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Abstract 23 

Microbial trophic interactions are an important aspect of microbiomes in any ecosystem. They can 24 
reveal how microbial diversity modulates ecosystem functioning. However, uncovering microbial 25 
feeding interactions is a challenge because direct observation of predation is difficult with classical 26 
approaches such as behaviour and gut contents analyses. To overcome this issue, recent developments 27 
in trait-matching and machine-learning approaches are promising for successfully inferring microbial 28 
feeding links. Here, we tested the ability of six machine-learning algorithms for predicting microbial 29 
feeding links, based on species traits and taxonomy. By incorporating organism speed, size and 30 
abundance into the model predictions, we further estimated the probability of feeding links occurring. 31 
We found that the boost-regression trees predicted feeding links between microbes best. Sensitivity 32 
analyses showed that feeding predictions were robust against false feeding links and faulty predictors 33 
in the training set, and capable of predicting feeding links for empirical datasets containing up to 50% 34 
of new taxa. We cross-validated our predictions using an empirical dataset from a Sphagnum-35 
dominated peatland with direct feeding observations for two dominant testate amoeba predators. The 36 
feeding habits of the two testate amoeba species were comparable between microscopic observations 37 
and model predictions. Machine learning thus offers a means to develop robust models for studying 38 
microbial food webs in ecosystems. They offer a route to combine traditional observations with DNA-39 
based sampling strategies to upscale soil biodiversity research along ecological gradients.  40 

 41 

Keywords: microbiomes, feeding habits, predation, food web modelling, micro-eukaryotes, feeding 42 
link strength, peatlands  43 
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1. Introduction 44 

Microorganisms are the biogeochemical engineers of life on Earth (Falkowski et al., 2008). Their activity 45 

cycles major elements, such as H, C, N, O, S, and P, supporting life in higher trophic levels. In particular, 46 

microorganisms govern terrestrial carbon cycling through their role in greenhouse gas emissions (Singh 47 

et al., 2010), carbon cycling (Schimel and Schaeffer, 2012; Liang et al., 2017), plant growth (Guo et al., 48 

2022), and primary productivity (Schimel and Schaeffer, 2012; Jassey et al., 2022). In light of current 49 

and future climate predictions, understanding and predicting the response of microorganisms— from 50 

bacteria to protists— and the ecosystem services they provide to environmental change has never been 51 

more important (Singh et al., 2010; Jansson and Hofmockel, 2020; Naylor et al., 2020; Guerra et al., 52 

2022).  53 

High-throughput sequencing and global analyses have been fundamental in revealing the 54 

broad diversity of microorganisms across terrestrial systems (Tedersoo et al., 2014; de Vargas et al., 55 

2015; Delgado Baquerizo et al., 2018; Oliverio et al., 2020; Singer et al., 2021; Xiong et al., 2021). In 56 

addition to the essential bacterial and fungal diversity, these studies particularly highlighted an 57 

unexpected diversity of predators (Oliverio et al., 2020; Petters et al., 2021; Xiong et al., 2021), 58 

suggesting the importance of predation in shaping microbial diversity in soils. Predation is indeed 59 

increasingly recognized as a dominant driver of bacterial and fungal community structures in soils (Gao 60 

et al., 2018; Amacker et al., 2022; Pierce and Dutton, 2022), and hence, of key ecosystem processes 61 

such as nutrient and carbon cycling and plant health (Séneca et al., 2021; Amacker et al., 2022). 62 

Uncovering microbial food webs to reveal the feeding interactions among organisms and characterizing 63 

their specific contribution to ecosystem processes across space and time is thus a clear next step to 64 

advance our ability to construct accurate predictive models for global carbon flux under climate change 65 

(Geisen, 2021). However, our knowledge of microbial feeding interactions is mostly based on broad 66 

functional groups and/or a few model species (Geisen et al., 2016; Mestre et al., 2022). With the 67 

growing awareness that even closely related microbial species may differ in their feeding habits (Jassey 68 

et al., 2012a, 2013b) comes the question of how to identify and quantify the feeding interactions of the 69 

hundreds of species coexisting in a single gram of soil (Pierce and Dutton, 2022). Indeed, microbial 70 

consumers exhibit a large variety of morphologies, feeding habits, and life strategies (e.g. mixotrophy) 71 

that can influence their feeding interactions with other organisms (Potapov et al., 2022), and their 72 
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impact on the food web structure and ecosystem functions (Jassey et al., 2013b, 2015; Mieczan et al., 73 

2015).  74 

Understanding how microbes interact with each other within a system is challenging. Recently, 75 

co-occurrence networks have been increasingly used to explore the spatial or temporal patterns of co-76 

occurrence between pairs of taxa, and relate shifts in their properties to ecosystem changes (Faust and 77 

Raes, 2012; de Vries et al., 2018). Although informative and very useful to extract simple patterns from 78 

complex datasets, these networks are often misused (Goberna and Verdú, 2022) and cannot in any 79 

circumstance reflect trophic interactions between organisms. Because direct observation of microbial 80 

feeding interactions is extremely difficult, researchers had to use alternative solutions. For instance, 81 

they used correlation-based analyses of microbiome sequencing datasets to infer feeding interactions 82 

(Seppey et al., 2017). Other studies used either feeding trials (Amacker et al., 2022), stable isotopic 83 

tracing in the microbial biomass (Jassey et al., 2013b; Mieczan et al., 2015) and in the DNA (Morriën et 84 

al., 2017), metatranscriptomics (Petters et al., 2021), or gut content analysis (Lo et al., 2022). The latter 85 

is extremely challenging for small microbes. While these analyses have been powerful hypothesis-86 

generators, they also have a number of limitations, including biases toward the collection of enough 87 

individuals to obtain reliable measurements (stable isotopes, gut content), detection of strong 88 

symmetric interactions (correlation-based inferences), and/or inability to distinguish species-specific 89 

interactions (stable isotopes). Moreover, with large numbers of species and/or food webs to resolve 90 

within studies, these approaches become cumbersome or unfeasible to apply. To overcome these 91 

limitations, researchers have pooled microorganisms into broad feeding groups to construct food 92 

webs. Although this is an established approach to quantifying energy flows (Holtkamp et al., 2011; 93 

Koltz et al., 2018), lumping species together can create large errors particularly when species with 94 

divergent behaviours are combined (Buchkowski and Lindo, 2020).  95 

As an alternative, several statistical methods based on machine learning could be used to infer 96 

microbial feeding interactions (Faisal et al., 2010; Desjardins-Proulx et al., 2017; Pichler et al., 2020). 97 

Previous work on fishes and invertebrates showed that predator-prey interactions can be successfully 98 

inferred using either phylogenetic relationships (Gray et al., 2015) or the trait-matching approach 99 

(Gravel et al., 2013; Laigle et al., 2018a; Pomeranz et al., 2019). Inferences based on foraging traits 100 

such as body size have been shown to be successful in predicting feeding links (Gravel et al., 2013; 101 

Laigle et al., 2018b; Pecuchet et al., 2020), although machine learning models trained with both traits 102 
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and phylogenetic predictors should be preferred (Pomeranz et al., 2019). Whilst traits can serve as 103 

reliable proxies for the inference of species interactions, phylogeny and/or taxonomy can substitute 104 

unmeasured traits (Morales-Castilla et al., 2015), and even recommend links that have not been 105 

observed empirically before (Desjardins-Proulx et al., 2017). 106 

Here, we propose to use a composite machine learning model trained with both phylogenetic 107 

predictors and traits to provide a potential framework for predicting microbial feeding interactions, 108 

allowing for a greater understanding of the mechanisms underlying trophic interactions, community 109 

structure, and ecosystem functioning. As we have no a priori trait-matching and phylogenetic rules, we 110 

used a systematic assessment of the performance of different machine learning (ML) techniques to infer 111 

microbial feeding interactions. To inspect to what extent the resulting species pairs could have arisen 112 

from chance, we further cross-validated the predicted feeding interactions from the best-performing 113 

ML model using an array of sensitivity analyses. Then, we applied the best ML model to twelve 114 

previously published species lists from peatland (Jassey et al., 2012a; Reczuga et al., 2018) to 115 

reconstruct microbial food webs from these empirical data. Following species feeding pairs inferences, 116 

we further cross-validated the predicted interactions with direct feeding observations from the case 117 

study data (Jassey et al., 2012a). Finally, we developed a new method to estimate the strength of the 118 

predicted links according to the abundance and motility of microbial species, going beyond a simple 119 

binary network prediction. This newly developed framework permits the analysis of microbial food webs 120 

in soils and other ecosystems, which will allow researchers to incorporate microbial food web analyses 121 

in their studies and better understand the relationships between microbial food web properties and 122 

ecosystem functions.  123 

 124 

2. Material and methods 125 

2.1 Training datasets preparation and description 126 

To train our machine learning algorithms, we built an extensive meta food web documenting feeding 127 

links between 164 microbial taxa that potentially inhabit peatlands, ranging from bacteria to metazoans 128 

(Data available at https://doi.org/10.6084/m9.figshare.23669019.v1). Most of the species included in 129 

the registry are identified at the species level, with the exception of some biological entities that are 130 

described at the functional group level (e.g. bacteria and fungi). The feeding link registry was first 131 
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documented from peer-reviewed publications, specialized literature and personal communication with 132 

experts, and spanned the period 1902 to 2021. In total, 733 trophic links were extracted from tables, 133 

figures, the main text, and/or supplementary materials from 40 sources (see Table S1). Of these 40 134 

sources, 19 covered soils, 15 freshwater systems and 6 peatlands. Next, we added a list of microbial 135 

taxa regularly —but not exclusively— found in peatlands by merging the species lists from our previous 136 

work (Jassey et al., 2011, 2015; Reczuga et al., 2018; Sytiuk et al., 2021). Since not all trophic 137 

interactions were readily available for these peatland taxa, we retrieved the missing links from the 138 

published generic links using the WebBuilder function in R  (Gray et al., 2015). The outputs were 139 

thoroughly checked and, where needed, corrected based on literature, personal observation, and 140 

expert opinion (see Table S1 for details). The resulting meta food web comprised 164 taxa, including 141 

cyanobacteria (10), microalgae (35), flagellates (12), ciliates (26), testate amoebae (59), rotifers (20), and 142 

nematodes (1), and 27,060 rows documenting 3,590 positive links (feeding) and 23,470 negative links 143 

(non-feeding). Each resource-consumer pair was further associated with information on 17 potential 144 

feeding link predictors for both the consumer and resource (34 predictors in total for each resource-145 

consumer pair; Pecuchet et al., 2020). These predictors included six taxonomic variables (Species, 146 

Genus, Family, Order, Phylum, and Kingdom) and eleven traits (Organism type, Nourishment, Feeding 147 

group, Morphology, Lifestyle, Locomotion, Movement, Feeding strategy, Body length, Body width, 148 

and Biovolume; see Table S2 for details). 149 

 150 

2.2 Predicting microbial feeding links using machine learning algorithms 151 

We compared six machine learning algorithms (ML) for predicting microbial feeding links based on 152 

taxonomic and trait information (Fig. 1; Table S3): Random Forest (RF), Boosted regression trees (BRT), 153 

k-nearest-neighbor (kNN), neural networks (NN), Generalized linear model (GLM), and Bayesian GLM 154 

(BGLM). These algorithms were selected because they (1) are suitable for classification tasks, (2) are 155 

known to perform well in predicting species interactions, and (3) represent various classes of ML 156 

algorithms (Table S3). We partitioned our a priori meta food web into a Training set (70% of the data, 157 

used to train the models) and a Test set (30% of the data, used to test model performance) in which 158 

the ratios between feeding and non-feeding links was conserved. We iteratively varied the set of 159 

predictors across ten runs for each ML algorithm and evaluated model strength using sensitivity 160 

analyses (see below). This approach allowed us to select the best-performing model that had high 161 
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predictive strength, and optimize predictor selection while taking into account issues related to 162 

multicollinearity. For each run, we resampled the predictors from 12 clusters of strongly covarying 163 

predictors. Quantitative and qualitative predictors were hierarchically clustered using the ClustOfVar 164 

package in R (Chavent et al., 2012). As we did not have a specific number of clusters defined a priori 165 

to use as parameters for the clustering procedure, we tested a range of cluster numbers (that is 5 to 166 

20) into the ClustOfVar function (van den Hoogen et al., 2019). Inspection of the cluster dendrograms 167 

revealed that the predictor variables were most homogeneous grouped in12 clusters (Fig. S1, Table 168 

S4). In summary, each run of the six ML algorithm was trained with twelve predictors randomly selected 169 

across the 36 predictors grouped into twelve clusters (Table S4). The relevance of the predictors for 170 

each run was assessed using the varImp function in the caret R package (scaling 0-100) (Kuhn, 2008). 171 

Since varImp is model dependent and our approach includes a randomized set of predictors for each 172 

run, we ranked predictor importance for each run and each trained model from 1 (most important) to 173 

12 (less important) to compare model outputs.   174 

To assess and compare the ML model’s predictive performance, we calculated three 175 

performance indices using the Test set. The area under the receiver operating characteristic curve 176 

(AUC, range 0 to 1) was used as an indication of the model's ability to distinguish between feeding and 177 

non-feeding links regardless of the classification method (AUC ≥ 0.5 has a ≥ 50% chance of being 178 

correct) (Manel et al., 2001). The proportion of correct predictions was used as a measure of Accuracy, 179 

while the true skill statistic (TSS, range -1 to +1) normalizes the overall accuracy of the model for the 180 

accuracy occurring by chance (Allouche et al., 2006). A TSS of -1 is expected if predictions are random, 181 

1 if predictions are perfect, and 0 if they are the opposite of observations. We considered the 182 

performance of an algorithm to be good when AUC, Accuracy, and TSS values were close to one. 183 

Related indices, including the receiver operating characteristic (ROC), sensitivity (rate of true positives 184 

among all positive predictions), and specificity (rate of true negatives among all negative predictions), 185 

were also calculated and used for selecting the best ML algorithm. Machine learning analyses were 186 

performed in R (R Core Team, 2020) using the caret suite packages (Kuhn, 2008), and custom R codes.  187 

 188 

 189 

 190 

 191 
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2.3 Sensitivity analyses of microbial feeding link predictions 192 

Following ML model selection, we subjected the ‘best-performing model among the ten runs of the 193 

best-performing ML algorithm to further sensitivity analyses in order to inspect the quality of the 194 

predictions and their sensitivity to false predictors and poor species taxonomy (Fig. 1) (Jassey et al., 195 

2022). In other words, the ‘best-performing model’ was our best identified ML algorithm trained with 196 

the twelve best predictors identified from the ten runs with randomized sets of predictors of that 197 

particular ML algorithm.   198 

The first sensitivity analysis (i.e. k-fold 'Predictor Variable Shuffling (PVS) SA') tested the 199 

influence of poorly identified predictors on feeding link predictions, a plausible situation especially 200 

when working on microbial traits (Escalas et al., 2019). To do so, we iteratively and randomly shuffled 201 

1, 3, and 6 predictors to break any structure in the relationship between feeding links and some 202 

taxonomic and/or trait predictors before training our best-performing ML model. PVS SA was run 10 203 

times (k = 10) for each variable shuffling condition (a total of 30 runs) to cover as many as possible 204 

combinations of predictor variables shuffling.  205 

The second sensitivity analysis covered the influence of species that are new or poorly 206 

characterized at the taxonomic level (i.e. k-fold ‘Poorly Taxonomic’ (PT) SA). For instance, such an effect 207 

is likely to happen if the empirical dataset for which to predict feeding links contains species that are 208 

‘new’ and not represented in the Training set used to train the ML model. To simulate this potential 209 

bias, we randomly selected 1%, 2.5%, and 5% of the Training set in which 75% of the taxa (resource or 210 

consumer) at the species level were set as ‘Unknown’ before training the best-performing ML model. 211 

Among this 75% of species, 50% of them were further set as ‘Unknown’ at the genus level, and 25% at 212 

the family level. Each condition (1%, 2.5% and 5% of the Training set) was run 10 times (k = 10; in total 213 

30 runs). One run with the conditions 10%, 25% and 50% was further computed to identify at which 214 

percentage our best ML model is no longer trustworthy.    215 

For each sensitivity analysis, we assessed the predictive performance of the models for each 216 

run using the Test set and generated sensitivity statistics, namely Accuracy, AUC, and TSS. All sensitivity 217 

analyses were performed in R using the caret suite packages and custom R codes.  218 

 219 

 220 

 221 
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2.4 Case study — Inferring microbial feeding links in a Sphagnum-dominated peatland  222 

As a case study for inferring microbial feeding links in ecosystems, we used a well-studied empirical 223 

dataset from a Sphagnum-dominated peatland situated in the Jura Mountains, France (The Forbonnet 224 

peatland, 46°49’35” N, 6°10’20” E; Jassey et al. 2011a, 2012b, 2013a). The dataset comprises twelve 225 

microbial species lists, including microbial abundances, from twelve independent plots spread across 226 

the peatland (more details can be found in Jassey et al. 2011). Because of the wet conditions, peat 227 

mosses support diverse microbial communities (Gilbert and Mitchell, 2006) including bacteria, 228 

cyanobacteria, fungi, protists and metazoan covering diverse feeding behaviours (saprotrophy, 229 

autotrophy, mixotrophy and heterotrophy). In summary, the case study dataset contained a total of 108 230 

species: bacteria, (1 group level), fungi (2 groups level), microalgae (18 taxa), cyanobacteria (10 taxa), 231 

flagellates (9 taxa), ciliates (24 taxa), testate amoebae (28 taxa), rotifers (11 taxa), and nematode (1 232 

taxon). Of these 108 species, 15 were not listed in the Training set used to train the ML models. Among 233 

these 15 taxa, 50% were ‘new’ at the genus level when referring to the Training set, and 25% of them 234 

were ‘new’ at the family level. These new taxa were classified as ‘Unknown’ to allow the predictions 235 

with the selected ML model, while such bias in predictions has been tested beforehand in sensitivity 236 

analyses (see above). The same traits were available in the case study data as in the Training set used 237 

to train the ML models. More details about the methods used to identify microbial species and quantify 238 

their abundance and morphological traits can be found in the Supplementary method.  239 

We used the best-performing ML model to predict the binary food web from each species list 240 

(i.e. presence/absence of feeding links between species and/or generic group, hereafter ‘binary food 241 

web’). Next, we accounted for population dynamics that could lead to significant deviations from the 242 

binary food web. For example, the abundance of a consumer may greatly exceed that of its potential 243 

resource, making the occurrence of that feeding link unlikely. We took such potential bias into account 244 

using an abductive rule and abundance data of each taxon. Every predicted feeding link where the 245 

abundance of the predator was higher than the abundance of the prey was considered unlikely and 246 

removed. The pruned binary food webs were further quantified, with links strengths expressed as the 247 

probability of a consumer capturing a resource based on its swimming speed and size, and the 248 

abundance of the prey (hereafter ‘link-strength food web’). All details about link strength calculations 249 

are given in the supplementary method and Fig. S6 and Table S6.  250 

 251 
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2.5 Validating feeding habit predictions from the case study data 252 

We cross-validated the feeding link predictions from ML in the case study data using the feeding habit 253 

data from two testate amoebae species— Hyalosphenia papilio and Nebela tincta. We used these two 254 

species in particular because we had detailed information of their feeding habit in the same plots at 255 

the same sampling date (see Jassey et al. 2012 for details). These two focal species were chosen 256 

because they are dominant microbial predators in peatlands and their high abundance allowed robust 257 

and reliable feeding habit quantification. 1,240 individuals have been observed to establish feeding 258 

habits (see details Jassey et al., 2012), thus giving reliable feeding habits. 259 

To validate the feeding predictions for these two species with their respective feeding habits, 260 

we used two approaches. First, we calculated sensitivity and specificity indices; two metrics based on 261 

a confusion matrix which evaluate model performance to properly assign trophic links. Sensitivity 262 

measures the capacity of the model to predict observed feeding links well (trues positives), while 263 

specificity measures the capacity of the model to predict non-observed feeding links (false positives). 264 

Second, we reconstructed the diet of the two focal testate amoebae species quantitatively using the 265 

predicted feeding links. To do so, we made the comparison based on the predicted link-strength food 266 

web as our binary food webs cannot count the number of times a predator feeds on a prey item. For 267 

each focal species and in each food web, we extracted the feeding links predicted by the ML model 268 

and calculated the proportion of link strength by main prey type (i.e. microalgae, cyanobacteria, 269 

ciliates, …). For the observed feeding links, we calculated link strength, as explained above, as well as 270 

the proportion of link strength by main prey type. Finally, we compared the predicted link strength 271 

proportion per prey type to those observed. We removed the feeding link towards bacteria beforehand 272 

as they could not be directly observed under the microscope. 273 

 274 

2.6 Food web metrics 275 

To assess the structure of the predicted food webs and quantify the benefits of link strength, we 276 

measured seven unweighted, topology-based, food web metrics to characterize the structure of the 277 

food webs, including the number of species (S), connectance (C), generality (G), vulnerability (V), 278 

shortest path length (SPL), short-weighted trophic level (TL), the degree of omnivory (OI), averaged 279 

food chain length (FCL), and the proportion of basal (Ba), intermediate (Int) and top species (Pred), as 280 

well as vulnerability SD and generality SD (Kortsch et al., 2019, 2021). The selected food web metrics 281 
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were chosen because they cover diverse and ecologically relevant aspects of the food web structure 282 

(Ledger et al., 2013; Kortsch et al., 2015, 2021) (Table S7). In particular, they relate to the vertical 283 

(trophic level, omnivory) and the horizontal (generality, vulnerability) dimensions of food webs and to 284 

their complexity (species richness, connectance). Although these unweighted metrics can unveil the 285 

topological structure of the food webs, they are also limited by the fact that in real food webs the links 286 

may have different capacities or intensities or flows of information or strengths (Barrat et al., 2004). 287 

Therefore, we calculated weighted metrics using link strength, namely the average strength of links (st), 288 

the average strength distribution among links (ps), the weighted shortest path length (dist_w), the 289 

transitivity (trans), the average strength of each node’s connection (neigh), the modularity (mod), the 290 

sum of link weights (flow), and the global efficiency (eff) (Table S7).  291 

 292 

2.7 Statistical analyses 293 

We tested the differences in algorithm performance and sensitivity analyses by running generalized 294 

linear models (GLM) per indicator with the algorithm as the explanatory variable, using the nlme 295 

package (Pinheiro et al., 2016). VarIdent variance structure was applied to account for 296 

heteroscedasticity (Zuur et al., 2010). Assumptions on normality and homogeneity of variances were 297 

verified using diagnostic plots. Pairwise differences between the algorithms were tested with Tukey 298 

post-hoc test. We performed a multivariate principal component analysis (PCA) on all food web metrics 299 

to investigate the main differences in food web structure and function between binary and link-strength 300 

food webs, and to assess whether unweighted and weighted food web approaches (calculated for the 301 

link-strength food webs) highlight different (or similar) aspects of the microbial food web in peatlands. 302 

vegan R package was used to perform the PCAs (Oksanen, 2011). Analysis of similarities (ANOSIM) was 303 

used to test statistically whether there are significant differences between binary and link-strength food 304 

web topologies, as well as weighted and unweighted link-strength food web topologies. We further 305 

calculated the network dissimilarity between PA and LS food webs using the betalink R package (Poisot 306 

et al., 2012). Differences in species feeding interactions between networks (WN) was calculated. We 307 

further calculated whether these differences originated from differences in species composition of food 308 

webs (S), differences in feeding interactions in food webs as response to species turnover (ST) or 309 

because shared species between food webs had different feeding interactions (OS).  To compare the 310 

observed and predicted feeding habits of both testate amoeba species, we used a PCAs to compare 311 
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the distribution and variability of feeding habits and ANOSIMs to test statistically whether observed 312 

and predicted feeding habits were similar.  313 

All computations and statistical analyses were performed in R (R Core Team, 2020) using custom-314 

written codes and available R packages. Several of the food web metrics including the food web graph 315 

were performed using the igraph package (Csardi et al., 2006). 316 

 317 

3. Results 318 

3.1 Predictive performance and sensitivity 319 

All ML models achieved high AUC (> 0.80), TSS (> 0.50) and Accuracy (> 0.90) values. More particularly, 320 

Tree-based (BRT, RF) and neural networks (NN) achieved higher AUC (0.85-0.96), TSS (0.60-0.93), and 321 

Accuracy (0.94-0.98) than parametric (GLM), distance-based (kNN) and probabilistic classifiers (BGLM) 322 

models (Fig. 2a, b, and c; Table S8). Among the three best ML algorithms, NN performance was 323 

comparable to BRT and RF with regard to AUC and TSS, but its overall Accuracy was lower. BRT showed 324 

a lower variability in its performance than RF with lower standard deviations in regard to AUC, TSS, and 325 

Accuracy (Fig. 2a, b, and c). Feeding link predictions were driven by the same clusters of predictive 326 

variables in most ML models (Fig. 2d), with clusters 1 (i.e. variables related to the body size of the prey), 327 

4 (i.e. Feeding types of the prey) and 7 (i.e. body size of the consumers) being the most important. As 328 

BRT overall performed better and provided robust predictions using the same clusters of predictors as 329 

other ML models, we selected BRT to create predictive microbial food webs.  330 

Rigorous sensitivity analyses further revealed that feeding link predictions from BRT were robust 331 

to the falsity of certain predictors (PVS-SA), and/or the inclusion of ‘new’ species in the taxa list (PT-SA; 332 

Fig. S3). BRT predictions remained relatively good (AUC > 0.80, TSS > 0.80, Accuracy > 0.90) when 333 

one to three predictors were wrongly referenced to species but strongly decreased when six predictors 334 

did not correctly represent species (PVS-SA: AUC < 0.80, TSS < 0.80, Accuracy < 0.90; Fig. S3a). Finally, 335 

the inclusion of up to 50% ‘new’ species in the database did not impair feeding link predictions through 336 

BRT, with AUC, TSS, and Accuracy values remaining >0.90 in all cases (PT-SA; Fig. S3b, Table S9). 337 

 338 

3.2 Inferring the microbial food web for Sphagnum-dominated peatland 339 

We inferred the feeding links and calculated link strength for the twelve peatland plots (Fig. S4). The 340 

binary metaweb (i.e. summary of all species interactions across all plots) had a total of 847 links, for a 341 
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connectance of 0.10 (Fig. 3a). The binary metaweb is also highly nested (nestedness = 0.96), indicating 342 

that specialist species feed on a subset of prey of the most generalist species. Approximately 30% of 343 

the pairwise interactions across the twelve food webs had a link strength <0.1, indicating that some 344 

link inferences are possibly weak. We, therefore, pruned the binary food webs according to link 345 

strength. We iteratively removed feeding links in each food web with a strength of >0.1 to >0.99 and 346 

found two thresholds, at 0.1 and 0.99, respectively (Fig. S5). The number of links strongly decreased 347 

when links with a strength <0.1 were dropped (-82 links on average; Fig. S5a) while the mean link 348 

strength of the food webs increased from 0.62 to 0.86 on average (Fig. S5b). The removal of links with 349 

a strength <0.1 also influenced food web properties, which diverged from food webs with all links (Fig. 350 

S5c, d). Removing links with a strength between 0.2 and 0.9 only slightly influenced the food web’s 351 

species interactions (food web ß-diversity ranged between 0.22 and 0.28; Fig. S5c), whilst keeping only 352 

very strong links (>0.99) in the food webs significantly reduced the number of links by 65% (Fig. S5a) 353 

and drastically changed food web properties (Fig. S5c, d). Hence, we refined our food webs with a link 354 

strength >0.1. 355 

 Overall, the refined food webs had 627 links and a connectance of 0.07 (Fig. 3a). Refined food 356 

webs based on link strength differed from binary food webs, especially in terms of species interactions 357 

(food web ß-diversity OS ~0.14; Fig. 3b). The PCA analysis further showed that refined link-strength 358 

food webs had higher stability (SPL) and higher mean number of predators per prey (V, sdV, and Pred) 359 

compared to binary food webs (ANOSIM, P = 0.018, R = 0.17; Fig. 3c).  360 

The inclusion of link strength in the food webs clearly highlighted the main flows within the food 361 

webs, highlighting the main predation routes in the food webs and/or the most important predators in 362 

the network (Fig. 3a, Fig. S4). The inclusion of weighted metrics in addition to unweighted metrics in a 363 

PCA analysis extended our comprehension of the food web topological structures (ANOSIM, P = 0.001, 364 

R = 0.38; Fig. 3d). Weighted link-strength food webs showed a higher connectance (C), efficiency (eff), 365 

and average connectivity (neigh) than unweighted link-strength food webs. Food chains (FCL) also 366 

lengthened in weighted LS food webs, while the importance of omnivory (OI) and intermediate species 367 

(Int) was more prevalent than in unweighted food webs (Fig. 3d). Finally, weighted link-strength food 368 

webs better defined the importance of top predators in the network as shown by higher vulnerability 369 

(V, sdV) and proportion of predators (Pred). 370 
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Our model predicted well the feeding and non-feeding interactions of the two testate amoeba 371 

species. Both species showed high sensitivity values (H. papilio = 1; N. tincta = 0.87 on average; Fig. 372 

4a) but null specificity values (specificity = 0 for both species). This shows that our model predicted 373 

non-observed feeding links for these two species. Moreover, PCAs showed that the feeding habits of 374 

the two testate amoeba species were relatively similar between microscopic observations and ML 375 

predictions, though predicted feeding habits were less variable than those observed (Fig. 4b, d). Both 376 

microscopic observations and ML predictions showed that H. papilio primarily fed on microalgae, fungi, 377 

ciliates, and testate amoebae (ANOSIM, P = 0.3, R = 0.033; Fig. 4c). On the opposite, observed feeding 378 

habits of N. tincta slightly differed from predicted one, mostly because ML predicted predation on 379 

testate amoebae and rotifers in all plots while those feeding interactions were not always observed 380 

(ANOSIM, P = 0.02, R = 0.26; Fig. 4d). Nevertheless, the overall feeding habits of N. tincta was very 381 

similar between observed and predicted conditions, with microalgae, cyanobacteria, and fungi as the 382 

main prey resources (Fig. 4e).  383 

 384 

Discussion 385 

Understanding the structure and functioning of microbial food webs is of both fundamental and applied 386 

interest considering their role in ecosystems (Geisen, 2021). This paper shows that it is possible to infer 387 

microbial feeding links with satisfying accuracy using a robust and repeatable machine learning 388 

approach based on microbial traits and taxonomy. The data required to perform this methodology are 389 

relatively simple to obtain, though more effort is required to acquire the absolute abundance data of 390 

species to extend the reconstruction of the basic food web by incorporating feeding links strength. 391 

Besides the calculation of link strength, our method can help generate baseline expectations about the 392 

microbial food web structure in ecosystems (binary food webs) and thereby overcoming laborious 393 

sampling and laboratory efforts required for traditional food web construction. In addition, we show 394 

that the use of link strength provides an estimation of the main routes in the food web, which could be 395 

relevant for testing basic microbial ecology theory (van Altena et al., 2016) and biodiversity-function 396 

relationships (Thompson et al., 2012; Geisen, 2021; Berlinches de Gea et al., 2022; Gaüzère et al., 397 

2022). In summary, this approach will help guide new empirical research aimed at developing 398 

mechanistically informed predictions about the magnitudes of microbial effects on ecosystem functions 399 

(Hunt et al., 1987; De Ruiter et al., 1993; Thompson and Townsend, 2005; Grass et al., 2020). Recent 400 
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studies demonstrated the importance of food web’s topology-based metrics and energy fluxes 401 

between species in driving ecosystem functions, while species richness had only weak effects (Kortsch 402 

et al., 2021; Jassey et al., 2023; Wu et al., 2023). These results clearly show that the assessments of 403 

microbial feeding interactions in soils using our approach will be key for understanding the 404 

consequences of soil biodiversity for the maintenance of ecosystem functions and services that are 405 

critical for ecosystem sustainability.  406 

 Using recently described approaches for inference of species interactions in ecological networks 407 

(Laigle et al., 2018a; Pichler et al., 2019; Pontarp et al., 2019; Pecuchet et al., 2020), we assessed the 408 

ability of six ML models to predict microbial feeding interactions based on taxonomy and traits. We 409 

found that the performance of the tree- and neuron-based models, namely BRT, RF, and NN, exceeded 410 

the distance- and parametric-based models (kNN, BGLM, and GLM respectively) performances for 411 

predicting microbial feeding links (Fig. 2). BRT was the best-performing ML algorithm with a low 412 

sensitivity to model and predictor stochasticity (Fig. 2). It predicted 98% of the microbial feeding links 413 

correctly, with a narrow variability between runs (Fig. 2). This is a very encouraging result and supports 414 

previous findings on the inference of trophic interactions between soil fauna (Laigle et al., 2018a). 415 

Another important point is that BRT (AUC >0.9) by far out-performed naïve random models, for 416 

example, when feeding interactions were not tied to traits (AUC of 0.8; Fig. S3). Moreover, we 417 

acknowledge that BRT can exhibit noticeable overfitting on some datasets, especially in case of 418 

overlapping classes (Vezhnevets and Barinova, 2007). However, this is never the case of RF in which 419 

collinearity decreases performance rather than leading to an overfit (Lesmeister, 2019). Because RF 420 

performed almost as good as BRT (Fig. 2, Table S8), this clearly shows that there were no 421 

multicollinearity nor overfitting problems in our model training and resulting feeding predictions. 422 

Further, these results are in line with earlier findings on species interactions in other ecosystems (e.g. 423 

Pichler et al. 2019; Pomeranz et al. 2019) and confirm the importance of the trait-matching approach 424 

to infer biotic interactions between species (Gravel et al., 2013; Olito and Fox, 2015; Laigle et al., 425 

2018a; Pichler et al., 2019; Pomeranz et al., 2019; Pecuchet et al., 2020).  426 

Our results showed that inferences of feeding interactions between microorganisms were 427 

strongly determined by traits related to body size (i.e., cluster 7; Fig. 2, Table S4). This is in agreement 428 

with the food web theory (Brose et al., 2019; Brose, 2020) and previous findings on soil fauna (Laigle 429 

et al., 2018a) and aquatic food webs (Pecuchet et al., 2020). Notable exceptions to the average ratio 430 
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of predator-to-prey body mass can exist when microorganisms cooperate to feed on larger prey (e.g. 431 

pack hunters; Geisen et al. 2015). However, the use of additional traits overcomes such potential bias 432 

in the predictions (Laigle et al., 2018a), as shown by our results. Traits related to feeding habits 433 

(nourishment) were the second most important cluster of predictors in our model training, followed by 434 

taxonomy (i.e. kingdom; Fig. 2). Indeed, the kingdom of the prey (resource) and the general diet of the 435 

consumers is a general way to approximate the backbone of microbial food webs (Geisen et al., 2016). 436 

More particularly, kingdom and diet help to identify trivially prohibited interactions (Morales-Castilla et 437 

al., 2015), such as microalgae not feeding on algivores. Based on the growing interest in applying trait-438 

based concepts to predict the microbial mechanisms driving global biogeochemical cycles (Malik et 439 

al., 2020), one could expect rapid progress in increasing the quality of microbial trait information further 440 

improving predictions of microbial feeding interactions using the trait-matching approach. 441 

By applying our method to case study data, we inferred microbial food webs with 232 to 388 442 

feeding links for peatland microbial communities of 41 to 53 taxa. Cross-validation of feeding 443 

inferences with feeding habit observations of two testate amoeba species performed in the same plots 444 

was satisfying. While our model predicted well the observed feeding and non-feeding links of the two 445 

testate amoeba species, it also predicted non-observed feeding links for these two species. For 446 

example, all inferred food webs systematically predicted feeding interactions between N. tincta and 447 

other testate amoebae, while such feeding interactions were not observed in every plot. This result is 448 

not surprising. It is extremely difficult to document all realized feeding links at a specific site even when 449 

sampling effort is high (Woodward et al., 2005). This is particularly true for microorganisms where 450 

identifying feeding interactions is always a challenge (Antoniewicz, 2020). Furthermore, the inference 451 

of predicted but not observed empirically links is encouraging as it may refine the current 452 

understanding of microbial interactions in ecosystems.   453 

Approximately 27% of the inferred links had a very low strength (<0.1), suggesting that these 454 

links were weak and unlikely given the abundance of resources and the moving speed of the 455 

consumers. This indicates that the link strength calculation is an effective approach to discriminating 456 

against links that may not occur empirically while retaining those that do. Another potential advantage 457 

of calculating link strength is the ability to identify the main routes in the food web, rather than inferring 458 

a simple binary network (Laigle et al., 2018a; Pomeranz et al., 2019; Pecuchet et al., 2020). Unweighted 459 

(binary) food webs treat all links as if they are equally important to the food web. However, it is very 460 
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common in food webs that feeding rates vary considerably in magnitude between predators and/or 461 

among prey of the same predator (Jassey et al., 2012a; Mieczan et al., 2015). Our results showed that 462 

approximately 65% of the inferred links were of weak to intermediate strength. This pattern 463 

corroborates previous findings on interaction strengths in natural food webs (Paine, 1992; McCann et 464 

al., 1998; Neutel et al., 2002) showing that interaction strengths are usually characterized by many weak 465 

interactions and a few strong ones. This is an encouraging result. Furthermore, weighted food web 466 

properties based on link strength significantly differed from unweighted food webs, especially in terms 467 

of connectance. Hence, link strength can be used to refine our predictive food webs, aiding in our 468 

ability to infer microbial food web properties. Connectance based on weighted links captures well food 469 

web stability (van Altena et al., 2016), suggesting that our method, in addition to predicting food web 470 

structures, could be used to measure food web stability in ecosystems. Estimating microbial food web 471 

stability is relevant because it is often at this level of multitrophic microbial communities that questions 472 

regarding the fragility of ecosystem structure and functioning under environmental change are most 473 

pressing (Naylor et al., 2020; Geisen, 2021).  474 

Our approach has some limitations and therefore paves the way for future research. First, the 475 

taxonomic resolution of basal species or groups (i.e. bacteria and fungi) was low and consequently 476 

influenced the number of species and links in each food web. This limitation does not impact the 477 

analysis of trophic interactions between basal species and predators, but certainly hides some 478 

important routes in the food web as well as some variability among sites. For instance, competition 479 

between fungi and bacteria shapes their community structures (Bahram et al., 2018), which in return 480 

most likely influence feeding interactions and food web structure (Morriën et al., 2017). Moreover, 481 

predation pressure on basal species is likely unequal between the various bacterial and fungal species 482 

as a result of a combination of differential prey defence strategies and/or predator traits (Gao et al., 483 

2018; Amacker et al., 2022). Some bacteria can, for instance, produce antimicrobial compounds to 484 

repel predators (Mazzola et al., 2009; Jousset and Bonkowski, 2010; Hamard et al., 2019). Therefore, 485 

increasing our knowledge of feeding interactions between basal species and their respective predators 486 

will certainly improve our understanding of the microbial food web structure and functioning. Second, 487 

feeding link inferences are somewhat limited to taxa present in the training data set. Our training, test 488 

and Case study data sets were comparable in terms of traits distribution, although significantly different 489 

(Fig. S7). It may limit feeding link predictions if the number of taxa not documented in the training set 490 
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increases drastically. However, our sensitivity analysis revealed that the inclusion of ‘new’ taxa (up to 491 

50% at the species level) does not impair feeding link inferences (Fig. S3, Table S9). This shows that 492 

our model is robust and could easily be applied in other systems. Nevertheless, continuing efforts to 493 

document microbial traits and feeding interactions is imperative for the reliable application of 494 

predictive modelling.  495 

So far, microbial food webs have been mostly considered at broad functional group levels 496 

(Mestre et al., 2022). The concepts of integrating taxonomic diversity in food webs have been 497 

overlooked (Geisen et al., 2016; Glibert and Mitra, 2022), mostly because of methodological limitations 498 

(Geisen and Bonkowski, 2018). We offer a new approach to constructing highly resolved qualitatively 499 

and quantitatively microbial food webs using species lists, taxonomy, and traits. Despite some 500 

limitations, we showed how microbial trait composition and values, and taxonomy, determine both the 501 

distribution of feeding interactions in a microbial community and identify the main routes in the food 502 

web. The growing interest in multitrophic microbial interactions in soils (Geisen et al., 2016; Amacker 503 

et al., 2022; Potapov et al., 2022) will likely improve the documentation of microbial feeding 504 

interactions and traits, and thereby the precision of future inferences of microbial food webs using our 505 

approach. The next challenge will be to relate microbial food web functioning and properties to 506 

ecosystem functioning such as carbon and nutrient cycling (Geisen, 2021). Future integrated work 507 

combining traditional methods (trait and feeding habit documentation), molecular techniques (DNA-508 

based high-throughput species identification) and food web inference in different environmental 509 

settings offer the opportunity of upscaling soil ecological studies.  510 
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Figure captions 867 

Figure 1. Conceptual diagram showing the workflow followed to infer microbial food webs.  868 

 869 

Figure 2. Identification of the best-performing ML modelling to infer microbial feeding interactions. (a) 870 

Performance of six algorithms in predicting microbial feeding links quantified as (a) Area under the 871 

receiver operating characteristic curve (AUC), (b) true skill statistic (TSS), and (c) overall accuracy. 872 

Different letters indicate significant differences (P < 0.05) between algorithms based on GLMs and 873 

Tukey-HSD post hoc test. (d) Importance of clusters of predictors based on variable importance across 874 

all models (see Fig. S2 and Table S4 for details on the clusters), (e) across all Boosted Regression Tree 875 

(BRT) models. Predictors included in the best-performing BRT model are given in (f). These predictors 876 

were used for sensitivity analyses and application to case study data. For the ML algorithm’s 877 

abbreviations see Table S3.  878 

 879 

Figure 3. Microbial feeding inferences and food web properties of Case study data. (a) Meta-webs 880 

(binary and link-strength based) summarizing the feeding interactions within the 12 microbial 881 

communities from the Forbonnet peatland. (b) Network beta-diversity indices of the pairwise 882 

comparison between the P/A food webs and those pruned according to link strength. OS = Dissimilarity 883 

between of feeding interactions established between species common to both food webs; S = 884 

dissimilarity in the species composition of the food webs; ST = dissimilarity of feeding interactions due 885 

to species turnover in food webs; WN = dissimilarity of feeding interactions between food webs. (c) 886 

Principal component analysis (PCA) comparing the food web properties of simple binary food webs 887 

(PA) and those pruned according to link strength (AB). (d) PCA comparing of unweighted (UnW) and 888 

weighted (W) food web properties for the inferred link-strength food webs.   889 

 890 

Figure 4. Cross-validation of feeding link inferences for two testate amoeba species. (a) Sensitivity 891 

values evaluating the ML model’s ability to predict true feeding links for the two testate amoeba species 892 

(Hp: Hyalosphenia papilio; Nt: Nebela tincta). (b, d) PCAs comparing the observed and predicted 893 

feeding habits of the two testate amoeba species. (c, e) Overall comparison of the general feeding 894 

habit of Hyalopshenia papilio and Nebela tincta across the 12 food webs following direct microscopic 895 

observations (Observed) and ML predictions (Predicted).  896 










