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The recent detection of the singular diamagnetism of  Dirac electrons in a single graphene layer paved a  
new way of probing 2D quantum materials through the measurement of equilibrium orbital currents which 
cannot be accessed in usual transport experiments. Among the theoretical predictions is an intriguing orbital 
paramagnetism at saddle points of the dispersion relation. Here we present magnetisation measurements in 
graphene monolayers aligned on hexagonal boron nitride (hBN) crystals.  Beside the sharp diamagnetic McClure 
response at the Dirac point, we detect extra diamagnetic singularities at the satellite Dirac points (sDP) of the 
moiré lattice. Surrounding these diamagnetic satellite peaks, we also observe paramagnetic peaks located at the  
chemical potential of the saddle points of the graphene moiré band structure and relate them to the presence 
of van Hove logarithmic singularities in the density of states. These findings reveal the long ago predicted 
anomalous paramagnetic orbital response in 2D systems when the Fermi energy is tuned to the vicinity of 
saddle points. 

PACS numbers: 

 

Landau diamagnetism originates from the quantum orbital 
motion of delocalised electrons at low magnetic field. In sys- 
tems with a periodic potential, this orbital magnetism depends 
on the specific properties of the lattice.The orbital susceptibil- 
ity of a single band system is proportional to the curvature of 
the energy dispersion relation (i.e. the inverse effective mass 
of carriers). This is known as the Landau-Peierls result [1, 2]. 
In multiband systems, the coupling induced by the magnetic 
field between Bloch wavefunctions of different bands gives 
rise to new effects. The zero field susceptibility is then not 
only determined by the curvature of the bands, but also by 
geometrical properties of Bloch functions such as the Berry 
curvature in reciprocal space [3, 4, 6]. For instance, a diver- 
gent diamagnetism of graphene at the Dirac point (DP), (the 
touching point between electron and hole cone shaped bands)  
was predicted by McClure [7] and linked to the anomalous 
π Berry phase which leads to a zero energy Landau level in 
magnetic field [8, 9]. 

It was also predicted that orbital magnetism can be para- 
magnetic rather than diamagnetic. In particular, graphene 
is expected to exhibit two paramagnetic characteristics: i) a 
paramagnetic plateau [4–6, 10] on either side of the Dirac 
point; and ii) logarithmic paramagnetic divergences when the 
Fermi energy coincides with saddle points of the graphene 
band structure [4], see Fig.1A. Such paramagnetic orbital sus- 
ceptibility peaks proportional to the van Hove (vH) singu- 
larities in the density of states (DOS) ρ(ϵ), were predicted 
long ago at saddle points of the band structure of any 2D 
crystalline materials by Vignale [11]. A simple physical 
explanation of the paramagnetic sign lies in the opposite 
signs of effective masses mx and my at the saddle points 

 

 

 
 

FIG. 1: (A) Orbital susceptibility of graphene.  Diamagnetic di- 
vergent susceptibility is expected at µ = 0 and paramagnetic diver- 
gences at the saddle points at µ = ±t, (adapted from [5]). (B) Qual- 
itative expectation of the orbital susceptibility of  a graphene/hBN 
moiré at low energy as a function of the chemical potential.  (C) 
Explanation of the existence of paramagnetic currents in the recip- 
rocal space close to a saddle point in a 2D crystal (adapted from 
[11]). (D) Schematic representation of a moiré lattice obtained with 
the superposition of two honeycomb lattices of different periods.  (E) 
Mini-band structure obtained from the diagonalisation of the low en- 
ergy hamiltonian of graphene in the presence of  a moiré potential 
of amplitude tM = −23 meV. The two highest energy hole bands 

are represented below the main graphene Dirac point. They display 
satellite Dirac points at the mS points of the mini-Brillouin zone. (F) 

Iso-energy lines of the lowest hole band (H2), a small dip surrounded 
by 3 saddle points is identified at the κS point with C3 symmetry. 

 

 

and the fact that the Landau-Peierls susceptibility is propor- 
tional to ρ(ϵ)/mxmy. In a magnetic field, near a saddle 
point, carriers follows hyperbolic-like trajectories in recipro- 
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cal space. Tunneling between these trajectories (also called 
magnetic breakdown [12]) gives rise to reconstructed quasi- 
circular paramagnetic trajectories around the saddle points, 
see Fig.1C. Reaching these saddle points in pure graphene 
requires doping to unattainable Fermi levels of the order of 
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the nearest neighbor hopping energy t = 2.7 eV. However, in 
the following we show how, by inducing a large wavelength 
moiré periodicity in graphene aligned to a hexagonal boron 
nitride crystal (hBN), we can reach such saddle points in the 
moiré band structure at reasonable doping and detect the ex- 
pected singular paramagnetic orbital response. 

Due to the small difference between hBN and graphene lat- 
tice parameters, the moiré lattice parameter aM of graphene 
aligned on hBN, is much larger than the size of the unit cell 
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of graphene (see Fig. 1D). The large period moiré potential 
leads to the formation of low energy minibands centered on 
each Dirac point (see Fig. 1E), and the occurrence of low en- 
ergy satellite Dirac points (at µSD t/10). These sDPs 
, accessible by applying moderate gate voltages, were ob- 
served experimentally by several groups including [13–17]. 
They are surrounded by saddle points whose associated vH 
singularities were detected via DOS measurements [13]. Sad- 
dle points were also revealed in electron focusing experiments 
[18] and more indirectly in magnetic field dependent patterns 
in Josephson junctions [19]. Field dependent peaks in photo- 
emission spectra [20] as well as in thermoelectric Hall mea- 
surements [21] were interpreted as related to orbital magneti- 
sation peaks at those low energy vH singularities. 

In this letter we present direct magnetisation measurements 
on graphene/hBN moiré samples in a wide range of chemical 
potential. Our experiments reveal the paramagnetic suscepti- 
bility singularities predicted long ago at saddle points of the 
moiré dispersion relation. 

Moiré samples and magnetic detection 

In order to reach the satellite Dirac points and the neigh- 
boring saddle points at moderate doping, we fabricated sam- 
ples where the hBN and graphene lattices are nearly aligned, 
leading to the maximum value of the G/hBN moiré super- 
lattice parameter as described in SM. We investigated two 
different samples, MA and MB. Raman spectroscopy was 
used to verify the alignment (see SM and [17, 22]) and deter- 
mine the lattice parameters yielding aMA = 9.5 0.5 nm and 
aMB = 12.5 0.5 nm corresponding to 1◦ and 0.6◦ mismatch 
angles respectively. 

The magnetisation experiments were performed using the 
technique described in [23]. The encapsulated samples are 
deposited on a magnetic field detector based on a pair of 
highly sensitive giant magnetoresistance (GMR) probes [24– 
26]. The key point of using these sensors is that whereas the 
orbital magnetism in the system is generated in response to the 
out-of-plane external field, the GMRs are only sensitive to the 
in-plane components of the stray field created by the orbital 
currents. Connecting the two GMR strips in a Wheatstone 
bridge configuration and modulating the DC gate voltage, Vg, 
with an AC bias (Fig.2C), eliminates most of the extraneous 
spurious magnetic contributions. In this way, one obtains the 

-1.0 -0.5 0 0.5 1.0 
Vg − VCNP (V) 

 

FIG. 2: Low doping data on sample MA . (A) Solid line: derivative 

of the magnetic field detected by the GMR detector as a function of 
the gate voltage Vg close to the DP at B = 0.2 T. The curve is the av- 

erage of 10 independent measurements. Dashed line: theoretical gate 
dependence of ∂M/∂Vg . The disorder amplitudes σ0 and σ∞ were 

determined from the width of the McClure Dirac and the decay of  
dHVA oscillations. They are respectively 80 K and 20 K . (B) Mag- 
netization per unit surface obtained by integration of the data in (A) 
with, on right axis, units of the equivalent measured magnetic field 
by the GMR detector. (C) Evolution of the McClure peak and dHvA 
oscillations for different applied out-of-plane magnetic fields. On the 
y axis the detected magnetic signal on the GMR detector is normal- 
ized by the applied field.  On the x axis ν = nΦ0/B is the Landau 
levels filling factor where n is the carrier density.(The apparent in- 
crease of χ with B at low field is an artefact due to the gate voltage 
modulation which broadens the McClure peak. This effect becomes 
negligible when the intrinsic McClure peak broadening, proportional  
to B, exceeds the gate voltage modulation.) (D) Sketch of the exper- 
imental setup. The orbital magnetisation is detected by the voltage 
between the two dc current biased GMR detectors R1 and R2 mea- 
sured by a lock-in amplifier at the modulation frequency of the gate 
voltage. 

 

 

Vg derivative of the magnetisation of graphene area below the 
gate between the GMR probes. Additional electrodes outside 
the GMR detection region allow for transport measurements 
and an independent determination of the main and satellite 
Dirac points positions. For an applied out-of-plane magnetic 
field of 0.1 T, the in-plane sensitivity of GMRs sensors cou- 
pled to MA and MB is respectively 2 5 and 1 Ω/mT and their 
field equivalent noise is about 1nT/ Hz. 

Main Dirac point region: McClure peak and de Haas-van 

Alphen oscillations. 

As shown in Fig.2 the magnetisation close to Dirac or 
charge neutrality point (CNP) features the diamagnetic Mc- 
Clure peak [23]. This peak broadens with out-of-plane mag- 
netic field field and de Haas-van Alphen (dHvA) oscillations 
appear with increasing doping. Fig.2 shows both the deriva- 
tive of the magnetisation and the integrated curve as a func- 
tion of the gate voltage for sample MA , in a out-of-plane 
magnetic field of 0.2 T. The amplitude of the detected signal 
BM is 15 nT at the DP. This data can be precisely described 
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deriving the magnetisation from the field dependence of the 
grand potential of graphene at a chemical potential fixed by 
the gate volta√ge [23]. The Landau√e nergy levels in graphene 
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are ϵN = ±  NϵB with ϵB = 2ev2kB, where v is the 
Fermi velocity and N is an integer [7]. Disorder is modeled by 
a gaussian distribution of chemical potential µ whose standard 
deviation σµ  decreases at high doping, due to screening effects 
which are more efficient. The magnetisation was shown to be 
a universal function of the variables µ/ϵB and σ/ϵB . The Mc- 
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Clure peak at low field has a width σ0 = 80 ± 5 K at the CNP. 
dHvA oscillations observed at larger doping exhibit a charac- -10 

teristic energy scale of σ∞ = 20 K. Both σ0 and σ∞ are twice 
C  6 

smaller than in our previous work [23] and indicate a better 
quality of the present samples. The dashed curve in Fig.2A is 

3 

the theoretical fit for ∂M/∂Vg using those parameters. Fig.2C 
0 

-3 
shows the evolution of the magnetisation with Landau level 

filling factor for different field values. The magnetisation is 
-6 

renormalized by the applied magnetic field, which in the lin- -4 

ear regime is the magnetic susceptibility χ = M/B. One 
notes the increased dHvA oscillations relative to the McClure 
response as magnetic field increases. 

Satellite Dirac points, diamagnetic and paramagnetic sin- 

gularities. 

We now turn to the higher doping regime. Fig.3A shows the 
four-terminal resistance of sample MA in a wide range of gate 
voltage at 4 K. Both satellite peaks are clearly visible at -16 
V and 15.5 V from the CNP. Fig.3B, shows the magnetisation 
response at 0.2 T in the same range of gate voltage, using a 
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100 mV modulation of the gate voltage. This strong Vg mod- 
ulation increases the detection sensitivity at high gate voltage 
but, because the chemical potential scales as Vg , damps 
the previously discussed diamagnetic McClure response and 
dHvA oscillations. In the high doping region of interest here, 
in particular in the region where the sDPs are found in the re- 
sistance measurement, we find a series of three antisymmetric 
peaks, compatible with the expected moiré band orbital mag- 
netism as shown below. The integrated trace displayed in Fig. 
3C features a diamagnetic peak (red arrow) in the hole doped 
region at Vg VCNP = 17 V surrounded by two paramag- 
netic peaks (black arrows). In the electron doped region, we 
find similar features showing though somehow different po- 
sitions of the peaks with an asymmetry in the position of the 
two paramagnetic peaks with respect to the diamagnetic one. 
From the value of moiré lattice parameter we find that the 
gate voltage positions of the diamagnetic peaks correspond, 
as expected, to a carrier density of 4 n0 where n0 is the num- 
ber of carriers per moiré cell, (the factor 4 comes from spin 
and valley degeneracies). The peak positions differ slightly 
from those observed on the resistance measurements shown 
in Fig.3A, a discrepancy we attribute to the different sample 
region probed in the resistance measurements [27]. We assign 
the paramagnetic peaks to the expected magnetic orbital re- 
sponse at the saddle points of the moiré miniband structure. 
This is the main result of our letter. Using the gate capac- 
itance of sample MA, we determine the energy splitting be- 
tween the paramagnetic and diamagnetic peaks and therefore 

-4 -2 0 2 4 

n/n0 

FIG. 3: (A) 4 terminal resistance of sample MA. Inset: optical image 
of the sample MA on the top of the GMR detector (red scale bar is 
10 µ m). (B) Derivative of the magnetisation as a function of the gate 
voltage and carrier density (renormalised to the moiré filling factor 
n0) for a wide doping range in an external magnetic field of 0.2 T 
for the same sample. (C) Magnetization (in units of the magnetic 
field detected on the GMRs, renormalised by the out-of-plane applied 
field) obtained by integration of the data in (B). In the region of the 
secondary Dirac peaks we observe diamagnetic peaks (red arrows) 
surrounded by paramagnetic peaks (black arrows). (D,E) GMR data 
measured on sample MB . Numerically integrated magnetisation as 

a function of the carrier density (renormalised to n0 ) at ±0.2 T,(D) 

and 1 T, (E). 
 

 

the expected positions of the vHs, to be in the range of 10 to 
20 meV. This yields an estimate of the amplitude tM of the 
moiré potential (see Fig.1B), as will be discussed more pre- 
cisely below. 

Fig.3D and 3E also presents equivalent data on sample MB. 
At high hole and electron doping one identifies several peaks 
of similar amplitude. The position of the diamagnetic satellite 
peaks are consistent with transport data (shown in SM) and 
with a moiré period larger than that of sample MA. There as 
well, HvA oscillations are attenuated by the gate voltage mod- 
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ulation of 100 mV and invisible at 0.2 T, but are visible at 1 
T due to their larger period. The data taken, at 0.2 T display 
peaks of opposite sign, approximately at the same positions 
and with 5 times smaller amplitude than the 1 T data which is 
consistent with a linear field dependent magnetisation. How- 
ever, whereas one observes clearly diamagnetic satellite Dirac 
peaks and outer paramagnetic peaks, in contrast with the data 
on MA the inner smaller paramagnetic peaks are nearly un- 
detectable at 0.2 T whereas they are visible at 1T. We note 
that the magnetic energy scale ϵB is equal to 30 meV at 1 T 

i.e. of the order of the moiré potential, which means that the 
miniband spectrum is modified in a non perturbative way at 
this field. This can explain why the data at 1 T is significantly 
different from the the lower field data. In the following, we 
discuss explanations for the asymmetry in amplitude of para- 
magnetic singularities on either side of satellite Dirac peaks. 

depend on the minibands considered and the type of carriers, 
electrons or holes, see [13, 20, 29] and theoretical discussion 
in the SM. When increasing the amplitude tM of the moiré po- 
tential, one finds a clear electron-hole asymmetry of the mini- 
bands spectrum determined by the sign of tM . This is illus- 
trated in Fig.4 showing cuts along the K, κS, mS, K axis of 
the three lowest moiré electron and highest hole bands around 
the main DP. For negative values of tM , the moiré minibands 
are found to be wider on the hole side compared to the elec- 
tron side. Whereas crossings occur essentially between the 
first and the second bands on the electron side, they also occur 
between the second and third bands on the hole side. These 
crossings determine the number and position of the satellite 
Dirac points in reciprocal space. When tM is smaller than 
25 meV, band crossings occur both at κS and mS points for 
the first two electron bands (see SM ). These sDPs are sepa- 
rated by ordinary named A1 saddle points with a C2 symmetry 
that connect 2 valleys [31]. 

Coming back to experiments, we determined tM from the 
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position of the measured diamagnetic and paramagnetic satel- 
lite peaks compared to their expected positions in the moiré 
band structure for both samples. The calculated spectra which 
best match the experimental positions of the different peaks 
are obtained for tM = 15 meV and tM = 23 meV for 
samples MA and MB as shown in SM and Fig.4 for sample 
MB. Because of these relatively small values of tM , E1 and 
E2 bands cross both at κS and mS points at different energies, 

-0.2 
we therefore expect two families of sDPs. This is compatible 
with the split diamagnetic satellite McClure peak shown in 
Fig.4 on the electron side. We attribute the larger splittings 
observed on the hole side to the crossings between H2 and 

H3 bands. 
A more careful analysis of the shape and curvature of the 

minibands Fig.4, in the vicinity of the κs and mS satellite 

FIG. 4: Comparison between band structure (left) and experimental 
data for sample MB (right). We present cuts along the three K, mS , 
mS, κS , and κS, K axes of the moiré band structure calculated for 
tM = −23 meV matching the position of the observed diamagnetic 

peaks (red arrows) and paramagnetic peaks (black arrows) in mag- 
netisation data function of the chemical potential. 

 
Comparison with a simple theoretical model 

Computations of moiré spectra rely on specific modelisations 
of the moiré potential [13, 28–30]. We use the simplest model 
which reproduces the positions and amplitudes of the suscep- 
tibility peaks at the Dirac and saddle points.This model, ini- 
tially derived in [13], assumes a C6-symmetric moiré potential 
of amplitude tM which only depends on the positions of car- 
bon atoms with respect to the hBN atoms. We neglect all con- 
tributions breaking the inversion symmetry of the graphene 
lattice such as considered in [20, 29]. The miniband spectrum, 
folded into the moiré Brillouin zone, can be easily calculated 
within this approximation as shown in Fig.1, Fig.4 and SM. 
The amplitude of the moiré potential determines the number 
of satellite peaks and their position in the momentum space as 
well as the symmetry of the saddle points. These features also 

Dirac points (see also SM) helps explain the asymmetry in po- 
sition and amplitude of the paramagnetic singularities. These 
are clearly more pronounced on the high doping sides of sDPs.  
We find that the miniband curvatures at the A1 saddle points 
along [mS, κS] are much larger in bands bands E2 and H2  
compared to bands bands E1 and H1. As a result the position 
in energy of the saddle points on the low doping minibands 
(E1 and H1) are very close to the mS sDP , in contrast with 
the large doping ones (E2 and H2) located further in energy 
above κS . We show in SM I.C and E that these observations 
explain why the outer paramagnetic peaks are more intense 
than the inner ones (tending to overlap with the diamagnetic 
ones at the mS SDPs), both on electron and hole side. This 
asymmetry is more pronounced for sample MB whose moiré 
potential is larger than for sample MA. 

We also find theoretically that the first hole miniband H1 
below the main Dirac peak does not exhibit a Dirac point at κS 
but instead a broad shallow minimum turning into a plateau 
for tM   50 meV as shown in SM Fig.S3 and can be viewed 
as the merging of three A1 saddle points. This is the signature 
of a C3 saddle point surrounded by 3 maxima separated by 3 
valleys at 120 degrees and characterized by a dispersion rela- 
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tion varying as a cubic function of the wave-vector (2nd order 
curvature cancels in all directions, see [31], for the classifica- 
tion of saddle points). In SM I.D we show that at C3 saddle 
points, the DOS exhibits a δµ−1/3 divergence in contrast with 
the logarithmic divergence at A1 saddle points in agreement 
with [32]. Moreover, since the effective mass diverges, the 
Landau-Peierls susceptibility is then not simply proportional 
to the density of states as shown in [11]. The calculation of the 
susceptibility is more involved, leading to a δµ1/3 singular- 
ity in contrast with the logarithmic divergence for A1 saddle 
points [11]. 

At present our experiments are not accurate enough to iden- 
tify precisely the nature of the different saddle points, but 
we can compare the amplitudes of the measured magnetisa- 
tion singularities to theoretical predictions. We first estimate 
both the theoretical and experimental values of ratio r be- 
tween the diamagnetic peaks at the main and satellite Dirac 
points. According to [7, 23] the orbital magnetic susceptibil- 
ity of graphene at the main Dirac point, χM , depends on the 
square of the Fermi velocity v and the disorder standard devi- 
ation σ0 according to: 

√
2v2e2 

χM = − 
3σ π3/2 (1) 

It was pointed out in [13] that the satellite Dirac cones 
(at the mS points of the moiré hexagonal Brillouin zone) 
are anisotropic, leading to an effective Fermi velocity: 
√

vsx  vsy. The anisotropic components of the Fermi ve- 
locity along the principal axis of the elliptical energy cross 
sections in the vicinity of sDP are vsx = v, the original Fermi 

velocity of graphene and vsy = 
√

3aM tM , the reduced trans- 
verse velocity originating from the moiré potential. We then 
assume that the susceptibility, χS, at secondary diamagnetic 
peaks, is similar to the McClure susceptibility of graphene in 

compared to the E2, H2 bands. On the other hand the geomet- 
ric mean of the curvatures α = (mxmy)−1/2 is of the order 

of 10tM a2 /k2 = 100m−1 for all investigated bands where 
me is the free electron mass. 

In order to go further and compare these findings to the ex- 
periments, one also needs to take into account the effect of dis- 
order. Experiments show that the paramagnetic peaks above 
the sDP in the electron doped region are of the same order 
of magnitude as the diamagnetic ones at the sDP. We were ex- 
pecting instead smaller amplitudes due to the weaker logarith- 
mic divergences at the vH singularities compared to the delta 
peak anomalies at sDPs. However we show in SM that these 
results can be understood when considering that the disorder 
induced rounding of the logarithmic paramagnetic magnetisa- 
tion singularities at saddle points is smaller than for the dia- 
magnetic ones at the sDPs. From the experimental values of 
the ratio σs/tM and the estimated band curvatures, one finds 
that the maxima of the paramagnetic magnetisation at A1 sad- 
dle points for the H2 and the E2 bands are of the same order 
of magnitude as the diamagnetic peaks at the sDPs, and larger 
than the saddle point paramagnetism on H1 and E1 bands ( 
reduced by the vicinity of the SDP and barely seen experi- 
mentally for sample MB). We show in SM that it is possible 
to reproduce at least qualitatively, the energy positions and 
relative amplitudes of the two diamagnetic and paramagnetic 
peaks in the vicinity of the the sDPs in the electron doping 
range. 

Finally we note that the large miniband curvatures, due to 
the large period of the moiré potential, contrast with the cur- 
vatures at the saddle points of the original 2D atomic lattice 
[11] and exclude any sizable contribution of Pauli magnetism 
at vH singularities. The Pauli susceptibility χP is indeed ex- 

pected to vary as χP = µ2 ρ(ϵ) where µB = ek/2me is the 
Bohr magneton, yielding a ratio between the Vignale orbital 
and Pauli spin susceptibility χV /χP = m2/mxmy of the or- 

Eq.1 replacing v 
   
vsx × vsy and the amplitude of disorder 

e 
der of 104, whereas this ratio is of the order of 1 for the 2D 

σ0 by σs, the width of the sDP (of the order of 4.5 0.5 meV). 
This leads to the susceptibility ratio: r = 3χS/χM = 3 vsyσ0 , 
considering the 3 fold degeneracy of ms points. We obtain 
r = 0.55 0.1 for sample MB to be compared to the ex- 
perimental one: 0.33 0.1. For these estimations we have 
not taken into account the proximity in energy between the 
the sDPs and the saddle points of bands E1 and H1 whose 
magnetic contributions of opposite sign tend to cancel each 
another (see SM for more details). 

Turning to the paramagnetic susceptibility peaks, we show 
in SM how one can also estimate their amplitude from the 
miniband spectrum determined in our simple model by the pa- 
rameters tM and aM . The DOS and the susceptibility depend 
on the curvatures mx

−1 = and my
−1 of the energy bands at the 

saddle points. They are given in the SM for both samples and 
A1 saddle points for the bands E1, E2, H1, H2. These saddle 
points are strongly anisotropic with much higher curvatures 
along the y compared to the x axis (along κS, mS). The ratio 
mx/my depends strongly on the considered bands. As an ex- 
ample, we find that it is about 20 times larger for the E1, H1 

square lattice. 
In conclusion, our measurements of the orbital magnetisa- 

tion of graphene with a moiré potential show a rich set of sin- 
gularities of the orbital magnetisation in the vicinity of sDPs. 
These consist of diamagnetic peaks at the satellite Dirac points 
surrounded by paramagnetic peaks which can be associated to 
the van Hove singularities of the DOS at the saddle points 
of the mini-band structure induced by the moiré potential. 
These experiments therefore confirm the long standing the- 
oretical predictions of the existence of paramagnetic orbital 
magnetism in 2D materials at van Hove singularities which, 
in the case of the graphene/hBN moiré investigated here, ex- 
ceeds by far the Pauli susceptibility. A natural prolongation 
of this work would be to measure the orbital magnetisation 
of bilayer graphene moiré structures also extensively inves- 
tigated [33, 34] with the possibility to obtain ferromagnetic 
orbital phases,[35]. It is also interesting that the typical am- 
plitude of the paramagnetic susceptibility peaks we measure 
is of the same order of magnitude than the values predicted for 
graphene bilayer moirés close to the magic angle [36]. This 
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singular paramagnetic orbital magnetism is shown to possi- 
bly lead to the emergence of new kinds of correlated phases 
when the sample is embedded in a quantum electromagnetic 
cavity. Our results also motivate the extension of this work to 
graphene twisted bilayers with larger moiré periods in which 
field periodic orbital currents are expected [37]. 
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MINI-BAND STRUCTURE OF GRAPHENE WITH A MOIRÉ POTENTIAL 

 

Band structure 

 

In order to investigate the orbital susceptibility of the graphene layer with a moiré potential on the graphene , we develop the 
approach of Yankowitz et al [1] (see also Wallbank et al [2]) to determine the mini-band structure. We start from a 2D massless 
Dirac Hamiltonian H0 representing the unperturbed graphene layer in a single valley (say the K valley) and add a scalar periodic 
potential V with 6-fold symmetry to represent the effect of the moiré. The total Hamiltonian reads 

5 

H = H0 + V = vp · σ + σ0tM eiGm·r , (1) 
m=0 

where σ are the Pauli matrices describing the sublattice pseudospin of the honeycomb lattice, σ0 is the 2 × 2 unit matrix and 
v is the Fermi velocity of graphene (v ∼ 106 m/s). The moiré potential has an amplitude tM and depends on reciprocal lattice 
vectors Gm = G{cos(mπ/3), sin(mπ/3)} with norm G = 4π 

3aM , where aM is the moiré-lattice period. The two vectors 
G1 and G2 form a basis for the reciprocal lattice (see Fig. 1). A negative (resp. positive) tM means that the potential minima 
form a triangular (resp. honeycomb) lattice. In the present experiment, aM is of the order of 10 nm and tM is estimated to be 

~ −25 meV. The momentum operator is the usual p → −ik∇ in 2D (but it is shifted such that K now plays the role of the 
 

reciprocal space origin ΓS). We set k ≡ 1, v ≡ 1 and take G− = aM ∼ 1 nm as unit length. Therefore, kvG ' 0.4 eV is 
the unit energy and the only remaining dimensionless parameter is tM ∼ −0.06. 

Eigenvectors of H0 are plane wave spinors |k, s⟩ where s = ± is the sign of the energy ε(0) = sk and k is a wavector. We 
write H in the eigenbasis of H0. The potential has matrix elements: 

⟨k′, s′|V |k, s⟩ = tM δs,s' δk ',k+Gm . (2) 
m 

As we are only interested in the first few bands (typically the 6 bands closest to zero energy), we truncate the Hilbert space at low 
energy. For each k in the first Brillouin zone (called moiré or mini Brillouin zone, mBZ, see Fig. 1), we only keep states k′, s 
such that k′ k is a reciprocal lattice vector (i.e. k′ k = c1G1 + c2G2 with c1 and c2 integers) such that k′ k 2. This 
means that the energy ε should be smaller than the cutoff εc = 2. At positive energy, there are 19 such states, see Fig. 1 showing 
one central Dirac cone circle in red (of radius 0.55 chosen close to the satellite Dirac points and such as to show intersections 
between the circles), 6 nearest neighbors in green (first shell) and 12 next-nearest neighbors in blue (second shell). 
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FIG. 1. Truncation in reciprocal space showing a central Dirac cone section (red circle of radius 0.55G), surrounded by a first shell of 6 green 
circles and a second shell of 12 blue circles. The mBZ is shown as a black hexagon and high symmetry points are indicated (ΓS , κS with 
3-fold degeneracy (C3 symmetry) and mS with 2-fold degeneracy (C2 degeneracy)). In the limit of vanishing tM , there is a Dirac point at mS 

between the two lowest electron bands and between the two lowest hole bands. Correspondingly at κS , there is a 3-fold degeneracy between 
the three lowest electron bands and between the three lowest hole bands. Dirac points emerge at the three mS points and unusual C3 saddle 
points appear at the two κS points. 

 

 

For each wavevector in the mBZ, we numerically diagonalize the Hamiltonian matrix to obtain 38 bands, of which we only 
keep the 6 closest to zero energy (3 at positive and 3 at negative energy). As |tM | 1, we are in a regime of nearly-free Dirac 
electron and the free band structure ε(0) = sk should mostly be affected near mBZ edges. Because of truncation in reciprocal 

space, our calculation is only valid for tM  1, which means that we will restrict to tM  0.1. 

As there is a symmetry between positive and negative energy upon changing the sign of tM (see Fig. 2, we only discuss 
tM ≤ 0 (typically tM ∼ −0.05). We find that, on top of the main Dirac point (crossing of E1 and H1, at zero energy and 
K = ΓS), the mini band structure consists of 3 satellite Dirac points (sDP) at m√S between the two lowest bands E1 and E2 (at 
energy ε ≈ 0.5) and 2 extra ones at κS between E1 and E2 (at energy ε . 1/ 3 ≈ 0.57). The two sets of sDP are connected 
by 6 (in each band) usual A1 saddle points between mS and κS, see Figs. 2 and 3. 

The situation is more subtle on the hole side: there are 3 sDPs at mS between the two lowest bands H1 and H2 (at energy 
ε  0.5) and 2 extra ones at κS between H2 and H3 (at energy ε . 0.57). The band H1 does not touch H2, but it features a 
dip (with C3 symmetry) at κS. There are also 6 A1 saddle points between mS and κS, see Figs. 2 and 3(A,C). The existence of 
two sets of sDP at nearby energy ( 0.5 and 0.57) may explain the observed splitting of the McClure diamagnetic peak. This 
splitting appears larger on the hole side than on the electron side and may be explained by the fact that the two sets of sDP are 
between H1 and H2 at mS but between H2 and H3 at κS. 

If we increase tM  up to 0.17 (a value at which our calculations start to suffer from the truncation), we find that three A1 
saddle points merge into an unusual C3 saddle point at κS in the H1 band, see Fig 3(B). This C3 saddle point seems to exist for 
tM in between 0.14 and 0.25. There are two-fold degeneracies at mS and κS that are never split by tM and are responsible 
for the existence of Dirac points. 

We show in Fig.4 and Fig.5 contour plots for the different bands E1, E2 and H1, H2 calculated for tM =-23 meV, zooming 
around κS and mS. This data illustrates the strong anisotropy of the saddle points on the H1 and E1 bands compared to the H2 
and E2 bands. We note that the very high estimated values of the curvatures αx = 1/mx and αy = 1/my for the E1 and H1 
bands are only meaningfull in a very small energy range beyond which the bands vary linearly with k. These band structures are 
expected to be rounded by disorder, leading to smaller effective values of αy and therefore α. 

 
Analytical approximation 

 

In this section, we construct effective minimal Hamiltonian models near the mS and κS points in the presence of the moiré 
coupling potential and explore the nature of the saddle points of the first two electron bands E1,2 (resp. hole bands H1,2) along 
the line joining mS to κS. 
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FIG. 2. Upper curves: evolution of the low-energy energy bands at mS , left and κS right as a function of  the strength of  the moiré potential 

tM (in units of kvG). Lower curves:band structure along the closed path ΓS → mS → κS → ΓS in reciprocal space (k is a wavevector in 
units of G) showing the 3 upper hole bands (H1, H2, and H3) and 3 lower electron bands (E1, E2, and E3) for graphene in the presence of a  

C6 moiré potential. The moiré potential has a strength tM = −0.064. 

Considering the low energy Dirac Hamiltonian H(k) = kxσx + kyσy, the corresponding pseudospin eigenstates |s, k⟩ of 

energy ε(0) = s|k| may be written as 

 1 
 

s 
! 

|s, k⟩ = √
2 

kx+iky 

|k| 
. (3) 

We can then obtain the overlap matrix between the two eigenstates |s, k⟩ and |s, k′⟩ 

⟨s, k|s, k′⟩ = 
1 

(1 + 
k · k′  

+ i 
k × k′ 

). (4) 
2 |k||k′| |k||k′| 

Hereafter, since the overlap does not depend on the band index we simply denote s, k s, k′  k k′ . For what follows what 
is needed is the overlap matrix between k1 = ke1 + q and k2 = ke2 + q with e1,2 two distinct unit vectors. To order q one 
finds, 

⟨ke + q|ke 
1 

+ q⟩ = (1 + (e · e + ie × e )(1 − 
q · (e1 + e2)

) + 
q · (e1 + e2) 

+ i 
q × (e1 − e2)

); (5) 

    

   

 
 

 

  

 
 

 

 

VHS 

SDP 
VHS 

SDP 

 

ΓS 
  

ΓS 

 

VHS 

SDP 

 

VHS 

SDP 

 

E
n

e
rg

y 

E
 

1 2 2 1 



4 
 

    

q 

+ 
t 

y 

± 

1 2k x k2 y 2 2k 

— q2 +  M (tM + qy )2 ' E∗ +   y  +   x  

t 

x 

2 

k2 

 

 
 

 
FIG. 3. (Left) 3D plot showing the 3 upper hole bands (H1, H2, and H3) and 3 lower electron bands (E1, E2, and E3) for graphene in 
the presence of a C6 moiré potential. (Right) Contour plots of the highest hole band H1 and lowest electron band E1 for a moiré potential 

tM = −0.17 ' −68 meV (in units of kvG ∼ 0.4 eV). For H1, one can notice sDPs at the 3 mS points and an unusual C3 saddle point at 

each κS point. At a lower value tM = −0.064 ' −26 meV, a dip appears at κS in H1 resulting in the formation of 6 usual A1 saddle points 
in between κS and mS . For E1 and for both values of tM , there are 3 sDPs at mS , 2 sDPs at κS and 6 A1 saddle points. 

 

where to order q2 one has  

 
|ke1 + q| = 

 

√
(k2 + q2 + 2kq · e1) = k + q · e1 + 

 
(q × e1)2 

 

 

2k 

 

 
. (6) 

 
Effective Hamiltonian around mS 

 

According to Fig. 1, the two bare/primary Dirac points closest to the point mS are situated at ΓS and G0 and verify kmS = 
ΓS + k+ = G0 + k− with k± = ±kex where k = 1 in units of G. Before turning on the moiré potential, around mS, the two degenerate electron bands E = k = 1 2 H = −k) correspond to the states |s, k ⟩ with s = + for electron 

and s = − for hole. 
1,2 2 (resp. hole bands 1,2 ± 

Turning on the moiré potential, the effective Hamiltonian around mS that only considers the coupling between the degenerate 
bands reads (with |q|  1) 

 

 

HmS 
= 

s|k+ + q| tM ⟨k+ + q|k− + q⟩ 
, (7) 

tM ⟨k− + q|k+ + q⟩ s|k− + q| 

To correctly describe the energy spectrum at order q2 it is sufficient to take the approximate expressions Eqs. (5, 6), we obtain: 

2 y M 

HmS = s(k + 
2k 

)σ0 + sqxσz − qyσy. (8) 
k 

The last two terms of the above Hamiltonian correspond to an anisotropic Dirac cone at mS with effective velocities cx = |s| = 1 
and cy = |tM |/k = 2|tM |. 

q2 
q 

t2 q2 

For s > 0 (electron side), one obtains the band dispersions E (q) = k +  y − q2 +  M q2 and E (q) = k +  y + 
q

q2  M q2. The corresponding energy spectrum resembles that of a Rashba Hamiltonian however with an effective strong 

anisotropy in the Rashba-like coupling. This anisotropy in the Rashba-like coupling appears to be at the origin of the presence 
of two saddle points in the band E1(q) whereas it is obvious that the band E2(q) has no saddle point. More quantitatively the 
band E1(q) exhibits a pair of saddle points at postions q∗ = (0, tM ) which, as expected, are along the line joining mS to κS. 
Expanding E1(q) to quadratic order around the saddle points one finds 

(tM + qy)2 
r 

t2 q2 q2 
 

 
  

1 2myy 2mxx 
E1(q∗ + q) = k + (9) 

2k x k2 
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FIG. 4. (A) Contour plot of bands H2 (left) and H1 (right) in the mini Brillouin zone. (B) Zoom around κs and ms points. (C) and (D) 3D 
representation of the bands close to κs and ms. The curved double arrow indicates the saddle point. 

 
 
 
 

with E1
∗ t2 

 
 = k − M , myy = k and mxx t2 

 
 = − M . The corresponding curvatures are αx = 1/(2mxx ) = 1/(2tM 

t2 
)2 and 

αy = 1/(2myy) = 1. From these expressions, one deduces that the saddle points energy is shifted by an amount  M from the 
secondary Dirac point at mS. This energy shift, as well as the negative effective mass mxx, are very small since they are quadratic 
in the moiré potential strength tM . This also means that the saddle point is very anisotropic (|αx/αy| = 1/(2tM )2 ∼ 100). 

 
For hole bands, since H1,2(q) = E1,2(q), one deduces that only H1(q) exhibits saddle points (at positions q∗ = (0, tM )) 

with energy shift and effective masses opposite to that of E1(q). 
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Before turning on the moiré potential there is a three fold degeneracy in bands E1,2,3 = k = √1 (resp. H1,2,3) at each κS point. 

 

 
FIG. 5. (A) Contour plot of bands E1 (left) and E2 (right) in the mini Brillouin zone. (B) Zoom around κs and ms points. (C) and (D) 3D 
representation of the bands close to κs and ms. The curved double arrow indicates the saddle point. 

 
 
 

 
Effective Hamiltonian around κS 

 

 
According to Fig. 1, the three bare Dirac points closest to κS are situated at positions ΓS, G0 and G1 that verify kκS = 

ΓS + ke1 = G0 + ke2 = G1 + ke3, with k = √1 and e1 = ( 
√

3 , 1 ) , e2 = (−
√

3 , 1 ) and e3 = (0, −1) such that 
Σ 

ei = 0. 

These three fold degenerate bands correspond to the states s, ke1,2,3 with s = + for electron and s = for hole. Turning 
on the moiré potential, the effective Hamiltonian around the point κS that only considers the coupling between the degenerate 

3 
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 t ke + q ke + q s ke + q t ke + q ke + q  

2 

1 2 y 

2 

2 

2 

2  y 

M 

| | ≤ 

4k 8k x y 

2 
M 

2 8k2 
M  M  

16k3 y x y 

3 
M 

4 
M 

16k2 32k3 
M 

y x y 

E1(q) = X(q) − 1 [Y+(q) + 
√

Z+(q)], 

4k 8k x y 

± M 6tM k 18t2 k y x y 

± y x y 

3 9 x y 

2 3 9 x y 3 x y 
E1(q̃) = k + tM [1 + 1 q̃ 2  + 1 q˜y(3q˜2 − q˜2) + 

q
q̃2  + 2 q˜y(3q˜2 − q˜2)], 

2 3 9 x y 3 x y 

3 9 x y 

H2(q̃ ) = −k + tM [1 + 1 q̃ 2  − 1 q˜y(3q˜2 − q˜2) − q̃ 2  − 2 q˜y(3q˜2 − q̃ 2)], 
2 3 9 x y 3 x y 

2 3 9 x y 3 x y 

S 

bands reads (with |q|  1) 

 
HκS = 

 

 
s|ke1 + q| tM  ⟨ke1  + q|ke2 + q⟩ tM ⟨ke1 + q|ke3 + q⟩  

M ⟨ 2  | 1  ⟩  | 2  | M ⟨  2   |  3    ⟩ 
tM ⟨ke3 + q|ke1 + q⟩ tM ⟨ke3 + q|s, ke2 + q⟩ s|ke3 + q| 

 
 

 
. (10) 

The above form of the Hamiltonian around κS point verifies a C3 symmetry. As a consequence, up to order q2 the energy 
spectrum is fully isotropic around κS and therefore it cannot exhibits any saddle point to this order. Defining C1(q) = TrHκS /3, 

C2(q) = Tr(HκS − C1Id)2 and C3(q) = Tr(Hκ  − C1Id)3, the three eigenenergy bands are 
r 

2C2 1 
√

6C3 2nπ  
(11) 

λn=1,2,3(q) = C1 + 
 
 

More quantitatively, to order q3, one finds 

3  
cos[ 

3 
arccos √

C3 
+  

3 
]. 

C (q) = s(k +  1  q2 + 1 q (3q2 − q2)), 

C (q) = 3t
2 

+ 3(4k2+3t2 ) 
q2 − 3(4k2−9t2 ) q (3q2 − q2), (12) 

C (q) = − 3t3  + 27t2 (2sk+tM ) 
q2 + 3(8sk3+27t3 ) q (3q2 − q2). 

Using these expressions, for tM < 0, the three electron bands E1 < E2 < E3 read 
 
 

 

2 

E2(q) = X(q) − 1 [Y+(q) − 
E3(q) = X(q) + Y+(q). 

Similarily for the hole bands H1 > H2 > H3 one obtains, 

√
Z+(q)], (13) 

 

 
 
 

 
where 

H1(q) = −X(q) + Y−(q), 
H2(q) = −X(q) − 1 [Y−(q) + 

H3(q) = −X(q) − 1 [Y−(q) − 
 

 
X(q) = k +  1  q2 +  1 q (3q2 − q2), 

 
 

Z−(q)], 
Z−(q)], 

 
(14) 

(2k∓3tM )  2 (3tM ±2k) 2 2 
Y  (q) = −t − q + q (3q − q ), 

Z (q) = (3tM ±2k) q2 + (81t3 − 
2 

M 
3 

12k tM ±16k ) q (3q2 − q2). 

To understand the content of these expressions, it is convenient to consider the limit of very small tM . In this limit, rewriting 
q˜x,y = qx,y/tM with q˜x,y 1 and keeping terms at most of linear order in tM in the energy bands we can use the simplified 
expressions 

X(q̃) ' k, 
Y±(q̃) ' −tM [1 + 1 q̃ 2  ± 1 q˜y(3q˜2 − q˜2)], (16) 
Z±(q̃) ' t2 [q̃2  ± 2 q˜y(3q˜2 − q˜2)]. 

M 

such that we can rewrite the electron and hole bands 

3 x y 

E2(q̃) = k + tM [1 + 1 q̃ 2  + 1 q˜y(3q˜2 − q˜2) − 
q

q̃2  + 2 q˜y(3q˜2 − q˜2)], (17) 

E3(q̃) = k − tM [1 + 1 q̃ 2  + 1 q˜y(3q˜2 − q˜2)]. 

Similarily for the hole bands H1 > H2 > H3 one obtains, 

H1(q̃ ) = −k − tM [1 + 1 q̃ 2  − 1 q˜y(3q˜2 − q˜2)], 
3 9 x y q 

 

H3(q̃) = −k + tM [1 + 1 q̃ 2  − 1 q˜y(3q˜2 − q˜2) + 
q

q̃2  − 2 q˜y(3q˜2 − q˜2)]. 

2 

(15) 

4k2 24k3tM 

(18) 

√ 
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| | 
±| | 

— 
~ 

— 
— 

— 

≡ 
√

| | 

S 

| v 

x y 

 α ~ 

MB cx cy vS αx αy α αv2 
S 

|tM |α/v2 
S 

E1 1 0.1 0.32 -70 1 8.4 0.84 5.4 
E2 ′′ ′′ ′′ 16 -5 8.9 0.89 5.7 
H1 1 0.15 0.38 60 -1 7.7 1.16 3.3 
H2 

′′ ′′ ′′ 12 -6 8.5 1.3 3.6 

pred. E1/H1 1 0.13 0.36 ∓61 ±1 7.8 1 3.9 
pred. E2/H2 

′′ ′′ ′′ 14 -5 8.6 1.1 4.3 

 

MA cx cy vs αx αy α αv2 
S 

|tM |α/v2 
S 

E1 1 0.07 0.26 -150 1 12 0.85 6.1 
E2 ′′ ′′ ′′ 25 -7 13.2 0.92 6.6 
H1 1 0.07 0.26 200 -1 14 0.98 7 
H2 

′′ ′′ ′′ 23 -10 15 1.1 7.6 

pred. E1/H1 1 0.07 0.26 ∓204 ±1 14.3 1 7.1 
pred. E2/H2 

′′ ′′ ′′ 25 -10 15.8 1.1 8.2 

 

The Dirac cones at κS (between E1 and E2 and betwen H2 and H3) have a dispersion relation q̃ , i.e. they are isotropic 
and have a velocity vκS = 1/ tM . 

Expanding E2(q) to quadratic order around the saddle point at q∗ = (0, 0.78tM ), one finds 

E2(q∗ + q) ' E2
∗ + αxq2 + αyq2, (19) 

with E2
∗ = k + 0.305tM , αx = 0.888/tM and αy = 0.342/tM . From these expressions, one deduces that the saddle point 

energy is shifted by an amount 0.195tM from the Dirac point at κS with energy E2(κS) = k + tM /2. This shift is much larger 
than that of the saddle point in E1 from the Dirac points at mS. The saddle point on the E 2 band is also much less anisotropic 
than the saddle point in E1 (there is a factor 2.6 between the two curvatures instead of 1/(2tM )2  100). 

Expanding H2(q) to quadratic order around the saddle point at q∗ = (0, 0.78tM ), one finds that the curvatures αx and αy 
are the same as for E2. 

 
Effective parameters 

We now discuss the effective parameters of the Dirac cones at mS (velocities cx, cy and geometrical average vS ≡ 
√

cxcy 

in units of v) and of the saddle points (curvatures αx = 1/(2mxx), αy = 1/(2myy) and geometrical average α αxαy 
in units of v/G) in E1/H1 close to mS and in E2/H2 close to κS. We fit these parameters on the numerically obtained band 

structure (see Table I). The validity of the quadratic expansion near a saddle point is up to an energy εc ∼ 10−2vG. 
 

TABLE I. Effective parameters for sample MB with tM = −0.064 (left) and for sample MA with tM = −0.035 (right). Velocities are in 
units of v and curvatures in units of v/G. 

 
This agrees well with the analytical predictions for the anisotropic velocities cx = 1 and cy = 2|tM | of the Dirac points 

at mS and for the curvatures of the saddle points in the bands E1/H1 (close to mS), αx = ∓1/(2tM )2 and αy = ±1 (i.e. 
α = 0.5/|tM |) and in the bands E2/H2 (close to κS), αx = −0.888/tM and αy = 0.342/tM (i.e. α ' 0.55/|tM |). It 
means that v2 = 2|tM |, α ' 0.5/|tM | so that αv2 ' 1. From the two energies tM and v2 /α = 2meff v2 , one can form the 

S 

dimensionless ratio 
S S S 

α 1 
|tM | 

v2 
' 

4|tM 
, (20) 

| 

which is ∼ 4 for MB and ∼ 7.5 for MA . We use this estimate |tM 2 4(MB 
S 

) − 7.5(MA ) repeatedly in the following. 

 
Density of states and susceptibility singularities at a saddle point 

 

In the following we present analytical results on the paramagnetic singularity of the susceptibility at the two types of saddle 
points encountered in the moiré band structure of graphene discussed above. The first one is the ”ordinary” A1 saddle point, 
where energy exhibits a maximum along one axis and a minimum along the perpendicular one. The second one is the C3 saddle 
point, where the band curvature is zero in all directions. This point is surrounded by three maxima separated by three valleys at 
120◦ angles. 

For clarity, we compute in parallel both density of states and susceptibility, whose expressions bear similarities : 

ρ = 

∫ 

χ = 

∫ 

d2p 
δ(ϵ(p) − ϵ) 

4π2 
(21) 

d2p 
δ(ϵ(p) − ϵ)χ(px, py) 

4π2 (22) 
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∫ 

c 

0 √ c 

c 

∂p2 ∂p2 
− ( 

∂p 
) 

x y 

x y 

x y 

with 
 

 
µ0e2

  
∂2ϵ ∂2ϵ 

 

  

   

 
 
∂2ϵ 2

  

 

  

χ is the so-called Landau-Peierls contribution to the susceptibility, neglecting interband effects [3]. 

 
DOS and susceptibility singularities at a A1 saddle point 

 

We consider the simple saddle point in the dispersion relation modeled as : 

ϵ(px, py) = αxp2 − αyp2 . (24) 

α has the dimension of an inverse mass α = 1/(2m). For generality, we consider the anisotropic case relevant for our situation 
and choose 0 < αy < αx and we introduce a momentum cutoff pc. The integrated density of states (DOS) is given by : 

 
 

 
with the constraint 

N (ϵ) = 
 1  

dp 
4π2 x 

 
dpy 

 
(25) 

0 < ϵ(px, py) < ϵ for ϵ > 0 

ϵ < ϵ(px, py) < 0 for ϵ < 0 (26) 

After momentum integration and derivation with respect to the energy, the density of states is given by 

 1  
√

αypc + 
√

αyp2 + ϵ  (27) 
ρ(ϵ) = 

2π2√
α α  

ln √
|ϵ| 

. 

At energy well below the cutoff 
√

αypc, it takes the simple form 

 
1 4αyp2 

 c ρ(ϵ) = √ ln . (28) 
4π2  αxαy |ϵ| 

Within the Landau-Peierls approximation, the susceptibility is obtained from a similar calculation with an extra factor 
χ(px, py) = (µ0e2/3)αxαy, leading to: 

 

χ(ϵ) = 
µ e2   

12π2  
αyαx ln 

4αyp2 
 

 

|ϵ| 
(29) 

 
DOS and susceptibility singularities at a C3 saddle point 

 

The energy varies as a cubic function of px and py, which is convenient to parametrize in polar coordinates as: 

ϵ(px, py) = β (p3 − 3pxp2) ≡ βp3 cos 3θ (30) 

with an energy cutoff ϵc = βp3. With integration regions constrained by eq. 26, the integrated DOS is given by 
 

 
N (ϵ) =  6  

∫  
d2p =  3 

  
ϵ
  2/3 ∫ π/6  dθ  

 
(31) 

4π2 
βp3 cos 3θ<є 4π2 β 0 (cos 3θ)2/3 

The integral converges and yields: 
√

πΓ(7/6)/Γ(2/3) = 1.214, so that we get finally for the DOS : 

 

ρ(ϵ) = 
C 

 

 

β2/3|ϵ|1/3 
(32) 

12 x y x ∂p χ(px, py) = (23) 
y 
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∫ 

  
ϵ 

2 

8π2 0 c 

∫ 

with C = 0.0615. 

For the integrated susceptibility X(ϵ), the integrand has a multiplicative term in 3µ0e2β2p2. This yields in polar coordinates: 

 
X(ϵ) = 

 9  

2π2 

 

µ0©2β2 

 

θc 

dθ 
0 βp3 cos 3θ<є 

 
p3 dp . (33) 

Integrating over p with the condition βp3 cos 3θ < ϵ, leads to: 

 
 9  

 

 
 

 

 

∫ θc  dθ  
 

  
 

with the cutoff θc ' π/6 − ϵ/(3ϵc). We use the expansion : 

 
π/6−x  dθ  

(cos 3θ)4/3 −→ 

 

 
 1  

(3x)1/3 
− b . (35) 

0 

with b = 
√

πΓ(5/6)/Γ(1/3) ' 0.747 and we find 

 
X(ϵ) = 

 

 
9µ0e2 

8π2 

x→0 
 
 

 

β2/3ϵ4/3 

 
 

 
1/3 
c 

 

ϵ1/3 

 

— b

! 

 

 
(36) 

The susceptibility at energy ϵ is obtained by derivation and reads: 

χ(ϵ) = 
 9  

µ e2 β2/3 (ϵ1/3 − c|ϵ|1/3) (37) 

with c = 4b/3 ' 1. The susceptibility is therefore finite at its maximum and depends on the cut-off ϵc. 

 
Gaussian broadening 

 

The effect of disorder can be accounted for by a gaussian distribution of chemical potentials of width σ. The susceptibility 
becomes 

 

 
with 

χσ(µ) = 

∫ 

χ(µ′) P (µ − µ′)dµ′ (38) 

 

 
−µ2 

e 2σ2 

P (µ) = √
2πσ 

(39) 

The logarithmic singularity in eqs.(28,29) is smoothed according to: 

∫ 
′ e 

 

−(µ−µ')2 

2σ2 ′ 
ln |ϵ| −→ ln |µ | √

2πσ  
dµ (40) 

For µ = 0, the divergence 1/ ln |ϵ| is cut as 1/ ln Aσ with A = 
q 

1 e−γ/2 ' 0.53 and γ = 0.577... is the Euler constant. 

Similar calculation for the C3 singularity yields: 

 
1/3 

 

 ∫ 
′ 1/3 e 

 
 

 

 

−(µ−µ')2 

2σ2 ′ 

 
For µ = 0, one finds that : 

|ϵ| −→ |µ | √
2πσ  

dµ (41) 

 
χ(µ = 0) = 

 9  
µ e2 β2/3 (ϵ1/3 − dσ1/3) (42) 

with d = c 21/6Γ(2/3)/
√

π ' 0.854. 

8π2  0 c 

8π2 
0 (cos 3θ)4/3 

∫ 

X(ϵ) = µ0e2β3/2ϵ4/3 (34) 
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Orbital susceptibility and comparison with experimental data 

 

One important parameter is the energy width σs of the satellite Dirac peak which limits the amplitude of the susceptibility 
peaks. In Fig.11 in section II.C, we show how to extract σs from the gate voltage derivative of the magnetisation M ′(Vg) 
µM ′(µ). The spacing between the maximum and the minimum of M ′(µ) fitted by the derivative of a gaussian centered at µS 
around µ yields 2σS = 9 1 meV for both samples. In the following for quantitative comparisons we mostly focus on the 
sample MB, with the largest moiré potential period and amplitude, for which the data is the most reliable due to the larger 
energy spacing between paramagnetic and diamagnetic peaks. 

 
Secondary Dirac peak versus main Dirac peak 

 

The ratio of susceptibility peaks at the sDP χS and the main Dirac peak χM reads: 

r 
χS 

χM 
 3v2 /σS 

v2/σ0 

σ 

σ  
= 3 × 2(0.035 − 0.064) × 1.5 ≈ 0.32(MA) − 0.58(MB) (43) 

Experimentally, σ0 = 80 K = 6.9 meV, and σS = 4.5 meV so that σS/ tM 0.2(MB) 0.3(MA). 
The measured ratio is r = 0.33 0.1, for MB which is of the order but 1.7 times lower than the expected value given above, 

we show in the next section that this disagreement is probably due to an underestimation of the diamagnetic peak χS very close 
to the inner Vignale paramagnetic peak (on the low doping side). The same calculation gives r = 0.32 for MA which is also 
larger than the measured value of the order of 0.1 with a very large error bar (see tables in section II). 

 
Vignale paramagnetism versus McClure diamagnetism 

 

The Vignale paramagnetic susceptibility χV ∼ α ln(ϵc/σs) and the McClure diamagnetic susceptibility (at the sDP) χS ∼ 
−v /σs, where σs is the disorder broadening. Their ratio (up to numerical factors) is 

χV α α σs 

|χ | 
∼ 

v2 σs ln(ϵc/σs) ∼ |tM | 
v2 × 

|t  | 
≈ (4 − 7.5) × (0.1 − 0.15) ≈ 0.4(MB) − 1.1(MA). (44) 

This is just an order of magnitude estimate. However, for the precise ratio between the maximas of the derivative χ′, we find: 

r = 
χ′

V 6 0.0065α/σs  α ≈ × ≈ σ  α = |t  σs  ≈ 0.4(M ) − 1.1(M ), (45) 
s M | × B A 

|χ′ | 3 0.013v2 /σ2 v2 v2 |tM | 

where 6/3 accounts for the 6 saddle points versus the 3 sDPs and σs/ tM 0.1. The relative magnitude of the orbital 
paramagnetism and diamagnetism for the moiré band structure is therefore given by the following important dimensionless ratio 

α vG σs σ  =  , (46) 
2  s 

4tM tM
 

It is interesting to note that rV D decreases with 1/G aM and tM . This is why it is expected to be larger for the MA sample 
thanMB in agreement with our experimental results. In particular all paramagnetic peaks on bands E1 , H2 and E2 are visible 
for MA. A different behavior is observed for the MB sample: saddle points on the E1 and H1  bands are nearly not detectable 
whereas instead paramagnetic peaks are clearly observed on the E2,H2 bands and the ratio rV D = 0.8 0.2, 0.35 0.15 can 
be estimated, see section II below. A similar quantitative estimation is delicate on MA : on the one hand the amplitude of the 
diamagnetic peak at sDPs is difficult to estimate and on the other hand the large doping region of saddle points in the E2 and H2 
bands correspond to large gate voltages of the order of 20V for which the insulating properties of the hBN top layer become 
not reliable and therefore experimental data are not reproducible. This explains the large error bars in Table II of section II. 

 
Vignale orbital paramagnetism versus Pauli spin paramagnetism at the saddle points 

 

 
2 

Vignale’s susceptibility is χV = α ρ(ϵ) where ρ is the DoS and we have taken µ ≡ 1 and e ≡ 1. Pauli’s susceptibility is 
χP = g µ2 ρ(ϵ) with the Bohr magneton µB =  ek  =  1  , where me is the bare electron mass and g ≈ 2 for graphene. Their 

2 B 

ratio is:  
χV α2/3 = = 

  

 
4 

α2m2 = 
 

2me 

 

1
  

me 
 

  

2me 

 
2 1 = 

 
 mev

 2 
 

 

 
≈ 14000(MB) − 27000(MA) ∼ 10 . (47) 

χP 2 3 e 3 meff 3u2 kG 

∝ 

v 

  

V D 
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e 

  2 

√ 
− 

In other words, since a typical effective mass at the saddle point of the moiré band structure is meff = 1/(2α) ∼ 4.10−3me 
(i.e. me/meff ∼ 200), the spin paramagnetism is completely negligible compared to the orbital paramagnetism. We note 

that 1  m  is the famous ratio between orbital and spin magnetic susceptibility usually discussed near a band edge when 
3 meff 

comparing Landau diamagnetism and Pauli paramagnetism. 
 

 
MORE DETAILS ON EXPERIMENTAL RESULTS. 

 

Fabrication and characterization of the investigated samples. 

 

 

 

FIG. 6. Signatures of the moiré potential on the width of the Raman 2D peak. 
 

 

We start from a selected exfoliated graphene monolayer with a hBN flake. We first identified long straight edges in both 
graphene and hBN layers. These edges follow the crystallographic axes of each honey-comb lattice. Therefore, by aligning 
these straight edges, one has equal probability that graphene and hBN are aligned or that their respective alignment form a 30◦ 

angle. In order to guarantee the alignment, two different methods were followed for the two samples MA and MB investigated. 
For sample MB, a flake of graphene with a long straight edge of about 45µm long was cut in three parts of roughly 20, 5 

and 20µm respectively. The first part was aligned and picked-up with a straight edge of a big flake of hBN. Then covered by 
a bottom misaligned hBN. The second and third parts were rotated with an angle of 30◦ with respect to the hBN edge, picked 
up with another part of the same top hBN flake and finally dropped onto a misaligned hBN. Raman spectroscopy measurements 
allowed us to determine which of the two samples is the one with the largest moiré constant by measuring the width of the 2D 

peak. This sample was selected and deposited on the top of the GMRs based magnetisation detector, using the standard dry 
transfer techniques. 

In the case of sample MA, a large hBN flake was cut into two parts along one main crystallographic edge (this was done by 
opening a narrow slit though the hBN flake using electron-beam lithography followed by reactive ion etching ) A single graphene 
flake was then aligned along the straight edge of one of the halves of the hBN flake, and encapsulated beween this part and the 
other half previously rotated by 30◦. The presence of a long-range moiré pattern, was confirmed by Raman spectroscopy associ- 
ated this changes with For both samples Raman experiments enabled us to determine the moiré lattice parameters. According to 
[4] (see also [5]), the full width at half maximum (FWHM) of the 2D peak of the Raman spectrum of graphene is very sensitive 
to the folding of the phonon structure due to the moiré pattern. This creates copies of the 2D peaks with small differences in their 
Raman shift. This is reflected by an increase of the FWHM of the 2D peak which varies linearly with the superlattice period, 
aM leading to the relation FWHM2D = 2.7aM + 0.77. 

From Fig. 6, we found the FWHM of the D peak to be 26.5cm−1 for MA sample and 34.9cm−1 for MB. From these values, 
using the relation given above relating the width of the Raman D peak to the moiré period, we can deduce for the 2 samples A 
and B, aM = 9.5nm and 12.5nm nm as well the twist angle θ between the hexagonal lattices of graphene and hBN acording 
to the relation aM = (1 + δ)aG/( 2(1 + δ)[1 cos θ] + δ2), where δ = 0.017 is the ratio between graphene and hBN lattice 
constants). We find θA = 1.1° and θB = 0.6°. 
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FIG. 7. Top: derivative of the resistance as a function of the gate voltage for sample MB . Bottom: derivative of the magnetization as a function 
of the gate voltage for the same sample. 

 

 

The period of the moiré lattices coincides with those expected from the magnetisation curves. As shown in Fig.3 of the main 
paper, the diamagnetic peaks are located very close to the doping (or Vg) at which the density is equal to 4 electrons (or holes) 
per moiré-unit cell. In contrast, transport measurements show a satellite peak at a smaller density. Since the geometry of the 
two experiments differ, we may be seeing a slightly different effective moiré period(of about 0.5nm) in each experiment. This 
difference might be caused by local strain. In any case, the difference in the position in doping between magnetisation and 
resistance measurements can be explained by considering the error bars of the calibration of the moiré-length/FWHM relation 
in [4]. 

 
 

 
Effect of the gate voltage modulation 

 

We first present in Fig.7 the gate voltage derivative of the resistance of sample MB. This allows us to directly compare 
the positions (in gate voltage) of the main and secondary Dirac peaks with the corresponding diamagnetic peaks. We observe 
antisymmetric peaks both in the resistance and the magnetisation at the Dirac peak. At higher doping, we see the derivative of the 
secondary Dirac peaks in the resistance . In magnetization, we observe both seconday McClure peaks and paramagnetic peaks. 
When this magnetization curve is integrated, it gives the curves shown in Fig.3 of the main text for different values of magnetic 
field. From this data taken at different values of magnetic field between 0.1 and 0.2 T one can appreciate the reproducibility 
of the intensity and positions of the diamagnetic secondary McClure peak and the outer paramagnetic peaks, whereas the inner 
paramagnetic peaks are nearly invisible at low field. 

We now consider on the same data the effects of modulation and integration. Figure 8 compares the integrated curve of data 
in 7 after subtraction of a linear background, with data taken obtained for a smaller range of gate voltage and with a smaller 
modulation. We can notice that the higher modulation allows us to obtain a smoother curve with less noise, but certain structures  
get rounded in a non-negligible way. We also investigated the effect of the range of gate voltage along which integration is 
performed. We compare the curves obtained after integrating the data in the whole range of Vg investigated (between -15 to 
15V) with the curve obtained after splitting the data in 3 pieces along the Vg axis. Whereas the main magnetization peaks 
are unchanged, we find that integrating over the full range of gate voltage generates an extra negative contribution on the 
magnetisation which is not seen when the integration range is reduced to 10V. 
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FIG. 8. Comparison of the magnetization of sample MB , with different gate voltage modulations, for an external field of 0.2 T. In orange, the 

curve for 200 millivolt integrated in the full range of  gate voltage investigated (−15.5 to 15.5 volt), see Fig.3 in the main text. In blue, the 

electron’s (left) sDP region measured at 50 millivolt and integrated in a range between −16 to −8 volt. In green, the hole’s (right) sDP region 
measured with 50 millivolt gate voltage modulation and integrated in a range between 8 to 16 volt. In dashed black, the integration of the data 

obtained with 200 millivolt gate voltage modulation was split into 3 regions: left (−16 ; −8) volt, center (−8 ; 8) volt and right (8 ; 16) volt. 
 

 
Additional data for different values of magnetic field 

 

We present here magnetisation data not shown in the main part of the paper. Magnetisation is expressed in units of the 
magnetic field detected on the GMR sensor. For the measurements on MB the experimental conditions (dc current though the 
GMR detector as well as gate voltage modulation) were chosen in order to optimize the quality of the signal. In particular 
the large gate voltage modulations tend to washout the main Dirac peak as well as dHvA oscillations. One can identify the 
diamagnetic satellite peaks which are clearly split on the electron side as well as the outer paramagnetic peaks. Similar data is 
also shown on MA in a smaller range of gate voltage focusing on the regions in the vicinity of satellite Dirac points both in hole 
and electron doping sides. In both cases paramagnetic peaks on both sides of the diamagnetic satellite peaks are visible with a 
more complex behavior with split peaks on the hole side which will be discussed below. 

Finally, in Fig.11, we explain how we determined σS, the amplitude of disorder around the satellite Dirac peaks of the 
hBN/Graphene bilayer of sample MB. The value of σS, is obtained from the distance in energy between maxima and minima 
of the chemical potential derivative of the secondary diamagnetic peaks as explained above. 

Similar analysis on sample MA gives a similar value of σS = 5.0 ± 0.5 millielectronvolt. 
 
 

Characteristics of the susceptibility peaks around the satellite  Dirac points in comparison with numerical calculations 

 

In the following we present a more detailed analysis of the experimental data, than to what is done in the main paper, in 
comparison with the band structure ans its analysis depicted in the previous section. For each sample investigated this analysis 
relies on only 2 adjustable parameters. The first one is the energy width of the peaks estimated above and the second one is 
the amplitude of the moiré potential tM determined from the relative positions of the satellite Dirac points and the positions of 
those large doping paramagnetic peaks clearly which can be identified. The next step is then to understand the amplitudes of 
the different peaks observed. In tables II and III, we summarize the parameters extracted and used for the comparisons between 
experimental and theoretical data. Since our model does not take into account the electron-hole asymmetry in the experiment, 
one has to consider that the parameter tM is an average between the values which could be deduced fitting only the hole or the 
electron side of the data shown in Fig.4. ∆µiE,H µpara,i µdia,i E,H (in millielectronvolt ) are obtained from the distance 
in energy between the chemical potentials of the paramagnetic and corresponding diamagnetic peaks for each band (when they 
are visible), the rather large error bar comes from the width σS which is not negligible compared to their spacing. The subindex 
i = 1, 2 is related to the considered band : E1,2 or H1,2. The amplitudes of the magnetization Mi (in nanotesla) are measured 
directly from the magnetization data. All values are obtained at an applied field of 0.2 tesla. From the values given in these 
tables, we can calculate the experimental value of  χV . These ratios are of the same order of magnitude than the theoretical ratio 
 χV 

|χS | 
for both samples discussed in the previous section. 

|χS

In
| 

the following we show on two examples that it is possible to go further and reproduce the shape of the magnetic singularities 
on the electron side considering the contribution of both diamagnetic peaks at Dirac points mS and κS together with the 
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FIG. 9. Magnetization as a function of density (normalized by n0) for sample MB for a set of additional low fields, different from the fields 

discussed in the main text. The top plot shows positive fields and the bottom plot shows negative fields.  Curves have been shifted in the vertical  
axis for better visualization. For each curve the dc current though the GMR sensor is indicated as well as the amplitude of modulation. Dashed 
vertical line indicate the paramagnetic Vignale peaks (black) and the diamagnetic McClure peaks. 
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FIG. 10. Magnetization as a function of  gate voltage for sample MA for different magnetic  fields. The data shows only the vicinity  of the 
secondary Dirac peaks in the hole and electron doping sides. 

 
MA ∆µ1 ∆µ2 σS |M CNP | |M sDP | |Mpara−1| |Mpara−2| 

E1,2 10 ± 10 10 ± 2 4.8 15 1 ± 0.5 0.5 ± 0.5 1 ± 0.5 
H1,2 5 ± 5 12 ± 3 5 " 1.6 ± 0.5 1 ± 0.5 2 ± 0.5 

TABLE II. Experimental parameters for sample MA. ∆µ i = |µpara,i − µdia,i| and σS are given in millielectronvolt . The amplitudes of  the 
magnetization at charge neutrality point MCNP , at the secondary Dirac points MsDP , and the paramagnetic peaks Mpara−1,2 are given in 
nanotesla. The large errors bars come the small energy separation between these peaks compared to their width. 

 

 

paramagnetic sigularities at the saddle points which tend to compensate the diamagnetic ones. In particular we see that the 
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FIG. 11. (A) In green, derivative of  the magnetization as a function of  the chemical potential for sample MB . In red, the signal is fit with the 
derivative of 4 gaussian peaks (2 paramagnetic and 2 diamagnetic) centered respectively around the saddle points and the split satellite Dirac 
peak. (B) Integral of the zone in a dashed rectangle in figure (A) as well as the integral of the fit. (C) Zoom of the rectangle zone in figure (A). 

From the fit of the experimental data we obtain σS = 4.5 ± 0.5 millielectronvolt. 

 
MB ∆µ1 ∆µ2 σS |M CNP | |M sDP | |Mpara−1| |Mpara−2| 

E1,2 N.A. 23 4 5.6 1.8 N.A. 3.3 
H1,2 N.A. 14 5 " 1.7 N.A. 1.7 

TABLE III. Experimental parameters for sample MB. ∆µ i = |µpara,i − µdia,i| and σS are given in millielectronvolt . The amplitudes of the 
magnetization at charge neutrality point MCNP , at the secondary Dirac points MsDP , and the paramagnetic peaks Mpara−1,2 are given in 
nanotesla. 

 
proximity between the low doping saddle point and mS has a different manifestation on both samples. In the case of MB the 
low doping(inner) paramagnetic Vignale peak is largely reduced by the diamagnetic peak of larger amplitude. This is why it 
is strongly depressed whereas the diamagnetic peak is only reduced by a factor two. On the other hand, in the case of MA the 
inner paramagnetic peak is still visible, due to its greater amplitude compared to the diamagnetic one at mS, which is in contrast 
strongly depressed whereas the diamagnetic peak at KS is clearly visible. We finally note that the outer paramagnetic peak is 
clearly visible on both samples. 
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that due to the Vg dependence, the energy width of satellite Dirac points is smaller than the width of the main Dirac point.) The difference 
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FIG. 12. (A) √an d (B) Magnetisation data on samples MB and MA measured at 0.2 T function of the chemical potential in eV. (We note 

between the chemical potential of the sDP of the samples MB and MA is directly related to their different periodicity aM = 12.5 nm and 
9.5 nm respectively. Experimental data are compared to cuts along the K, κS ,  κS, mS , mS, K axis of the moiré band structure calculated for 
different values of tM matching the position of the observed diamagnetic peaks (red arrows) and paramagnetic peaks (black arrows) of both 
samples. 
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FIG. 13. (A) Illustration of how diamagnetic and paramagnetic responses combine on the H1 band for the MA sample. We consider four 
similar separated peaks (two paramagnetic (black) and two diamagnetic (red)), centered at the energies determined by the band structure 
shown in 12A. These peaks have been constructed as gaussians with σS = 5meV. Their amplitudes are determined by taking into account their 

multiplicity and the ratio χV /|χS | = 1 from the estimations in section I. (B) Comparison between the experimental data (orange) and the sum 
(green) of the 4 peaks in (A). 
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FIG. 14. (A)Illustration of how diamagnetic and paramagnetic responses combine on the H1 band for the MB sample. We consider four 
similar separated peaks (two paramagnetic (black) and two diamagnetic (red))centered at the energies determined by the band s tructure in 12B.  
These peaks have been constructed as gaussians with σS = 5meV. Their amplitudes are determined by taking into account their multiplicity 

and the ratio χV /|χS | = 0.4 from the etimation in section I. (B) Comparison between the experimental data (orange) and the sum (green) of 
the 4 peaks in (A). The inset shows the related zone of the band structure, and the green area shows the zone where the Dirac peak is broadened. 
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