippocampus and amygdala) and the prefrontal 
cortex (PFC) so that it may integrate information involved in 
learning and executive function that are affected in PD. Even 
prenatal meth exposure leads to structural and functional 
alterations of striatal, frontal, parietal, and limbic regions, as 
affirmed by brain imaging studies [66].  
 Meth causes severe energetic metabolism impairment in 
the amygdala, PFC, hippocampus and striatum of rats that is 
accompanied by a significant behavioural sensitization [67, 
68]. Precisely, meth exposure in rats decreased striatal vol-
ume and dendritic length associated with enhanced astro-
gliosis and deregulated miRNAs in the striatum with abate-
ment of motor coordination [69]. Moreover, self-
administration of meth in rats results in a loss of corticostria-
tal plasticity and impaired motor learning [70].  
 Importantly, advanced diagnostic techniques such as dif-
fusion kurtosis imaging scanning using the Bruker Avance 
9.4 Tesla magnetic resonance imaging (MRI) system tend to 
reveal microstructural brain changes during neurodegenera-
tion. Thus, a comparative voxel-based analysis had previous-
ly shown gray matter volume reductions in the brain of PD 
patients associated with other structural abnormalities [71, 
72]. More recently, whole-brain voxel-wise and region-of-
interest-wise causal structural covariance network approach-
es allowed to show a progressive augmentation of gray mat-
ter atrophy from the basal ganglia to the angular gyrus, tem-
poral areas, eventually spreading through the subcortical-
cortical networks in accordance with the progression of pa-
thology observed in PD patients [73]. It is assumed that 
white matter impairment in PD might be a sensitive sign 
preceding the neuronal loss in associated grey matter regions 
[74]. In this context, computational brain mapping tech-
niques demonstrated decrements in gray matter volume in 
the paralimbic, limbic and cingulate cortices of meth abusers 
[75]. This is consistent with the fact that meth abusers dis-
play significant abnormalities in the grey and white matter of 
their brains [76-79]. Additionally, recently developed brain 
imaging techniques have evidenced grey matter structural 
and volumetric alterations in meth users [80] and PD patients 
[81], thus establishing a similarity in the structural changes 
occurring in PD and meth abuse and suggesting a possible 



4    Current Neuropharmacology, XXXX, Vol. XX, No. XX Vincent and Shukla 

Table 1. Genetic linkage between PD and meth abuse. 

Factor PD Meth Abuse References 

SNCA/ 
α-synuclein 

SNCA polymorphism associated with the risk of develop-
ing PD  [48] 

[49] 
  SNCA polymorphism with meth psychosis [42] 
  Meth k by 3x the risk of developing PD by inducing α-synuclein [46] 
  Meth k demethylation of SNCA promoter to k α-synuclein levels [50] 

BDNF k neuroprotection in PD  [123] 
  Meth k BDNF gene methylation to m its expression [124] 
 Val66Met polymorphism is linked to cognitive decline in PD  [52] 
  Val66Met polymorphism is a risk for meth abuse [51] 

[55] 

RGS9 High in PD  [56] 

  Involved in meth-induced psychosis [57] 

GBA1 GBA1 heterozygous mutations are linked to PD development  [59] 

 Epigenetic modifications and genetic variations in GBA1 
are involved in DLB  [60] 

  Expression is m by meth [61] 

 
causal link between the two (Fig. 1). This hypothesis gains 
further support from the discovery that employing a compa-
rable technique has revealed microstructural pathological 
processes in both grey and white matter have been detected 
in a meth-induced mouse model of PD [82]. 
 MRI investigations in chronic meth-treated rat models 
demonstrated enlarged striatal volumes and increases in 
[3H]PK 11195 binding in the frontal cortical areas, the rhinal 
cortices, the striatum, the nucleus accumbens and the cere-
bellar nuclei [83]. Recently, voxel-based morphometry in 
conjunction with statistical parametric mapping on structural 
magnetic resonance images demonstrated higher Barratt Im-
pulsiveness Scale (BIS-11) impulsivity scores and a lower 
grey matter volume in the bilateral superior frontal cortex in 
individuals with severe meth use disorder, indicating higher 
impulsivity [84]. 
 Furthermore, circular RNAs are known to have an im-
portant role in neurodegenerative disorders like PD [85]. 
These are stable noncoding RNAs that accumulate with ag-
ing and are involved in the regulation of neuronal functions. 
Meth profoundly changes the profiling of circular RNA ex-
pression in the cerebellum of rats with significant alterations 
in motor coordination and muscle activity [28]. Cytochrome 
P450 2D6 (CYP2D6) polymorphisms have been linked to 
PD susceptibility [86]. Being centric on meth metabolism, 
any genotypic variations in CYP2D6 modulates meth effects 
on brain structure, function, and cognition [87].  

4. METHAMPHETAMINE-INDUCED MOLECULAR 
PATHWAYS IMPACTING PARKINSON’S DISEASE 
PATHOGENESIS 

 This section discusses how meth abuse might be a trig-
gering event in developing PD and Parkinsonism. Indeed, 
evidence-based studies in animal models and clinical and 
population assessments have revealed signs of prodromal 
and emerging PD among meth users [88]. 
 Meth can trigger Parkinsonism symptoms at high doses 
or following long-term exposure due to its capability to 

cause dopaminergic neurodegeneration, similar to what is 
observed in PD [89] as observed in studies carried out in 
rodents and primates [90, 91]. High-dose meth treatment in 
mice results in a loss of DA cells in the SNpc [92], an area 
mainly affected in PD, which includes the substantia nigra, 
the basal ganglia and the cerebral cortex. Compared to other 
amphetamine derivatives, meth depletes DA faster and caus-
es a long-lasting impact on DA levels. Consequently, it in-
duces a long-lasting degeneration of dopaminergic cell bod-
ies in the SNpc, along with the destruction of dopaminergic 
terminals in the striatum [93].  
 DA receptors (D1-D5) are involved in the regulation of 
numerous physiological functions in the brain and periphery, 
and their signalling mechanisms and mode of action play a 
significant role in neurodegenerative pathomechanisms [94]. 
These receptors mediate a diversity of functions: behaviour 
and cognition, voluntary movement, motivation, punishment 
and reward, attention, working memory and learning [34] 
and are involved in the genesis and pathophysiology of PD 
[9]. A recent systematic review and meta-analysis of the pos-
itron emission tomography (PET) and single-photon emis-
sion computed tomography study investigated DA receptors 
in PD patients, which indicated that the observed compensa-
tory receptor changes in the study were an outcome of the 
loss of DA nerve terminals and striatal neuropil with subse-
quent neurodegeneration [95]. Interestingly, these receptors 
are the mediators of meth-induced neurotoxicity [34], pro-
moting ER stress and mitochondrial dysfunctions in the stria-
tum of rodents [96], which is reminiscent of the pathological 
mechanisms observed in PD. 

4.1. PD-promoting Deleterious Meth-dependent Path-
ways 

4.1.1. Gene Expression, Epigenetic and miRNA-mediated 
modifIcations 

 Genetic and epigenetic mechanisms, such as DNA meth-
ylation, histone modifications (acetylation and methylation) 
and small RNA-mediated mechanisms, play important roles 
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Fig. (1). Schematic outline of the similarities in the brain circuits and regions affected, the damage caused and the resulting effects observed 
in methamphetamine-induced neurotoxicity and PD pathogenesis. Firstly, meth profoundly affects the BBB permeability, thereby resulting in 
enhanced microglial activation and astrogliosis. Secondly, meth leads to significant abnormalities in both grey and white matter and cause 
metabolic impairments in different brain areas as observed in PD pathology. Thirdly, meth, by modifying the nigrostriatal, mesocortical and 
mesolimbic dopaminergic pathways, leads to motor impairments (locomotor activity and motor coordination) resulting from a loss of neurons 
in the substantia nigra. Finally, meth, by affecting these pathways, is responsible for cognitive dysfunctions (learning and memory impair-
ments) and neuropsychiatric disturbances like depression, psychosis, along with behavioral changes, which are characteristic features of PD 
pathogenesis. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
 
in PD pathogenesis by regulating the expression of genes 
relevant to PD [97, 98], where redundant exposure to drugs 
like meth modulates both DNA methylation status and  
post-translational histone modifications in several regions of 
the brain [99, 100]. Noteworthy, meth abuse is associated 
with extensive gene expression changes in various brain re-
gions [101-103] and has been shown to induce major epige-
netic modifications [103-105], which may aid in understand-
ing the link between meth-induced modifications and the 
aetiology, pathophysiology and progression of PD pathology 
(Fig. 2). 
 The epigenetic and transcriptional upregulation of Tet 
methylcytosine dioxygenase 2 (TET2), a master regulator of 
cytosine modification status, observed in PD patients is con-
sidered a causative factor in widespread epigenetic dysregu-
lation of PD neurons [106]. Interestingly, it has been demon-
strated that meth induces DNA hydroxymethylation of cer-
tain genes in the nucleus accumbens in a TET1- and TET3- 
dependent manner, thus providing molecular evidence for 
epigenetic regulation of meth-induced alterations in gene 
expression [107]. Whether a connection exists between meth 
and TET2 will certainly deserve further investigation to es-

tablish an additional common denominator between meth 
abuse and PD pathogenesis.  
 Deregulation of histone deacetylases (HDACs) is consid-
ered a potential contributor to aberrant transcriptional pro-
files that leads to alterations in cognitive functions, and up-
regulation of HDAC2 has been observed in PD [108]. It is to 
highlight that meth has been shown to differentially regulate 
HDAC superfamily promoters acetylation [109, 110], with 
meth administration increasing the expression of HDAC2 
protein in the rat nucleus accumbens [103]. It is, therefore, 
apprehensible that the plausible meth-induced imbalances in 
the actions of HATs/HDACs could cause deregulation of 
transcription and disturbance in the neuronal homeostasis in 
disorders such as PD. 
 The genes that have been extensively studied regarding 
PD pathology are SNCA, parkin, PINK1, Protein deglycase 
DJ-1 (DJ1) and LRRK2 since the abnormal aggregation 
and/or mutation of these proteins/genes have been observed 
in PD [111]. As an example, a loss of function and/or muta-
tions in parkin is associated with an autosomal juvenile form 
of PD as a parkin gene defect is involved in the selective 
degeneration of dopaminergic neurons. In this context, it is 
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Fig. (2). Schematic representation of methamphetamine-induced modulations in epigenetic processes and gene and miRNA expressions 
thought to induce Parkinson's disease. Meth, via epigenetic modulation affects the functional complexity of DNA by altering chromatin struc-
ture, nuclear organization, methylation, and histone modifications. Furthermore, meth alters, through transcriptional and post- transcriptional 
modifications, the expression of certain genes involved in PD. Finally, meth alters the biogenesis profiles of some miRNAs, thereby possibly 
playing a crucial role in inducing PD-like pathology. (A higher resolution/colour version of this figure is available in the electronic copy of 
the article). 
 
interesting to note that meth decreases the expression levels 
of parkin and its substrate Pael-receptor in the striatum of rat 
brain [112], which implies that modulation of parkin and 
Pael-R genes by meth would potentially transmogrify the 
pathophysiology of the protein and favour the development 
of PD.  
 Other putative meth-regulated PD-associated factors are 
LRRK2 and SNCA, where epigenetic deregulation of α-
synuclein plays a crucial role in PD pathology. Recently, it 
has been demonstrated that H3K4me3 (an epigenetic modifi-
cation to the DNA packaging protein Histone H3), which 
regulates α-synuclein, was significantly elevated at the 
SNCA promoter of the substantia nigra of PD patients ob-
served during both punch biopsy and in NeuN (neuronal 
nuclear protein)-positive neuronal nuclei samples [113]. In 
this regard, it has been shown that the transcriptional re-
sponse of midbrain dopaminergic neurons following meth 
injection is characterized by an enhanced expression of 
genes with promoters dyadically marked by H3K4me3/ 
H3K27me3 [114]. The LRRK2 gene is responsible for the 
most common familial form of PD with autosomal dominant 
inheritance [111] and regulates α-synuclein neuropathology 
in PD [115, 116]. Although the SNCA gene is associated 
with meth psychoses [42], so far, there is no direct evidence 

of meth-induced regulation of LRRK2. However, consider-
ing that increasing the level of let-7 attenuates the pathogenic 
effects of LRRK2 [117], the fact that the micro-RNA miR-
let-7e decreases in the plasma of meth abusers strongly im-
plies that meth could indirectly modulate LRRK2 physiology 
[118]. 
 Besides the “classical” PD-associated genes/proteins 
mentioned above, several other factors shown to be linked to 
the pathology are under the regulation of meth. Indeed, ac-
cording to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway database, some genes related to DA re-
uptake (Comt, Slc family) or some DA-regulated down-
stream signals such as protein kinase B (Akt), glycogen syn-
thase kinase (GSK3) α/β, protein phosphatase 2A (PP2A), 
and phospholipase C (PLC) could possibly be modulated by 
meth [119]. As an example, acute meth exposure increases 
the rat cortical expression of the ubiquitin carboxy-terminal 
hydrolase L1 (UCHL1) [120], which has been identified as a 
PD-associated gene [121]. Moreover, histone acetyltransfer-
ase p300 (HATp300) enhances the aggregation of misfolded 
proteins in cell models and Lewy bodies of PD patients con-
taining α-synuclein [122], and meth administration signifi-
cantly increases the protein expression of histone acetyltrans-
ferase in the rat nucleus accumbens [103]. The neurotrophic 
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factor BDNF boosts neuroregeneration and furnishes neuro-
protection, and investigations in animal models of PD have 
manifested improvements in dopaminergic neurotransmis-
sion and motor performance with an overall enhancement in 
the survival of dopaminergic neurons [123]. Concerning the 
fact that meth dependence both in humans and in animal 
models increases BDNF methylation [124], the alterations in 
its expression and function would significantly affect the 
neuroprotective properties of this neurotrophic factor. 
 The growing evidence of miRNAs' involvement in regu-
lating various disease processes, including PD [125] and 
drug addiction, makes them potential drug targets. The fact 
that some miRNAs are regulated by meth [126] provides 
molecular grounds for revealing the mechanisms underlying 
meth addiction and neurotoxicity. Meth is known to be in-
volved in the regulation of the levels of Dicer1 and Argo-
naute2 proteins, that are both account for miRNA silencing 
complexes [127]. Interestingly, altered levels of Dicer1 [128] 
and reduced levels of Argonaute 2 [129] in PD patients 
might be indicative of how meth could play a crucial role in 
the pathoetiology of PD by modulating the biogenesis profile 
of some significant miRNAs. Moreover, analysis of miRNAs 
profile using the Illumina HiSeq™ 2500 sequencing system 
showed some substantial alterations in meth-addicted rats in 
the nucleus accumbens [130], a region whose atrophy has 
been previously suggested to be involved in both motor and 
neuropsychiatric symptoms of PD [131].  
 For instance, miR-128 stands as a potential target for PD 
therapeutics since its expression affects apoptotic mecha-
nisms in DA neurons along with the expression of excitatory 
amino acid transporter 4 (EAAT4) [132], which are high-
affinity glutamate transporters. Dysfunction of EAATs and 
alterations in their expression have been revealed in PD ani-
mal models [133]. Meth-induced behavioural sensitization 
counts on long-term neuroplasticity in the mesolimbic DA 
system. Recently, it has been suggested that miR-128 is in-
volved in regulating meth sensitization through controlling 
neuroplasticity [134]. 
 Interestingly, miR-181a negatively controls parkin [135], 
which is a key factor in PD pathomechanisms [111] and, as a 
consequence, directly impairs the expression of the gluta-
mate ionotropic receptor AMPA type subunit 2 (GRIA2) 
[136]. Interestingly, chronic meth use reduces the expression 
of miR-181a [118]. Altogether, these findings support the 
probability that meth, through its action on the miR-181a/ 
parkin/GRIA2 signaling axis, could participate in the devel-
opment of PD. Moreover, a bioinformatics analysis recently 
revealed that miR-181a may indirectly be responsible for 
meth addiction by regulating ER-associated protein degrada-
tion [137].  
 A study has also established that miR-124 is altered in a 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated 
mouse model of PD [138], supporting the fact that miR124 is 
a factor that could putatively favour PD pathology. Interest-
ingly, miR-124 was also associated with meth addiction 
[139], thereby suggesting a role for this micro-RNA in meth-
induced PD. Recently, it has been shown that miR-212-3p is 
downregulated in PD [140] and in the nucleus accumbens of 
meth-treated mice [119], which demonstrates yet another 
additional way through which meth could promote PD. A 

summary of the data in this section is presented in Table 2, 
and additional evidence-based study in this particular area of 
investigation would certainly make us better understand the 
complex gene regulatory network involved in meth addiction 
and PD-like pathology. 

4.1.2. Blood-brain Barrier Integrity Disruption 

 The blood brain barrier (BBB) is a tightly regulated inter-
face in the central nervous system (CNS) that regulates the 
exchange of molecules in and out from the brain, thus main-
taining CNS homeostasis; there is growing evidence that 
during aging and in neurodegenerative disorders such as PD, 
there is an alteration of structure and function of the BBB 
including a loss of efficiency of tight junctions and efflux 
transporters [141]. This phenomenon consequently elicits 
peripheral immune response, vascular density changes and, 
most importantly, altered drug efficacy [142] with phenotyp-
ical changes in endothelial cells and astrocytes with pro-
found reactive gliosis damaging neuronal survival [143]. 
Specifically regarding PD patients, a significant increase in 
BBB leakage [144] and permeability of the BBB occurs in 
post-commissural putamen [145]. Consequently, the altered 
transport of α-synuclein, a presynaptic neuronal protein that 
is linked genetically and neuropathologically to PD, via the 
BBB, might result in its aggregation leading to PD pathoeti-
ology [146] presenting, due to this particular feature, a target 
of choice for therapeutic strategies aimed at treating PD 
[147]. In this context, it has been shown that dynamic chang-
es in vessel morphology and compromised BBB integrity 
occurs in an α-synuclein-overexpressing mouse model, 
which exhibits the characteristic pathological features of PD 
[148], thereby further affirming that such microvascular al-
terations exacerbate neurodegeneration. 

 Meth itself can cause structural and functional disruption 
of the BBB with the methyl group making the molecule 
more lipophilic and thus facilitating transport across the 
BBB [149]. Indeed, meth induces an increase of BBB per-
meability in the rat hippocampus and striatum, thereby trig-
gering structural alteration of blood vessels and decreasing 
the levels of intercellular junction protein such as claudin-5, 
occludin and vascular endothelial cadherin, along with mi-
croglial activation, astrogliosis and increased pro-
inflammatory mediators [150]. As a probable consequence, 
meth administration causes significant structural and func-
tional changes in the brain, as evidenced in both human meth 
abusers [75] and rats [83]. In complicated chronic condi-
tions, meth-induced leakage of BBB, which is considered 
temperature-dependent, is followed by vasogenic oedema 
and ultimately leads to death [151]. 

 Notably, inhibition of the pentose-phosphate pathway 
(PPP), which ensures the proper oxidative status of neurons, 
causes selective dopaminergic cell death leading to motor 
deficits resembling Parkinsonism and dysregulation of glu-
cose metabolism, which is an early event in sporadic PD 
[152]. Thus, as meth alters brain glucose metabolism in vari-
ous brain regions [153], one could hypothesize that meth, 
through its deleterious action on glucose homeostasis, would 
promote the development of PD via the alteration of BBB 
integrity. 
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Table 2. Biomarkers and genetic/epigenetic common denominators to PD and meth abuse. 

Factor PD Meth abuse References 

Parkin Loss of function and/or mutations in parkin are associated with 
autosomal recessive forms of PD 

 [111] 

  Meth m the expression of parkin [112] 

UCHL1 PD-associated gene  [121] 

  Meth k UCHL1 cortical expression [120] 

HATp300 Enhances the aggregation of misfolded proteins in PD  [122] 

  Meth k HATp300 expression in the nucleus accumbens [103] 

miR-let-7e Increasing the level of let-7 attenuates the pathogenic effects 
of LRRK2 

 [117] 

  Meth m the levels of miR-let-7e in the plasma [118] 

miR-128/ 
EEATs 

Dysfunction of EAATs and alterations in their expression in 
PD animal models 

 [136] 

 miR-128 expression affects apoptotic mechanisms in DA 
neurons along with the expression of excitatory amino acid 
transporter 4 (EAAT4) 

 [132] 

  miR-128 is involved in regulating meth sensitization through 
the control of neuroplasticity 

[134] 

miR-181a miR-181a suppresses parkin- mediated mitophagy  [135] 

  Meth m miR-181a expression [118] 

  miR-181a is indirectly responsible for meth addiction through 
the regulation of ER-associated protein degradation 

[137] 

miR-124 miR-124 is decreased in mouse model of PD  [138] 

  miR-124 is associated with meth addiction [139] 

miR-212-3p miR-212-3p is down regulated in PD  [140] 
  miR-212-3p is decreased in the nucleus accumbens of meth- 

treated mice 
[119] 

TET Epigenetic and transcriptional k of TET2 in PD patients  [106] 
  Meth k hydroxymethylation of certain genes in nucleus ac-

cumbens in a TET1- and TET3-dependent manner 
[107] 

HDAC2 k of HDAC2 in the substantia nigra of PD patients  [108] 

  Meth k HDAC2 protein levels in the nucleus accumbens [103] 

Argonaute 2 Reduced argonaute 2 levels in the brain of PD patients  [129] 
  Meth m argonaute 2 mRNA and protein levels [127] 

H3K4me3 H3K4me3 is k at the SNCA promoter of the substantia nigra 
of PD patients 

 [113] 

  Meth k the expression of genes with promoters marked by 
H3K4me3 

[114] 

 
 Some recent studies have shown that meth causes cere-
brovascular alterations [154] and induces endothelial cell 
death, where neuropeptide Y plays an important role in 
meth-mediated neuronal and glial toxicity. Using a human 
brain microvascular endothelial cell line (hCMEC/D3), it has 
been shown that meth exposure altered the expression of 
neuropeptide Y2 receptors [155], which are apparently in-
volved in providing neuroprotection as observed in animal 
models of PD [156]. Meth administration also significantly 
enhances ROS generation, induces the formation of robust 
stress fibers causing reorganization of the cytoskeletal and 
alters the cellular localization of the tight (ZO-1) and VE-
cadherin in the primary human brain microvascular endothe-
lial cells [157]. Moreover, it triggers an excessive increase in 
matrix metalloproteinase-9 (MMP-9) enzyme, intercellular 
adhesion molecule 1 (ICAM-1) and vascular cell adhesion 
molecule 1 (VCAM-1) along with an increase in NAD(P)H 

oxidase 2 (NOX2) in the hippocampal and prefrontal cortical 
tissues of rats [158]. Finally, meth induces the overexpres-
sion of RhoA, Rho-associated protein kinase (ROCK), myo-
sin light chain (MLC), cofilin, phosphorylation (p)-MLC, p-
cofilin and MMP-9 in rats, thereby suggesting that meth 
might increase BBB permeability also through the activation 
of the RhoA/ROCK pathway [159].  
4.1.3. Endoplasmic Reticulum Stress 

 ER, stress enables cells to overcome the abnormal accu-
mulation of unfolded/misfolded proteins and is a complex 
process that involves the activation of three major signalling 
pathways (Activating transcription factor 6 (ATF6), Inositol-
requiring enzyme-1α (IRE1α) and Protein kinase RNA-like 
endoplasmic reticulum kinase (PERK)) [160]. PD etiology 
and pathology are intimately linked to ER stress and unfold-
ed protein response (UPR) activation [161], as illustrated by 
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the signs of ER stress observed in post-mortem tissue from 
sporadic human PD cases and in most animal models of the 
disease [162]. At the molecular level, ATF6, X-Box Binding 
Protein 1 (XBP1), and C/EBP homologous protein (CHOP) 
have a functional role in controlling dopaminergic neuron 
survival in neurotoxin-based models of PD in vivo [163]. The 
Sigma-1 receptor (Sig-1R), which is a chaperone protein lo-
cated at the mitochondrion-associated ER membrane and as-
sociated with calcium signalling between the two organelles, 
has been considered a potential target for PD as it regulates 
mechanisms of both cellular defense and damage [35]. In ad-
dition, apart from other pathogenic mechanisms, α-synuclein 
oligomers exert neurotoxicity and promote neurodegenera-
tion via ER stress and proteostasis dysregulation [164].  
 The growing assumption that meth could have an impact 
on PD development through ER stress enhancement came 
from various observations. Firstly, meth is able to mediate 
ER stress via all ATF6, IRE1α and PERK signalling path-
ways [165]. Secondly, there is a positive correlation between 
ER stress and meth-induced neurotoxicity [166]. Thirdly, 
meth exposure leads to ER stress in dopaminergic cells 
[167]. Fourthly, the PD-associated Sig-1R is involved in 
meth-induced microglial apoptosis and death and blocking 
this receptor significantly inhibits the generation of ROS and 
the activation of mitogen-activated protein kinase (MAPK) 
and Akt pathways [168].  
 Meth has been shown to induce ER stress through the 
overexpression of ER stress-related genes, including CHOP 
and spliced XBP1 [169] and, by augmenting DA levels, trig-
gers ER stress and oxidative stress signalling pathways even 
in a fetal brain exposed to meth, thus impacting learning and 
cognitive abilities with significant neurobehavioral deficits 
[170] similar to some of the PD pathological manifestations. 
A post-mortem human striatum investigation revealed an 
upregulation of CHOP, Tribbles homolog 3(Trib3), Nuclear 
protein 1 (NUPR1) and Beclin 1 in long-term meth abusers 
when compared with their respective controls along with 
effective neuronal cell death [171]. This recent study estab-
lishes that meth-induced ER stress causes overexpression of 
NUPR1, which is associated with the upregulation of the 
pro-apoptotic transcription factor CHOP. Moreover, it has 
been hypothesized that meth-induced ER stress might play a 
pivotal role in the upheaval of drug memory where its exces-
sive consumption inhibits drug-evoked synaptic plasticity 
involving cyclin-dependent kinase 5 (Cdk5) activation and 
decrement of Ca2+/calmodulin-dependent protein kinase II 
(CAMKII) as demonstrated in mice [172]. Noteworthy, even 
sub-acute meth ingestions in mice inhibit long-term memory 
acquisition and synaptic plasticity via ER stress [173].  
 Concerning the meth-induced ER stress-mediated mech-
anisms of cellular toxicity and cell death, the role of 
Gasdermin-E (GSDME), the precursor of a pore-forming 
protein that converts non-inflammatory apoptosis to pyropto-
sis, a detectable feature observed in the biological fluids of 
PD patients [174], has been evidenced [175]. Indeed, meth-
induced neuronal cell death, specifically by pyroptosis, oc-
curs via ER stress-mediated by GSDME in hippocampal 
neuronal cells [176]. Finally, ER stress mediates meth-
induced BBB damage [177], a phenomenon reminiscent of 
what occurs in PD, as discussed previously [145]. 

4.1.4. Mitochondrial Dysfunction and Oxidative Stress 

 Mitochondria are intimately involved in various key cel-
lular processes, such as the regulation of calcium homeosta-
sis, stress response and cell death pathways and therefore 
represent a highly promising target for the development of 
PD biomarkers [178]. Mitochondria maintain cellular home-
ostasis by producing adenosine triphosphate (ATP) and regu-
lating ROS, which is essential for neuronal function [179]. 
Therefore, neurons attempt to maintain mitochondrial levels 
in PD to facilitate neural transmission as a compensatory 
mechanism. 
 Substantial findings have revealed that genes like Parkin, 
PINK1, DJ-1, SNCA and LRRK2 are involved in mitochon-
drial pathways, suggesting a critical role for mitochondrial 
dysfunction and associated oxidative stress in idiopathic and 
monogenic PD [180]. To be more precise, α-synuclein inter-
acts with the translocase of the outer membrane (TOM) 
complex and affects the mitochondrial import. Mutations in 
LRRK2 affect the tethering of ER-mitochondria and calcium 
homeostasis; DJ-1 is associated with increased ROS produc-
tion, while PINK1 and parkin cause defective mitophagy 
[181]. Moreover, alterations in DNA polymerase subunit 
gamma or mitochondrial polymerase gamma (POLG) (essen-
tial for mitochondrial DNA replication and repair) manifest 
signs of Parkinsonism [182]. Although meth interactions 
with some of the genes mentioned above have been estab-
lished, more thorough investigations are required for further 
validation.  
 Like meth, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) is a neurotoxin that also crosses the BBB and causes 
Parkinsonian syndrome by inhibiting mitochondrial respira-
tion [183, 184]. The acute loss of parkin or PINK1 function 
causes dynamin-related protein 1 (DRP1)-dependent mito-
chondrial fragmentation along with a decrease in the mito-
chondrial membrane potential and ATP production [185, 
186]. In the transgenic mouse model of PD, alterations in the 
functioning of DRP1 are associated with α-synuclein pathol-
ogy [187], while meth-induced modifications of parkin were 
found to significantly decrease DRP1 levels [188]. 
 Mitochondrial dysfunction is a key determinant of dopa-
minergic neuronal susceptibility and is a feature of both fa-
milial and sporadic PD [189, 190]. A plethora of mutations 
in mitochondrial DNA, nuclear DNA gene mutations, altera-
tions in mitochondrial dynamics, alterations in trafficking/ 
transport and mitochondrial movement, abnormal size and 
morphology, impairment of transcription and the presence of 
mutated proteins associated with mitochondria are implicat-
ed in PD [191]. Meth inhibits mitochondrial function, in-
creasing the free radical burden and decreases neuronal en-
ergy supplies [192] and further inducing mitochondrial 
fragmentation, apoptosis, and inhibiting cell proliferation in 
rat hippocampal neural progenitor cells [193]. Both in vivo 
and in vitro studies have suggested that mitochondrial dys-
function is crucial in meth-induced dopaminergic toxicity as 
it further enhances pro-apoptotic mechanisms, oxidative 
stress and neuroinflammation and where PKCδ has been 
considered as a prompt mediator [194]. Interestingly, PKCδ-
induced neuroinflammation has been documented in PD and 
other synucleinopathies [195]. 



10    Current Neuropharmacology, XXXX, Vol. XX, No. XX Vincent and Shukla 

 In PD, degeneration of the dopaminergic nigrostriatal 
pathway leads to enhanced transmission of NR2B subunit-
containing N-methyl-D-aspartate (NMDA) receptors [196]. 
Similarly, meth increases the expression of NMDA receptor 
subunit 2B (NR2B) and the level of glutamate in the ventral 
tegmental area (VTA) and nucleus accumbens (NAc) of mice 
[197]. Interestingly, glutamatergic hyperactivity has been ex-
tensively observed in nigrostriatal pathways in PD [198]. 
 It has been established that mitochondrial and lysosomal 
dysfunctions are associated with α-synuclein pathogenicity 
[199]. In PD, the generation of protein aggregates may dis-
rupt the mitochondrial membrane potential and induce ab-
normal calcium influx, impair the respiratory enzyme activi-
ties, reduce ATP generation, and increase levels of ROS. 
Also, the abnormal release of cytochrome C from damaged 
mitochondria can trigger the activation of the apoptotic sig-
nalling cascades and the release of caspases, resulting in neu-
ronal cell death. Altogether, DA, iron, calcium, mitochondria 
and neuroinflammation contribute to the overwhelmed oxi-
dative stress and neurodegeneration in PD [180, 200]. In this 
context, meth causes a toxic malady that is characterized by 
altered carbohydrate metabolism, dysregulation of calcium 
and iron homeostasis, increased oxidative stress and disrup-
tion of mitochondrial functions [201], which involves toll-
like receptors and nuclear factor kappa light chain enhancer 
of activated B cells (NFκB) as some of the important under-
lying signalling mechanisms [202]. Moreover, meth expo-
sure significantly decreases the activity of nuclear factor 
erythroid 2-related factor 2 (Nrf2) and the expression of its 
downstream proteins [203], Nrf2 being a ubiquitous master 
transcription factor that upregulates antioxidant response 
elements-mediated expression of antioxidant enzymes. A 
very recent investigation has revealed the beneficial effects 
of Nrf2 expression in inhibiting the progression of PD in 6-
OHDA-exposed rat PD models by repressing pyroptosis, 
where proinflammatory signals associated with inflammation 
induce cell death [204].  
 In addition, meth induces the reduction of mitochondrial 
cytochrome c, anti-apoptotic Bcl2/BAX ratio along with a 
decrease in mitochondrial membrane potential, increases 
mitochondrial mass, enhances protein nitrosylation and di-
minishes protein levels of complexes I, III, and IV of the 
electron transport chain [205].  
 Lipocalin-2 (LCN2), which overexpression is involved in 
cell death in the adult brain, has been shown to be upregulat-
ed in hippocampal astrocytes as well as in the serum and 
CSF after meth exposure, with the PERK-mediated signal-
ling pathway being involved in meth-induced LCN2-
mediated mitochondrial-related neuronal apoptosis [206]. 
Similarly, LCN2 protein amounts were shown to be in-
creased in the substantia nigra [207] and in the serum [208] 
of PD patients. 
 Uncoupling protein 2 (UCP2), a mitochondrial anion 
carrier ubiquitously expressed in many cell types to reduce 
oxidative stress, has been proposed as a therapeutic factor for 
modifying the progression of PD pathogenesis since its ex-
pression has been shown to attenuate rotenone-induced mito-
chondrial fragmentation [209]. Interestingly, although a di-
rect effect of meth on UPC2 remains to be proven, the fact 
that meth causes a dysfunction in the respiratory chain of the 

mitochondria and given the involvement of UCP2 in mito-
chondrial it has been hypothesized that UCP2 might repre-
sent a new therapeutic targets also for combating meth-
induced neurotoxicity [210]. Moreover, meth-, human im-
munodeficiency virus (HIV) gp120- and Tat-exposed human 
primary neurons manifest an increase in DRP1-dependent 
mitochondrial fragmentation, neuronal degeneration, micro-
tubule-associated protein 1 light chain 3 beta-II (LC3B-II) 
lipidation and induced sequestosome 1 (SQSTM1, p62) 
translocation to damaged mitochondria [211]. Finally, the 
accompanying increased ROS and the inhibition of autopha-
gy flux further suggest that meth either alone or in combina-
tion with HIV proteins, causes significant mitochondrial 
damage and neuronal injury [211].  
 A synthesis of the data set concerning our current 
knowledge of the similarities between the endoplasmic retic-
ulum and mitochondrial stress in PD and meth abuse is pre-
sented in Table 3.  

4.1.5. Alteration of the Immune System, Neuroinflamma-
tion and Autophagy Dysregulation 

 One additional and recently established possible route of 
action through which meth could pertain to awry physiology 
in PD is the immune system. The current focus on immuno-
modulatory approaches to prevent or delay the onset of idio-
pathic PD [212] suggests that both genetic and environmen-
tal factors might, in some or the other way, enhance the risk 
for idiopathic PD via the immune system [213]. Interesting-
ly, the expression of DA across several immune cell types 
illustrates the complex mechanisms through which immune 
cells respond to DA and how the aberrant production of this 
neurotransmitter might impact immune regulation [214] as 
the pro-inflammatory immune-mediated mechanisms are 
crucial to the progression and pathogenicity of PD [215]. 
 PD-specific T cells provide important mechanistic in-
sights into PD pathogenicity [216]. It has been previously 
reported that T cells from individuals with PD responded to 
the presence of α-synuclein to a much greater degree when 
compared to the control group [217] as α-synuclein is known 
to be involved in the activation of innate and adaptive im-
munity where it significantly affects the phenotype and func-
tion of both CNS and peripheral nervous system (PNS) im-
mune cells [218].  
 In this context, several deleterious effects of meth on the 
immune system have been reported [219]. Firstly, meth, via 
a myriad of deleterious effects on the CNS and PNS, impacts 
the host immune system [220], which might be linked to the 
pathogenesis of neuropsychiatric disorders [221]. Secondly, 
the drug influences the adaptive immune response, which 
might facilitate the acquisition of diverse diseases [222]. 
Thirdly, it has been indicated that meth exposure results in 
altered T cell cycle entry and progression, which might 
strongly contribute to detrimental effects on the immune 
system [223]. Regarding the interaction between the immune 
system and neuroinflammatory responses, meth, via its ac-
tion on the immune cells and microglia, triggers the release 
of proinflammatory mediators, causing neuroinflammation. 
These neuroinflammatory responses are suggested to be me-
diated via the activation of the innate immune Toll-like re-
ceptor 4 (TLR4) [224]. Moreover, along with TLR4, DA D3 
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Table 3. Similarities regarding endoplasmic reticulum and mitochondrial stress in PD and meth abuse. 

Factor PD Meth Abuse References 

Endoplasmic 
reticulum stress 

Signs of ER stress observed in post-mortem tissue from 
sporadic human PD cases and in most animal models of the 
disease 

 [162] 

 PD is intimately linked to ER stress and unfolded protein 
response (UPR) activation 

 [161] 

  Positive correlation between ER stress and meth-induced 
neurotoxicity 

[166] 

  Meth exposure leads to ER stress in dopaminergic cells [167] 

ATF6 ATF6 has a functional role in controlling dopaminergic 
neuron survival in neurotoxin-based models of PD in vivo 

 [163] 

  Meth is able to mediate ER stress via the ATF6 signaling 
pathway 

[165] 

Sig-1R Sig-1R has been considered as a potential target for PD as it 
regulates mechanisms of both cellular defense and damage 

 [35] 

  Sig-1R is involved in meth-induced microglial apoptosis [168] 

α-synuclein α-synuclein oligomers exert neurotoxicity and promote 
neurodegeneration via ER stress and proteostasis dysregula-
tion 

 [164] 

  Meth persistently increases α-synuclein [50] 

CHOP/XBP1 Both have a functional role in controlling dopaminergic 
neuron survival in neurotoxin-based models of PD in vivo 

 [163] 

  Meth k ER stress through the overexpression of CHOP and 
spliced XBP1 

[169] 

  Up regulation of CHOP in long-term meth abusers [171] 

GSDME Role of GSDME in converting non-inflammatory apoptosis 
to pyroptosis 

 [175] 

 Pyroptosis is detectable in the biological fluids of PD patients  [174] 

  Meth induces GSDME-dependent ER stress in hippocampal 
neuronal cells 

[176] 

Blood brain 
Barrier (BBB) 

ER stress-mediated BBB damage occurs in PD  [145] 

  Meth causes damage to BBB via ER stress [177] 

Mitochondrial 
stress 

Mitochondrial dysfunction is a key determinant of dopamin-
ergic neuronal susceptibility in familial and sporadic PD 

 [189] 
[190] 

 Mitochondrial stress is associated with α-synuclein patho-
genicity 

 [199] 

  Meth k free radical burden and m neuronal energy supplies [192] 

  Meth k mitochondrial fragmentation [193] 

  Meth m mitochondrial cytochrome c and mitochondrial 
membrane potential 

[205] 

  Meth disrupts mitochondrial functions [201] 

  Meth induces PKCδ-dependent mitochondrial dysfunctions [194] 

  Meth induces NFκB-dependent mitochondrial dysfunctions [202] 

  Meth induces LCN2-mediated mitochondrial-related neu-
ronal apoptosis 

[206] 

  Meth causes a dysfunction in the respiratory chain of the 
mitochondria in an UCP2-dependent manner 

[210] 

  Meth k (DRP1)-dependent mitochondrial fragmentation [211] 

(Table 3) Contd…. 
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Factor PD Meth Abuse References 

Parkin Parkin can rescue mitochondrial pathology due to PINK1 loss 
of function 

 [185] 

 PD-associated parkin loss of function leads to mitochondrial 
dysfunction 

 [186] 

  Meth m parkin levels [188] 

NMDA/NR2B Degeneration of the dopaminergic nigrostriatal pathway in 
PD k transmission of NR2B-containing NMDA receptors 

 [196] 

 Glutamatergic hyperactivity was observed in the nigrostriatal 
pathways in PD 

 [198] 

  Meth k NR2B expression and the level of glutamate in the 
ventral tegmental area (VTA) and nucleus accumbens 
(NAc) 

[197] 

DRP1 Reduced functioning of DRP1 in transgenic mouse model of 
PD is associated with α-synuclein pathology 

 [187] 

  Meth-induced m of parkin m DRP1 levels [188] 

Nrf2 Beneficial effects of Nrf2 expression in inhibiting the pro-
gression of PD in 6-OHDA exposed rats 

 [204] 

  Meth m the activity of Nrf2 and the expression of its down-
stream proteins 

[188] 

LCN2 LCN2 protein levels are k in the substantia nigra and in the 
serum of PD patients 

 [207] 
[208] 

  Meth k LCN2 in hippocampal astrocytes, CSF and serum in 
rats 

[206] 

 
receptor signaling has been reported in mice to regulate 
meth-mediated activation of mast cells, which act as effector 
cells in various immune responses [225]. This set of data 
suggests that meth-mediated alteration of the immune system 
could possibly be a catalyzer for PD. 
 Chronic neuroinflammation is one of the hallmarks of PD 
pathophysiology [226]. Tumour necrosis factor-alpha (TNF-
α) is involved in neuroinflammatory and excitotoxic pro-
cesses in many neurodegenerative diseases by potentiating 
glutamate-mediated cytotoxicity through an increase of the 
expression of Ca+2 permeable-α-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid (AMPA) and NMDA receptors 
[227]. Moreover, TNF-α triggers the activation of the Ikappa-
B (IκB) kinase (IKK)/NF-κB and MAPK/activator protein 1 
(AP1) pathways, which are essential for the expression of 
proinflammatory cytokines and for the induction of many 
biological events occurring downstream of TNF-α, including 
apoptosis and necrosis [228]. It has been established that 
TNF-α levels are significantly increased in the brains of PD 
patients [229], and post-mortem analyses of human PD or 
experimental animal models of the disease indicate activa-
tion of glial cells and an increase in pro-inflammatory factor 
levels, which supposedly play vital roles in the degeneration 
of dopaminergic neurons [230]. Indeed, the chronic release 
of proinflammatory cytokines by activated astrocytes and 
microglia leads to the exacerbation of dopaminergic neuron 
degeneration in the SNpc [231]. In this context, it is interest-
ing to note that meth exposure activates neuroinflammatory 
cascades in the brain, and such neuroinflammatory processes 
in the striatum may underlie cognitive deficits, depression 
and Parkinsonism reported in meth addicts [232]. At the mo-
lecular level, it has been evidenced that meth triggers the 

expression and the release of TNF-α [233, 234]. Considering 
interleukins, increased levels of IL-6 have been evidenced in 
the nigrostriatal region and cerebrospinal fluid of PD patients 
[235], while in patients with meth-associated psychosis, IL-6 
and IL-8 are significantly increased in correlation with the 
severity of the cognitive dysfunctions [236].  
 Dendritic migratory cells are major agitators of immune 
responses and inflammation that have been shown to trigger 
an autoimmune response, thereby establishing a potential 
link between Parkinsonism and autoimmunity [237]. Of in-
terest were the observation that meth modulates the expres-
sion of a number of proteins by affecting immature dendritic 
cells [238] and that neurodegeneration seen following acute 
administration of meth was suggestive of being associated 
with the induction of cyclooxygenase-2 (COX-2), which caus-
es a neuroinflammatory process that results in deleterious 
events in the cell [239]. Because COX-2 directly contributes 
to neuronal vulnerability, plays a key role in inflammation and 
is associated with the pathogenesis of PD [240], one can sup-
pose a COX-2-mediated pro-PD action of meth.  
 As underlined in an earlier paragraph, the ionotropic pu-
rinoceptor P2X7 (P2X7R) has the ability to modulate proin-
flammatory signaling and promote neurodegeneration [241]. 
Furthermore, the involvement of neuronal P2X7 receptors in 
PD has been evidenced [242], and a study carried out in a 
Chinese population revealed that the P2X7 gene is also asso-
ciated with the risk of developing late-onset sporadic PD 
[243]. In this context, the demonstration that meth stimulates 
microglial activation through P2X7R signaling [244] makes 
this class of receptors a possible vector for the drug to sub-
serve the development of PD. 
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 Moreover, PD patients display an imbalanced hypotha-
lamic-pituitary-adrenal axis (HPA) and significantly in-
creased cortisol levels, implying that the deregulation of glu-
cocorticoid function may play a major role in the inflamma-
tory processes observed in PD [245]. Indeed, meth, which 
has been effectively shown to induce significant alterations 
in the function of the HPA axis [246], could eventually fa-
vour PD via the deregulation of glucocorticoid-dependent 
inflammation. A recent investigation in human cerebral or-
ganoids using single-cell RNA sequencing (scRNA-seq) 
revealed that meth upregulates immune responses, comple-
ment factors and apoptosis with a marked alteration in cyto-
kine gene expression, thus inducing profound neuroinflam-
matory changes [247]. Moreover, fMRI and blood analyses 
of meth-dependent human abusers demonstrated both struc-
tural and physiological alterations, as shown by an increased 
white matter volume in the superior and medial frontal gyri 
and left/right middle temporal gyrus and an augmentation of 
S100B and TNFα levels affirming an activation of neuroin-
flammation [248]. Finally, it has been hypothesized that pro-
dromal PD involves gut inflammation and that the accumula-
tion of toxic proteins partially causes degeneration of dopa-
minergic projections when transported from the enteric nerv-
ous system to the CNS. Supporting this notion, an interesting 
observation has revealed that the gut and brain profile in pre-
motor and early-stage PD resembles the self-administration 
of meth in rats [249]. 
 There exists a complex relationship between autophagy 
and inflammation, which includes both suppressive and in-
ducible mechanisms, and some studies have suggested that 
modulation of one might lead to therapeutic interventions for 
diseases associated with the other [250]. Autophagy is a nat-
urally regulated catabolic mechanism that allows the orderly 
degradation and recycling of cellular components, and that 
has been associated with PD pathogenesis [251]. The exist-
ence of a relationship among several PD-related genes, au-
tophagy and mitochondrial dysfunction [252], the complex 
interplay of mutated genes in the autophagy-lysosomal 
pathway and the increased risk for developing PD along with 
an aberrant regulation of autophagy associated with the ag-
gregation of α-synuclein observed in PD brain tissue [253], 
altogether mark the importance of autophagy regulation in 
PD. Moreover, it has been hypothesized that exosomes can 
transfer pathological α-synuclein from neurons to astrocytes. 
Thus, using animal and cell line coculture models, it has 
been demonstrated that exosomes isolated from meth-treated 
SH-SY5Y cells contained pathological α-synuclein and that 
the drug can significantly induce its aggregation and in-
flammatory responses in cultured astrocytes [254]. Chaper-
one-mediated autophagy is a process that can effectively and 
selectively degrade cytosolic proteins in lysosomes without 
vesicle formation. Because its activity declines in PD [255] 
and is decreased after meth exposure in neurons [256], this 
process is likely to play a pivotal role in meth-induced PD-
like neurotoxicity. 
 The relationship between meth toxicity and mechanisms 
associated with autophagy [257], especially its influence on 
apoptotic autophagy of dopaminergic neurons [258], led to 
the hypothesis that meth, by deregulating autophagic mecha-
nisms, edges the pathology of PD. Indeed, it has been evi-
denced that meth increases the levels of the autophagy-

related protein markers, microtubule-associated proteins 
1A/1B light chain 3B (LC3) and Beclin 1 in rat brain as well 
as in rat primary cultured neurons and in PC12 cells [259] 
and that the acute meth-dependent early increase in Beclin 1 
and LC3 recruitment is mediated through the inactivation of 
the Akt/mammalian target of rapamycin (mTOR)/p70S6K 
pathway [260]. Additionally, overexpression of autophagy-
related protein 5 (Atg5) and LC3 protein has been reported 
in the PFC of post-mortem cases of chronic meth users 
[261]. It is remarkable to observe that the factors cited above 
are also involved in PD. Thus, dysregulation of the mTOR 
pathway is a critical event in PD pathogenesis [262], while 
LC3 takes part in autophagosome buildup and Lewy bodies 
formation in the substantia nigra of PD brains [263]. In addi-
tion, variations in the genetic profile and expression of Atg5 
have also been associated with the disease [264, 265].  
 However, things are not as simple as they seem since 
Beclin 1 is implicated in both autophagy and apoptosis and 
can either trigger or inhibit autophagy, depending on the 
proteins it interacts with [266]. For this reason, increasing its 
levels can theoretically produce both beneficial and deleteri-
ous effects. On the one hand, it has been shown that Beclin 1 
plays an important role in the intracellular degradation of α-
synuclein either directly or indirectly through the autophagy 
pathway and may present a novel therapeutic target for PD 
[267]. On the other hand, Beclin 1 can alter phagocytosis 
through an impairment of the recruitment of retromer to 
phagosomal membranes, the reduction of retromer levels and 
an impaired recycling of phagocytic receptors like a cluster 
of differentiation 36 (CD36) and triggering receptor ex-
pressed on myeloid cells 2 (TREM2) [268].  
 PKCδ is another key element in meth-induced autophagy, 
ubiquitin-proteasome system (UPS) dysfunction and cell 
death of mesencephalic dopaminergic neurons. Indeed, meth 
significantly increases PKCδ and caspase-3 activation, the 
accumulation of ubiquitin-positive aggregates and microtu-
bule-associated LC3 levels [269]. As a matter of fact, be-
cause the meth-dependent increase in PKCδ expression in 
the striatum is accompanied by oxidative stress and dopa-
minergic damage, inhibition of PKCδ could serve to bring 
protection against meth-induced neurotoxicity [270]. This 
theory is further supported by the observation that PKCδ up-
regulation impels the neuroinflammatory responses and do-
paminergic neurodegeneration in experimental models of PD 
[271] and by the evidence that the inhibition of PKCδ trans-
activation offers neuroprotection in both cell cultures and 
animal models of PD [272]. 
 Peli1 is an E3 ubiquitin ligase that acts as a positive regu-
lator of inflammatory responses in microglia via the activa-
tion of NF-κB and MAPK and is substantially induced in the 
substantia nigra of the human and mouse PD brains [273]. 
As manifested in mouse brain and microglial cell cultures, 
meth significantly enhanced toll-like receptor (TLR) 4 and 
TIR-domain-containing adapter-inducing interferon-β (TRIF) 
expression, NF-kB and MAPK pathways activation and the 
production of interleukin (IL)-1β, TNF-α and IL-6, suggest-
ing a concordant involvement of Peli1-mediated neuroin-
flammation induced by meth [274]. Human PET investiga-
tions have been performed in order to explore microglial 
changes in chronic meth users, and scans, using the radio-
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tracer (C-11) (R)-PK11195 have reported a massive increase 
in the 18 kDa translocator protein (TSPO), a biomarker for 
microgliosis, in such abusers [275], although the use of the 
second-generation TSPO radioligand (F-18) FEPPA did not 
confirm this data [276]. Herein, a recent study has revealed 
TREM1-and TSPO-PET tracers as propitious means to in-
vestigate cell types involved in immune reactions in order to 
characterize the clinical potential pertaining to PD rodent 
models and human postmortem tissue [277].  
 Overall, it therefore appears that there is a consequent 
homology with regard to the mechanisms implied in the al-
teration of the immune system, neuroinflammation, and au-
tophagy dysregulation occurring in Parkinson's disease and 
triggered by methamphetamine abuse (Table 4). 

4.1.6. Apoptosis 

 Apoptosis has been largely evidenced as the main mech-
anism of neuronal death in PD [278], and several enthralling 
theories have shown that multiple molecular pathways are 
involved in the propagation of PD pathogenesis, with au-
tophagy and apoptosis being the two key cellular death 
pathways that can be targeted as possible therapies aimed at 
combating this disease [279]. As a matter of fact, this com-
plex disorder engages different biological interactions that 
collectively lead to neural cell death. These interactions en-
compass, among others, the dopaminergic pathway, the mi-
tochondrial pathway and the p53-DNA damage pathway. 
Indeed, p53 is at the centre of multiple signalling cascades 
involved in the aetiology of PD [280] and interestingly plays 
a crucial role in the long-term deleterious effects of meth on 
dopaminergic terminals and cell bodies as its knock-out in-
sinuates protection against drugs like meth that act on brain 
DA systems [281].  
 As part of the complex p53-containing network, the PD-
associated parkin lowers p53 mRNA levels and represses 
p53 promoter transactivation, and its depletion enhances p53 
expression and mRNA levels in fibroblasts and mouse brains 
[282]. Moreover, the p53 upregulated modulator of apoptosis 
(PUMA) expression is significantly involved in the apoptotic 
mechanisms taking place in PD [283, 284]. It is a dominant 
regulator of oxidative stress by inducing Bax activation and 
neuronal apoptosis [285]. In addition, mutations in PINK1 
have been linked to the occurrence of early onset Parkinson-
ism [286], and an increase in PINK1 protein might be an 
intrinsic protective mechanism to limit cellular death. Final-
ly, the autophagosome regulator Beclin 1 plays an important 
role in the intracellular degradation of α-synuclein either 
directly or indirectly through the autophagy pathway and 
may present a novel therapeutic target for Lewy body disease 
and PD [267]. 
 In this general context, beyond the obvious capability of 
meth to induce apoptosis [287], the drug has been shown to 
interfere with several PD-associated pathways. Firstly, it 
strongly affects autophagy and mitochondrial integrity and 
induces apoptosis, with functional but not non-functional 
PINK1 being able to reverse these phenomena [288]. Sec-
ondly, the pro-apoptotic caspase11, which mediates dopa-
minergic cell death in a PD mouse model [289], also plays 
essential role in meth-induced dopaminergic neuronal apop-
tosis [290]. Thirdly, meth increases the expressions of 

NUPR1, CHOP, p53 and PUMA [291] to mediate endotheli-
al cell apoptosis through the NUPR1-CHOP/p53-PUMA/ 
Beclin 1 signalling pathway, where Beclin 1 is involved in 
meth-mediated autophagy [292], an observation recently 
evidenced in post-mortem human brains of chronic meth 
abusers [171].  
 Conferring various other mechanisms via which meth 
induces apoptosis, it is noteworthy that such mechanisms are 
discernibly involved in PD pathogenesis. It has been shown 
that the expression of miR-133b is depressed in cellular 
models of PD, as shown by the demonstration that overex-
pression of miR-133b inhibits cellular apoptosis by regulat-
ing the extracellular signal-regulated protein kinase 
(ERK1/2) signalling pathway in MPP+ induced PC12 cells 
[293]. The additional observation that meth induces a signif-
icant decrement in miR-133b expression at the transcription-
al level in PC12 cell cultures is a clear-cut indication of how 
meth could possibly induce apoptosis by altering miR-133b 
[294]. 
 The CCAAT-enhancer binding protein (C/EBPβ) and the 
insulin-like growth factor binding protein (IGFBP5) are im-
portant regulators of cellular apoptosis. Intra-striatal high-dose 
meth administration in rat brain and neuronal cells triggers an 
IGFBP5-mediated, PUMA-related mitochondrial apoptotic 
signalling pathway and increases C/EBPβ protein expression 
accompanied by an augmentation of neuronal apoptosis and 
autophagy [295]. In this context, an interesting recent inves-
tigation revealed that C/EBPβ/δ, by regulating transcription 
and proteolytic cleavage of α-synuclein and monoamine oxi-
dase (MAO) B, mediates PD pathogenesis [296].  
 Moreover, the compulsive intake of meth in rats is ac-
companied by an immense increase in the autophagy bi-
omarkers Unc-51. Like Autophagy Activating Kinase 1 
(ULK1) and phospho-Beclin1, a significant increase in the 
mRNA levels of autophagy-related genes including Atg2a, 
Atg5, Atg14, and Atg16L1 together with an associated aug-
mentation in the expressions of p53, caspases 6 and 9 and an 
obvious decrease in anti-apoptotic B-cell lymphoma 2 (Bcl2) 
protein [297]. Recent in vitro and in vivo investigations have 
also shown that the phosphorylation of α-synuclein is signif-
icantly increased after meth treatment with phosphorylation 
of α-synuclein at S129, a well-established hallmark of PD 
[298], exacerbating its aggregation and triggering meth-
induced neurotoxicity and apoptosis [299]. 
 Finally, the isoform protein kinase C delta (PKCδ) has 
been evidenced as a key mediator in inducing apoptotic cell 
death in PD models, and its suppression effectively blocks 
apoptotic processes in such models [272]. Moreover, it has 
been established that the caspase-3-dependent proteolytic 
activation of PKCd increases MPP(+)-induced apoptosis in 
dopaminergic neuronal cells [300] and that, conversely, its 
suppression prevents this phenomenon in the same model 
[301]. In this context, PKCδ has been evidenced as a critical 
target gene involved in dopaminergic neurotoxicity and de-
generation induced by meth [302], and an animal study car-
ried out in wild-type C57BL/6 and p47 phosphate-repressible 
alkaline phosphatase (phox) knockout mice models revealed 
that meth significantly increased the expression of PKCδ, 
which is also an important regulator for p47phox activation 
induced by meth [303].  
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Table 4. Factors involved in immune system functions, neuroinflammation and autophagy that are modified in PD and meth abuse. 

Factor PD Meth Abuse References 

Immune system α-synuclein is involved in the activation of innate and 
adaptive immunity 

 [218] 

  Meth impacts the host immune system [220] 

Neuroinflammation Chronic neuroinflammation is one of the hallmarks of 
PD 

 [226] 

  Meth activates neuroinflammatory cascades in the brain [232] 

 Inflammatory profiles in brain and gut are similar in PD and meth abuse [249] 

TNFα  TNFα is k in PD  [229] 

  Meth k TNFα expression and release [233] 
[234] 
[248] 

IL6 IL-6 is k in the nigrostriatal region and in the CSF of PD 
patients 

 [235] 

  IL-6 is k in individuals with meth- associated psychosis and 
correlates with the severity of cognitive functions 

[236] 

COX-2 COX-2 is associated with PD  [240] 

  Meth k COX-2 [239] 

P2X7R P2X7R signaling mediates dopaminergic cell death  [242] 

  Meth stimulates µglial activation through P2X7R [244] 

HPA axis Imbalanced HPA in PD patients  [245] 

  Meth alters HPA axis [246] 

Peli1/ 
NFκB/MAPK 

k in the substantia nigra of the human and mouse PD 
brains 

 [273] 

  Meth k NFκB and MAPK pathways and pro-inflammatory 
cytokines 

[274] 

PKCδ  PKCδ KO m neuroinflammation in PD mouse model  [271] 

  Meth k PKCδ expression and activity [270] 
[303] 

Autophagy Association between PD and autophagy-related genes  [252] 

 Autophagy has been associated with PD pathogenesis  [251] 

  Relationship between meth toxicity and mechanisms asso-
ciated with autophagy 

[257] 

  Meth influences apoptotic autophagy of dopaminergic 
neurons 

[258] 

α-synuclein Autophagy dysfunction is associated with the aggrega-
tion of α-synuclein in PD brain 

 [253] 

  Meth can transfer pathological α-synuclein from neurons to 
astrocytes via exosomes 

[254] 

Chaperone-
mediated autophagy 

Its activity declines in PD  [255] 

  It is reduced by meth in neurons [256] 

LC3 LC3 participates to autophagosome build up and lewy 
bodies formation in the substantia nigra of PD brains 

 [263] 

  Meth m the activity of Nrf2 and the expression of its down-
stream proteins 

[261] 

mTOR Dysregulation of mTOR in PD pathogenesis  [262] 

  Meth inactivates the mTOR pathway [260] 
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 A summary of the apoptotic mechanisms/factors impli-
cated in both PD and meth abuse is presented in Table 5. 

4.1.7. Deregulation of Neurotransmitter Homeostasis 

 The interactions of neurotransmitters with their receptors 
intercept how strongly neurons respond to further relay any 
information within the brain circuits, and this complex inter-
active network is maintained through intricate homeostatic 
mechanisms. The neuropathology of PD is characterized by a 
disruption of the neurotransmitters system, such as dopamin-
ergic, serotonergic, noradrenergic, glutamatergic, choliner-
gic, and GABAergic transmission, along with an alteration 
of their receptors and transporters [304, 305]. Importantly, 
meth exposures have been associated with changes in neuro-
transmitter levels in several central brain regions, with pro-
longed use of meth causing a cascade of neurochemical im-
balances that result in long-term brain and neuronal damage.  

4.1.7.1. Dopaminergic Transmission Alteration 

 The breakdown of the dopaminergic system is a well-
characterized major feature of PD that has been previously 
extensively described and reviewed by others [306], and that 
will not be the subject of an exhaustive description here. 
Nonetheless, it should be noted that in-utero meth exposure 
triggers changes in the mesolimbic dopaminergic system that 
becomes more sensitive to the administration of an acute 
dose of the drug in adulthood, thereby indicating that off-
spring exposed to meth before birth could be more sensitive 
to meth at adulthood [307]. Moreover, the fact that meth 
induces long-lasting damage to nigrostriatal DA neurons via 
oxidative stress supports the hypothesis that PD development 
could be induced by meth as a result of oxidative damage 
during development leading to an age-related change in the 
neurotrophic capacity of the striatal DA system [308]. This 
hypothesis has gained more weight with the subsequent 
demonstration of a dose-dependent effect of meth on DA and 
BDNF levels [309].  
 At the molecular level, it has been shown that meth per-
turbs dopaminergic transmission through its binding to DAT, 
which blocks the reuptake of DA [310]. More recently, it has 
been evidenced that methamphetamine induces dopaminer-
gic damage via a D1 receptor-mediated activation of autoph-
agy [311]. In addition, meth modulation of DA neurotrans-
mission and resulting behavioral responses is, in part, due to 
the meth-dependent regulation of Ca2+-activated potassium 
channel activity [312]. As dopaminergic neurons display 
large cytosolic Ca2+ oscillations linked to fundamental mito-
chondrial oxidative stress and susceptibleness in aging and 
PD [313], meth-induced vulnerability for calcium-induced 
neurodegenerative processes is likely to occur. As a whole, 
the meth-induced perturbation of the dopaminergic transmis-
sion leads to a loss of hippocampal function, which results in 
memory and learning deficits [31].  
 Apart from the dopaminergic system, other neurotrans-
mitters are most likely to be involved in PD pathogenesis 
since treatments solely focused on DA regulation are unable 
to alleviate both motor and non-motor symptoms, particular-
ly those that develop at the early stages of the disease [314]. 
Moreover, the imbalance of other neurotransmitters accounts 

for the heterogeneity and complexity of the neuropsychiatric 
symptoms observed in PD patients [315]. The following sec-
tions discuss the neurotransmitter systems affected in PD and 
altered by meth. 

4.1.7.2. Cholinergic Deficits 

 Cholinergic system degeneration not only contributes to 
cognitive deterioration but also to other non-motor features 
and motor impairments in PD associated with a widespread 
loss of cholinergic nicotinic and muscarinic receptors [316-
318]. This cholinergic denervation occurs in PD and is often 
more severe than in AD [319], with the cortical cholinergic 
network beginning to degenerate early in the disease process 
of PD [320]. The presence of a Lewy body in neurons of the 
nucleus basalis of Meynert, which is the source of cholinergic 
innervation of the cerebral cortex, basal forebrain cholinergic 
system degeneration and cholinergic denervation, probably 
due to degeneration of brainstem pedunculopontine nucleus 
neurons, is suggestive of an involvement of a collapse of the 
cholinergic system in PD [321]. Moreover, cholinergic dys-
function contributes to mobility deficits in PD, and the spe-
cific loss of nigral excitation of cholinergic interneurons con-
tributes to Parkinsonian motor impairments [322]. 

 Muscarinic acetylcholine receptors (mAChRs) can be 
found in the neocortex, hippocampus, olfactory tubercle  
and amygdala, but the highest concentration is found in the 
striatum. In this context, meth-exposed mice show impaired 
novel object recognition and an increased number of 
mAChRs in the hippocampus. Thus, the cholinergic system 
might play an important role in long-term meth-induced 
cognitive deficits in adulthood [323]. In the same manner, 
nicotinic AChRs (nAChRs) are involved in meth and 3,4-
methylenedioxymethamphetamine (MDMA)-induced neuro-
toxicity [324] and also in dopaminergic damage caused by 
repeated and high doses of meth [325], which also alters 
α4β2 and α6β2 nAChRs expression in rats [326]. 

 The degeneration of brain cholinergic systems contrib-
utes to gait-balance alterations and attentional deficits in PD 
patients where stimulation of α4β2 nAChR enhances atten-
tion and improves gait-balance function [327], and α4β2 
nAChR is also an important therapeutic target in meth-
induced alterations in cognitive functions like decision-
making [328]. It has been shown that amphetamine enantio-
mers bind to the homomeric α7 nicotinic acetylcholine re-
ceptor (α7 nAChR) and competitively inhibit acetylcholine 
responses, which clearly suggests that stimulants similar to 
amphetamines might involve these receptors in mediating 
their cholinergic effects observed in substance abuse disor-
ders [329].  
 The bidirectional interaction between acetylcholine and 
DA signaling in the striatum is critical, and alteration in their 
ratios are eminent in PD since cholinergic interneurons ex-
press DA receptors and dopaminergic neurons express both 
muscarinic and nicotinic receptors. Therefore, drugs that 
increase striatal DA release can potentiate both DA and ace-
tylcholine release [330]. The brainstem reticular formation 
represents the archaic core of pathways that connect the spi-
nal cord and the encephalon. It is involved in autonomic, 
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Table 5. Factors involved in apoptosis that are similarly modified in PD and meth abuse. 

Factor PD Meth Abuse References 

Apoptosis Apoptosis is a key event in PD pathogenesis  [278] 
[279] 

  Meth induces apoptosis [287] 

PINK1 Mutations in PINK1 are linked to early onset Parkinsonism  [286] 

  Meth-induced apoptosis is reversed by functional but not 
by non-functional PINK1 

[288] 

p53 Depletion or PD-associated mutations of parkin k p53  [282] 

 p53 is involved in PD etiology  [280] 

  p53 is involved in long-term deleterious effects of meth 
on DA system 

[281] 

  Meth k p53 [291] 
[297] 

PUMA Involved in the apoptotic mechanisms taking place in PD  [283] 
[284] 

  Meth k PUMA [291] 

miR-133b m of the anti-apoptotic miR-133b in PD  [293] 

  Meth m miR-133b [294] 

c/EBPβ  c/EBPβ/δ mediates PD pathogenesis  [296] 

  Meth k C/EBPβ [295] 

α-synuclein Phosphorylation of α-synuclein at serine 129 is one hallmark of 
PD 

 [298] 

  Meth k α-synuclein phosphorylation at serine 129 and k 
α-synuclein aggregation and apoptosis 

[299] 

PKCδ  Caspase-3-dependent activation of PKCδ k apoptosis in DA 
neuronal cells 

 [300] 

 Suppression of caspase-3-dependent activation of PKCδ m DA 
neurons degeneration 

 [301] 

 PKCδ inhibition m neuronal loss in the MPTP mouse model of PD  [272] 

 PKCδ is k in the brain of PD patients  [271] 

 PKCδ knockout m nigrostriatal dopamine degeneration in the 
MPTP mouse model of PD 

 [271] 

  Meth k PKCδ [269] 
[270] 
[303] 

  PKCδ inhibition m meth-induced apoptosis in mice [270] 

  Meth k mitochondrial translocation of PKCδ and apop-
tosis in mice 

[302] 

Caspase-11 Mediates dopaminergic cell death in a PD mouse model  [289] 

  Plays essential roles in meth-induced dopaminergic 
neuronal apoptosis 

[290] 

 
motor, sensory, behavioral, cognitive, and mood-related 
functions. The recognition that drugs like amphetamine and 
meth affect the release of DA and acetylcholine from this 
brain area further denotes how meth affects the functions 
mentioned above [331]. Concerning the DA and acetylcho-
line muscarinic receptors, autoradiographic assessment re-
vealed that prenatal and adult meth exposures in rats de-
crease the expression of muscarinic receptors (M1, M2) in 
the caudate-putamen, dorsal hippocampus, CA1, CA3 and 

dentate gyrus and reduced D1 DA receptors in the motor 
cortex and substantia nigra [332]. 

 Changes in the cholinergic system are thought to contrib-
ute to PD complications, including cognitive difficulties, 
postural instability and sleep disturbances, and the heteroge-
neity of cholinergic degeneration in PD posits a challenge to 
assess the acetylcholinergic receptors as therapeutic targets. 
Since some studies suggested that nigrostriatal damage af-
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fects nicotinic receptor-mediated dopaminergic signalling, 
therapeutic modulation of the nicotinic cholinergic system 
might offer novel therapeutic approaches to manage PD 
[333]. In this context, it has been reported some overlapping 
effects by meth and nicotine as nicotinic agonists substituted 
for meth-like effects [334]. 

4.1.7.3. Glutamatergic/GABAergic Imbalance 

 Although DA has been at the focal point of neurotrans-
mitters involved in PD, glutamate and gamma-aminobutyric 
acid (GABA), respectively excitatory and inhibitory neuro-
transmitters, are also affected by DA homeostasis in control-
ling neural activity in PD pathogenesis [335] with alterations 
in the GABAergic and glutamatergic neurotransmission con-
tributing to the axial symptoms of the disease [336]. Indeed, 
lower concentrations of GABA and glutamate have been 
observed in PD patients when compared with normal sub-
jects [337]. Moreover, abnormal synaptic signaling caused 
by an enhancement of extracellular glutamate results in neu-
ronal excitotoxicity and death linked to an impaired ability of 
glial cells to reuptake and respond to glutamate, a phenome-
non common in PD [338]. Such increased concentrations of 
extracellular glutamate inhibit cystine uptake, which leads to 
glutathione depletion and PD-associated oxidative glutamate 
toxicity [339]. Interestingly, GABAergic and glutamatergic 
neurotransmitter systems are critical in the pathophysiology 
of addiction, as illustrated by the fact that meth exposure 
limited to the prenatal phase has strong effects on the GA-
BAergic and glutamatergic systems in the adult rat brain 
[340]. Additionally, meth elicits an augmentation of endoge-
nous glutamate in the brain, partially explaining meth-
induced memory deficits [341]. Moreover, prior exposure to 
meth induces a faster escalation of meth self-administration 
with consequent alterations in hippocampal glutamate AM-
PA receptor mRNAs in rats [342]. Proton magnetic reso-
nance spectroscopy analysis has recently demonstrated that 
cognitive deficits in individuals with meth dependence might 
be related to alterations in the levels of GABA and gluta-
mate/glutamine in the PFC [343]. In line with this, studies 
carried out in rats have shown that meth alters the levels of 
DA, serotonin, glutamine and glutamate [344] as well as the 
levels of noradrenaline and GABA in the PFC and most pre-
dominantly in the hippocampus [345]. 
 It is also important to note here that meth administration 
causes expression changes in neurotoxicity-associated sig-
naling cascades and significant atrophy of the PFC [346], 
thus triggering cognitive dysfunctions similar to those ob-
served in PD patients [347]. Psychotic symptoms are com-
mon in PD [348], and many PD patients experience neuro-
psychiatric disturbances such as depression, psychosis and 
behavioral and cognitive changes [349]. Given the nature of 
the cognitive sensations that are associated with the meso-
limbic pathway, it is involved in conditions such as addiction 
and depression. In this context, it has been shown that meth 
increases glutamatergic signals to the cortex from both the 
nigrostriatal, as well as the mesolimbic reward circuits, and 
augments DAergic signals from the mesocortical pathway, 
which affect the GABAergic interneurons, ultimately leading 
to a dysregulation of the signals and causing psychotic symp-
toms during meth intoxication [350]. 

 Additionally, deficiency in glutamate transporter-1 
(GLT-1), which is mainly responsible for the clearance of 
glutamate at the synapse, including DA synapses, was asso-
ciated with Parkinsonian phenotypes. Indeed, progressive 
motor deficits and nigral DA neuronal death have been ob-
served in mice, accompanied by the presence of reactive 
astrocytes and microglia in the SNpc [351]. Related to this 
fact, excitatory signaling and glutamate homeostasis are 
well-known pathophysiological substrates underlying addic-
tion-related behaviors spanning multiple types of psychost-
imulants where considerable interest has focused on GLT-1 
[352]. 
 Furthermore, the mGluR5-calcium-dependent cascade 
causes axonal degeneration, and henceforth the mGluR5 
antagonists provide effective therapy to prevent the disease 
process of PD [353]. Concerning meth, it is interesting to 
note that mGluR5 receptors mediate meth reinforcement and 
meth-seeking behaviour [354] and that pharmacological in-
hibitors of mGluR5 receptor function may represent a novel 
class of potential therapeutic agents for the treatment of meth 
addiction [355]. 
 Several additional evidences of the involvement of meth 
in the disruption of the GABAergic system have also been 
reported. Firstly, manipulation of glutamatergic and GABA-
ergic systems in the shell-nucleus accumbens modulates 
meth-induced enhancement of LTP in the hippocampus, 
which perhaps occurs due to cross-talk between nucleus ac-
cumbens and hippocampus as stimulation of the nucleus ac-
cumbens has been shown to alter hippocampal plasticity 
[356]. Secondly, it has been shown that meth exposure pro-
motes microgliosis and inflammation via astrocytic gluta-
mate release in co-cultures of primary neurons and microglia 
[357]. Thirdly, escalating doses of meth alters the NMDA 
and AMPA glutamate receptor subunits in the striatum and 
frontal cortex of rats, which partly also explains the mne-
monic deficits and psychotic behavior associated with meth 
abuse [358] with such meth-induced neuroadaptations at 
glutamatergic synapses being under the control of multiple 
epigenetic regulation [359]. 
 Since the GABAergic system is involved in ampheta-
mine-type stimulant use disorders [360] and because 
GABBR1 is associated with meth use disorder and relapse 
[361], GABBR1 might represent a pivotal factor linking 
meth abuse to PD pathogenesis.  
 The studies have evidenced some mechanisms responsi-
ble for neurotransmission defects which are common to PD 
pathogenesis and meth abuse, as presented in Table 6. 

4.1.8. Glycogen Synthase Kinase-3 Beta (GSK3b) Hyper 
Activation 

 GSK3b is a serine/threonine protein kinase involved in 
multiple neuronal functions such as neurogenesis, neuro-
transmission and synaptogenesis but also plays key roles in 
multiple cellular processes accounting for the progression of 
numerous diseases. Thus, dysregulation of GSK3β has been 
implicated in nigral dopaminergic neurodegeneration [362], 
and its inhibition, following a consistent number of observa-
tions, has been increasingly considered as an anti-PD therapy 
[363].  
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Table 6. Neurotransmitters pathways similarly modified in PD and meth abuse. 

Factor PD Meth Abuse References 

Cholinergic  
transmission 

Cholinergic dysfunctions in PD  [316] 
[317] 
[319] 
[320] 
[321] 
[322] 

  Meth impairs cholinergic transmission [323] 
[324] 
[325] 
[326] 

α7β2 nAChR The partial α7β2 nAChR agonist vare-
nicline improves attention in PD patients 

 [327] 

  Varenicline ameliorates choice strategy and decision making in meth-treated 
rats 

[328] 

Dopaminergic  
transmission 

Dopaminergic alteration in PD  [306] 

  Meth triggers changes in the mesolimbic dopaminergic system [307] 

  Meth induces long-term damage to nigrostriatal dopaminergic neurons [308] 

  Meth perturbs dopaminergic transmission by blocking DA reuptake [310] 

  Meth alters hippocampal functions to alter memory and learning [31] 

  Meth induces dopaminergic damage via a D1 receptor-mediated activation of 
autophagy 

[311] 

Calcium  
signaling 

Dopaminergic neurons display large cyto-
solic Ca2+ oscillations in PD 

 [313] 

  Meth regulates Ca2+-activated potassium channel activity [312] 

Glutamatergic/ 
GABAergic 

transmission 

Glutamate/GABA imbalance of in PD  [335] 
[336] 
[337] 

  Meth alters the levels of glutamate/ glutamine and GABA in the prefrontal 
cortex 

[343] 
[344] 
[345] 

  Meth alters NMDA and AMPA glutamate receptors in the hippocampus, 
striatum and frontal cortex 

[342] 
[358] 
[359] 

  Meth elicits an increase of endogenous glutamate in the brain [341] 

GLT-1 GLT-1 deficiency in PD  [351] 

  Psychostimulants (including meth) m GLT-1 [352] 

mGluR5 mGluR5-calcium-dependent cascade causes 
axonal degeneration in PD 

 [353] 

  mGluR5 receptors mediate meth- dependent drug-seeking behavior [354] 
[355] 

 
 Firstly, the gene encoding GSK3β has been linked to PD 
risk [364-366] and genome-wide studies have established α-
synuclein and tau genes as two of the most important factors 
in the genesis of PD with GSK3β contributing to both α-
synuclein and tau phosphorylation [367]. Secondly, LRRK2, 
which is involved in familial forms of PD, can directly inter-
act with and activate GSK3β, resulting in increased phospho-
tau formation [368, 369]. Likewise, 6-hydroxydopamine (6-
OHDA)-induced in vitro and in vivo models of PD have 
demonstrated elevated levels of LRRK2 and GSK3β, the two 
kinases directly involved in the formation of tau and α-
synuclein proteins, causing PD [370]. Thirdly, elevated 

tauopathy in the striatum of both PD and Parkinson’s disease 
dementia (PDD) has been found to correlate with increased 
levels of phosphorylated GSK3β [371]. Fourthly, MPP+/ 
MPTP treatment activates GSK3β and mediates tau phos-
phorylation, which is dependent on α-synuclein in Parkin-
sonism models such as SH-SY5Y co-transfected cells, mes-
encephalic neurons, transgenic mice overexpressing α-
synuclein, and post-mortem striatum of PD patients [372]. 
Finally, tau has been identified as a susceptibility factor for 
Parkinson's [45] and PET scan analysis of Parkinsonian 
tauopathies such as progressive supranuclear palsy, cortico-
basal degeneration, frontotemporal dementia and parkinson-
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ism linked to chromosome 17 have revealed that there is a 
propensity of brain areas to bind to pathological tau [373].  
 GSK3β, along with Cdk5, is involved in the abnormal 
hyperphosphorylation of tau and analysis of their single nu-
cleotide polymorphisms revealed that they play an important 
role in determining the risk profile for PD [374]. Moreover, 
it has been shown that GSK3β facilitates apoptotic condi-
tions and that its inhibition protects the dopaminergic neu-
rons from various stress-induced injuries, thereby indicating 
a probable involvement of GSK3β in PD pathogenesis [375]. 
Interestingly, a recent investigation carried out on serum of 
PD patients, in brain tissues of MPTP-induced mice and in 
1-methyl-4-phenylpyridinium (MPP+)-induced SH-SY5Y 
neuroblastoma cells has reported that cellular apoptosis 
could possibly be repressed by targeting the Akt-mediated 
GSK3β/β-catenin signalling pathway [376]. Moreover, over-
expression of GSK3β was shown to decrease antioxidant 
defense processes due to its involvement in Nrf2 regulation 
and, for this very reason, are crucial targets for PD therapeu-
tics [377]. Finally, GSK3β is a substrate of the Skp1-Cul1-F 
box protein-7 (SCFFbxo7/PARK15) ubiquitin ligase [378], which 
deficiency was associated with early-onset PD [379]. 
 Back to meth and considering the above-described robust 
connexion between GSK3b biology and PD pathogenesis, it 
is important to note that GSK3β interaction with α-synuclein 
is itself a very crucial nexus mediating meth-induced neuro-
toxicity, which leads to the blockage of autophagy-lysosomal 
degradation pathway and eventually to cellular apoptosis 
[258]. Moreover, meth exposure increases GSK3β activity 
and decreases excitatory synapse density in the hippocampus 
of adult mice [380], with similar effects having been noticed 
in human neuroblastoma cells where meth treatment increas-
es tau phosphorylation and GSK3β activity [381]. 
 Moreover, meth increases GSK3β activity by downregu-
lating its phosphorylated levels in the rat hippocampus [382], 
while decreased p-GSK3β levels further disturb insulin sig-
naling [381], which may play a role in PD pathogenesis. It 
has also been demonstrated that GSK3β activity is increased 
in the nucleus accumbens [383] and in the ventral tegmental 
area [384], an area involved in PD pathogenesis. Indeed, 
chronic meth administration in rats decreases the levels of 
phosphorylated GSK3β at Ser 9 in the nucleus accumbens 
[385]. Finally, acute meth treatment decreases the levels of 
phosphorylated GSK3β [386], a finding consistent with the 
fact that amphetamine induces a decrease in the phosphory-
lation of GSK3β in the mouse striatum [387].  

4.1.9. Neurogenesis 

4.1.9.1. Neurogenesis Alteration in PD 

 Alterations in adult neurogenesis appear to be a common 
hallmark of several neurodegenerative diseases, including 
PD, AD as well as Huntington's disease (HD) [388]. More 
specifically, considering PD, adult neurogenesis is severely 
affected [389], and impairments in stem cell proliferation, 
differentiation and survival, as well as neurite outgrowth, 
significantly contribute to the pathogenesis of the disease 
[390]. Moreover, the density of nestin and tubulin-positive 
cells was found to be reduced in the dentate gyrus of PD 
patients [391], and cognitive deficits in PD have been impli-

cated in cholinergic and noradrenergic dysfunction involving 
hippocampal functions [392].  
 PD is accompanied by a deficiency of neural stem cells 
(NSCs) pool in the affected brain regions. Therefore, cell 
replacement therapy has emerged as a promising restorative 
therapy for PD patients [393]. A detailed examination of 
neurogenesis in the post-mortem brains of PD patients has 
reported a reduction in the number of proliferating cells in 
the subventricular zone (SVZ) as a consequence of dopamin-
ergic denervation [391]. 
 Hippocampal dysfunction is common in PD patients and 
likely contributes to cognitive impairment [394], which cor-
relates with the degree of dementia [395]. Also, in the human 
hippocampus, the levels of endogenous α-synuclein are in-
creased in Lewy Body Dementia (LBD) and the numbers of 
(SRY-sex determining region Y)-Box Transcription Factor 
2) (SOX2)-positive cells are decreased [396], a phenomenon 
that triggers neurodegeneration and impaired neurogenesis in 
the adult mouse brain [397].  

 Dopamine depletion, as well as the accumulation of α-
synuclein, as PD-related pathogenic factors, also have an 
impact on adult hippocampal neurogenesis. Thus, there ex-
ists a pernicious synergistic interplay between α-synuclein 
modification and DA depletion, which further contributes to 
impaired neurogenesis in PD [398], and the degree and tem-
porospatial dynamics of adult olfactory bulb neurogenesis 
are modulated by α-synuclein in transgenic mice [399]. At 
the molecular level, the accumulation of α-synuclein impairs 
neurogenesis by reducing neural progenitor cells (NPCs) 
survival via the down-regulation of Notch-1 expression 
[400]. Notch1 signalling maintains stem cell self-renewal, 
proliferation, neuronal differentiation, and glial determina-
tion [401, 402], plays an important role in adult neurogenesis 
in the hippocampus as it regulates proliferation in the adult 
dentate gyrus [403] and supports the survival of both progen-
itors and newly differentiating cells in the developing nerv-
ous system [404]. Interestingly, it has been shown that deple-
tion of DA in rodents decreases precursor cell proliferation 
in the SVZ and that the number of proliferating cells in the 
SVZ is reduced in the post-mortem brains of individuals 
with PD [391, 405]. Moreover, α-synuclein directly binds to 
the vicinity of the Notch1 promoter and also interacts with 
the p53 protein to facilitate or increase Notch1 signalling 
repression and impair the maturation and survival of NPCs, 
thereby providing a molecular basis for α-synuclein-
mediated disruption of adult neurogenesis in PD [406]. 

4.1.9.2. Specific Meth/PD Links Regarding Neurogenesis 

 It has been evidenced that meth can alter adult hippo-
campal neurogenesis by decreasing NPCs proliferation and 
survival via excessive protein nitration [407]. In addition, an 
interesting link between adult hippocampal neurogenesis and 
meth addiction has uncovered a mechanistic relationship 
between neurogenesis and drug seeking, where abstinence 
from meth addiction enhances the proliferation and differen-
tiation of neural progenitors and increases adult neurogenesis 
in the dentate gyrus [408]. Moreover, several factors in-
volved in neurogenesis were shown to be similarly affected 
in PD and under meth abuse conditions. 
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 Nuclear receptor related 1 (NURR1), a nuclear receptor 
guiding midbrain dopaminergic neuron development, is criti-
cal for the survival and maintenance of dopaminergic neu-
rons and has been implicated in dopaminergic neuron-related 
disorders. Identifying NURR1 mutation in PD patients sug-
gested that NURR1 plays a regulatory role in the develop-
ment of DA neurons [409]. In addition, overexpression of 
NURR1 was found to enhance the ability of mouse NSCs to 
differentiate into DA neurons in PD rat models [410] and a 
similar effect was observed with NURR1 agonist [411]. Re-
cently, it has been shown in α-synuclein transgenic mice that 
loss-of-function mutations in NURR1 are associated with 
familial PD [412]. In this context, acute meth administration 
significantly increases the levels of NURR1 mRNA in the 
pre-limbic, primary motor and primary somatosensory corti-
ces and VTA [413], while chronic meth exposure decreases 
NURR1 expression [254] with reduced NURR1 levels exac-
erbating meth-induced acute and long-term toxicity in adult 
mice [414]. Moreover, considering that C-myc, an important 
adult neurogenesis-regulating factor, is increased in reactive 
astrocytes of the substantia nigra of PD patients [415], it is 
worth noting that meth upregulates C-myc at both the mRNA 
and protein levels in the mouse brain [416]. In the same 
manner, given that mutations in the parkin gene are common 
in early-onset and familial PD and that parkin expression has 
an inverse relation with N-myc levels in the developing 
mouse and human brains and in human neuroblastoma cell 
lines [417] and considering that N-myc is increased in reac-
tive astrocytes of the substantia nigra of PD patients [415], 
N-myc is interestingly also associated with the neurotoxic 
process induced by meth that also increases COX1, which is 
linked to meth-induced DA neuronal injury expression in the 
ventral midbrain [418]. 

 In addition to its importance during development, the 
transcription factor pituitary homeobox 3 (Pitx3) also has 
roles in the long-term survival and maintenance of the mid-
brain DA neurons [419]. Interestingly, chronic meth admin-
istration causes differential regulation of Pitx3 in the rat 
midbrain [420]. Moreover, overexpression of the peroxisome 
proliferator-activated receptor-gamma coactivator PGC-
1alpha (PGC-1α) results in DA depletion associated with 
lower levels of Pitx3. It enhances susceptibility to MPTP 
[421], which suggests that neuroprotective strategies should 
be targeted at PGC-1α in PD. NURR1 and Pitx3 are required 
for the expression of several genes encoding proteins that 
determine mature midbrain DA neuron identities, such as 
tyrosine hydroxylase (TH), dopamine transporter (DAT), 
vesicular monoamine transporter 2 (VMAT2), aromatic l-
amino acid decarboxylase (AADC) and DA receptor D2 
(DRD2) [422]. In this context, meth decreases the expression 
of TH [423], DAT [424] and VMAT2 levels [425]. Im-
portantly, VMAT2 is significantly reduced in the brain of PD 
patients [426], and its upregulation protects against meth 
toxicity [427]. 
 Wnt/β-catenin signaling plays a vital role in adult neuro-
genesis. It is required for the specification and neurogenesis 
of midbrain dopaminergic neurons [428], which degenerate 
in PD and MPTP mouse model of PD [429], while pertinent 
levels of Wnt signaling are also essential to improve the cell 
replacement therapy for PD [430]. Meth downregulates 

Wnt/β-catenin signaling [431] and induces the expression of 
Dickkopf WNT Signalling Pathway Inhibitor 1 (DKK1) 
[432], a neurodegenerative factor that serves as an antagonist 
of the canonical Wnt signaling pathway, but that simultane-
ously induces pro-survival Wnt/β-catenin signaling in hippo-
campal neurons. Indeed, while expression of DKK1 is re-
quired for proper neural development, overexpression of 
DKK1 is one characteristic of neurodegenerative diseases, 
including PD [433]. 
 Anxiety disturbances are recognized as common psychi-
atric comorbidities in PD and contribute to significant im-
pairments in areas of cognitive, functional, motor, and social 
performance [434]. A study in transgenic animals demon-
strated that an impairment in adult hippocampal neurogene-
sis strikingly increased anxiety-related behaviors [435], 
while a functional association between adult neurogenesis 
and stress-induced anxiety- and depressive-like behaviors 
has been evidenced [436]. Indeed, neurogenesis differential-
ly affects behavior as increasing adult hippocampal neuro-
genesis can affect anxiety and depression-related behavior 
through a mechanism independent of the hypothalamic-
pituitary-adrenal (HPA) axis. Interestingly, while Bcl2-
associated X (Bax) ablation prevents dopaminergic neuro-
degeneration in a mouse model of PD [437], the use of future 
techniques to specifically inhibit Bax in the hippocampus 
could be used to augment adult neurogenesis and to decrease 
PD-associated anxiety-like behaviors [438]. In this context, 
research conducted on both humans and a genetic mouse 
model characterized by high meth ingestion has demonstrat-
ed that its abuse leads to immune dysfunction and neuropsy-
chiatric impairment accompanied by anxiety-like behavior 
[439]. Moreover, in relation to meth and Bcl2-associated X 
(Bax) apoptosis regulator, it has been demonstrated that meth 
induces an increase in Bax/Bcl-2 ratio in neuroblastoma cells 
[440], which implies that meth might cause impairment in 
neurogenesis via activating Bax. 
 Nrf2 is a transcriptional master regulator that not only 
maintains the redox homeostasis in cells by provoking the 
expression of antioxidant, anti-inflammatory and cytoprotec-
tive genes but also strongly influences NSCs function and 
fate determination by reducing the levels of ROS for the 
benefit of NSC survival and neurogenesis. Because Nrf2 is 
under the positive control of miR-7 [441], which is highly 
expressed in TH-positive dopaminergic neurons, it has been 
suggested as a putative therapeutic target in neurogenerative 
diseases like PD [442]. Interestingly, meth significantly 
downregulates Nrf2 expression in rats, thus exacerbating 
chronic nervous system toxicity [443]. In addition, a study 
conducted on hippocampal progenitor cells from adult rats 
has demonstrated that meth exposure decreases cell prolif-
eration by upregulating the cell cycle regulators p53/p21 and 
promoting the accumulation of p21 in the nucleus [444]. In 
this context, it has been shown that cellular senescence is 
promoted via the upregulation of the p53/p21 pathway due to 
the G2019S most prevalent LRRK2 mutation, which, through 
an increase of its activity further, accelerates α-synuclein  
aggregation and contributes to PD progression [445]. 
 Finally, all these elements, together with the fact that 
meth negatively impacts SOX2 [446], disturb DA homeosta-
sis by decreasing its levels and activating α-synuclein to as-
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certain that meth-induced concurs to an alteration in adult 
neurogenesis as observed in PD.  
 Table 7 summarizes the parallels between PD pathogene-
sis and meth abuse regarding neurogenesis alteration. 

4.2. The Gut and the Gut-brain Axis are Impacted in 
Parkinson's Disease and by Methamphetamine Abuse 

 The gut-brain axis allows two-way communication be-
tween the central nervous system and the enteric nervous 
system (ENS), thus linking the cognitive and emotional cen-
ters of the brain to the peripheral intestinal functions. The 
gut-brain axis is physically connected through millions of 
nerves, including the vagus nerve, is chemically associated 
with neurotransmitters such as serotonin and GABA, and is 
well connected to the immune system [447]. A substantial 
number of studies have prefigured that gut microbes might 
contour neural development and modulate neurotransmis-
sion, thereby contributing to the pathogenesis and/or pro-
gression of many neurodevelopmental, neuropsychiatric and 
neurological disorders, including PD [448, 449]. Indeed, 
alterations in gut-brain-microbiome interactions have been 
identified in several rodent models exhibiting digestive, psy-
chiatric, and neurological disorders [450].  
 The gut microbiota and its metabolites have been sug-
gested to be involved in the pathogenesis of PD by regulat-
ing neuroinflammation, barrier function, intestinal permea-
bility and neurotransmitter activity. Thus, the microbiota-
gut-brain axis provides a pathway for the interrelationships 
of the vagus nerve and the transmission of α-synuclein in the 
ENS [451, 452]. Moreover, α-synuclein misfolding com-
mences at a very early stage of PD in the gut, supposedly 
induced by gut microbial toxins [453], and it has been ob-
served that gut-to-brain propagation of pathologic α-
synuclein occurs in a prion-like manner via the vagus nerve 
to cause PD [454, 455].  
 Accumulating evidence indicates that the emergence of 
gastrointestinal manifestations precedes both the onset of 
motor symptoms and the diagnosis of the disease, thus sup-
porting the potential involvement of the microbiome-gut-
brain axis in the underlying pathological mechanisms of PD 
[456], a hypothesis reinforced by the fact that the gut bacte-
ria regulate movement disorders in a PD mouse model [457]. 
Another investigation carried out in MPTP-induced PD mice 
showed that motor impairment and the drop in striatal neuro-
transmitter levels were accompanied by gut microbiota per-
turbation and by an increase in the pro-inflammatory TLR4/ 
TBK1/NF-κB/TNF-α signaling pathway [458]. Finally, the 
intrinsic activity present in the gut microbiota is immensely 
involved in maintaining dopamine homeostasis by facilitat-
ing dopamine synthesis as well as its metabolite breakdown 
[459]. Therefore, any gut dysbiosis is expected to affect the 
dopamine bioavailability to enhance the vulnerability to de-
velop PD. 
 Interestingly, the gut-brain axis plays a role in substance 
use disorders by affecting the brain's response to drugs [460, 
461]. Indeed, psychoactive drugs like meth, which predomi-
nantly exert their primary effects within the CNS, are known 
to have abstruse effects on the gut microbiome, where the 
gut microbiota and its metabolites significantly affect reward 

and memory [462]. In a similar vein, meth intoxication has 
been shown to cause alterations in the diversity and taxo-
nomic structure of the gut microbiome in mice [463] and to 
alter gut microbiota and induce depressive-like behavioral 
symptoms in rats [464]. In addition, escalating dose-multiple 
binge methamphetamine treatment in mice alters gut micro-
biota composition, elevates pathogenic bacteria with a simul-
taneous decrement of probiotics, and enhances intestinal 
inflammation [465]. Of importance is also the fact that meth 
can perturbate the gut-brain axis via an excessive production 
of pro-inflammatory cytokines, thus leading to a loss of the 
intestinal barrier integrity [466].  
 Another significant point is that meth exposure increases 
the levels of α-synuclein and decreases the levels of parkin 
and tyrosine hydroxylase in the myenteric plexus of rats 
[467]. This clearly indicates that gut biomarkers might pro-
vide eminent links between meth-induced toxicity in the gut 
and its correspondence to the increased susceptibility of de-
veloping PD later in life.  
 While PD-related gut microbiota dysbiosis has been as-
sociated with the impairment of the short-chain fatty acids 
(SCFAs) producing process, lipid metabolism, immunoregu-
latory function, and intestinal permeability [468], it has been 
shown that meth exposure decreases the expression of tight 
junction proteins zonula occludens-1 (ZO-1) and epithelial cell 
adhesion molecule (EpCAm) in the intestinal tissue of mice, 
where the presence of fatty acid-binding protein 1 (FABP-1) 
in sera further suggests disruption of the gut wall [469]. 

 Toll-like receptors play a crucial role in innate immunity, 
and dysregulation in their signaling may be implicated in α-
synucleinopathy, such as in PD [470]. In this context, meth 
is known to activate microglia via the TLR4/Myelin differ-
entiation factor 2(MD2) complex, thus modulating the abun-
dant production of pro-inflammatory cytokines in the CNS 
[471]. Moreover, the nucleotide-binding oligomerization 
domain leucine-rich repeat and pyrin domain-containing 
protein 3 (NLRP3) inflammasome acts as a key player in 
both coordinating the host physiology and shaping the pe-
ripheral and central immune/inflammatory responses in CNS 
diseases [472]. Indeed, there is innovatory evidence support-
ing the existence of a microbiota-gut-inflammasome-brain 
axis, in which enteric bacteria modulate, via NLRP3 signal-
ing, inflammatory pathways that, in turn, contribute to influ-
ence brain homeostasis and neurodegenerative diseases like 
PD [473]. Considering this, it is interesting to note that meth 
activates the NLRP3 inflammasome and promotes the pro-
cessing and release of interleukin (IL)-1β, resulting in neuro-
toxic activity [474]. Of note is the additional fact that all the 
intestinal inflammatory changes due to meth depend on the 
overexpression of NLRP3 inflammasome, causing severe 
intestinal inflammatory injury via NLRP3 inflammasome 
overexpression [475]. 
 Using high-throughput RNA sequencing in intestinal 
samples from meth-treated mice, key molecules that might 
be involved in the pathogenesis of a special type of meth-
induced inflammatory bowel disease (IBD) have been identi-
fied [476], while a very recent retrospective cohort study 
analyzed a significant association between IBD and the sub-
sequent development of PD [477]. 
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Table 7. Factors involved in adult neurogenesis that are similarly modified in PD and meth abuse. 

Factor PD Meth Abuse References 

Neurogenesis Affected in PD  [389] 
  Affected by meth [407] 
  Abstinence from meth addiction increases adult neurogen-

esis in the dentate gyrus 
[408] 

NURR1 NURR1 k the differentiation of NSCs into DA neurons  [410] 
[411] 

 Loss of function NURR1 mutations in PD patients  [409] 
[412] 

  Meth m NURR1 expression [254] 
  Reduced NURR1 levels exacerbate meth-induced acute 

and long-term toxicity 
[414] 

C-Myc C-Myc is k in reactive astrocytes of the substantia nigra of PD 
patients 

 [415] 

  Meth k C-Myc [416] 

N-Myc C-Myc is k in reactive astrocytes of the substantia nigra of PD 
patients 

 [415] 

 Parkin expression has an inverse relation with N-myc levels  [417] 
  N-Myc is associated with meth- induced neuronal injury [418] 

Wnt/β-catenin Overexpression of the Wnt signaling pathway inhibitor DKK1 
in PD 

 [433] 

 Wnt/β-catenin is required for the neurogenesis of DA neurons  [428] 

 Wnt/β-catenin degenerates in PD  [429] 

  Meth m Wnt/β-catenin signaling [431] 

  Meth k the expression of DKK1 [432] 

Nrf2 Nrf2 is positively controlled by miR-7 that is highly expressed 
in TH-positive DA neurons 

 [441] 

  Meth m Nrf2 [352] 

p53/p21 PD-associated LRKK2 mutation G2019S k p53/p21 and cellu-
lar senescence 

 [445] 

  Suppression of caspase-3-dependent activation of PKCδ [444] 

Bax Bax ablation m dopaminergic neurodegeneration in a PD mouse 
model 

 [437] 

 Deletion of Bax k adult neurogenesis and m PD-asssociated 
anxiety-like behaviors 

 [438] 

  Meth k Bax [440] 

  Meth k anxiety-like behaviors [439] 

 
 Overall, it appears that changes in gut microbiota can 
promote enteric and peripheral neurogenic/inflammatory 
responses, which, in turn, could contribute to neuroinflam-
mation and neurodegeneration in the CNS. This supports the 
hypothesis that the pathological process of PD can spread 
from the gut to the brain. Because meth can induce some 
alterations in the gut microbiota via the aforementioned mo-
lecular mechanisms/pathways, one can reasonably propose 
that meth intoxication may significantly enhance the proba-
bility of developing PD pathology via the gut-brain axis.  

4.3. Clinical Evidence Supporting that Meth Could be a 
Risk Factor for PD 
 Given the worldwide eminence of illicit meth abuse and 
the fact that meth predominantly and selectively damages the 
nigrostriatal pathway when used continually in high doses, it 

has been speculated that chronic meth/amphetamine users 
may have an above-normal risk for developing PD and Par-
kinsonism [88, 478], mostly because meth impairs DA neu-
rons in the substantia nigra similar to the pathological mani-
festations occurring in PD cases. This section discusses the 
most recent clinical evidence reinforcing the postulate that 
meth-induced neurodegenerative changes taking place in 
human drug abusers are similar to PD pathogenesis. 

 Meth abuse undoubtedly causes significant long-term 
dopaminergic neurotoxicity and neurodegeneration in human 
abusers [479-481], which led to the question of whether 
there exists a correlation between meth abuse and suscepti-
bility to later develop PD. In this context, the presence of 
several markers of PD pathogenesis in meth abusers is going 
in that direction [482].  
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Fig. (3). An overview of the prevalent underlying factors similarly implicated in PD pathogenesis and meth abuse. Numerous factors involved 
in neuroinflammation, neurogenesis, apoptosis, ER stress, autophagy, immunity, neurotransmission and mitochondrial homeostasis, are simi-
larly affected in meth abuse and PD, thereby strongly suggesting that consuming large amounts of this drug in adolescence or adulthood in-
creases the risk of developing PD at later stages of life. (A higher resolution/colour version of this figure is available in the electronic copy of 
the article). 
 
 A population-based cohort study using inpatient hospital 
discharge records of meth users followed up for about 10 
years showed an increased risk of subsequent admission with 
PD compared to their respective control groups [483, 484]. 
In the same manner, a retrospective design used to examine 
meth/amphetamine cohort studies from medical records 
linked to the Utah Population Database showed a nearly 
three-fold increased risk of PD in meth/amphetamine users 
was observed in comparison to population-based controls 
[485]. 
 In a cross-sectional, observational study, transcranial 
sonography was used to assess the echogenicity and frequen-

cies of an abnormal spatial extension of the substantia nigra 
in meth abusers. It was observed that the average echogenic 
size of the substantia nigra was larger in meth users consort-
ed by increased frequency of echogenic substantia nigra 
[486]. Additionally, a case study demonstrated an association 
between meth and Parkinsonism where an MRI analysis of a 
patient who developed persistent Parkinsonism post-IV in-
oculations of high-dose meth revealed bilateral hypox-
ic/ischemic basal ganglia damage [487]. Another case report 
described chronic meth-induced Parkinsonism as a subacute 
syndrome that mimics PD affecting the associated neuronal 
networking [488], while a case study of a 29-year-old female 
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who developed Parkinsonism revealed marked basal ganglia 
edema and necrosis associated with crystal meth abuse, 
which clearly indicated that illicit meth use basal ganglia 
toxicity leads to clinical Parkinsonism [489]. 
 Stigma regarding drug use related to any disorder is 
counterproductive, and some preliminary research suggests 
that in low pharmaceutical-grade doses, meth may actually 
repair and protect the brain in certain pathological circum-
stances like stroke and traumatic brain injury. In fact, over-
the-counter nasal decongestant contains levomethampheta-
mine and selegiline, a drug for treating PD [490], also me-
tabolizes into levomethamphetamine. To add on, in some 
cases, it has been reported that meth induces neurogenesis in 
neuronal subpopulations of the mouse striatum, although 
such revelations need more investigations regarding the 
functional capacities of the newly formed neurons [491]. It is 
in any manner obvious that the dose and route of administra-
tion guide the observed outcome of the effects of the drug.  
CONCLUDING REMARKS 

 A consistent number of molecular processes linking meth 
abuse with PD have been established in recent years (Fig. 3), 
thereby strongly reinforcing the idea that meth abuse might 
be a genuine risk for the subsequent development of PD at an 
older age. However, a substantial amount of data, especially 
more large-scale clinical studies, is further required to draw 
definitive conclusions on this subject. Nevertheless, it is of 
particular interest to note that although the vast majority of the 
meth-induced effects are neurotoxic and disease-promoting, it 
remains that there could be a narrow anti-PD therapeutic 
window of action depending on the signalling cascade consid-
ered and the dose of meth applied. This area of research would 
certainly deserve some particular attention in the future. 
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LIST OF ABBREVIATIONS 

AADC = Aromatic l-amino Acid Decarboxylase 
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FABP1 = Fatty Acid-Binding Protein 1 
fMRI = Functional Magnetic Resonance Imaging 
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HIV = Human Immunodeficiency Virus 



26    Current Neuropharmacology, XXXX, Vol. XX, No. XX Vincent and Shukla 

HPA = Hypothalamic-pituitary-adrenal Axis 
IBD = Inflammatory Bowel Disease 
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IGFBP = Insulin-like Growth Factor Binding Protein 
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MAPK = Mitogen-activated Protein Kinase 
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mTOR = Mammalian Target of Rapamycin 
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PAKs = p21-activated Kinases 
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PD = Parkinson's Disease 
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Pitx3 = Pituitary Homeobox 3 
PKC = Protein Kinase C 
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S100B = Calcium-binding Protein B 
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scRNA-seq = Single-cell RNA Sequencing 
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SNCA = Synuclein Alpha 
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TBK1 = TANK-binding Kinase 1 
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TH = Tyrosine Hydroxylase 
TLR = Toll-like Receptor 
TNFα = Tumour Necrosis Factor Alpha 
TOM = Translocase of the Outer Membrane 
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Trib3 = Tribbles Homolog 3 
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Interferon-β 
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UCHL1 = Carboxy-terminal Hydrolase L1 
UCP2 = Uncoupling Protein 2 
ULK1 = Unc-51-like Autophagy Activating Kinase 1 
UPR = Unfolded Protein Response 
UPS = Ubiquitin-proteasome System 
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XBP1 = X-box Binding Protein 1 
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