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Abstract. We study the synchronization of three Christoffel words (i.e.,
superimposition of words with same length) from a geometric point of
view. We provide a geometrical interpretation of the synchronization in
terms of Reveilles’ discrete lines. We introduce for the synchronization
a technique based on algebra, arithmetic, and Cayley graphs. We define
the orbital matrix, based on the vertices of the Cayley graph, for each
Christoffel word. We provide a characterization of a vector, called the
seed, which is a vector that synchronizes the edges of the three Cayley
graphs. After synchronization, we show that each Christoffel word is
replaced by a 4-connected Reveilles 2D segment whose parameter is given
by the seed.

Keywords: Christoffel words · Cayley graphs · Reveilles’ Discrete lines

1 Introduction

Christoffel words are fundamental objects in combinatorics [2,3], which have an
interpretation in terms of Cayley graph. In discrete geometry, Christoffel words
are coding of discrete segments on a square grid [11].We consider the definition of
a segment given by Reveilles [12]. Using the binary alphabet {0, 1}, synchronizing
two, three or n Christoffel words of the same length means applying a specific
number of circular shifts on each binary word, in such a way that, for each
position, one and only one word has a letter 1. From a geometric point of view,
this means that, if we draw the segments corresponding to each shifted word,
we have one and only one vertical step at each position. These shifted lines are
nothing but the discrete 2D Reveilles’ segments, for a particular parameter called
seed. The aim of this paper is to provide a complete characterization of such a
seed. It shall be noted that this work is a combinatorics on words and discrete
geometry reformulation, with new proofs, of the results in [9,13].

The paper is organized as follows. In Sec. 2, we provide the definition of
Christoffel words from a geometric point of view, and we read the word using
the Reveilles discrete segment definition. In Sec. 3, we give our definition of
synchronization, and we introduce it from a geometric point of view. In Sec. 4, we
give some properties on the positions of letter 1 for the conjugates of Christoffel
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words. In Sec. 5, we introduce the vertical invariant, and we give some of its
properties. Sec. 6 is dedicated to the main results of this paper, characterizing
algebraically a seed vector that synchronizes two and three generators. Such
a seed vector determines exactly the number of shifts needed. We show that
the elements of such seed vector correspond to the parameters of the Reveilles
discrete segments. Finally, we conclude in Sec. 7.

To ease the reading of this paper, the full proofs of all the lemmas, properties,
and theorems of the present paper can be found in the Appendix.

2 A geometric point of view on Christoffel words

Let a, b be two integers in the set of non-negative integers N. We denote a ≡
b mod n if and only if a − b is divisible by n. An Alphabet A is a finite set of
symbols. An element of A is a letter. A word w over an alphabet A is a sequence of
letters over A. We denote by A* the set of all the words formed by the alphabet
A. The identity element of A* is the empty word ε. The concatenation of the word
w, n times, is written wn = www · · ·w ∈ A*. For all w ∈ A*, the length of a word
is the number of letters in w, and it is denoted |w|. The number of occurrences
of the letter a in w is |w|a, where a ∈ A. Hence, we have: |w| =

∑
a∈A |w|a. If

there exists p, f, s ∈ A∗ such that w = pfs, we say that f is a factor of w.
Given two words w,w′ ∈ A∗, we say that w is a conjugate of w′ if there exists
u, v ∈ A∗ such that w = uv and w′ = vu. The set of all the conjugates of a word
w is denoted by L (w).

Two numbers a and b are relatively prime (written a⊥b) if the greatest common
divisor between them is 1; i.e., gcd(a, b) = 1.

Suppose a, b ∈ N and a⊥b, the Christoffel path of slope b
a is the path from(0, 0) to

(a, b) in the integer lattice Z× Z, that satisfies the following two conditions [8].

(i) The path lies below the line segment that begins at the origin and ends at
(a, b).

(ii) The region in the plane enclosed by the path and the line segment contains
no other points of Z× Z besides those of the path.

From a geometric point of view, we see the Christoffel path as the digitization of
a segment with a rational slope in Z×Z. Let a⊥b, we consider the Cayley graph
of Z/(a+ b)Z, which is a cycle, with vertices 0, b, 2b, . . . , a, 0 mod (a+b).

Starting from 0 and proceeding in the order listed above,

(i) label those edges (s, t) satisfying s > t by 1, named decreasing ;
(ii) label those edges (s, t) satisfying s < t by 0, named increasing ;

(iii) read edge-label in the prescribed order, i.e., 0
0−→ b

?−→ · · · ?−→ a
1−→ 0.

The (lower) Christoffel word of slope b
a over the alphabet {0, 1}, is obtained by

reading the edges of the Cayley graph of Z/(a+ b)Z starting from 0. The vertices
of the Cayley graph are called the orbit of the Christoffel word. The values on
each vertex of the Cayley graph is called a label.

In other words, a Christoffel word is determined by encoding, with a Freeman
chain code [6], the discretization of a line segment of rational slope [1]. We recall
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Fig. 1. On the left side, the Reveilles standard segment D[3, 5, 0], whose Freeman code
is the Christoffel word of slope 3

5
. On the right side, the representation as Cayley

graphs for each row of CO(G,V ), for G = (5, 3). The synchronization of D[3, 5, 0] and
D[5, 3, 0], obtained by some cyclic permutations, gives as a resultant: w = 21211211.

that a Freeman chain code is defined, in this case, over an alphabet of two letters
{0, 1}, which are associated to the right and up steps, respectively.
We now introduce Christoffel words using a different, geometric point of view,
based on the Reveilles discrete 2D line [4,12].

Definition 1 ([12]). The Reveilles discrete line D(a, b, µ, ω), with parameters
(a, b, µ) and arithmetic thickness ω, is defined as the set of integer points (x, y)
verifying the double inequality: µ ≤ ax− by < µ+ ω
– where a, b, µ, ω ∈ Z,
– a⊥b, b ̸= 0 and the discrete line is of slope a

b .

In our work, we are only interested in standard 4-connected 2D lines, which
verify ω = a+ b. This standard line, with slope a

b and lower limit µ, is denoted
D(a, b, µ), and is infinite. Furthermore, in the following, we focus on the standard
4-connected 2D segment, D[a, b, µ], which is exactly the first a+ b integer points
of the Reveilles discrete line D(a, b, µ), starting from the origin (0, 0). See Fig. 1,
left, for D(3, 5, 0).

We denote by R(D[a, b, .]) the set of all Reveilles discrete 2D segments ob-
tained for different values of µ. Let a⊥b, and µ ∈ Z. It is easy to show that the
set R(D[a, b, .]) is finite and is of cardinality a + b. Furthermore, as shown in
[7, Lemma 4.5], the Freeman chain code of the discrete segment D[a, b, 0] is the
Christoffel word of slope a

b .

Proposition 1. Let a⊥b, and let w be the Christoffel word of slope a
b . The set

of Freeman chain codes of the elements of R(D[a, b, .]) is in bijection with L (w).

Suppose that a and b are not relatively prime, and let d = gcd(a, b). In this
case, the Christoffel word w of slope a

b is obtained from the Christoffel word w′

of slope
a
d
b
d

, by setting w = w′d.

3 Synchronization of Christoffel words

In our work, we use explicitly some properties of Christoffel words, in order to
synchronize 2 and 3 Christoffel words. At the same time, we show a geometric
perspective on this synchronization. We define the following two matrices:
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Definition 2. Let G = (g1, g2, . . . , gℓ), and V = (v1, v2, . . . , vℓ) be two vectors
of strictly positive integers, and set n = g1 + · · · + gℓ. We define the Orbital
matrix O(G,V ) and the Christoffel conjugate matrix CO(G,V ) as O(G,V ) =
(oi,j) i=1..ℓ

j=0..n
and CO(G,V ) = (ci,j) i=1..ℓ

j=0..n−1
, defined as: oi,j = (vi + jgi)modn

and ci,j =

{
i if oi,j > oi,j+1

0 otherwise.

We call G the generator vector, the gi being the generators. We set V0 to be
the zero vector.

Definition 3. A vector V synchronizes the generator G vector if each column of
the matrix CO(G,V ) contains exactly ℓ − 1 occurrences of the letter 0 and one
occurrence of a letter in {1, 2, . . . , ℓ}. Such a vector is called a seed.

The first aim of this paper is to find a specific seed V , that synchronizes a gen-
erator G of length 2 or 3. In other words, synchronizing the matrix CO(G,V0)
means finding a vector V for which CO(G,V ) has one and only one letter in
each of its columns, i.e., one and only one decrease in each column. Once syn-
chronized, any column of O(G,V ) can be considered as a seed vector. In this
paper, we will choose a specific one, that relates us to the geometric definition
of synchronization.

Definition 4. Given ℓ Christoffel words, written respectively over the alphabets
{0, 1}, . . . , {0, ℓ}, a synchronization provides a word over the alphabet {1, . . . , ℓ}.
The synchronized word is the word obtained by concatenating the non zero letters
of each column of the synchronized matrix CO(G,V ).

This notion is closely related to the superimposition (a lighter version of syn-
chronization) defined in [10], with the difference that we do not only require the
words to have no collision with the letter {1, 2, . . . , ℓ}, we also require that there
is a letter among {1, 2, . . . , ℓ} at each position. To rephrase it, the final word
does not contain any occurrences of the letter 0.

Example 1. For the vectors G = (5, 3) and V0 = (0, 0), we have O(G,V0) and
CO(G,V ) given respectively as follows:

O(G,V0) =

(
0 5 2 7 4 1 6 3 0
0 3 6 1 4 7 2 5 0

)
CO(G,V0) =

(
0 1 0 1 1 0 1 1
0 0 2 0 0 2 0 2

)
The seed V = (0, 7) synchronizesG and gives the word w = 21211211 (Fig. 1).

O(G,V ) =

(
0 5 2 7 4 1 6 3 0
7 2 5 0 3 6 1 4 7

)
CO(G,V ) =

(
0 1 0 1 1 0 1 1
2 0 2 0 0 2 0 0

)
Synchronization from a geometric point of view: We want to answer the following
question. Is it possible to draw ℓ digital line segments, in such a way that each
vertical move on these segments is separated from the others? More precisely, if
Fp is the Freeman chain code of the pth segment over the alphabet {0, p}, we
would like to have, for all 1 ≤ k ≤ n, Fp[k] ̸= 0 implies Fq[k] = 0 for p ̸= q. In
other words, we want to synchronize ℓ digital line segments. The Freeman chain
code for each of the ℓ segments gives us CO(G,V ), where G = (g1, . . . , gℓ),

gi
n−gi
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is the slope of the ith line segment, and n =
∑ℓ

i=1 gi. The seed vector is to be
determined.

4 Positions of letter 1 for conjugates of Christoffel words

Let w be a Christoffel word of slope a
b , where a⊥b. The orbit of w, called O(w),

is made of all the vertices of the Cayley graph of Z/(a+ b)Z, starting from the
label 0. Let w′ be the conjugate of w. We know that the orbit of w′, O(w′), is a
shifted sequence of O(w) starting from a certain label p, where p is multiple of
amod a+ b. In this section, we are interested in determining the positions of the
letter 1 for the Christoffel word w or any of its conjugates based on their starting
label of their orbits. The Christoffel word w and its conjugate have exactly a
letters of 1 and b letters of 0.

Definition 5. Let w be a Christoffel word of slope a
b . We let w′ be a conjugate of

w such that O(w′) starts from the label p. The set of positions, denoted P (a, b, p),
is: P (a, b, p) = {1 ≤ i ≤ n | w[i] = 1}.

If a⊥b, the set P (a, b, p) is calculated as follows:

Proposition 2. Let w be a Christoffel word of slope a
b , where a⊥b. We let

w′ be a conjugate of w such that O(w′) starts from the label p. We set α as
αa ≡ −1modn and we have:

P (a, b, p) = {(iα+ x)modn | i = 1 . . . a}, where xa ≡ −p mod n.

In particular if p = 0, we are determining the positions of the letters 1 in the
Christoffel word w. This specific result can be deduced using [10, Corollary 3.2].

Example 2. Let w be a Christoffel word of slope 3
5 . The set of the indices of the

letters 1 is P (3, 5, 0) = {(5i+ 0mod 8) | i = 1 . . . 3} = {2, 5, 7}. We can write w
as w = 00100101.

To generalize the case, we consider a and b not relatively prime, and we have:

Lemma 1. Let w be a Christoffel word of slope a
b , and we set d = gcd(a, b). We

let w′ be a conjugate of w, such that O(w′) starts from the label p. The set of
positions is given by: P (a, b, p) = ∪d−1

j=0{(iα+x)+ j n
d modn; i = 1, . . . , a

d}, where
n = a+ b, α.a ≡ −d modn, xa ≡ −p modn,.

Example 3. Let w be the Christoffel word of slope 3
6 , and w′ its conjugate such

that O(w′) starts from the label 3. We have d = 3 and n = 9. The set of the
positions for the letters 1 is P (3, 6, 3) = ∪2

j=0{((2i + x) + 3jmod9); i = 1} =
{1, 4, 7}, where α = 2 and x = 2. Hence, w′ = 010010010.



6 L. Tarsissi et al.

5 Vertical invariant

We now define the vertical invariant to prove that any three generators, that are
not pairwise distinct, can be synchronized.

Definition 6. Let O(G,V ) be the orbital matrix for a generator vector G of

length ℓ ≥ 2 and a seed vector V . We set n =
∑ℓ

k=1 gk and we define the vertical

sum, for all j ∈ {0, . . . n}, as the vector A = (aj)j=0...n, where aj =
∑ℓ

i=1 oi,j.

The vertical sum A of O(G,V ) is a constant vector when we choose the seed
vector V which synchronizes the generator vector G.

Theorem 1. The vertical sum is a constant vector if and only if there exists a
unique decrease from one column to another.

Proof. ⇒ Let O(G,V ) be the orbital matrix for the generator vector G of length

ℓ, where n =
∑ℓ

k=1. We let A = (aj)j=0...n be the vertical sum, where aj =∑ℓ
i=1 oi,j be a constant vector, where all the aj are equal to u. We fix a column

t of O(G,V ) and we let all the elements of the next column be greater than
the oi,t, but smaller than n. In this case, all the elements of the tth column of
CO(G,V ), i.e. ci,t, are 0. This means there are no decreases in this column.

We have o1,t+1 = o1,t + g1 < n, o2,t+1 = o2,t + g2 < n, . . ., and oℓ,t+1 =
oℓ,t + gℓ < n. The sum of the elements of the column t + 1 is equal to: aj+1 =∑ℓ

i=1 oi,t+1 =
∑ℓ

i=1 oi,t + g1 + g2 + ...+ gℓ = at + n = u+ n ̸= u.
Suppose now that we have two decreasing positions at row k and ℓ such

that k < ℓ, respecting all the previous conditions. We obtain the following:
o1,t+1 = o1,t + g1 < n, . . ., ok,t+1 = ok,t + gk > n = ok,t + gk − n, . . . , and
oℓ,t+1 = oℓ,t + gℓ < n.

Then, the elements of ci,j are all 0, unless ck,t = k and cℓ,t = ℓ. By calculating

at+1 =
∑ℓ

i=1 oi,t+1 =
∑ℓ

i=1 oi,t+g1+g2+...+gℓ−n−n = aj+n−2n = u−n ̸= u.
Hence, the vertical sum is not constant when we have more than one decrease.
The same result is obtained if we have p decreases, instead of two. In this case,
oi,t+1 = u− (p− 1)n, which is a contradiction.

⇐ Let V be a seed vector that synchronizes G. We fix a column t of O(G,V )
and we have: o1,t = o1,0 + tg1, . . ., oℓ,t = oℓ,0 + tgℓ. Hence, at = a0 + tn. By
hypothesis, we know that we have exactly one decrease from one column to
another. To reach the tth column, we have to remove n t times. Hence, we get:
at = a0 = u ∀t ∈ {0, . . . , n}.

When A is a constant vector, we call the value of any element of A, the Vertical
invariant, and we denote it by In,ℓ, where n is the sum of all the generators and
ℓ is their number. Let us denote di the greatest common denominator between
each generator and n. We obtain di = gcd(gi, n), for all 1 ≤ i ≤ n. We can easily

show that ℓ ≤
∑ℓ

i=1 di ≤ n.
The vertical invariant can be calculated, as we can see in Proposition 3.
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Proposition 3. In,ℓ =
ℓn

2
− 1

2

ℓ∑
i=1

di, where di = gcd(gi, n).

Proof. Let gi be the i-th generator of the vector G and let di = gcd(gi, n). Let V
be the seed vector that synchronizes G. CO(G,V0)[i] is a Christoffel word of slope

gi/di

(ni−gi)/di
repeated di times. CO(G,V )[i] is a conjugate CO(G,V0)[i]. The sum

of the values of the i-th lines is di
∑n/di−1

j=1 jdi and so, the sum of the k-th lines

is
∑ℓ

i=1

(
di

∑n/di−1
j=1 jdi

)
. Since the sum of each of the n columns is equal, we

obtain In,ℓ =

∑ℓ
i=1

(
di

∑n/di−1

j=1 jdi

)
n =

∑ℓ
i=1

(
d2
i

∑n/di−1

j=1 j
)

n = 1
n

∑ℓ
i=1 d

2
i

(
n
si

−1
)

n
di

2 =
1
n

∑ℓ
i=1

(n2−ndi)
2 = ℓn

2 − 1
2

∑ℓ
i=1 di.

For ℓ = 2, we have In,2 = n − d, where d = gcd(g1, g2). If g1⊥g2, then
In,2 = n− 1.

Example 4. In Example 1, the seed vector V = (0, 7) synchronizes the generator
vector G = (3, 5). By computation, I8,2 = n − 1 = 8 − 1 = 7, as we can see in
each column of CO(G,V ), see Figure 1 right.

6 Seeds for two and three generators

Paquin and Reutenauer [10] have proved that two generators can always be
synchronized for all n, in particular when n is equal to their sum. To rewrite
the result in our language, we notice that for G = (g1, g2), the two discrete
segments are of inverse slopes: g1

g2
and g2

g1
. If we calculate the value of the vertical

invariant, we obtain In,2 = n− d; d = gcd(g1, g2). With some simple properties
on Christoffel words, we can show that the seed vector for two generators is
always of the form: V = (0, n− d) = (0, In,2). See Example 1.

For the rest of this section, we consider the generator vector G = (g1, g2, g3)
of length 3, with n = g1 + g2 + g3. We explicitly check the synchronization for
all the possible cases, and we characterize the corresponding seed vectors. We
show the link of this particular seed vector with the Reveilles 2D discrete line.

Geometric formulation: We are dealing with three discrete segments of the fol-
lowing form: D[g1, n−g1, 0], D[g2, n−g2, 0] and D[g3, n−g3, 0]. Clearly, the first
and last steps in their Freeman code, do not respect our geometric constraint.
We now look at the sets of Reveilles 2D discrete segments R(D[g1, n − g1, .]),
R(D[g2, n − g2, .]) and R(D[g3, n − g3, .]). We search for a µ (if it exists) that
satisfies our condition, for each discrete Reveilles segment.

We remark that all the segments have the same digital length, n. For better
illustrations, and only in the figures of the paper, after synchronization, we apply
the morphism σ from A∗ to A∗, such that σ(0) = 0 and σ(i) = i0, for i ∈ {1, 2, 3}.
This morphism spreads the segments over the x-axis, and then the segments all
have a horizontal length equals to n. Thus, we will be able to easily check that,
on each vertical line, we have only one vertical step.
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To study the synchronization of a generator vector of length 3, we must
consider three cases. The first one is where any two of the three generators have
the same value. The second one is where the three generators are identical. The
last one is where the three generators are distinct.

First case – Without loss of generality, we assume that g1 = g2 = g, and we
leave g3 to be distinct from g. Let n = 2g + g3, and g⊥g3.

In order to determine the seed that synchronizes the generator vector G =
(g, g, g3), we need to check the parity of n. If n is an odd number, we have several
properties which lead us to determine the exact seed. With some arithmetic
computations left for the reader, we can show the following:

Proposition 4. Let G = (g, g, g3) be a generator vector with n = 2g + g3.
1. n is an odd number ⇐⇒ gcd(n, g) = 1, and gcd(n, g3) = 1.
2. n is an even number ⇐⇒ gcd(n, g) = 1 and gcd(n, g3) = 2.

By applying the arithmetic definition of the vertical invariant, we obtain:

Lemma 2. Let G = (g, g, g3) be a generator vector with n = 2g + g3.
1. If n is an odd number, then In,3 = 3

2 (n− 1).
2. If n is an even number, then In,3 = 3

2n− 2 = 3n−4
2 .

The seed S which synchronizes the generator vector G = (g, g, g3) is of the
following form.

Theorem 2. Let G = (g, g, g3) be a generator vector such that n = 2g+g3, and
g⊥g3. The seed vector V which synchronizes G is:
1. If n is odd, the seed vector is: V = (n− 1, n−1

2 , 0).
2. If n is even, the seed vector is: V = (n− 1, n−2

2 , 0).
In both cases, the seed element 0 is always dedicated to the distinct generator.

Proof. (Sketch) Let G = (g, g, g3) be a generator vector such that n = 2g + g3,
and g⊥g3. The two Christoffel words, w1, w2, obtained are of slopes: g

n−g and
g3

n−g3
. In both cases, to show that the seed vector V = (v1, v2, 0) synchronizes G,

we define the three sets A,B,C to be the sets of positions for the letters 1 for
two conjugates of w1 and for w2 respectively. The orbits of the conjugate words
of w1 start with the labels v1, and v2, respectively. Hence, we have:

A = P (g, n− g, v1) = {iα+ x; i = 1 . . . g}
B = P (g, n− g, v2) = {iα+ y; i = 1 . . . g}
C = P (g3, n− g3, 0) = {iβ; i = 1 . . . g3},

where: α, β, x and y are defined as in Section 4. To prove the theorem, we need
to show that the sets A, B, and C are pairwise disjoint, hence we can not get
any two positions for the letters 1, 2, or 3 on the same column.

Proposition 5. Let G = (g1, g2, g3) and V = (v1, v2, v3) be the seed vector
which synchronizes G. By encoding D[g1, n − g1,−v1], D[g2, n − g2,−v2] and
D[g3, n−g3,−v3] using the Freeman Chain code, we obtain the exact lines of the
matrix CO(G,V ).
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Fig. 2. 2D Graphical representation of the Christoffel Word matrix for G = (4, 4, 3).
From left to write: the original 3 segments, the synchronized segments, and the syn-
chronized segments after morphism.
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Fig. 3. 2D Graphical representation of the Christoffel Word matrix for G = (3, 3, 4).
From left to write: the original 3 segments, the synchronized segments, and the syn-
chronized segments after morphism.

Example 5. Let G = (4, 4, 3) with n = 2.g + g3 = 11. By Lemma 2, we have
In,3 = 3.n−3

2 = 3.11−3
2 = 15. By Theorem 2, we have V = (10, 5, 0) synchronizes

G. The orbital matrix O(G,V ) and the Christoffel conjugate matrix CO(G,V )
are given by:

O(G,V ) =

10 3 7 0 4 8 1 5 9 2 6 10
5 9 2 6 10 3 7 0 4 8 1 5
0 3 6 9 1 4 7 10 2 5 8 0

 CO(G,V ) =

1 0 1 0 0 1 0 0 1 0 0
0 2 0 0 2 0 2 0 0 2 0
0 0 0 3 0 0 0 3 0 0 3

 .

We note that:
D[4, 7,−10] =CO(G,V )[0],D[4, 7,−5] =CO(G,V )[1], andD[3, 8, 0] =CO(G,V )[2].
The synchronized word formed is w = 12132123123, see Figure 2.

Example 6. Let G = (3, 3, 4) with n = 2.g + g3 = 10. By Lemma 2, we have
In,3 = 3.n−4

2 = 3.10−4
2 = 13. By Theorem 2, we have V = (9, 4, 0) synchronizes

G. The orbital matrix O(G,V ) and the Christoffel conjugate matrix CO(G,V )
are given by:

O(G,V ) =

9 2 5 8 1 4 7 0 3 6 9
4 7 0 3 6 9 2 5 8 1 4
0 4 8 2 6 0 4 8 2 6 0

 ; CO(G,V ) =

1 0 0 1 0 0 1 0 0 0
0 2 0 0 0 2 0 0 2 0
0 0 3 0 3 0 0 3 0 3

 ;

We note that:
D[3, 7,−9] =CO(G,V )[0],D[3, 7,−4] =CO(G,V )[1], andD[4, 6, 0] =CO(G,V )[2].
The synchronized word formed is w = 1231321323, see Figure 3.
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0 2 4 6 8

0

1

2
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4

5

6 g1
g2
g3

0 2 4 6 8

0

1

2

3

4
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0 2 4 6 8 10 12
0

1

2

3

4

5

6 g1
g2
g3

Fig. 4. 2D Graphical representation of the Christoffel Word matrix for G = (3, 3, 6).
From left to write: the original 3 segments, the synchronized segments, and the syn-
chronized segments after morphism.

Second case – Before checking the second case, where all the generators are
identical, we need to study the case where g and g3 are not relatively prime.

Let G = (g, g, g3) be a generator vector, with n = 2g+g3 and gcd(g, g3) = d.
We have g = d ·g′, g3 = d ·g′3 and n = d ·n′. We clearly see that: O(G,V0)[i] = d ·
O(G,V0)

′[i]d, and CO(G,V0) [i] = CO(G,V0)
′[i]d, whereO(G,V0)

′ and CO(G,V0)
′

corresponds to the generator vector G′ = (g′, g′, g′3).

Example 7. Let G = (1, 1, 2) with n = 4 and the seed vector V = (3, 1, 0). we

have In,3 = 4 and the Orbital Matrix is given by: O(G,V ) =

3 0 1 2 3
1 2 3 0 1
0 2 0 2 0

 . For

the vector G′ = (3, 3, 6), we can calculate immediately V ′ = 3 ·V = (9, 3, 0), and
both O(G′, V ′) and CO(G

′, V ′) can be deduced from O(G,V ) and CO(G,V ):

O(G′, V ′) =

9 0 3 6 9 0 3 6 9 0 3 6 9
3 6 9 0 3 6 9 0 3 6 9 0 3
0 6 0 6 0 6 0 6 0 6 0 6 0

 , CO(G
′, V ′) =

1 0 0 0 1 0 0 0 1 0 0 0
0 0 2 0 0 0 2 0 0 0 2 0
0 3 0 3 0 3 0 3 0 3 0 3

.

The synchronized word is w = (1323)3, see Figure 4, where I12,3 = 12 = 3.I4,3.

Now, we reach the case where the generator vector G = (g, g, g) is composed
of three identical generators. We have:

Theorem 3. Let G = (g, g, g) = g · (1, 1, 1) where In,3 = 3g. The seed vector V
that synchronizes G is given by: V = (2g, g, 0) = g ·(2, 1, 0). The orbital matrix is

given by: O(G,V ) = g

2 0 1
1 2 0
0 1 2

g

. The synchronized word formed is w = (321)g.

See Figure 5 for the example G = (3, 3, 3), having as a seed vector V = (6, 3, 0).

Third case – The last case to study is when the three generators are pairwise
distinct. This case is covered by the Fraenkel’s conjecture (see [5,14]) for k = 3.
It states the uniqueness of synchronization for pairwise distinct generators when
gi = 2i−1 ,∀i ∈ {1, ...k} that was proved for 3 ≤ k ≤ 7. Hence, there exists
a unique synchronized word on 3 ≤ k letters, with pairwise distinct generators
obtained from the triplet (1, 2, 4) mod 7 which is the unique solution for this
case. The orbital matrix and Christoffel conjugate matrix are given as follows:
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0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0 g1
g2
g3

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0 g1
g2
g3

0 2 4 6 8
0

1

2

3
g1
g2
g3

Fig. 5. 2D Graphical representation of the Christoffel Word matrix for G = (3, 3, 3).
From left to write: the original 3 segments, the synchronized segments, and the syn-
chronized segments after morphism.

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 g1
g2
g3

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 g1
g2
g3

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 g1
g2
g3

Fig. 6. 2D Graphical representation of the Christoffel Word matrix for G = (1, 2, 4).
From left to write: the original 3 segments, the synchronized segments, and the syn-
chronized segments after morphism.

O(G,V ) =

3 4 5 6 0 1 2 3
3 5 0 2 4 6 1 3
3 0 4 1 5 2 6 3

 , CO(G,V ) =

0 0 0 1 0 0 0
0 2 0 0 0 2 0
3 0 3 0 3 0 3

 ,

where the synchronized word is: w = 3231323, see Figure 6. The vertical invariant
is equal to I7,3 = 3n−3

2 = 21−3
2 = 9.

In the following theorem, we give the general form of a seed vector for any
generator vector having 2i, ∀i ∈ {0, . . . ,m} as generators.

Theorem 4. The seed vector V = (
In,ℓ

ℓ , . . . ,
In,ℓ

ℓ ), synchronizes the generator
vector G = (1, 2, . . . , 2ℓ−1).

Remark 1. All the generator vectors G′ that are multiples of G = (1, 2, 4) are
also synchronized. Indeed, we can write: O(G′, V0)[i] = d · O(G,V0)

′[i]d, and
CO(G

′, V0)[i] = CO(G,V0)
′[i]d, where d is the greatest common divisor between

the three pairwise distinct generators.

7 Conclusion and perspectives

In this paper, we present a new approach for the synchronization of three
Christoffel words, related to discrete geometry. Given a generator vector G =
(g1, g2, g3), we consider three Reveilles discrete 2D segments, of slopes gi

n−gi
,

where n is the sum of all the generators. We show that the elements of the seed
vector V (v1, v2, v3), which synchronizes the words, are specific parameters for
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each of the three Reveilles discrete segments. This provides a geometric inter-
pretation for the synchronization of three Christoffel words. Relying on this new
perspective, we aim to tackle the Fraenkel’s conjecture [5,14], and generalizes
the study of the synchronization of k Christoffel words.

Python code to reproduce the result of this paper is available at:
https://github.com/lamaydt1986/Synchronization-of-Christoffel-words.
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8. Lothaire, M.: Algebraic combinatorics on words, Encyclopedia of Mathematics and
its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

9. Morikawa, R.: Disjoint sequences generated by the bracket function. Bull. Faculty
of Liberal Arts, Nagasaki Univ., (Natural Science 26(1), 1–13 (1985)

10. Paquin, G., Reutenauer, C.: On the superimposition of Christoffel words. Theo-
retical Computer Science 412(4), 402–418 (2011)
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8 Appendix

Lemma. For all G = (g1, g2) and n = g1 + g2, we have In,2 = n − d, where
d = gcd(g1, g2).

Proof. Let (g1, g2) mod n where n = g1 + g2 with d = gcd(gi, n) ∀i ∈ {1, 2}, we
get:

In,2 =
k.n

2
− 1

2
(

2∑
i=1

gcd(n, gi)) =
2n

2
− 1

2
(d+ d) = n− d.

Proposition. [Repeat from Prop. 2] Let w be a Christoffel word of slope a
b ,

where a⊥b. We let w′ be a conjugate of w such that O(w′) starts from the label
p. We set α as αa ≡ −1modn and we have:

P (a, b, p) = {(iα+ x)modn | i = 1 . . . a}, where xa ≡ −p mod n.

Proof. From [10, Corollary 3.2], see also [9,13], we know that the set of positions
for the letters 0 in a Christoffel word of slope b

a , where a⊥b and starting from the
label n−1 of its orbit is: C(n, b, n−1) = {iα′+x; i = 0, . . . , n−b−1};n−b ·α′ ≡
−1 modn and x · b ≡ −(n − 1)modn. By the definition of the construction of
the Christoffel word w′ of slope a

b [2,8], we know that if the O(w′) starts at 0,
the positions of the letters 1 are the same as the positions of the letter 0 for w
if its orbit starts at n − 1. Therefore P (a, b, 0) = C(n, b, n − 1) = {iα′ + x; i =
0, . . . , a − 1}; a · α′ ≡ −1 modn and x = 0. In fact, x is exactly the number of
shifts needed to start from the label n − 1. For that, to generalize the set for
any label p of the orbit of w′, we get: P (a, b, p) = C(n, b, n− 1) = {iα′ + x; i =
0, . . . , a− 1}; a · α′ ≡ −1 modn and x · b ≡ −pmodn. The step x that must be
used to start from label p instead of 0 is calculated as follows:

p+ x · a ≡ 0 modn

xa ≡ −p modn

Proposition. [Repeat from Prop. 4] Let G = (g, g, g3) be a generator vector
with n = 2g + g3.
1. n is an odd number ⇐⇒ gcd(n, g) = gcd(n, g3) = 1.
2. n is an even number ⇐⇒ gcd(n, g) = 1 and gcd(n, g3) = 2.

Proof. For all n, since g⊥g3, then by the Euclidean Algorithm, we have gcd(n, g) =
gcd(g, g3) = 1.

1. “ ⇐= ” For G = (g, g, g3) and n = 2g + g3, we can write n = 2k if n is
an even number, then g and g3 are odd numbers since they are relatively
prime with n. Therefore, as 2g is even and g3 is odd, the sum should be odd.
Contradiction.
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“ =⇒ ” Let d = gcd(n; g3), then d|n and d|g3, hence d|2g. Since n is odd,
and n = 2g + g3, we have that g3 is odd and d|g3, so we get d odd.
d|2g then ∃k ∈ N; 2g = kd. Since 2g is even and d is odd, then k is even, and
we can write g = k

2d, hence d|g. Now d|g; d|n and gcd(n, g) = 1 therefore
d = 1.

2. “ ⇐= ” 2g even and gcd(n, g3) = 2 then 2|n and n is even.
“ =⇒ ” Since n is even and n = 2g + g3 then g3 is even.
Since g3 is even and n is even, hence 2|g3 and 2|n.
Let d ̸= 1 be another divisor of g3 and n ; d|g3 and d|n, hence d|2g.
If d ∤ 2 then d|g, contradiction, since gcd(n, g) = 1.
Therefore, d|2, this means d = 2 or d = 1 and since by hypothesis, d ̸= 1
then certainly d = 2.

Lemma. [Repeat from Lemma. 2] Let G = (g, g, g3) be a generator vector
with n = 2g + g3.
1. If n is an odd number then In,3 = 3

2 (n− 1).
2. If n is an even number then In,3 = 3

2n− 2 = 3n−4
2 .

Proof. 1. Since n is an odd number then gcd(n, g) = gcd(n, g3) = 1

In,3 =
3.n

2
− 1

2
(

3∑
i=1

gcd(n, gi)) =
3n

2
− 1

2
(

3∑
i=1

1) =
3n

2
− 3

2
=

3

2
(n− 1).

2. Since n is even, then gcd(n, g) = 1 and gcd(n, g3) = 2.

In,3 =
3.n

2
− 1

2
(

3∑
i=1

gcd(n, gi)) =
3n

2
− 1

2
(1 + 1 + 2) =

3n− 4

2
=

3

2
n− 2.

Let G = (g, g, g3) be a generator vector where n = 2g+g3 and gcd(g, g3) = d.
We have g = d·g′, g3 = d·g′3 and n = d·n′. We clearly can see that: O(G,V0)[i] =
d·O(G,V0)

′[i]d and CO(G,V0) [i] = CO(G,V0)
′[i]d, whereO(G,V0)

′ and CO(G,V0)
′

corresponds to the generator vector G′ = (g′, g′, g′3).

Proof. Let the triplet G′ = (g′, g′, g′3) modn′ such that n′ = 2g′ + g′3 and the
triplet G = (g, g, g3) modn such that n = 2g + g3 where g = g′.d; g3 = g′3.d,
n = n′.d.
Hence, the orbits of the Christoffel words of slopes g′

n′−g′ and
g′
3

n′−g′
3
in Z/n′Z are:

g′ : 0 → g′ → 2g′ → · · · → (n′ − 1)g′ → 0

g′3 : 0 → g′3 → 2g′3 → · · · → (n′ − 1)g′3 → 0.

By multiplying by d, we get:
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d.g′ : 0 → g′.d → 2g′.d → · · · → (n′ − 1)g′.d → 0
d.g′3 : 0 → g′3.d → 2g′3.d → · · · → (n′ − 1)g′3.d → 0

⇔

g : 0 → g → 2g → · · · → (n− 1)g → 0
g : 0 → g → 2g → · · · → (n− 1)g → 0

g3 : 0 → g3 → 2g3 → · · · → (n− 1)g3 → 0,

and since we multiplied by d so we are now working in Z/nZ so each row must be
of length n which means to repeat each row d times to reach the length n. Hence,
we have: O(w) = d ·O(w′)d and we can write O(G,V0)[i] = d ·O(G,V0)

′[i]d and
CO(G,V0) [i] = CO(G,V0)

′[i]d.

Theorem. [Repeat from Th. 3] Let G = (g, g, g) = g·(1, 1, 1) where In,3 = 3g.
The seed vector V that synchronizes G is given by: V = (2g, g, 0) = g · (2, 1, 0).

The orbital matrix is given by: O(G,V ) = g

2 0 1
1 2 0
0 1 2

g

. The synchronized word

formed is w = (321)g.

Proof. For equal generators, we have G = (g, g, g)mod 3g. Since g is a unique
generator, we remark that by factoring with g, we get: G = g (012). Hence,
it is sufficient to synchronize the generator vector G′ = (1, 1, 1) then to apply
O(G,V0)[i] = d · O(G,V0)

′[i]d and CO(G,V0) [i] = CO(G,V0)
′[i]d. To accom-

plish the synchronization, we do a k − 1 circular permutation ∀k ∈ {1, 2, 3},

hence we get: O(G,V0) = g

0 1 2
1 2 0
2 0 1

g

and the word formed is: (321)g. Since

the synchronization matrix is of the form V = g

0 1 2
1 2 0
2 0 1

g

, then the seed in

this case has always the form: S =

 0
g
2g

. Since In,3 is the vertical sum of the

elements of each column so in particular we can get the value from the seed,
hence In,3 = 0 + g + 2g = 3g. Or simply by computing:

In,3 =
k.n

2
− 1

2
(

3∑
i=1

gcd(n, gi)) =
9g

2
− 1

2
(g + g + g) =

6g

2
= 3g.

Theorem. [Repeat from Th. 2] Let G = (g, g, g3) be a generator vector such
that n = 2g + g3, and g⊥g3. The seed vector V which synchronizes G is:
1. If n is odd, the seed vector is: V = (n− 1, n−1

2 , 0).
2. If n is even, the seed vector is: V = (n− 1, n−2

2 , 0).
In both cases, the seed element 0 is always dedicated to the distinct generator.
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Proof. 1. Let G = (g, g, g3) be a generator vector such that n = 2g + g3, and
g⊥g3. The two Christoffel words, w1, w2, obtained are of slopes: g

n−g and
g3

n−g3
. Since n is odd, then we have gcd(g, n) = gcd(g3, n) = 1. To show that

the seed vector V = (n− 1, n−1
2 , 0) synchronizes G, we define the three sets

A,B,C to be the sets of positions for the letters 1 for two conjugates of w1,
and for w2, respectively. The orbits of the conjugate words of w1 start with
the labels n− 1, and n−1

2 , respectively. Hence, we have:

A = P (g, n− g, n− 1) = {iα+ x; i = 1 . . . g}

B = P (g, n− g,
n− 1

2
) = {iα+ y; i = 1 . . . g}

C = P (g3, n− g3, 0) = {iβ; i = 1 . . . g3},

where: αg ≡ −1 modn;βg3 ≡ −1 modn and xg ≡ 1 modn and 2yg ≡
1 modn since gy ≡ −n−1

2 modn.
We need to prove that the sets A, B, C are pairwise disjoint, hence we can
not get any two decreasing positions on the same column.
A ∩B = ∅:
Let a ∈ A, b ∈ B, we have a := iα+ x and b := jα+ y for some i ∈ {1 . . . g}
and j ∈ {1 . . . g}
By contradiction, suppose a− b ≡ 0, then:

(i− j)α+ x− y ≡ 0 modn

2(i− j)gα ≡ 2yg − 2gx modn

2(i− j) ≡ 1 modn.

Hence 2(i− j) = ln+ 1; ℓ ∈ Z. This leads to a contradiction since we know
that: i− j ∈ {1− g, . . . , g − 1}, If
– ℓ = 0; 2(i− j) = 1 contradiction.
– ℓ > 0; 2(i− j) > n+ 1 contardiction.
– ℓ < 0; 2(i− j) < −n+ 1 contardiction.

therefore A ∩B = ∅.
A ∩ C = ∅:
We let a ∈ A and c ∈ C; a := iα + x and c := kβ, for some i ∈ {1, . . . , g}
and k ∈ {1, . . . , g3}.
By contradiction, suppose a− c ≡ 0 modn then:

iα+ x− kβ ≡ 0 modn

iαg + xg − kβ(
n− g3

2
) ≡ 0 modn

−id+ d− kβn

2
− k

2
≡ 0 modn

−2i+ 2− kβn− k ≡ 0 modn

−2i+ 2− k ≡ 0 modn

2(1− i)− k ≡ 0 modn,
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this result leads to a contradiction since:

1 ≤ i ≤ g
1− g ≤ (1− i) ≤ 0 and − g3 ≤ −k ≤ −1

2− 2g ≤ 2(1− i) ≤ 0.

By adding both inequalities, we get: −n < 2 − n ≤ 2(1 − i) − k ≤ −1 < 0.
Therefore the two sets A and C are disjoint.
B ∩ C = ∅:
We let b ∈ B and c ∈ C; b := iα + y and c := kβ, for some i = 1 . . . g and
k = 1 . . . g3.
By contradiction, suppose b− c ≡ 0 modn then:

iα+ y − kβ ≡ 0 modn

iαg + yg − kβ(
n− g3

2
) ≡ 0 modn

2iαg + 2yg − kβn+ kβg3 ≡ 0 modn

−2i+ 1− kβn− k ≡ 0 modn

−2i+ (1− k) ≡ 0 modn,

this result leads to a contradiction since:

1 ≤ i ≤ g
−2g ≤ −2i ≤ −2 and 1− g3 ≤ (1− k) ≤ 0.

By adding both inequalities, we get: −n < d−n ≤ −2id+d(1−k) ≤ −2d < 0.
Therefore B and C are disjoint.

2. When n is an even number, we have: gcd(g, n) = 1 and gcd(g3, n) = 2.
The sets A, B, C become:

A = P (g, n− g, n− 1) = {iα+ x; i = 1, . . . , g}

B = P (g, n− g,
n− 2

2
) = {iα+ y; i = 1, . . . , g}

C = P (g3, n− g3, 0) = C0 ∪ C1,

where C0 = {iβ} and C1 = {iβ+ n
2 }; i = 1, . . . , g3

2 , α.g ≡ −1 modn, β.g3 ≡
−2 modn and x.g ≡ 1 modn, y.g ≡ 1 +m modn where n = 2m, since:

y.g ≡ −n− 2

2
modn

y.g ≡ −2m− 2

2
modn

y.g ≡ 1−m modn

y.g ≡ 1 +m modn (since, n−m = m)

Now, we prove that three sets are pairwise distinct starting with A and B:
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A ∩B = ∅:
Let a ∈ A, b ∈ B, they are defined as: a := iα + x and b := jα + y where
i, j ∈ {1, . . . , g}
By contradiction, suppose a− b ≡ 0 modn then:

iα+ x− jα− y ≡ 0 modn

iα.g + x.g − jα.g − y.g ≡ 0 modn

−i+ 1 + j − 1−m ≡ 0 modn

(j − i)−m ≡ 0 modn.

This congruence leads to a contradiction since:

1− g ≤ (j − i) ≤ g − 1

1− g −m ≤ (j − i)−m ≤ g − 1−m

−n < 1− g −m ≤ (j − i)−m ≤ g − 1−m < 0,

knowing that m = n
2 > g. Hence A ∩B = ∅.

A ∩ C = ∅:
In this part, we divide our work into two parts since C is a union of two sets
and we prove that A is disjoint with both subsets of C. We let a ∈ A, cj ∈
Cj ∀j ∈ {0, 1}, they are defined as: a := iα + x and c0 := jβ, c1 = jβ + n

2
where i ∈ {1, . . . , g}, j ∈ {1, . . . , g3

2 }
By contradiction, suppose a− cj ≡ 0 modn then:

a− c0 ≡ 0 modn

iα+ x− jβ ≡ 0 modn

iα.g + x.g − jβ.
n− g3

2
≡ 0 modn

2iα.g + 2x.g − jβ.n+ jβ.g3 ≡ 0 modn

−2i+ 2− 2jd ≡ 0 modn

2− 2(i+ j) ≡ 0 modn.

For c1 we get:

a− c1 ≡ 0 modn

iα+ x− jβ − n

2
≡ 0 modn

iα.g + x.g − jβ.
n− g3

2
− n

2
.g ≡ 0 modn

2iα.g + 2x.g − jβ.n+ jβ.g3 − ng ≡ 0 modn

−2i+ 2− 2j ≡ 0 modn

2− 2(i+ j) ≡ 0 modn.
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These two congruences lead to a contradiction:

2 ≤ (i+ j) ≤ g +
g3
2

4d ≤ 2(i+ j) ≤ n

−n < 2− n ≤ 2− 2(i+ j) ≤ −2 < 0

Hence A ∩ C = ∅.
B ∩ C = ∅:
Finally for B and C, we will repeat the same work by letting b ∈ B and
cj ∈ Cj∀j ∈ {0, 1}, they are defined as: b := iα+y and c0 := jβ, c1 = jβ+ n

2
where i ∈ {1, . . . , g}, j ∈ {1, . . . , g3

2 }.
By contradiction, suppose b− cj ≡ 0 modn then:

b− c0 ≡ 0 modn

iα+ y − jβ ≡ 0 modn

iα.g + y.g − jβ.
n− g3

2
≡ 0 modn

2iα.g + 2y.g − jβ.n+ jβ.g3 ≡ 0 modn

−2i+ 2(1 +m)− 2j ≡ 0 modn

−2i+ 2 + 2m− 2jd ≡ 0 modn

2− 2(i+ j) ≡ 0 modn. (since 2m = n)

For c1 we get:

b− c1 ≡ 0 modn

iα+ y − jβ − n

2
≡ 0 modn

iα.g + y.g − jβ.
n− g3

2
− n

2
.g ≡ 0 modn

2iα.g + 2y.g − jβ.n+ jβ.g3 − ng ≡ 0 modn

−2i+ 2(1 +m)− 2j ≡ 0 modn

−2i+ 2 + 2m− 2j ≡ 0 modn

2− 2(i+ j) ≡ 0 modn. (since 2m = n)

These two equivalences are the same as the previous case hence we get a
contradiction too and the sets B and C are disjoint.

Theorem. [Repeat from Th. 4] The seed vector V = (
In,ℓ

ℓ , . . . ,
In,ℓ

ℓ ), syn-
chronizes the generator vector G = (1, 2, . . . , 2ℓ−1).

Proof. Let G be the sequence of generators of the form 2i, ∀i ∈ {0, . . . ,m} and
n = 2m+1 − 1 their sum.
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We define the sets A and B of decreasing position for the two generators:
gℓ = 2ℓand gs = 2s where ℓ < s ≤ m. The labels, vi, of the orbits of the
conjugate Christoffel words are equal to

In,m+1

m+1 and respect all the conditions
given in the previous sections by the following:

We know that: In,m+1 = (m+1)·n
2 − 1

2 (m+ 1) = (m+1)(n−1)
2 hence:

vi =
In,m+1

m+ 1
=

n− 1

2
∀i ∈ {0, . . . ,m} where

n− 1

2
= 2m − 1.

A = {iα+ x; i = 1 . . . 2ℓ}
B = {jβ + y; j = 1 . . . 2s},

where: α2ℓ ≡ −1 modn;β2s ≡ −1 modn and x.2ℓ ≡ 1 − 2m modn and
y.2s ≡ 1 − 2m modn. We need to prove that the sets A, B are disjoint, hence
we can’t get any two letters on the same column.
A ∩B = ∅:
Let a ∈ A, b ∈ B we have a := iα+ x and b := jβ+ y for some i ∈ {1 . . . 2ℓ} and
j ∈ {1 . . . 2s}
By contradiction, suppose a− b ≡ 0 then:

iα+ x− jβ − y ≡ 0 modn

2siα+ 2sx− 2sjβ − 2sy ≡ 0 modn

−2s−ℓi+ 2s−ℓ(1− 2m) + j − 1 + 2m ≡ 0 modn

−2s−ℓi+ 2s−ℓ − 2m+s−ℓ + j − 1 + 2m ≡ 0 modn

2s−ℓ(1− i)− 2m+s−ℓ + j − 1 + 2m ≡ 0 modn,

where:

1 ≤ i ≤ 2ℓ

2s−ℓ − 2s ≤ 2s−ℓ(1− i) ≤ 0 and 0 ≤ j − 1 ≤ 2s − 1.

By adding both inequalities with the constant term in a− b we get:

2m − 2m+s−ℓ − 2s + 2s−ℓ ≤ a− b ≤ 2s − 1 + 2m − 2m+s−ℓ.

Let P, and Q be the lower and upper bounds of a − b respectively. Our aim is
to reach a contradiction by bounding the two terms A and B of this inequality
by two consecutive multiples of n and hence the term a− b who is bounded by
P ≤ a− b ≤ Q can’t be null.
The power m+ s− ℓ is the highest power in the two terms of P and Q, m+1 is
the power found in n. We let p = (m+ s− ℓ)− (m+ 1) = s− ℓ− 1 and k = 2p,
we will prove that: −k.n < P ≤ a− b ≤ Q < (−k + 1).n
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First, −k.n = −2s−ℓ−1.(2m+1 − 1) = −2m+s−ℓ + 2s−ℓ−1, then −k.n < P will
give us the following:

−2m+s−ℓ + 2s−ℓ−1 < 2m − 2m+s−ℓ − 2s + 2s−ℓ

2s−ℓ−1 − 2m + 2s − 2s−ℓ < 0

2s−ℓ(2−1 − 1)− 2m + 2s < 0

−2s−ℓ−1 − 2m + 2s < 0.

This is always true since l < s ≤ m.
Now, we prove that Q < (−k+1).n by calculating at the beginning the value

of (−k + 1).n, we get the following :
(−k + 1).n = (−2s−ℓ−1 + 1)(2m+1 − 1) = −2s−ℓ+m + 2s−ℓ−1 + 2m+1 − 1 then,

−2s−ℓ+m + 2s−ℓ−1 + 2m+1 − 1 > 2s − 1 + 2m − 2m+s−ℓ

2s−ℓ−1 + 2m+1 − 2s − 2m > 0

2s−ℓ−1 − 2s + 2m > 0,

which is always true since:

2ℓ < 2s ≤ 2m

−2m ≤ −2s < −2ℓ and 20 ≤ 2s−ℓ−1 < 2m,

by adding these two inequalities we get: 1− 2m ≤ 2s−ℓ−1 − 2s < 2m − 2ℓ < 2m

which confirms the positivity of 2s−ℓ−1 − 2s + 2m.
Hence, a contradiction, and the term a− b can not be equivalent to 0modn.
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