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Abstract 
 
Effectors are small and very diverse proteins secreted by fungi and translocated in plant cells during infection. 
Among them, MAX effectors (for Magnaporthe Avrs and ToxB) were identified as a family of effectors that 
share an identical fold topology despite having highly divergent sequences. They are mostly secreted by 
ascomycetes from the Magnaporthe genus, a fungus that causes the rice blast, a plant disease leading to huge 
crop losses. As rice is the first source of calories in many countries, especially in Asia and Africa, this constitutes 
a threat for world food security. Hence, a better understanding of these effectors, including structural and 
functional characterization, constitutes a strategic milestone in the fight against phytopathogen fungi and may 
give clues for the development of resistant varieties of rice. We report here the near complete 1H, 15N and 13C 
NMR resonance assignment of three new putative MAX effectors (MAX47, MAX60 and MAX67). Secondary 
structure determination using TALOS-N and CSI.3 demonstrates a high content of ß-strands in all the three 
proteins, in agreement with the canonic ß-sandwich structure of MAX effectors. This preliminary study provides 
foundations for further structural characterization, that will help in turn to improve sequence predictions of other 
MAX effectors through data mining. 
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Biological Context 
 
Phytopathogenic fungi cause ravaging diseases that constitute a threat to agriculture and food security. Among 
the large variety of pathogens, the ascomycete Magnaporthe oryzae causes the rice blast, the most destructive 
disease of rice worldwide	 (Ou 1980). This pathogen is a hemi biotrophic organism, starting its infection by 
growth and colonization of the plant and then entering a necrotic phase (Dean et al. 2012; Fernandez and Orth 
2018) responsible for the crop’s damages and losses (Hogenhout et al. 2009; Jones and Dangl 2006; Doehlemann 
et al. 2014). Beside rice, several other cereal cultures are impacted, including wheat, barley and millet (Couch et 
al. 2005). 
Even if resistance appears in some cultures, the fungus generally escapes this blast resistance (Araújo et al. 
2000) by secreting during infection an extended repertoire of small proteins (size under 200 amino acids) named 
effectors, whose specific targets remain only partially known. Effectors show very divergent sequences, sharing 
a signal peptide on the N-terminal end. This signal peptide is essential for their secretion and then their 
translocation inside the plant cell (Petre and Kamoun 2014). These translocation mechanisms remain mostly 
unknown but it has been shown that effector secretion can be dependent on the conventional secretory pathway 
of the plant, or dependent on another secretion system from the pathogen itself (Ribot et al. 2012; Giraldo et al. 
2013; Eseola et al. 2021). They constitute a way to escape basal resistance based on PAMP/MAMP recognition 
by extra-cellular cell surface receptors (Wang et al. 2014). Some effectors can also prevent recognition of 
effectors by specific resistance proteins, hindering the protecting immune response (Houterman et al. 2008). 
 
In 2015, a new family of effectors, called MAX-effectors (for Magnaporthe Avrs and ToxB like) was identified 
from bioinformatic analysis (de Guillen et al. 2015) and the 3D structure has been solved for several of them 
(Zhang et al. 2013; Nyarko et al. 2014; Maqbool et al. 2015; de Guillen et al. 2015, De la Concepcion et al. 
2018, 2021; Zhang et al. 2018; Maidment et al. 2021; Bentham et al. 2021). Despite having low sequence 
identity (generally under 25 %), they share a conserved structure and topology consisting of a sandwich made of 
five to six antiparallel β strands (Zhang et al. 2013; Nyarko et al. 2014). These MAX-effectors also show two 
highly conserved cysteines forming a disulphide bond between the two sheets (de Guillen et al.,2015). 
Restricting the analysis to the genomes of Magnaporthe genus, where most of MAX effectors were identified, a 
new prediction pipeline (to be published elsewhere) allows us to extract new MAX candidates, among them 
MAX47, MAX60 and MAX67. We report here the backbone and side-chain resonance assignments of these 
three effectors. These assignments will provide the foundation for their 3D structure determination, and will 
allow interaction studies with their putative targets. 
 
 
Methods and Experiments 
 
Recombinant protein expression and purification. 
Uniformly labeled (15N and 15N/13C) proteins (MAX47, MAX60 and MAX67) were expressed in E. coli BL21 
(DE3) cells (Invitrogen, Thermo Fisher Scientific, Waltham, USA) from a homemade plasmid pDB-his-CCDB-
3C (courtesy of Frederic Allemand, CBS Montpellier, France) allowing expression of the recombinant fusion 
proteins with a His6-tag cleavable by the protease HRV 3C. In the three constructs, the N-terminal signal peptide 
has been removed from the original sequence, yielding final proteins of 95, 89 and 60 residues long for MAX47, 
MAX60 and MAX67, respectively. 
Protein expression was carried out in 15NH4Cl (1 g/l) or 15NH4Cl (1 g/l) / 13C-Glucose (3 g/l) enriched M9 
medium. Cells were grown at 37°C until reaching an OD600 = 0.8 and then, expression proceeded overnight at 
30°C after induction by addition of 0.3 mM IPTG. Cells were harvested by centrifugation, resuspended in 
denaturing buffer (50 mM Tris, 300 mM NaCl, 1mM DTT (dithiothréitol), 8M urea, pH 8) and lysed by 
ultrasonication. The supernatant containing the unfolded protein was applied to a HisTrap HP 5 ml affinity 
column (Cytiva,	Freiburg im Breisgau, Germany). The His6-tagged protein was eluted in 50 mM Tris, 300 mM 
NaCl, 1mM DTT, 8M urea, pH 8 with an imidazole gradient up to 500 mM. At this step, MAX67 was directly 
dialyzed against 25 mM Na Acetate, 2 mM DTT, pH 4.6 buffer in order to remove imidazole and urea, allowing 
the refolding of the protein. The His6-tag was then cleaved off using the HRV 3C protease. For MAX60 and 
MAX47 refolding, the His-tagged proteins were dialyzed at 4°C in 0.18% ammonia solution, to avoid protein 
precipitation during the re-folding process at pH 4.6. The His6 tag was then cleaved out directly at pH 8. 
Ammonia was removed by lyophilization and the lyophilized samples were dissolved into 25 mM Na Acetate, 2 
mM DTT, pH 4.6 buffer. All samples were then concentrated using Amicon Ultra Centrifugal Filter Devices 
(MW cutoff 3,000 Da), (Merck Millipore, Burlington, USA) prior to size exclusion chromatography (SEC) using 
HiLoad 16/600 Superdex 75 pg column (Cytiva). Fractions containing proteins were pooled, concentrated to 0.5 
mM and stored at -20 °C.  
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NMR spectroscopy. 
Samples for NMR measurements (200 µL) were prepared at about 0.5 mM protein concentration in 25 mM 
Sodium Acetate buffer (pH 4.6), and 5% of D2O was added for the deuterium lock. 
1H, 15N double-resonance and 1H, 15N, 13C triple-resonance NMR experiments were performed at 32°C on 
Bruker AVANCE III 700 MHz and 800 MHz spectrometers equipped with a cryogenic Z-gradient 1H-13C-15N 5 
mm probe head. Backbone and Cß resonance assignments were made using HNCA, HNCACB, CBCA(CO)NH, 
HNCO and HN(CA)CO standard experiments (Sattler et al. 1999) performed on the uniformly 15N/13C labeled 
samples. Side chains and Hα proton resonance assignments were obtained through 3D [1H,15N] NOESY-HSQC 
(mixing time 150 ms) and TOCSY-HSQC (isotropic mixing: 60 ms) experiments. Water suppression was 
achieved with the WATERGATE sequence (Piotto et al. 1992). 1H chemical shifts were directly referenced to 
the methyl resonance of DSS (2,2-Dimethyl-2-silapentane-5-sulfonate, Sodium salt), while 13C and 15N chemical 
shifts were referenced indirectly to the absolute frequency ratios 15N/1H = 0.101329118 and 13C/1H = 
0.251449530. 
 
Extent of Assignments and data deposition. 
 
The data sets allowed the assignment of 90.9%, 97.3% and 99.7% of the proton resonances, 95.5%, 98.8% and 
98.3% of the nitrogen resonances (amide groups), and 94.0%, 98.1% and 99.4% of the carbon resonances (Cα, 
Cβ and C’) for MAX47, MAX60 and MAX67, respectively. The assignments are deposited in the BMRB under 
accession numbers 34731 (MAX47), 34730 (MAX60) and 34729 (MAX67). The good signal dispersion 
observed in the [1H,15N] HSQC for these three proteins (Fig.1) is consistent with well-folded 3D structures. 
Interestingly, we observed two cross-peaks for each residue in the C-terminal segment (E98-W106) of MAX60, 
with relative intensities of 0.45:0.55. Probably, the cis-trans isomerization of one or two of the proline residues 
that flank W106 in the C-terminus (P104-F105-W106-P107) induces two different orientations for the 
tryptophan aromatic side-chain, yielding two different chemical environments for the neighboring residues. 
TALOS-N (Shen & Bax 2013) analysis suggests a high content in extended ß-strands in the 3D structure of the 
three proteins, consistent with the secondary structure of the MAX-effectors (Fig.1). In addition, Φ/Ψ values 
determined for residues Y91-E102 in MAX60 indicate the presence of an α-helix in the C-terminal end of the 
protein. These conclusions are further supported by CSI 3.0 analysis (Hafsa et al. 2015). The consensus chemical 
shift index derived from 1Hα, 13Cα, 13Cβ, 13C’ and 15N1H chemical shifts also supports the presence of five ß-
strands in the 3D structure of the three proteins, compatible with the ß-sandwich structure shared by MAX 
effectors. Also, CSI analysis supports the presence of an α-helix in the C-terminal end of MAX60 (See 
Supplementary Material, Fig.S1). At this step, we have no precise idea about the role of this C-terminal helical 
extension in the function of the effector, even if we suspect that it might confer some target specificity to 
MAX60 with regard to others MAX effectors. This assumption has to be further supported with NMR in-vitro 
interaction studies with potential effector targets, once the solution structure of this effector will be solved. 
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Figure 1: (Left) 2D [1H-15N] HSQC spectra of MAX47, MAX60 and MAX67 (from top to bottom, as indicated) 
recorded at 700 MHz on 15N-uniformly labeled samples dissolved in 25 mM Sodium Acetate buffer pH 4.6 at 
32°C.	Cross peak assignments are indicated using the one-letter amino acid code and number. The sequence 
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numberings correspond to the full-length proteins, including the signal peptide. (Right) Corresponding plots of 
the Φ (bold circles) / Ψ (open squares) dihedral angle values obtained from TALOS-N (Shen & Bax 2013) 
analysis of the chemical-shifts measured for the three proteins. 
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