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Abstract

Motivation: We address the challenge of inferring a consensus 3D model of genome architecture from Hi-C data.
Existing approaches most often rely on a two-step algorithm: first, convert the contact counts into distances, then
optimize an objective function akin to multidimensional scaling (MDS) to infer a 3D model. Other approaches use a
maximum likelihood approach, modeling the contact counts between two loci as a Poisson random variable whose
intensity is a decreasing function of the distance between them. However, a Poisson model of contact counts implies
that the variance of the data is equal to the mean, a relationship that is often too restrictive to properly model
count data.

Results: We first confirm the presence of overdispersion in several real Hi-C datasets, and we show that the overdis-
persion arises even in simulated datasets. We then propose a new model, called Pastis-NB, where we replace the
Poisson model of contact counts by a negative binomial one, which is parametrized by a mean and a separate dis-
persion parameter. The dispersion parameter allows the variance to be adjusted independently from the mean, thus
better modeling overdispersed data. We compare the results of Pastis-NB to those of several previously published
algorithms, both MDS-based and statistical methods. We show that the negative binomial inference yields more ac-
curate structures on simulated data, and more robust structures than other models across real Hi-C replicates and
across different resolutions.

Availability and implementation: A Python implementation of Pastis-NB is available at https://github.com/hiclib/pas
tis under the BSD license.

Contact: nelle.varoquaux@univ-grenoble-alpes.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA in vivo is folded in three dimensions, and this 3D structure
plays an important role in many biological functions, including gene
regulation, DNA replication, and DNA repair (De and Michor,
2011; Dixon et al., 2012; Ryba et al., 2010; Shen et al., 2012).
Chromosome conformation capture methods, coupled with next-
generation sequencing, allow researchers to probe the 3D structure
of chromosomes within the nucleus (Lieberman-Aiden et al., 2009).
These techniques, which we broadly refer to as ‘Hi-C,’ rely on cross-
linking, digesting, ligating, and paired-end sequencing of DNA to
identify physical interactions between pairs of loci. Hi-C techniques
provide a genome-wide contact map, a matrix indicating the contact
frequency between pairs of loci. This matrix can be used to analyze
the 3D structure of the genome. However, despite extensive

research, inferring a 3D model from this contact map remains a fun-
damental problem.

Methods to infer the 3D structure of the genome broadly fall
into two categories: ensemble approaches which infer a population
of structures (Hu et al., 2013; Kalhor et al., 2012; Rousseau et al.,
2011; Zhu et al., 2018), and consensus approaches which yield a
single model that summarizes the contact count data (Ay et al.,
2014; Ben-Elazar et al., 2013; Kapilevich et al., 2019; Rieber and
Mahony, 2017; Tanizawa et al., 2010; Varoquaux et al., 2014;
Zhang et al., 2013; 2019) (see Supplementary Table S1 for a more
complete list of methods and their properties). The former approach
is more biologically accurate because the population of models bet-
ter reflects the diversity of structures present in a population of cells.
However, interpretation of the resulting models is challenging, and
one often has to fall back to a single structure or a few structures
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that best represent the population of structures. Validation of en-
semble models, even on simulated data, can also be challenging. On
the other hand, a consensus model summarizes the hallmarks of gen-
ome architecture, can easily be visually inspected and analyzed, and
can be integrated in a straightforward manner with other data sour-
ces, such as gene expression, methylation, and histone modifica-
tions, which are also ensemble based (Ay et al., 2014; Deng et al.,
2015; Sexton et al., 2012; Varoquaux, 2019). In this work, there-
fore, we focus on inferring a consensus model of the 3D genome
architecture.

Consensus approaches model chromosomes as chains of beads,
minimizing a cost function that aims to produce a model as consist-
ent with the data as possible. In addition, the optimization is some-
times constrained to include prior knowledge about the 3D
structure: the size and shape of the nucleus, distance constraints be-
tween pairs of adjacent loci, etc. Some methods first convert contact
counts into wish distances, either through a biophysically motivated
counts-to-distances mapping or through ad hoc conversions. They
then use multidimensional scaling (MDS) methods such as metric
MDS (Duan et al., 2010; Rieber and Mahony, 2017; Tanizawa
et al., 2010), weighted metric MDS (Ay et al., 2014; Zhang et al.,
2019), non-metric MDS (Ben-Elazar et al., 2013) or classical MDS
(most commonly known as PCA) (Kapilevich et al., 2019; Lesne
et al., 2014; Li et al., 2018, 2020). These methods rely on arbitrary
loss functions.

In previous work, we introduced a consensus method called
‘Pastis,’ based on a statistical model of contact count data, where
the 3D structure is the latent variable and the inference of the con-
sensus 3D model is formulated as a maximum likelihood problem
(Varoquaux et al., 2014). A natural statistical model for count data
is the Poisson distribution, which has a single parameter, the mean
l, from which all its other properties (including the variance) are
derived. Pastis relies on such a Poisson model of the interaction fre-
quencies, the intensity of which decreases with the increasing spatial
distance between the pair of loci. We further extended this Poisson
modeling to allow for the inference of diploid structures (Cauer
et al., 2019). We refer to this method below as ‘Pastis-PM’ (‘PM’
standing for ‘Poisson model’).

However, a PM of contact counts implies that the variance of
the data is equal to the mean, an assumption that is sometimes too
restrictive to properly model the data. For instance, Nagalakshmi
et al. (2008) and Robinson and Smyth (2007) show that for RNA-
seq, this assumption is not justified, because the variance in the data
is larger than the mean, leading to an overdispersion problem.
Overdispersion typically occurs when observations deviate from the
hypothesized structure of the data (e.g. dependency between obser-
vations, contagion, a cluster structure, and heterogeneity)
(Xekalaki, 2014). To alleviate the overdispersion, Robinson et al.
(2010) suggest modeling RNA-seq data with a negative binomial
distribution, which is parameterized with two parameters: the mean
l and the variance r. Modeling Hi-C contact count data with a
negative binomial model is not new. Jin et al. (2013) and Carty et al.
(2017) used this approach to assign statistical confidence estimates
to observed contacts, Hu et al. (2012) to normalize the data, and
Lévy-Leduc et al. (2014) to find topologically associated domains.

In this work, we explore methods that apply a similar generaliza-
tion—from Poisson to negative binomial—in the context of a model
for inferring genome 3D structure from a Hi-C contact map. We
first confirm the overdispersion on a wide variety of Hi-C datasets,
from very small (Saccharomyces cerevisiae) to large genomes
(human). We then compare our method based on a negative bino-
mial model for Hi-C count data, which we call Pastis-NB, to MDS-
based methods (chromSDE, ShRec3D, Pastis-MDS, miniMDS, and
SuperRec) and to the Poisson model-based Pastis-PM. We first dem-
onstrate that Pastis-NB recovers the most accurate results, in par-
ticular in low coverage settings. We then study how well the
different methods perform when provided with an incorrect map-
ping between contact counts and Euclidean distances, a setting
where Pastis-NB also outperforms other methods. Finally, we show
that the Pastis-NB model yields more stable structures across Hi-C
replicates and across resolutions.

2 Approach

We model each chromosome as a series of n beads, where each bead
(or locus) corresponds to a specific genomic window. We aim to
infer the coordinate matrix X ¼ ðx1; x2; . . . ; xnÞ 2 R

3�n, where xi

corresponds to the 3D coordinates of bead i. We denote by dij ¼
jjxi � xjjj the Euclidean distance between beads i and j. Hi-C contact
counts can be summarized as an n-by-n matrix c in which rows and
columns correspond to loci, and each entry cij is an integer, called a
contact count, corresponding to the number of times loci i and j are
observed in contact. This matrix is by construction square and sym-
metric. Since raw contact counts are known to be biased by loci-
specific multiplicative factors, we apply ICE normalization (Imakaev
et al., 2012) to estimate a bias vector b ¼ ðb1; . . . ; bnÞ 2 R

n, where bi

is the bias factor for locus i. The normalized contact count matrix cN

is then defined as the matrix of normalized counts cN
ij ¼ cij=ðbibjÞ.

See Supplementary Material S4.1 for more details.

2.1 Statistical model
We model the raw contact counts cij as realizations of independent
negative binomial random variables

Cij � NBðrij;lijÞ;

where rij is the dispersion parameter and lij is the mean of the nega-
tive binomial distribution between loci i and j. Like in the Pastis
model, we parameterize the mean count value lij as a decreasing
function of the distance between beads i and j: lij ¼ bbibjd

a
ij, with

parameters b > 0 and a < 0. b can be thought of as a scaling fac-
tor—the higher the coverage of the dataset, the higher it is—while a
characterizes how the frequency of contacts decreases with the dis-
tance. Note that this relationship is ill-posed, in the sense that the re-
lationship between the mean of the distribution l, the scaling factor
b, and the Euclidean distances d is not unique. In particular, one can
choose to set b to 1 in order to infer the 3D coordinates, and then re-
scale the inferred structure to reflect prior knowledge about the size
of the nucleus. We thus drop the scaling parameter b in the rest of
the derivations. In addition, we parameterize the dispersion as
rij ¼ bibjr, where r � 0 accounts for overdispersion.

The probability mass function can thus be written as:

PrðCij ¼ cijÞ ¼
Cðcij þ rijÞ

Cðcij þ 1ÞCðrijÞ
lij

rij þ lij

� �cij rij

rij þ lij

� �rij

:

It is well known that the variance of Cij satisfies

r2
ij ¼ lij þ

l2
ij

rij
¼ bibj da

ij þ
d2a

ij

r

� �
;

and that when rij !1 the negative binomial distribution tends to a
Poisson distribution with intensity parameter lij. The negative bino-
mial is thus a generalization of the Poisson distribution where the
variance of the data can exceed the mean, as controlled by the dis-
persion parameter (Nikoloulopoulos and Karlis, 2008).

2.2 Estimating the dispersion parameters rij

To estimate the dispersion parameters rij, we leverage the property
that the variance of an NBðq; lÞ random variable is r2 ¼ lþ l2=q;
therefore, if we know l and r2, we deduce the dispersion as
q ¼ l2=ðr2 � lÞ. This implies that if a relationship r2ðlÞ between
the mean and variance of the NB distribution is known or assumed,
then the dispersion parameter q is also known as a function of l as
qðlÞ ¼ l2=ðr2ðlÞ � lÞ. We thus focus on estimating the variance as
a function of the mean of the contact counts in order to infer the dis-
persion parameter r.

In the case of RNA-seq, the function r2ðlÞ is usually estimated
by fitting a weighted least squares (Behr et al., 2013), fitting a loess
(Anders and Huber, 2010), or by maximizing a likelihood on empir-
ical means and variances estimated for each gene using replicates
(Robinson and Smyth, 2008). In the case of Hi-C, relying on
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biological replicates is not a viable option because most studies per-
form at most two biological replicates, rendering the estimation of
the mean and variance impossible. Instead, we estimate r2ðlÞ by
introducing additional modeling assumptions that capture proper-
ties intrinsic to Hi-C data and genome architecture. We propose a
two-step method to estimate this function. First, we compute for
each genomic distance l the empirical mean and variance of the nor-
malized contact counts:

~l l ¼
1

Nl

X
ði;jÞ:ji�jj¼l

cij

bibj
;

~x l ¼
1

Nl � 1

X
ði;jÞ:ji�jj¼l

 
cij

bibj
� ~ll

!2

;

where Nl is the number of (i, j) pairs with ji� jj ¼ l. As shown by
Yu et al. (2013), ~x l is a biased estimator of the variance and can be
corrected to be unbiased as follows:

~r2
l ¼

~xl
1

Nl

P
ði;jÞ:ji�jj¼l

1
bibj

:

Note that in our model, estimating the mean and variance from empir-
ical normalized counts at a given genomic distance amounts to assum-
ing that the mean normalized count, i.e. da

ij, is constant for beads (i, j)
at a given genomic distance from each other. This is obviously an as-
sumption that we only use to get an estimate of the overdispersion par-
ameter, but that we relax later when we optimize the 3D coordinates
of each bead without constraint on their pairwise distances.

Because the empirical mean and variance may not be reliable for
very long genomic distances, where the number of contact counts is
small, we only compute ~ll and ~r2

l for l < 2
3 lmax, where lmax is the

maximum distance between loci. We also discard genomic distances
with an empirical mean or variance equal to 0.

We then proceed to estimate the dispersion parameter r in two
steps. First, from the set of ð~ll; ~r

2
l Þ pairs, we then estimate the dis-

persion ~rl for all genomic distance as follows:

~rl ¼
~l2

l

ð~r2
l � ~llÞ

:

Second, from the estimates ~rl for each genomic distance, we proceed
to estimating the final dispersion parameter r by taking the weighted
average:

r ¼ max 0;

P
l wl~rlP
l wl

 !
;

where wl the number of data points used in the estimation of ~ll and
~r2

l . Thus, more weight is given to short genomic distances than long
genomic distances.

2.3 Estimating the 3D structure
In summary, our proposed model has three main components: (i) we
model contact counts using negative binomial distributions parame-
terized by the mean and the dispersion parameter Cij � NBðrij; lijÞ;
(ii) we parameterize the mean as a function of the structure
lij ¼ bibjd

a
ij; and (iii) we model the dispersion parameter as rij ¼

bibjr and provide a method to estimate r. By combining these three
components, we can write the probability of each observation:

PðCij ¼ cijÞ ¼
Cðcij þ bibjrÞ

Cðcij þ 1ÞCðbibjrÞ

� da
ij

rþda
ij

� �cij

r
rþda

ij

� �bibjr
;

which depends on the 3D structure X through the pairwise distances
dij, and which also depends on the count-to-distance mapping par-
ameter a. We then propose to jointly infer both the 3D structure X

and the a parameter by maximizing the likelihood:

max
a;X

LðX; aÞ ¼
X
ði;jÞ

logðPðCij ¼ cijÞÞ: (1)

Given an observed Hi-C contact map, we solve the optimization
problem of Equation (1) using the L-BFGS algorithm (Byrd et al.,
1995; Liu and Nocedal, 1989) from the scipy toolbox. The opti-
mization being non-convex, we solve it five times with random ini-
tialization to find local optima and return the solution with the
highest log-likelihood. Note that the problem in X is ill-posed, in the
sense that the solution is defined relative to a rotation factor and a
translation factor. Note also that Equation (1) is a sum over all pairs
of loci (i, j), and may include zero counts cij ¼ 0 which contribute to
the likelihood. We illustrate below the benefits of keeping zero
counts in the objective functions and not filtering them.

3 Results

We perform a series of experiments to assess the accuracy of the dif-
ferent methods on simulated data and the robustness of the methods
on real data. Specifically, we perform experiments on simulated
data to assess the accuracy of the inferred 3D models when varying
(i) the coverage of the datasets; (ii) the overdispersion of the counts;
and (iii) the counts-to-distance mapping parameter. We then assess
the stability of the methods on real data (i) on two different biologic-
al replicates; (ii) across different resolution; (iii) when subsampling
the data; (iv) on a multi-chromosome dataset, by varying the num-
ber of chromosomes included in inference. We present a summary of
all results in Table 1. See Supplementary Methods for more detailed
on data simulation, pre-processing and validation metrics used.

3.1 Real and simulated Hi-C data are highly

overdispersed
Before diving into the comparison of the different models and algo-
rithms, we first investigate the extent to which existing Hi-C data-
sets show evidence of overdispersion. Because it is rare to have
several samples of the same cell line, we use the method described in
Section 2 to check for the presence or absence of overdispersion in
the normalized Hi-C data by estimating the mean and variance for
each genomic distance. We plot in Figure 1, for different species
(chr10 of the KBM7 human cell line at 100 kb, Drosophila mela-
nogaster at 10 kb, Arabidopsis thaliana at 40 kb and S.cerevisiae at
10 kb), the mean versus variance relationship of normalized contact
counts. Each dot in the plot corresponds to a particular genomic dis-
tance. In each case, we observe strong overdispersion (i.e. points
above the diagonal), supporting the idea of modeling Hi-C count
data with overdispersed models. See Supplementary Figure S1 for an
estimation of the dispersion parameter per genomic distance.

We then repeat this experiment on simulated data by generating
50 000 structures using a previously described volume exclusion
model of the budding yeast (Tjong et al., 2012). From this popula-
tion of structures, we create a contact count matrix at 3 kb reso-
lution, assuming that loci closer than 40 nm come into contact. This
simulated contact count map has been shown to be highly correlated
with experimental Hi-C data (Tjong et al., 2012). The resulting
dataset (purple series in Fig. 1) displays the same overdispersion as
the data. We thus conclude that the overdispersion is an inherent
property of Hi-C data and not an experimental artifact. We hy-
pothesize that the overdispersion arises due to the large variety of
different structures present in a single Hi-C experiment.

3.2 Pastis-NB is accurate and robust on simulated data
Next, we use simulated data to compare our approach, which we refer
to as Pastis-NB, with seven different algorithms. Pastis-MDS is a
weighted metric MDS method that attempts to place the beads such
that the distance between each pair matches as closely as possible the
wish distances derived from contact counts (Varoquaux et al., 2014).
The miniMDS method improves upon weighted metric MDS by pro-
gressively solving high-resolution overlapping ‘local’ structures and
assembling them using low-resolution whole chromosome inferred
structures (Rieber and Mahony, 2017). This strategy yields
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improvement both in terms of computation time and stability.
ChromSDE is a variant of metric MDS that penalizes non-interacting
pairs of beads to keep them far away from one another and optimizes
the counts-to-distances mapping coefficient with a golden search
(Zhang et al., 2013). ShRec3D is a two-step method that first derives
distances from contact counts using a shortest path algorithm and then
applies classical MDS (Lesne et al., 2014). SuperRec improves upon
ShRec3D in two ways: (i) optimizing the counts-to-distances mapping
coefficient with a golden search, similar to chromSDE; (ii) using an it-
erative optimization strategy by inferring overlapping local structures
and then combining them to infer a full whole-genome chromosome.
ShNeigh combines the classical MDS approach with a local Gaussian
model of neighboring beads (Li et al., 2020). Finally, Pastis-PM models
contact counts as Poisson random variables with the 3D structure as a
latent variable and casts the inference problem as a likelihood maxi-
mization, optimizing jointly the structure and the parameters of the
counts-to-distance function. The eight methods fall into two categories:
chromSDE, SuperRec, Pastis-PM, and Pastis-NB are non-metric be-
cause they fit a parametric curve to estimate a count-to-distance map-
ping from the data, whereas Pastis-MDS, miniMDS, ShRec3D, and
ShNeigh are metric because they do not do this fitting. In our experi-
ments, each software package is used with default parameters.

3.2.1 Robustness to coverage and dispersion

We first assess how well the different methods reconstruct a known
3D structure from simulated data at different coverage and

dispersion levels. High coverage typically corresponds to a high
signal-to-noise ratio, whereas low coverage yields sparse, low signal-
to-noise ratio matrices. Similarly, when the dispersion parameter
tends to infinity, the negative binomial distribution (by definition
overdispersed) tends to a Poisson with lower variance. Thus, the
lower the dispersion parameter, the noiser the dataset. All methods
should therefore perform better as the dispersion parameter (c in our
setting) and the coverage increase.

In this first series of experiments, we provide the correct count-
to-distance or distance-to-count transfer functions to the metric
methods, who need it. In this setting, for infinite coverage and infin-
ite dispersion parameter, all methods should consistently estimate
the correct structure, at least if they manage to converge to the glo-
bal optimum of their objective function.

We first plot the average root mean squared deviation (RMSD)
error between the true and predicted structures, as a function of
coverage (Fig. 2A) for the datasets with varying coverage. Strikingly,
ShRec3D’s, SuperRec’s, ShNeigh’s and Pastis-NB’s results are ex-
tremely stable to coverage, while the four other methods see their
performance decrease with decreasing coverage (only slightly for
miniMDS). ShRec3D, ShNeigh, and SuperRec perform relatively
well when the coverage is low but poorly in the high coverage set-
ting. All the other methods perform similarly well for high coverage,
with Pastis-PM and Pastis-NB achieving the lowest RMSD at high
coverage, but exhibit strong differences in the low coverage setting.
In the low coverage setting, Pastis-NB remains extremely good, with
barely any decrease in performance even at the lowest coverage,
while Pastis-MDS’ performance degrades quickly with less than
70% of the coverage, and similarly Pastis-PM and chromSDE see
their performance deteriorate with less than 40% of the coverage.
The miniMDS method outperforms greatly Pastis-MDS in the low
coverage setting despite the two methods being very related, con-
firming that classical metric MDS methods are dominated by long
range (and thus noisy) interactions. With the best RMSD error
among all methods for all coverage, Pastis-NB is the clear winner in
this experiment.

We then plot the average RMSD as a function of the dispersion
tuning parameter c (Fig. 2B) for the second set of simulated contact
maps with varying dispersion. As expected, we observe that all meth-
ods tend to perform better when c increases (corresponding to less
overdispersion) and have poorer performance when the data are too
overdispersed. ShRec3D’s and ShNeigh’s results tend to be stable to
changes in dispersion, but worse than other methods for large c’s. All
methods perform poorly in the highest dispersion setting. ChromSDE
performs relatively poorly in the medium to high dispersion setting.
SuperRec, ShRec3D, and ShNeigh perform relatively poorly in all
setting. Pastis-NB has again the best performance across all disper-
sion values, although the difference relative to other methods, par-
ticularly miniMDS, Pastis-MDS, and Pastis-PM, is small.

Table 1. Summary of the results

Simulated data Real data

Coverage

(small b)

Dispersion

(small c)

Counts-

to-maps

(small a)

Replicates (LR) Replicates (HR) Resolution Downsampling Multi-chrom.

Pastis-MDS . �� . . . . . .

miniMDS . . � � . � � � � .

ShRec3D �� . � � �� � �� �

SuperRec . . . . . . . .

ChromSDE . . . ��� � . . NA

ShNeigh . . . ��� � . . NA

Pastis-PM � � . . . . . ���

Pastis-NB ��� ��� ��� �� ��� ��� ��� ���

Note: We summarize here all the experiments performed and a synopsis of the main results. The table displays the top three methods for each experiment

(��� for the best method, �� for the second best, � for the third best). Pastis-NB performs better than all methods in most experiments.

10−1 100 101 102 103 104 105 106

Mean

10−1

100

101

102

103

104

105

106

V
ar

ia
nc

e

D. melanogaster
A. thaliana
H. sapiens
S. cerevisiae
Volume exclusion

Fig. 1. Mean and variance of contact counts in different Hi-C datasets. Each point

represents a given genomic distance in one dataset, where we estimate the mean and

variance of contact counts. The dashed line corresponds to the relationship assumed

by the PM: r2 ¼ l. The ‘Volume exclusion’ dataset is simulated following a previ-

ously described model (Tjong et al., 2012)
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3.2.2 Robustness to incorrect parameter estimation

First, we explore the robustness of Pastis-NB with respect to the dis-
persion parameter estimation. For that purpose, we re-run the infer-
ence on the simulated datasets with a varying coverage estimation
using three different estimated dispersion parameters: our original
estimated dispersion parameter r̂; r̂=10 (i.e. 10-fold underestimation
of the dispersion of the datasets), and r̂ � 10 (i.e. 10-fold overesti-
mation of the dispersion). We then compare the results to the
second-best performing method on this dataset, miniMDS.
Supplementary Figure S2 shows that the performance of Pastis-NB
is barely affected by under- or overestimation of the dispersion par-
ameter, and that it outperforms miniMDS on a wide range of disper-
sion parameter estimates. The fact that the results are slightly better
with a larger dispersion parameter suggests that we tend to under-
estimate the dispersion parameter of the negative binomial model
for the counts (or, equivalently, overestimate the variance of the
counts as a function of their means). One reason for this systemic
bias could be that we bin together all counts for pairs of loci at a
given genomic distance in order to estimate the mean and variance
at each genomic distance, from which we estimate the dispersion
parameter of our model. Since those pairs of loci at a given genomic
distance are not exactly at the same spatial distance from each other,
the count variance we estimate is due both to the overdispersion of
the counts for a given spatial distance (which we want to estimate
for our model), and to the variation in the spatial distances of loci at
a given genomic distance (which is a nuisance parameter here). It is
therefore likely that we overestimate the variance of the counts due
to the overdispersion only, and that we therefore underestimate the
dispersion parameter. A possibility to improve dispersion parameter
estimation would be to estimate it from biological replicates instead
of a single replicate.

In addition to demonstrating robustness to the dispersion param-
eter estimation, these results also show that the performance of
Pastis-NB is barely affected by the ad hoc choice we made to esti-
mate the constant dispersion r̂ from the genomic distance-dependent
estimates r̂ l only for l � 2=3lmax, since taking a larger threshold up
to l � 0:99lmax impacts the r̂ estimate by less than 10% on all data-
sets (Supplementary Table S3).

Second, we compare the algorithms on datasets with varying
counts-to-distances mappings. Metric methods (Pastis-MDS,
miniMDS, and ShRec3D) require as input a count-to-distance trans-
fer function. While Pastis-MDS and miniMDS rely on ideal physical
laws to define this mapping, ShRec3D uses ad hoc conversion of
counts into physical distances. However, DNA may not follow the
ideal properties of polymers underlying the default transfer function;
thus, structures inferred from these methods may diverge from the
correct ones. Our goal here is to assess how well the different meth-
ods perform when the transfer function is misspecified. We expect
non-metric methods to perform better on these datasets, because

they should be able to adapt the transfer function to best fit the
data.

Figure 2C shows the average RMSD error of each algorithm as a
function of the a parameter used to simulate the data. It is worth
noting that the lower the a parameter is, the noisier the simulated
contact map is: a low a parameter indeed results in a contact count
map with very few long range interaction counts.

Pastis-NB works well across all values of a, exhibiting a striking
difference from the rest of the methods for a � �3. Notably, all
methods perform much better for high a than for low a. This phe-
nomenon can be explained by the properties of the contact count
maps in this setting: low a values in the count-to-distance function
lead to abrupt changes in the probability of seeing contact counts be-
tween small and large distances, whereas high a values yield a much
more uniform expected contact counts map. Thus, for identical
coverage, low a datasets are much sparser than high a datasets. In
short, despite identical coverage in all datasets, the signal-to-noise
ratio varies strongly with a, thereby leading to much better overall
performance for low a both for metric and non-metric methods,
even when the transfer function is misspecified. Pastis-PM works
very poorly in the low a setting, probably because the data is much
more overdispersed in this setting than in the high a setting. Once
again, miniMDS works much better than Pastis-MDS, underlining
the benefits of only considering interactions from neighboring loci
for precise local structure inference.

3.3 Pastis-NB yields stable and consistent structures on

real Hi-C data
We now test the different methods on real Hi-C data. Since in this
case the true consensus structure is unknown, we investigate instead
the behaviors of the different methods in terms of their ability to
infer consistent structures from replicate datasets and across
resolutions.

3.3.1 Pastis-NB shows increased stability when performing the in-

ference without filtering zero counts

Before delving into a detailed comparison of Pastis-NB with other
methods on various tasks, we first illustrate in this section the bene-
fits achieved by including zero-valued counts in the model inferred
by Pastis-NB. This is to be contrasted with many previously pub-
lished methods that perform 3D structure inference after using only
a subset of the data, and in particular disregarding zero counts. For
example, Tanizawa et al. (2010) and citeduan:3D (Duan et al.,
2010) consider only the top 2% significant contact counts, whereas
Varoquaux et al. (2014) exclude zero contact counts from the infer-
ence. Furthermore, many MDS-based methods require a transform-
ation of contact counts into distances: this is often based on a
power-law relationship with a negative coefficient and is thus

Fig. 2. Performance evaluation on simulated data. Each plot shows the mean RMSD error (over 10 random simulations with different random seed) between the predicted

structure and the true structure, for eight different methods, when one parameter of the simulation is varied. (A) The parameter b is varied such that the coverage is 10–100%

of the original dataset. (B) The parameter c, which controls overdispersion, is varied between 0.1 and 1. Smaller values correspond to more overdispersion. (C) The paramater

a, which controls the count-to-distance mapping coefficient, is varied between �4.5 and �1.5.
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undefined for zero contact counts. As a result, such methods include
zero contact counts either through an ad hoc penalization term on
non-interacting beads or by converting zero counts to an ad hoc dis-
tance (e.g. the largest distance obtained on non-zero counts or using
prior knowledge of the structure). In contrast, Pastis-NB formulates
the inference in a way that naturally includes zero contact counts.

To assess the impact of zero counts information, we compare the
default Pastis-NB model, which takes into account zero counts in
the likelihood objective function (1), with a variant where we only
retain non-zero counts. We assess the stability of the inferred struc-
tures across biological replicates when using all counts versus only
non-zero counts. To do so, we run the inference on the whole sets of
contact counts versus the filtered one, on both replicates 75 and 76
of KBM7, for contact count matrices at five different resolutions.
We thus infer two structures X1 and X2 for each autosomal chromo-
some, one for each replicate. We then rescale them such that the
99% of the beads of the structures fit in a sphere of a predefined
diameter, and we compute two RMSD measures: RMSDðX1;X2)
and RMSDðX2;X1Þ and report the average value. We also compute
the Spearman correlations between the distance matrices of the two
structures. Those two measures assess the stability of the inference.
Recall that the different methods cannot optimize the coordinates of
beads that have zero contact counts. Thus, before computing the
correlation, we filter out from both structures any beads that have
zero contact counts in either dataset.

We then compare the stability of the inference between the two
approaches (filtered versus unfiltered zero counts). Figure 3A (resp.
Supplementary Fig. S3) shows, for each approach, the distribution
of RMSD (resp. Spearman correlation) values across the 22 chromo-
somes and five resolutions. We clearly see that keeping all zero
counts leads to significantly larger correlations, hence more stable
structures across biological replicates.

3.3.2 Stability to replicates

Replicates, which involve multiple runs of the same experiment per-
formed on similar samples with the same experimental settings, are
typically carried out to assess variability of the results. Because the
underlying 3D model should not change in this case, we compare
the results of the inference of the different algorithms on two repli-
cates of the nearly haploid human KBM7 cell line. Similar to what
we did in the previous section, we infer two structures on the two
replicates of interest for each autosomal chromosome. We compute
the RMSD between each pairs of structures as described above, as
well as the Spearman correlation of the distances.

Not surprisingly, the stability of the inference across replicates
decreases as the resolution grows in all methods. Table 2 shows the
average correlation and RMSD reached by each method at each
resolution. At low resolution (1 Mb and 500 kb), chromSDE

performs the best both in terms of correlation and in terms of
RMSD between replicates (except for RMSD at 1 Mb, where it is
outperformed by SuperRec), although all methods perform well in
that setting, with correlations ranging between 0.95 and 0.99. At
high resolution (250, 100, and 50 kb), Pastis-NB performs the best,
both in correlation and in RMSD, despite the non-convex nature of
the optimization problem solved. It is remarkable that even at 50 kb,
Pastis-NB reaches a correlation of 0.96 between replicates, while the
second best method (ShNeigh) see its correlation decrease to 0.92
and RMSD to 13.1, and chromSDE, which is the most stable at low
resolution, only obtains a correlation of 0.62 and an RMSD of
29.66.

3.3.3 Stability to resolution

Zhang et al. (2012) show that the mapping from contact counts to
physical distance differs from one resolution to another, underscor-
ing the importance of good parameter estimation. To study the sta-
bility of the structure inference methods to changes in resolution, we
compute the RMSD and Spearman correlation between pairs of
structures inferred at different resolutions (1 Mb, 500 kb, 250 kb,
100 kb, and 50 kb). Each inferred structure is rescaled such that all
beads fit in a nucleus of size 100. To compare two structures at dif-
ferent resolutions, we downsample the structure of the highest reso-
lution by averaging its coordinates until it is of the same resolution
as the other one. We then compute the RMSD and Spearman correl-
ation between the two structures of the same size.

Results of this experiment (Table 3) show that Pastis-NB is more
stable to resolution changes than other methods, both in terms of
RMSD and in terms of correlation. The second best method is
ShNeigh, with stability measures almost as good as Pastis-NB.
Surprisingly, the inferred models are visually extremely different (see
Supplementary Fig. S6). Interestingly, the two subsequent contend-
ers in terms of correlation are miniMDS and SuperRec, two methods
that implement an iterative strategy of optimization, thus favoring
close-range interactions. The poor performance of SuperRec in
terms of RMSD is due to the presence of outlier predictions on a
small number of reads.

3.3.4 Stability to coverage

We then study the stability of the structure inference methods to
coverage. To do so, we downsample the 100 kb contact count matri-
ces between 10% and 90% of the original coverage. We perform in-
ference from these downsampled contact maps and compute the
Spearman correlation between Euclidean distances of the obtained
structures and the structures inferred on the full matrix. Results of
this experiment (Fig. 3B, Supplementary Fig. S4) show that all meth-
ods tend to see the correlation decrease with the downsampling, as
expected. While ShRec3D and chromSDE yield high correlations at

Fig. 3. Stability results on human single chromosomes Rao et al. (2014) and yeast whole genome Duan et al. (2010). (A) The RMSD between pairs of structures inferred by

Pastis-NB using all contact counts (‘all’) or excluding zero contact counts (‘filtered’). (B) Inference is performed on a downsampled contact map and the resulting structure is

compared to the structure obtained using the whole dataset. ChromSDE fails to infer a structure with the correct number of bins on the datasets downsampled to 10% of the

original coverage: results for chromSDE at 10% are thus not displayed. (C) The RMSD between pairs of chromosomes inferred by subsampling chromosomes from a

S.cerevisiae whole genome dataset Duan et al. (2010)
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high coverage, the correlation decreases sharply for chromSDE,
reaching �0.3 at 10% downsampling, and a bit less sharply for
ShRec3D, which reaches �0.8 at 10% downsampling. Pastis-PM
and Pastis-MDS have the worst correlation at high coverage, and see
their correlation decrease sharply with coverage. Pastis-NB and
ShNeigh stand out as the methods with the largest correlation at
high coverage but also as the methods that witness barely any de-
crease in correlation when coverage decreases.

3.3.5 Whole genome inference

Finally, we consider the harder task of whole genome inference, ra-
ther than inferring structures separately per chromosome. When
tackling whole genome inference, a new problem arises for non-
metric methods: the inter-chromosomal contact counts dominate the
estimation of the counts-to-distance parameter a. Indeed, while the
estimation of the a parameter is very stable on single chromosomes,
we observe that this parameter a increases to �1 when the number
of chromosomes increases for some non-metric methods. This has
the effect of collapsing beads belonging to a chromosome together,
while pushing beads belonging to other chromosomes away from
one another.

To assess how well whole genome inference performs, we per-
form yet another stability experiment. We first infer a whole genome
inference of a haploid S. cerevisiae dataset (Duan et al., 2010).
Then, we randomly subsample between 1 and 15 chromosomes and
perform a whole genome 3D structure inference on this subsampled
set of chromosomes. Finally, we assess the stability of the structure
inference by computing the RMSD and Spearman correlation for
each chromosome independently and taking the average to obtain a
single RMSD and Spearman correlation score. Note that chromSDE
and ShNeigh do not support multi-chromosome inference. We have
thus excluded these two methods from these results. Results once
again show that Pastis-NB is the most stable method in RMSD
(Fig. 3C) and is a close second contender after Pastis-PM
(Supplementary Fig. S5) for Spearman correlation. Supplementary
Figure S7 shows the whole-genome reconstructions for the various
methods.

4 Discussion and conclusion

We present in this work a new model, Pastis-NB, to infer a consen-
sus 3D structure of the genome from Hi-C contact count data. We
model interaction counts as negative binomial random variables,
and we cast the inference as a likelihood maximization problem.
Modeling counts as negative binomial random variables allows us to

better model the presence of overdispersion in Hi-C data, which we
observed experimentally in Hi-C data from different organisms.
Through extensive experiments on simulated and real Hi-C data, we
showed that Pastis-NB consistently outperforms a representative set
of competitive methods across a range of metrics. In particular,
Pastis-NB yields remarkably stable and accurate results in the case
of highly dispersed contact count data. This improvement is particu-
larly striking at high resolution and at low coverage, with 3D mod-
els inferred much more robustly with Pastis-NB than with other
methods. Yet, it is important to stress that it is not because a method
is very stable that it is good or relevant. The striking differences in
inferred 3D models between Pastis-NB and its closest contender,
ShNeigh, highlight this limitation in measuring success with
stability.

A limitation of Pastis-NB resides in the inference of consensus
3D models of chromosome architecture. Consensus models are not
necessarily representative of the true folding of DNA in the cell. For
example, a consensus model of S.cerevisiae’s genome will sometimes
cluster telomeres together, while it is known that telomeres tether at
the nuclear membrane. One should thus interpret these models with
care. Yet consensus methods are powerful dimensionality reduction
tools that can serve as an entry point for many analyses, such as
data integration and visualization. In addition, such a consensus ap-
proach could be extended to single-cell Hi-C data, through appro-
priate modeling of the sparsity of the matrix via a zero-inflated
negative binomial model and the addition of prior knowledge or
biologically motivated constraints.
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