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Microbial trophic interactions are an important aspect of microbiomes in any ecosystem. They can reveal how microbial diversity modulates ecosystem functioning. However, uncovering microbial feeding interactions is a challenge because direct observation of predation is difficult with classical approaches such as behaviour and gut contents analyses. To overcome this issue, recent developments in trait-matching and machine-learning approaches are promising for successfully inferring microbial feeding links. Here, we tested the ability of six machine-learning algorithms for predicting microbial feeding links, based on species traits and taxonomy. By incorporating organism speed, size and abundance into the model predictions, we further estimated the probability of feeding links occurring. We found that the boost-regression trees predicted feeding links between microbes best. Sensitivity analyses showed that feeding predictions were robust against false feeding links and faulty predictors in the training set, and capable of predicting feeding links for empirical datasets containing up to 50% of new taxa. We cross-validated our predictions using an empirical dataset from a Sphagnumdominated peatland with direct feeding observations for two dominant testate amoeba predators. The feeding habits of the two testate amoeba species were comparable between microscopic observations and model predictions. Machine learning thus offers a means to develop robust models for studying microbial food webs in ecosystems. They offer a route to combine traditional observations with DNAbased sampling strategies to upscale soil biodiversity research along ecological gradients.

Introduction

Microorganisms are the biogeochemical engineers of life on Earth [START_REF] Falkowski | The microbial engines that drive earth's biogeochemical cycles[END_REF]. Their activity cycles major elements, such as H, C, N, O, S, and P, supporting life in higher trophic levels. In particular, microorganisms govern terrestrial carbon cycling through their role in greenhouse gas emissions [START_REF] Singh | Microorganisms and climate change: terrestrial feedbacks and mitigation options[END_REF], carbon cycling [START_REF] Schimel | Microbial control over carbon cycling in soil[END_REF][START_REF] Liang | The importance of anabolism in microbial control over soil carbon storage[END_REF], plant growth [START_REF] Guo | Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health[END_REF], and primary productivity [START_REF] Schimel | Microbial control over carbon cycling in soil[END_REF][START_REF] Jassey | Contribution of soil algae to the global carbon cycle[END_REF]. In light of current and future climate predictions, understanding and predicting the response of microorganisms-from bacteria to protists-and the ecosystem services they provide to environmental change has never been more important [START_REF] Singh | Microorganisms and climate change: terrestrial feedbacks and mitigation options[END_REF][START_REF] Jansson | Soil microbiomes and climate change[END_REF][START_REF] Naylor | Soil microbiomes under climate change and implications for carbon cycling[END_REF][START_REF] Guerra | Global hotspots for soil nature conservation[END_REF].

High-throughput sequencing and global analyses have been fundamental in revealing the broad diversity of microorganisms across terrestrial systems [START_REF] Tedersoo | Fungal biogeography. Global diversity and geography of soil fungi[END_REF][START_REF] De Vargas | Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean[END_REF][START_REF] Delgado Baquerizo | A global atlas of the dominant bacteria found in soil[END_REF][START_REF] Oliverio | The global-scale distributions of soil protists and their contributions to belowground systems[END_REF][START_REF] Singer | Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems[END_REF][START_REF] Xiong | A global overview of the trophic structure within microbiomes across ecosystems[END_REF]. In addition to the essential bacterial and fungal diversity, these studies particularly highlighted an unexpected diversity of predators [START_REF] Oliverio | The global-scale distributions of soil protists and their contributions to belowground systems[END_REF][START_REF] Petters | The soil microbial food web revisited: Predatory myxobacteria as keystone taxa?[END_REF][START_REF] Xiong | A global overview of the trophic structure within microbiomes across ecosystems[END_REF], suggesting the importance of predation in shaping microbial diversity in soils. Predation is indeed increasingly recognized as a dominant driver of bacterial and fungal community structures in soils [START_REF] Gao | Protists: Puppet Masters of the Rhizosphere Microbiome[END_REF][START_REF] Amacker | Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities[END_REF][START_REF] Pierce | Putting microbial interactions back into community contexts[END_REF], and hence, of key ecosystem processes such as nutrient and carbon cycling and plant health [START_REF] Séneca | Increased microbial expression of organic nitrogen cycling genes in long-term warmed grassland soils[END_REF][START_REF] Amacker | Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities[END_REF].

Uncovering microbial food webs to reveal the feeding interactions among organisms and characterizing their specific contribution to ecosystem processes across space and time is thus a clear next step to advance our ability to construct accurate predictive models for global carbon flux under climate change [START_REF] Geisen | The Future of (Soil) Microbiome Studies: Current Limitations, Integration, and Perspectives[END_REF]. However, our knowledge of microbial feeding interactions is mostly based on broad functional groups and/or a few model species [START_REF] Geisen | The soil food web revisited: Diverse and widespread mycophagous soil protists[END_REF][START_REF] Mestre | Disentangling food-web environment relationships: A review with guidelines[END_REF]. With the growing awareness that even closely related microbial species may differ in their feeding habits (Jassey et al., 2012a(Jassey et al., , 2013b) ) comes the question of how to identify and quantify the feeding interactions of the hundreds of species coexisting in a single gram of soil [START_REF] Pierce | Putting microbial interactions back into community contexts[END_REF]. Indeed, microbial consumers exhibit a large variety of morphologies, feeding habits, and life strategies (e.g. mixotrophy) that can influence their feeding interactions with other organisms [START_REF] Potapov | Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates[END_REF], and their impact on the food web structure and ecosystem functions (Jassey et al., 2013b[START_REF] Jassey | An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming[END_REF][START_REF] Mieczan | Stable isotope analyses revealed high seasonal dynamics in the food web structure of a peatbog[END_REF].

Understanding how microbes interact with each other within a system is challenging. Recently, co-occurrence networks have been increasingly used to explore the spatial or temporal patterns of cooccurrence between pairs of taxa, and relate shifts in their properties to ecosystem changes [START_REF] Faust | Microbial interactions: from networks to models[END_REF][START_REF] De Vries | Soil bacterial networks are less stable under drought than fungal networks[END_REF]. Although informative and very useful to extract simple patterns from complex datasets, these networks are often misused [START_REF] Goberna | Cautionary notes on the use of co-occurrence networks in soil ecology[END_REF] and cannot in any circumstance reflect trophic interactions between organisms. Because direct observation of microbial feeding interactions is extremely difficult, researchers had to use alternative solutions. For instance, they used correlation-based analyses of microbiome sequencing datasets to infer feeding interactions [START_REF] Seppey | Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling[END_REF]. Other studies used either feeding trials [START_REF] Amacker | Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities[END_REF], stable isotopic tracing in the microbial biomass (Jassey et al., 2013b;[START_REF] Mieczan | Stable isotope analyses revealed high seasonal dynamics in the food web structure of a peatbog[END_REF] and in the DNA [START_REF] Morriën | Soil networks become more connected and take up more carbon as nature restoration progresses[END_REF], metatranscriptomics [START_REF] Petters | The soil microbial food web revisited: Predatory myxobacteria as keystone taxa?[END_REF], or gut content analysis [START_REF] Lo | Synergistic interaction of gut microbiota enhances the growth of nematode through neuroendocrine signaling[END_REF]. The latter is extremely challenging for small microbes. While these analyses have been powerful hypothesisgenerators, they also have a number of limitations, including biases toward the collection of enough individuals to obtain reliable measurements (stable isotopes, gut content), detection of strong symmetric interactions (correlation-based inferences), and/or inability to distinguish species-specific interactions (stable isotopes). Moreover, with large numbers of species and/or food webs to resolve within studies, these approaches become cumbersome or unfeasible to apply. To overcome these limitations, researchers have pooled microorganisms into broad feeding groups to construct food webs. Although this is an established approach to quantifying energy flows [START_REF] Holtkamp | Modelling C and N mineralisation in soil food webs during secondary succession on ex-arable land[END_REF][START_REF] Koltz | The detritus-based microbialinvertebrate food web contributes disproportionately to carbon and nitrogen cycling in the Arctic[END_REF], lumping species together can create large errors particularly when species with divergent behaviours are combined [START_REF] Buchkowski | Stoichiometric and structural uncertainty in soil food web models[END_REF].

As an alternative, several statistical methods based on machine learning could be used to infer microbial feeding interactions [START_REF] Faisal | Inferring species interaction networks from species abundance data: A comparative evaluation of various statistical and machine learning methods[END_REF][START_REF] Desjardins-Proulx | Ecological interactions and the Netflix problem[END_REF][START_REF] Pichler | Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks[END_REF].

Previous work on fishes and invertebrates showed that predator-prey interactions can be successfully inferred using either phylogenetic relationships [START_REF] Gray | Joining the dots: An automated method for constructing food webs from compendia of published interactions[END_REF] or the trait-matching approach [START_REF] Gravel | Inferring food web structure from predator-prey body size relationships[END_REF]Laigle et al., 2018a;[START_REF] Pomeranz | Inferring predator-prey interactions in food webs[END_REF]. Inferences based on foraging traits such as body size have been shown to be successful in predicting feeding links [START_REF] Gravel | Inferring food web structure from predator-prey body size relationships[END_REF]Laigle et al., 2018b;[START_REF] Pecuchet | Novel feeding interactions amplify the impact of species redistribution on an Arctic food web[END_REF], although machine learning models trained with both traits and phylogenetic predictors should be preferred [START_REF] Pomeranz | Inferring predator-prey interactions in food webs[END_REF]. Whilst traits can serve as reliable proxies for the inference of species interactions, phylogeny and/or taxonomy can substitute unmeasured traits [START_REF] Morales-Castilla | Inferring biotic interactions from proxies[END_REF], and even recommend links that have not been observed empirically before [START_REF] Desjardins-Proulx | Ecological interactions and the Netflix problem[END_REF].

Here, we propose to use a composite machine learning model trained with both phylogenetic predictors and traits to provide a potential framework for predicting microbial feeding interactions, allowing for a greater understanding of the mechanisms underlying trophic interactions, community structure, and ecosystem functioning. As we have no a priori trait-matching and phylogenetic rules, we used a systematic assessment of the performance of different machine learning (ML) techniques to infer microbial feeding interactions. To inspect to what extent the resulting species pairs could have arisen from chance, we further cross-validated the predicted feeding interactions from the best-performing ML model using an array of sensitivity analyses. Then, we applied the best ML model to twelve previously published species lists from peatland (Jassey et al., 2012a;[START_REF] Reczuga | Predator-prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands[END_REF] to reconstruct microbial food webs from these empirical data. Following species feeding pairs inferences, we further cross-validated the predicted interactions with direct feeding observations from the case study data (Jassey et al., 2012a). Finally, we developed a new method to estimate the strength of the predicted links according to the abundance and motility of microbial species, going beyond a simple binary network prediction. This newly developed framework permits the analysis of microbial food webs in soils and other ecosystems, which will allow researchers to incorporate microbial food web analyses in their studies and better understand the relationships between microbial food web properties and ecosystem functions.

Material and methods

Training datasets preparation and description

To train our machine learning algorithms, we built an extensive meta food web documenting feeding links between 164 microbial taxa that potentially inhabit peatlands, ranging from bacteria to metazoans (Data available at https://doi.org/10.6084/m9.figshare.23669019.v1). Most of the species included in the registry are identified at the species level, with the exception of some biological entities that are described at the functional group level (e.g. bacteria and fungi). The feeding link registry was first documented from peer-reviewed publications, specialized literature and personal communication with experts, and spanned the period 1902 to 2021. In total, 733 trophic links were extracted from tables, figures, the main text, and/or supplementary materials from 40 sources (see Table S1). Of these 40 sources, 19 covered soils, 15 freshwater systems and 6 peatlands. Next, we added a list of microbial taxa regularly -but not exclusively-found in peatlands by merging the species lists from our previous work [START_REF] Jassey | Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient[END_REF][START_REF] Jassey | An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming[END_REF][START_REF] Reczuga | Predator-prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands[END_REF][START_REF] Sytiuk | Predicting the structure and functions of peatland microbial communities from Sphagnum phylogeny, anatomical and morphological traits and metabolites[END_REF]. Since not all trophic interactions were readily available for these peatland taxa, we retrieved the missing links from the published generic links using the WebBuilder function in R [START_REF] Gray | Joining the dots: An automated method for constructing food webs from compendia of published interactions[END_REF]. The outputs were thoroughly checked and, where needed, corrected based on literature, personal observation, and expert opinion (see Table S1 for details). The resulting meta food web comprised 164 taxa, including cyanobacteria (10), microalgae (35), flagellates (12), ciliates (26), testate amoebae (59), rotifers (20), and nematodes (1), and 27,060 rows documenting 3,590 positive links (feeding) and 23,470 negative links (non-feeding). Each resource-consumer pair was further associated with information on 17 potential feeding link predictors for both the consumer and resource (34 predictors in total for each resourceconsumer pair; [START_REF] Pecuchet | Novel feeding interactions amplify the impact of species redistribution on an Arctic food web[END_REF]. These predictors included six taxonomic variables (Species, Genus, Family, Order, Phylum, and Kingdom) and eleven traits (Organism type, Nourishment, Feeding group, Morphology, Lifestyle, Locomotion, Movement, Feeding strategy, Body length, Body width, and Biovolume; see Table S2 for details).

Predicting microbial feeding links using machine learning algorithms

We compared six machine learning algorithms (ML) for predicting microbial feeding links based on taxonomic and trait information (Fig. 1; Table S3): Random Forest (RF), Boosted regression trees (BRT), k-nearest-neighbor (kNN), neural networks (NN), Generalized linear model (GLM), and Bayesian GLM (BGLM). These algorithms were selected because they (1) are suitable for classification tasks, (2) are known to perform well in predicting species interactions, and (3) represent various classes of ML algorithms (Table S3). We partitioned our a priori meta food web into a Training set (70% of the data, used to train the models) and a Test set (30% of the data, used to test model performance) in which the ratios between feeding and non-feeding links was conserved. We iteratively varied the set of predictors across ten runs for each ML algorithm and evaluated model strength using sensitivity analyses (see below). This approach allowed us to select the best-performing model that had high predictive strength, and optimize predictor selection while taking into account issues related to multicollinearity. For each run, we resampled the predictors from 12 clusters of strongly covarying predictors. Quantitative and qualitative predictors were hierarchically clustered using the ClustOfVar package in R [START_REF] Chavent | ClustOfVar: An R package for the clustering of variables[END_REF]. As we did not have a specific number of clusters defined a priori to use as parameters for the clustering procedure, we tested a range of cluster numbers (that is 5 to 20) into the ClustOfVar function [START_REF] Van Den Hoogen | Soil nematode abundance and functional group composition at a global scale[END_REF]. Inspection of the cluster dendrograms revealed that the predictor variables were most homogeneous grouped in12 clusters (Fig. S1, Table S4). In summary, each run of the six ML algorithm was trained with twelve predictors randomly selected across the 36 predictors grouped into twelve clusters (Table S4). The relevance of the predictors for each run was assessed using the varImp function in the caret R package (scaling 0-100) [START_REF] Kuhn | Building predictive models in R using the caret package[END_REF].

Since varImp is model dependent and our approach includes a randomized set of predictors for each run, we ranked predictor importance for each run and each trained model from 1 (most important) to 12 (less important) to compare model outputs.

To assess and compare the ML model's predictive performance, we calculated three performance indices using the Test set. The area under the receiver operating characteristic curve (AUC, range 0 to 1) was used as an indication of the model's ability to distinguish between feeding and non-feeding links regardless of the classification method (AUC ≥ 0.5 has a ≥ 50% chance of being correct) [START_REF] Manel | Evaluating presence-absence models in ecology: the need to account for prevalence[END_REF]. The proportion of correct predictions was used as a measure of Accuracy, while the true skill statistic (TSS, range -1 to +1) normalizes the overall accuracy of the model for the accuracy occurring by chance [START_REF] Allouche | Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)[END_REF]. A TSS of -1 is expected if predictions are random, 1 if predictions are perfect, and 0 if they are the opposite of observations. We considered the performance of an algorithm to be good when AUC, Accuracy, and TSS values were close to one. Related indices, including the receiver operating characteristic (ROC), sensitivity (rate of true positives among all positive predictions), and specificity (rate of true negatives among all negative predictions), were also calculated and used for selecting the best ML algorithm. Machine learning analyses were performed in R (R Core Team, 2020) using the caret suite packages [START_REF] Kuhn | Building predictive models in R using the caret package[END_REF], and custom R codes.

Sensitivity analyses of microbial feeding link predictions

Following ML model selection, we subjected the 'best-performing model among the ten runs of the best-performing ML algorithm to further sensitivity analyses in order to inspect the quality of the predictions and their sensitivity to false predictors and poor species taxonomy (Fig. 1) [START_REF] Jassey | Contribution of soil algae to the global carbon cycle[END_REF]. In other words, the 'best-performing model' was our best identified ML algorithm trained with the twelve best predictors identified from the ten runs with randomized sets of predictors of that particular ML algorithm.

The first sensitivity analysis (i.e. k-fold 'Predictor Variable Shuffling (PVS) SA') tested the influence of poorly identified predictors on feeding link predictions, a plausible situation especially when working on microbial traits [START_REF] Escalas | Microbial functional diversity: From concepts to applications[END_REF]. To do so, we iteratively and randomly shuffled 1, 3, and 6 predictors to break any structure in the relationship between feeding links and some taxonomic and/or trait predictors before training our best-performing ML model. PVS SA was run 10 times (k = 10) for each variable shuffling condition (a total of 30 runs) to cover as many as possible combinations of predictor variables shuffling.

The second sensitivity analysis covered the influence of species that are new or poorly characterized at the taxonomic level (i.e. k-fold 'Poorly Taxonomic' (PT) SA). For instance, such an effect is likely to happen if the empirical dataset for which to predict feeding links contains species that are 'new' and not represented in the Training set used to train the ML model. To simulate this potential bias, we randomly selected 1%, 2.5%, and 5% of the Training set in which 75% of the taxa (resource or consumer) at the species level were set as 'Unknown' before training the best-performing ML model. Among this 75% of species, 50% of them were further set as 'Unknown' at the genus level, and 25% at the family level. Each condition (1%, 2.5% and 5% of the Training set) was run 10 times (k = 10; in total 30 runs). One run with the conditions 10%, 25% and 50% was further computed to identify at which percentage our best ML model is no longer trustworthy.

For each sensitivity analysis, we assessed the predictive performance of the models for each run using the Test set and generated sensitivity statistics, namely Accuracy, AUC, and TSS. All sensitivity analyses were performed in R using the caret suite packages and custom R codes.

2.4 Case study -Inferring microbial feeding links in a Sphagnum-dominated peatland As a case study for inferring microbial feeding links in ecosystems, we used a well-studied empirical dataset from a Sphagnum-dominated peatland situated in the Jura Mountains, France (The Forbonnet peatland, 46°49'35" N, 6°10'20" E; Jassey et al. 2011aJassey et al. , 2012bJassey et al. , 2013a)). The dataset comprises twelve microbial species lists, including microbial abundances, from twelve independent plots spread across the peatland (more details can be found in [START_REF] Jassey | Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient[END_REF]. Because of the wet conditions, peat mosses support diverse microbial communities [START_REF] Gilbert | Chapter 13 Microbial diversity in Sphagnum peatlands[END_REF] including bacteria, cyanobacteria, fungi, protists and metazoan covering diverse feeding behaviours (saprotrophy, autotrophy, mixotrophy and heterotrophy). In summary, the case study dataset contained a total of 108 species: bacteria, (1 group level), fungi (2 groups level), microalgae (18 taxa), cyanobacteria (10 taxa), flagellates (9 taxa), ciliates (24 taxa), testate amoebae (28 taxa), rotifers (11 taxa), and nematode (1 taxon). Of these 108 species, 15 were not listed in the Training set used to train the ML models. Among these 15 taxa, 50% were 'new' at the genus level when referring to the Training set, and 25% of them were 'new' at the family level. These new taxa were classified as 'Unknown' to allow the predictions with the selected ML model, while such bias in predictions has been tested beforehand in sensitivity analyses (see above). The same traits were available in the case study data as in the Training set used to train the ML models. More details about the methods used to identify microbial species and quantify their abundance and morphological traits can be found in the Supplementary method.

We used the best-performing ML model to predict the binary food web from each species list (i.e. presence/absence of feeding links between species and/or generic group, hereafter 'binary food web'). Next, we accounted for population dynamics that could lead to significant deviations from the binary food web. For example, the abundance of a consumer may greatly exceed that of its potential resource, making the occurrence of that feeding link unlikely. We took such potential bias into account using an abductive rule and abundance data of each taxon. Every predicted feeding link where the abundance of the predator was higher than the abundance of the prey was considered unlikely and removed. The pruned binary food webs were further quantified, with links strengths expressed as the probability of a consumer capturing a resource based on its swimming speed and size, and the abundance of the prey (hereafter 'link-strength food web'). All details about link strength calculations are given in the supplementary method and Fig. S6 and Table S6.

2.5 Validating feeding habit predictions from the case study data We cross-validated the feeding link predictions from ML in the case study data using the feeding habit data from two testate amoebae species-Hyalosphenia papilio and Nebela tincta. We used these two species in particular because we had detailed information of their feeding habit in the same plots at the same sampling date (see Jassey et al. 2012 for details). These two focal species were chosen because they are dominant microbial predators in peatlands and their high abundance allowed robust and reliable feeding habit quantification. 1,240 individuals have been observed to establish feeding habits (see details Jassey et al., 2012), thus giving reliable feeding habits.

To validate the feeding predictions for these two species with their respective feeding habits, we used two approaches. First, we calculated sensitivity and specificity indices; two metrics based on a confusion matrix which evaluate model performance to properly assign trophic links. Sensitivity measures the capacity of the model to predict observed feeding links well (trues positives), while specificity measures the capacity of the model to predict non-observed feeding links (false positives).

Second, we reconstructed the diet of the two focal testate amoebae species quantitatively using the predicted feeding links. To do so, we made the comparison based on the predicted link-strength food web as our binary food webs cannot count the number of times a predator feeds on a prey item. For each focal species and in each food web, we extracted the feeding links predicted by the ML model and calculated the proportion of link strength by main prey type (i.e. microalgae, cyanobacteria, ciliates, …). For the observed feeding links, we calculated link strength, as explained above, as well as the proportion of link strength by main prey type. Finally, we compared the predicted link strength proportion per prey type to those observed. We removed the feeding link towards bacteria beforehand as they could not be directly observed under the microscope.

Food web metrics

To assess the structure of the predicted food webs and quantify the benefits of link strength, we measured seven unweighted, topology-based, food web metrics to characterize the structure of the food webs, including the number of species (S), connectance (C), generality (G), vulnerability (V), shortest path length (SPL), short-weighted trophic level (TL), the degree of omnivory (OI), averaged food chain length (FCL), and the proportion of basal (Ba), intermediate (Int) and top species (Pred), as well as vulnerability SD and generality SD [START_REF] Kortsch | Food-web structure varies along environmental gradients in a high-latitude marine ecosystem[END_REF][START_REF] Kortsch | Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning[END_REF]. The selected food web metrics were chosen because they cover diverse and ecologically relevant aspects of the food web structure [START_REF] Ledger | Drought alters the structure and functioning of complex food webs[END_REF][START_REF] Kortsch | Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists[END_REF][START_REF] Kortsch | Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning[END_REF] (Table S7). In particular, they relate to the vertical (trophic level, omnivory) and the horizontal (generality, vulnerability) dimensions of food webs and to their complexity (species richness, connectance). Although these unweighted metrics can unveil the topological structure of the food webs, they are also limited by the fact that in real food webs the links may have different capacities or intensities or flows of information or strengths [START_REF] Barrat | The architecture of complex weighted networks[END_REF].

Therefore, we calculated weighted metrics using link strength, namely the average strength of links (st), the average strength distribution among links (ps), the weighted shortest path length (dist_w), the transitivity (trans), the average strength of each node's connection (neigh), the modularity (mod), the sum of link weights (flow), and the global efficiency (eff) (Table S7).

Statistical analyses

We tested the differences in algorithm performance and sensitivity analyses by running generalized linear models (GLM) per indicator with the algorithm as the explanatory variable, using the nlme package [START_REF] Pinheiro | The dissimilarity of species interaction networks[END_REF]. VarIdent variance structure was applied to account for heteroscedasticity [START_REF] Zuur | Mixed Effects Models and Extensions in Ecology with R[END_REF]. Assumptions on normality and homogeneity of variances were verified using diagnostic plots. Pairwise differences between the algorithms were tested with Tukey post-hoc test. We performed a multivariate principal component analysis (PCA) on all food web metrics to investigate the main differences in food web structure and function between binary and link-strength food webs, and to assess whether unweighted and weighted food web approaches (calculated for the link-strength food webs) highlight different (or similar) aspects of the microbial food web in peatlands.

vegan R package was used to perform the PCAs [START_REF] Oksanen | Species traits and abundances predict metrics of plant-pollinator network structure, but not pairwise interactions[END_REF]. Analysis of similarities (ANOSIM) was used to test statistically whether there are significant differences between binary and link-strength food web topologies, as well as weighted and unweighted link-strength food web topologies. We further calculated the network dissimilarity between PA and LS food webs using the betalink R package [START_REF] Pinheiro | The dissimilarity of species interaction networks[END_REF]. Differences in species feeding interactions between networks (WN) was calculated. We further calculated whether these differences originated from differences in species composition of food webs (S), differences in feeding interactions in food webs as response to species turnover (ST) or because shared species between food webs had different feeding interactions (OS). To compare the observed and predicted feeding habits of both testate amoeba species, we used a PCAs to compare the distribution and variability of feeding habits and ANOSIMs to test statistically whether observed and predicted feeding habits were similar.

All computations and statistical analyses were performed in R (R Core Team, 2020) using customwritten codes and available R packages. Several of the food web metrics including the food web graph were performed using the igraph package [START_REF] Csardi | The igraph software package for complex network research[END_REF]).

Results

Predictive performance and sensitivity

All ML models achieved high AUC (> 0.80), TSS (> 0.50) and Accuracy (> 0.90) values. More particularly, Tree-based (BRT, RF) and neural networks (NN) achieved higher AUC (0.85-0.96), TSS (0.60-0.93), and Accuracy (0.94-0.98) than parametric (GLM), distance-based (kNN) and probabilistic classifiers (BGLM) models (Fig. 2a, b, andc; Table S8). Among the three best ML algorithms, NN performance was comparable to BRT and RF with regard to AUC and TSS, but its overall Accuracy was lower. BRT showed a lower variability in its performance than RF with lower standard deviations in regard to AUC, TSS, and Accuracy (Fig. 2a, b, andc). Feeding link predictions were driven by the same clusters of predictive variables in most ML models (Fig. 2d), with clusters 1 (i.e. variables related to the body size of the prey), 4 (i.e. Feeding types of the prey) and 7 (i.e. body size of the consumers) being the most important. As BRT overall performed better and provided robust predictions using the same clusters of predictors as other ML models, we selected BRT to create predictive microbial food webs.

Rigorous sensitivity analyses further revealed that feeding link predictions from BRT were robust to the falsity of certain predictors (PVS-SA), and/or the inclusion of 'new' species in the taxa list (PT-SA; Fig. S3). BRT predictions remained relatively good (AUC > 0.80, TSS > 0.80, Accuracy > 0.90) when one to three predictors were wrongly referenced to species but strongly decreased when six predictors did not correctly represent species (PVS-SA: AUC < 0.80, TSS < 0.80, Accuracy < 0.90; Fig. S3a). Finally, the inclusion of up to 50% 'new' species in the database did not impair feeding link predictions through BRT, with AUC, TSS, and Accuracy values remaining >0.90 in all cases (PT-SA; Fig. S3b, Table S9).

Inferring the microbial food web for Sphagnum-dominated peatland

We inferred the feeding links and calculated link strength for the twelve peatland plots (Fig. S4). The binary metaweb (i.e. summary of all species interactions across all plots) had a total of 847 links, for a connectance of 0.10 (Fig. 3a). The binary metaweb is also highly nested (nestedness = 0.96), indicating that specialist species feed on a subset of prey of the most generalist species. Approximately 30% of the pairwise interactions across the twelve food webs had a link strength <0.1, indicating that some link inferences are possibly weak. We, therefore, pruned the binary food webs according to link strength. We iteratively removed feeding links in each food web with a strength of >0.1 to >0.99 and found two thresholds, at 0.1 and 0.99, respectively (Fig. S5). The number of links strongly decreased when links with a strength <0.1 were dropped (-82 links on average; Fig. S5a) while the mean link strength of the food webs increased from 0.62 to 0.86 on average (Fig. S5b). The removal of links with a strength <0.1 also influenced food web properties, which diverged from food webs with all links (Fig. S5c,d). Removing links with a strength between 0.2 and 0.9 only slightly influenced the food web's species interactions (food web ß-diversity ranged between 0.22 and 0.28; Fig. S5c), whilst keeping only very strong links (>0.99) in the food webs significantly reduced the number of links by 65% (Fig. S5a) and drastically changed food web properties (Fig. S5c,d). Hence, we refined our food webs with a link strength >0.1.

Overall, the refined food webs had 627 links and a connectance of 0.07 (Fig. 3a). Refined food webs based on link strength differed from binary food webs, especially in terms of species interactions (food web ß-diversity OS ~0.14; Fig. 3b). The PCA analysis further showed that refined link-strength food webs had higher stability (SPL) and higher mean number of predators per prey (V, sdV, and Pred) compared to binary food webs (ANOSIM, P = 0.018, R = 0.17; Fig. 3c).

The inclusion of link strength in the food webs clearly highlighted the main flows within the food webs, highlighting the main predation routes in the food webs and/or the most important predators in the network (Fig. 3a, Fig. S4). The inclusion of weighted metrics in addition to unweighted metrics in a PCA analysis extended our comprehension of the food web topological structures (ANOSIM, P = 0.001, R = 0.38; Fig. 3d). Weighted link-strength food webs showed a higher connectance (C), efficiency (eff), and average connectivity (neigh) than unweighted link-strength food webs. Food chains (FCL) also lengthened in weighted LS food webs, while the importance of omnivory (OI) and intermediate species (Int) was more prevalent than in unweighted food webs (Fig. 3d). Finally, weighted link-strength food webs better defined the importance of top predators in the network as shown by higher vulnerability (V, sdV) and proportion of predators (Pred). Our model predicted well the feeding and non-feeding interactions of the two testate amoeba species. Both species showed high sensitivity values (H. papilio = 1; N. tincta = 0.87 on average; Fig. 4a) but null specificity values (specificity = 0 for both species). This shows that our model predicted non-observed feeding links for these two species. Moreover, PCAs showed that the feeding habits of the two testate amoeba species were relatively similar between microscopic observations and ML predictions, though predicted feeding habits were less variable than those observed (Fig. 4b,d). Both microscopic observations and ML predictions showed that H. papilio primarily fed on microalgae, fungi, ciliates, and testate amoebae (ANOSIM, P = 0.3, R = 0.033; Fig. 4c). On the opposite, observed feeding habits of N. tincta slightly differed from predicted one, mostly because ML predicted predation on testate amoebae and rotifers in all plots while those feeding interactions were not always observed (ANOSIM, P = 0.02, R = 0.26; Fig. 4d). Nevertheless, the overall feeding habits of N. tincta was very similar between observed and predicted conditions, with microalgae, cyanobacteria, and fungi as the main prey resources (Fig. 4e).

Discussion

Understanding the structure and functioning of microbial food webs is of both fundamental and applied interest considering their role in ecosystems [START_REF] Geisen | The Future of (Soil) Microbiome Studies: Current Limitations, Integration, and Perspectives[END_REF]. This paper shows that it is possible to infer microbial feeding links with satisfying accuracy using a robust and repeatable machine learning approach based on microbial traits and taxonomy. The data required to perform this methodology are relatively simple to obtain, though more effort is required to acquire the absolute abundance data of species to extend the reconstruction of the basic food web by incorporating feeding links strength.

Besides the calculation of link strength, our method can help generate baseline expectations about the microbial food web structure in ecosystems (binary food webs) and thereby overcoming laborious sampling and laboratory efforts required for traditional food web construction. In addition, we show that the use of link strength provides an estimation of the main routes in the food web, which could be relevant for testing basic microbial ecology theory [START_REF] Van Altena | Food web stability and weighted connectance: the complexity-stability debate revisited[END_REF] and biodiversity-function relationships [START_REF] Thompson | Food webs: reconciling the structure and function of biodiversity[END_REF][START_REF] Geisen | The Future of (Soil) Microbiome Studies: Current Limitations, Integration, and Perspectives[END_REF][START_REF] Berlinches De Gea | Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning[END_REF][START_REF] Gaüzère | The diversity of biotic interactions complements functional and phylogenetic facets of biodiversity[END_REF]. In summary, this approach will help guide new empirical research aimed at developing mechanistically informed predictions about the magnitudes of microbial effects on ecosystem functions [START_REF] Hunt | The detrital food web in a shortgrass prairie[END_REF][START_REF] De Ruiter | Calculation of nitrogen mineralization in soil food webs[END_REF][START_REF] Thompson | Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams[END_REF][START_REF] Grass | Trade-offs between multifunctionality and profit in tropical smallholder landscapes[END_REF]. Recent studies demonstrated the importance of food web's topology-based metrics and energy fluxes between species in driving ecosystem functions, while species richness had only weak effects [START_REF] Kortsch | Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning[END_REF][START_REF] Jassey | Food Web Structure and Energy Flux Dynamics, But Not Taxonomic Richness, Influence Microbial Ecosystem Functions in A Sphagnum-Dominated Peatland[END_REF][START_REF] Wu | Why are biodiversity-ecosystem functioning relationships so elusive? Trophic interactions may amplify ecosystem function variability[END_REF]. These results clearly show that the assessments of microbial feeding interactions in soils using our approach will be key for understanding the consequences of soil biodiversity for the maintenance of ecosystem functions and services that are critical for ecosystem sustainability.

Using recently described approaches for inference of species interactions in ecological networks (Laigle et al., 2018a;[START_REF] Pichler | Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks[END_REF][START_REF] Pontarp | Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC)[END_REF][START_REF] Pecuchet | Novel feeding interactions amplify the impact of species redistribution on an Arctic food web[END_REF], we assessed the ability of six ML models to predict microbial feeding interactions based on taxonomy and traits. We found that the performance of the tree-and neuron-based models, namely BRT, RF, and NN, exceeded the distance-and parametric-based models (kNN, BGLM, and GLM respectively) performances for predicting microbial feeding links (Fig. 2). BRT was the best-performing ML algorithm with a low sensitivity to model and predictor stochasticity (Fig. 2). It predicted 98% of the microbial feeding links correctly, with a narrow variability between runs (Fig. 2). This is a very encouraging result and supports previous findings on the inference of trophic interactions between soil fauna (Laigle et al., 2018a).

Another important point is that BRT (AUC >0.9) by far out-performed naïve random models, for example, when feeding interactions were not tied to traits (AUC of 0.8; Fig. S3). Moreover, we acknowledge that BRT can exhibit noticeable overfitting on some datasets, especially in case of overlapping classes [START_REF] Vezhnevets | Avoiding boosting overfitting by removing confusing samples[END_REF]. However, this is never the case of RF in which collinearity decreases performance rather than leading to an overfit [START_REF] Lesmeister | Mastering machine learning with R : advanced machine learning techniques for building smart applications with R 3[END_REF]. Because RF performed almost as good as BRT (Fig. 2, Table S8), this clearly shows that there were no multicollinearity nor overfitting problems in our model training and resulting feeding predictions.

Further, these results are in line with earlier findings on species interactions in other ecosystems (e.g. [START_REF] Pichler | Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks[END_REF][START_REF] Pomeranz | Inferring predator-prey interactions in food webs[END_REF] and confirm the importance of the trait-matching approach to infer biotic interactions between species [START_REF] Gravel | Inferring food web structure from predator-prey body size relationships[END_REF][START_REF] Oksanen | Species traits and abundances predict metrics of plant-pollinator network structure, but not pairwise interactions[END_REF]Laigle et al., 2018a;[START_REF] Pichler | Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks[END_REF][START_REF] Pomeranz | Inferring predator-prey interactions in food webs[END_REF][START_REF] Pecuchet | Novel feeding interactions amplify the impact of species redistribution on an Arctic food web[END_REF].

Our results showed that inferences of feeding interactions between microorganisms were strongly determined by traits related to body size (i.e., cluster 7; Fig. 2, Table S4). This is in agreement with the food web theory [START_REF] Brose | Predator traits determine food-web architecture across ecosystems[END_REF][START_REF] Brose | Trait-based models of complex ecological networks[END_REF] and previous findings on soil fauna (Laigle et al., 2018a) and aquatic food webs [START_REF] Pecuchet | Novel feeding interactions amplify the impact of species redistribution on an Arctic food web[END_REF]. Notable exceptions to the average ratio of predator-to-prey body mass can exist when microorganisms cooperate to feed on larger prey (e.g. pack hunters; [START_REF] Geisen | Pack hunting by a common soil amoeba on nematodes[END_REF]. However, the use of additional traits overcomes such potential bias in the predictions (Laigle et al., 2018a), as shown by our results. Traits related to feeding habits (nourishment) were the second most important cluster of predictors in our model training, followed by taxonomy (i.e. kingdom; Fig. 2). Indeed, the kingdom of the prey (resource) and the general diet of the consumers is a general way to approximate the backbone of microbial food webs [START_REF] Geisen | The soil food web revisited: Diverse and widespread mycophagous soil protists[END_REF].

More particularly, kingdom and diet help to identify trivially prohibited interactions [START_REF] Morales-Castilla | Inferring biotic interactions from proxies[END_REF], such as microalgae not feeding on algivores. Based on the growing interest in applying traitbased concepts to predict the microbial mechanisms driving global biogeochemical cycles [START_REF] Malik | Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[END_REF], one could expect rapid progress in increasing the quality of microbial trait information further improving predictions of microbial feeding interactions using the trait-matching approach.

By applying our method to case study data, we inferred microbial food webs with 232 to 388 feeding links for peatland microbial communities of 41 to 53 taxa. Cross-validation of feeding inferences with feeding habit observations of two testate amoeba species performed in the same plots was satisfying. While our model predicted well the observed feeding and non-feeding links of the two testate amoeba species, it also predicted non-observed feeding links for these two species. For example, all inferred food webs systematically predicted feeding interactions between N. tincta and other testate amoebae, while such feeding interactions were not observed in every plot. This result is not surprising. It is extremely difficult to document all realized feeding links at a specific site even when sampling effort is high [START_REF] Woodward | Quantification and Resolution of a Complex, Size-Structured Food Web[END_REF]. This is particularly true for microorganisms where identifying feeding interactions is always a challenge [START_REF] Antoniewicz | A guide to deciphering microbial interactions and metabolic fluxes in microbiome communities[END_REF]. Furthermore, the inference of predicted but not observed empirically links is encouraging as it may refine the current understanding of microbial interactions in ecosystems.

Approximately 27% of the inferred links had a very low strength (<0.1), suggesting that these links were weak and unlikely given the abundance of resources and the moving speed of the consumers. This indicates that the link strength calculation is an effective approach to discriminating against links that may not occur empirically while retaining those that do. Another potential advantage of calculating link strength is the ability to identify the main routes in the food web, rather than inferring a simple binary network (Laigle et al., 2018a;[START_REF] Pomeranz | Inferring predator-prey interactions in food webs[END_REF][START_REF] Pecuchet | Novel feeding interactions amplify the impact of species redistribution on an Arctic food web[END_REF]. Unweighted (binary) food webs treat all links as if they are equally important to the food web. However, it is very common in food webs that feeding rates vary considerably in magnitude between predators and/or among prey of the same predator (Jassey et al., 2012a;[START_REF] Mieczan | Stable isotope analyses revealed high seasonal dynamics in the food web structure of a peatbog[END_REF]. Our results showed that approximately 65% of the inferred links were of weak to intermediate strength. This pattern corroborates previous findings on interaction strengths in natural food webs [START_REF] Paine | Food-web analysis through field measurement of per capita interaction strength[END_REF][START_REF] Mccann | Weak trophic interactions and the balance of nature[END_REF][START_REF] Neutel | Stability in real food webs: Weak links in long loops[END_REF] showing that interaction strengths are usually characterized by many weak interactions and a few strong ones. This is an encouraging result. Furthermore, weighted food web properties based on link strength significantly differed from unweighted food webs, especially in terms of connectance. Hence, link strength can be used to refine our predictive food webs, aiding in our ability to infer microbial food web properties. Connectance based on weighted links captures well food web stability [START_REF] Van Altena | Food web stability and weighted connectance: the complexity-stability debate revisited[END_REF], suggesting that our method, in addition to predicting food web structures, could be used to measure food web stability in ecosystems. Estimating microbial food web stability is relevant because it is often at this level of multitrophic microbial communities that questions regarding the fragility of ecosystem structure and functioning under environmental change are most pressing [START_REF] Naylor | Soil microbiomes under climate change and implications for carbon cycling[END_REF][START_REF] Geisen | The Future of (Soil) Microbiome Studies: Current Limitations, Integration, and Perspectives[END_REF].

Our approach has some limitations and therefore paves the way for future research. First, the taxonomic resolution of basal species or groups (i.e. bacteria and fungi) was low and consequently influenced the number of species and links in each food web. This limitation does not impact the analysis of trophic interactions between basal species and predators, but certainly hides some important routes in the food web as well as some variability among sites. For instance, competition between fungi and bacteria shapes their community structures [START_REF] Bahram | Structure and function of the global topsoil microbiome[END_REF], which in return most likely influence feeding interactions and food web structure [START_REF] Morriën | Soil networks become more connected and take up more carbon as nature restoration progresses[END_REF]. Moreover, predation pressure on basal species is likely unequal between the various bacterial and fungal species as a result of a combination of differential prey defence strategies and/or predator traits [START_REF] Gao | Protists: Puppet Masters of the Rhizosphere Microbiome[END_REF][START_REF] Amacker | Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities[END_REF]. Some bacteria can, for instance, produce antimicrobial compounds to repel predators [START_REF] Mazzola | Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens[END_REF][START_REF] Jousset | The model predator Acanthamoeba castellanii induces the production of 2,4, DAPG by the biocontrol strain Pseudomonas fluorescens Q2-87[END_REF][START_REF] Hamard | Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time[END_REF]. Therefore, increasing our knowledge of feeding interactions between basal species and their respective predators will certainly improve our understanding of the microbial food web structure and functioning. Second, feeding link inferences are somewhat limited to taxa present in the training data set. Our training, test and Case study data sets were comparable in terms of traits distribution, although significantly different (Fig. S7). It may limit feeding link predictions if the number of taxa not documented in the training set increases drastically. However, our sensitivity analysis revealed that the inclusion of 'new' taxa (up to 50% at the species level) does not impair feeding link inferences (Fig. S3, Table S9). This shows that our model is robust and could easily be applied in other systems. Nevertheless, continuing efforts to document microbial traits and feeding interactions is imperative for the reliable application of predictive modelling.

So far, microbial food webs have been mostly considered at broad functional group levels [START_REF] Mestre | Disentangling food-web environment relationships: A review with guidelines[END_REF]. The concepts of integrating taxonomic diversity in food webs have been overlooked [START_REF] Geisen | The soil food web revisited: Diverse and widespread mycophagous soil protists[END_REF][START_REF] Glibert | From webs, loops, shunts, and pumps to microbial multitasking: Evolving concepts of marine microbial ecology, the mixoplankton paradigm, and implications for a future ocean[END_REF], mostly because of methodological limitations [START_REF] Geisen | Methodological advances to study the diversity of soil protists and their functioning in soil food webs[END_REF]. We offer a new approach to constructing highly resolved qualitatively and quantitatively microbial food webs using species lists, taxonomy, and traits. Despite some limitations, we showed how microbial trait composition and values, and taxonomy, determine both the distribution of feeding interactions in a microbial community and identify the main routes in the food web. The growing interest in multitrophic microbial interactions in soils [START_REF] Geisen | The soil food web revisited: Diverse and widespread mycophagous soil protists[END_REF][START_REF] Amacker | Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities[END_REF][START_REF] Potapov | Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates[END_REF] will likely improve the documentation of microbial feeding interactions and traits, and thereby the precision of future inferences of microbial food webs using our approach. The next challenge will be to relate microbial food web functioning and properties to ecosystem functioning such as carbon and nutrient cycling [START_REF] Geisen | The Future of (Soil) Microbiome Studies: Current Limitations, Integration, and Perspectives[END_REF]. Future integrated work combining traditional methods (trait and feeding habit documentation), molecular techniques (DNAbased high-throughput species identification) and food web inference in different environmental settings offer the opportunity of upscaling soil ecological studies. S4 for details on the clusters), (e) across all Boosted Regression Tree (BRT) models. Predictors included in the best-performing BRT model are given in (f). These predictors were used for sensitivity analyses and application to case study data. For the ML algorithm's abbreviations see Table S3. 

Figure captions

Figure 1 .

 1 Figure 1. Conceptual diagram showing the workflow followed to infer microbial food webs.

Figure 2 .

 2 Figure 2. Identification of the best-performing ML modelling to infer microbial feeding interactions. (a) Performance of six algorithms in predicting microbial feeding links quantified as (a) Area under the receiver operating characteristic curve (AUC), (b) true skill statistic (TSS), and (c) overall accuracy. Different letters indicate significant differences (P < 0.05) between algorithms based on GLMs and Tukey-HSD post hoc test. (d) Importance of clusters of predictors based on variable importance across all models (see Fig. S2 and TableS4for details on the clusters), (e) across all Boosted Regression Tree
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 3 Figure 3. Microbial feeding inferences and food web properties of Case study data. (a) Meta-webs (binary and link-strength based) summarizing the feeding interactions within the 12 microbial communities from the Forbonnet peatland. (b) Network beta-diversity indices of the pairwise comparison between the P/A food webs and those pruned according to link strength. OS = Dissimilarity between of feeding interactions established between species common to both food webs; S = dissimilarity in the species composition of the food webs; ST = dissimilarity of feeding interactions due to species turnover in food webs; WN = dissimilarity of feeding interactions between food webs. (c) Principal component analysis (PCA) comparing the food web properties of simple binary food webs (PA) and those pruned according to link strength (AB). (d) PCA comparing of unweighted (UnW) and weighted (W) food web properties for the inferred link-strength food webs.

Figure 4 .

 4 Figure 4. Cross-validation of feeding link inferences for two testate amoeba species. (a) Sensitivity values evaluating the ML model's ability to predict true feeding links for the two testate amoeba species (Hp: Hyalosphenia papilio; Nt: Nebela tincta). (b, d) PCAs comparing the observed and predicted feeding habits of the two testate amoeba species. (c, e) Overall comparison of the general feeding habit of Hyalopshenia papilio and Nebela tincta across the 12 food webs following direct microscopic observations (Observed) and ML predictions (Predicted).
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