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Divsets, numerical semigroups and Wilf’s conjecture

Shalom Eliahou

Abstract

Let S⊆N be a numerical semigroup with multiplicity m = min(S\{0}) and conduc-
tor c = max(Z\S)+1. Let P be the set of primitive elements, i.e. minimal generators,
of S, and let L be the set of elements of S which are smaller than c. Wilf’s conjecture
(1978) states that the inequality |P||L| ≥ c must hold. The conjecture has been shown to
hold in case |P| ≥ m/2 by Sammartano in 2012, and subsequently in case |P| ≥ m/3 by
the author in 2020. The main result in this paper is that Wilf’s conjecture holds in case
|P| ≥ m/4 when m divides c. The proof uses divsets X , i.e. finite divisor-closed sets of
monomials, as abstract models of numerical semigroups, and proceeds with estimates of
the vertex-maximal matching number of the associated graph G(X).

Keywords and phrases. Apéry set; Vertex-maximal matching number; Downset.
Mathematics Subject Classification: 05C25, 11B75, 20M14.

1 Introduction
A numerical semigroup is a cofinite submonoid S of N, i.e. a subset containing 0, stable
under addition and with finite complement N \ S. Equivalently, it is a set of the form S =

〈a1, . . . ,an〉=Na1+ · · ·+Nan where a1, . . . ,an are positive integers with gcd(a1, . . . ,an) = 1,
called generators of S. The least such n is usually denoted e = e(S) and called the embedding
dimension of S. The multiplicity of S is m = m(S) = minS∗, where S∗ = S\{0}. The Frobe-
nius number of S is F = F(S) = max(Z\S) and the conductor of S is c = c(S) = F +1, satis-
fying c+N⊆ S and minimal with respect to that property. The genus of S is g= g(S)= |N\S|,
its number of gaps. We partition S as S = LtR, where L = L(S) = {a ∈ S | a < F(S)} and
R = R(S) = {a ∈ S | a > F(S)}, the left part and right part of S, respectively.

A primitive element of S is an element a ∈ S∗ \ (S∗+ S∗), i.e. an element of S∗ which is
not the sum of two elements of S∗. We denote by P = P(S) the set of primitive elements of S,
and by D = D(S) = S∗+S∗ the set of decomposable elements of S. It is easy to see that P is
contained in [m,c−1+m]∩N and hence is finite, and is the unique minimal generating set
of S. Thus |P|= e(S).

One of the main open problems on numerical semigroups is the following conjecture, first
raised as a question by Wilf [15].
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Conjecture 1.1 (Wilf, 1978). Let S be a numerical semigroup. Then |P(S)||L(S)| ≥ c(S).

Denoting W (S) = |P(S)||L(S)|− c(S), Wilf’s conjecture amounts to

(1) W (S)≥ 0.

See [2] for a survey on the conjecture up to 2018. Among many available partial results, we
shall need here the following ones, grouped for convenience in a single statement.

Theorem 1.2. Let S be a numerical semigroup. Then S satisfies Wilf’s conjecture if either
|P| ≤ 3, or |P| ≥ m/3, or c≤ 3m.

The solution in case |P| = 2 is due to Sylvester [14]; its extension to |P| ≤ 3 is due to
Fröberg et al. [10]. The solution in case |P| ≥ m/2 is due to Sammartano [13]; its extension
to |P| ≥ m/3 is achieved in [7]. Finally, the case c≤ 3m is settled in [6].

Notation 1.3. For a,b ∈ Z, we denote by [[a,b]] = [a,b]∩Z the integer interval they span.

The main result in this paper extends the case |P| ≥ m/3 in Wilf’s conjecture as follows.

Theorem 1.4. Let S be a numerical semigroup such that |P| ≥ m/4 and c ∈ mN. Then S
satisfies Wilf’s conjecture.

What motivates the added hypothesis c∈mN? As it happens, the proofs of Wilf’s conjec-
ture in either case c ≤ 3m [6] or |P| ≥ m/3 [7] can be significantly shortened when c ∈ mN.
Moreover, the first five instances of the very rare “near-misses in Wilf’s conjecture” all be-
long to this case [8]. These facts lead us to consider the case c ∈ mN as a priority in research
on Wilf’s conjecture. Indeed, we believe that if the conjecture fails, then it will already fail
in case c ∈ mN. Whence the following terminology.

Definition 1.5. A numerical semigroup S is special if its conductor c is a multiple of its
multiplicity m, i.e. if c ∈ mN.

For instance, the ordinary (or superficial) numerical semigroup Om = {0}∪(m+N) is special
since it satisfies c = m.

See the reference books [11, 12] for more information on numerical semigroups.

1.1 Contents

In Section 2, we introduce divsets as abstract models of Apéry sets of numerical semigroups.
In Section 3, we recall a few things about the depth and the functions W (S),W0(S). In Sec-
tion 4, we introduce and study the graph of a divset. In Section 5, we start focusing on
special numerical semigroups. In Section 6, we settle Wilf’s conjecture for special numerical
semigroups modeled by divsets of degree 2. In Section 7, we consider the relevant divsets
of degree at least 3 and conclude the proof of the main theorem. A short Section 8 contains
some concluding remarks.
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2 Divsets
In this section, we introduce divsets, namely finite divisor-closed sets of monomials, and use
them as abstract multiplicative models of numerical semigroups or, more to the point, of their
Apéry sets.

2.1 Basic definitions

Given n commuting variables x1, . . . ,xn, we denote by M = M (x1, . . . ,xn) the set

M = 〈x1, . . . ,xn〉= {xa1
1 · · ·x

an
n | (a1, . . . ,an) ∈ Nn}

of monomials in these variables.

Notation 2.1. The degree of u = xa1
1 · · ·xan

n ∈M is deg(u) = ∑i ai, the standard one. For
d ∈ N, we denote by Md = 〈x1, . . . ,xn〉d the subset of monomials of degree d in M .

Definition 2.2. A divset in M is a finite subset X ⊂M which is stable under taking divisors.
That is, for all u ∈ X and v ∈M , if v|u then v ∈ X.

Said otherwise, a divset is a finite downset or order ideal in M under divisibility.

Example 2.3. X = {x3
1,x

2
1x2,x2

1,x1x2,x1,x2,1} is a divset in M = 〈x1,x2〉.

Definition 2.4. Let X be a divset. The degree of X is

deg(X) = max{deg(u) | u ∈ X}.

Notation 2.5. Given a finite subset U ⊂ M , we denote by [U ] the set of divisors of the
elements of U, i.e. [U ] = {v ∈M | ∃u ∈U,v|u}. We call [U ] the divset spanned by U.

For instance, in Example 2.3, we have X = {x3
1,x

2
1x2,x2

1,x1x2,x1,x2,1}= [x3
1,x

2
1x2].

Notation 2.6. Let X be a divset. We denote by max(X) the maximal elements of X under
divisibility. That is, max(X) is the set of those u ∈ X which do not divide any v ∈ X \{u}.

Clearly, a divset X is spanned by max(X), i.e. X = [max(X)].

Notation 2.7. Let X be a divset in M . For d ∈N, we set Xd =X∩Md = {u∈X | deg(u) = d}.

For instance, we have X0 = M0 = {1} and X1 ⊆M1 = {x1, . . . ,xn}.

Notation 2.8. Let X be a divset. We denote by D(X) = {u ∈ X | deg(u) ≥ 2}, i.e. the set of
decomposable monomials in X. Thus X = {1}tX1tD(X). We set X∗ = X \{1}.

Remark 2.9. Let X ⊂ M (x1, . . . ,xn−1) be a divset. Let xn be a new variable. Then X ∪
{xn} is a divset in M (x1, . . . ,xn). Conversely, if xn ∈ max(X), then X \ {xn} is a divset in
M (x1, . . . ,xn−1).
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2.2 The Apéry set

Let S be a numerical semigroup of multiplicity m and conductor c. Its Apéry set contains key
information on its structure. We briefly recall its definition and basic properties.

Definition 2.10. The Apéry set of S with respect to m is defined as A=Ap(S,m)= S\(m+S).
We denote A∗ = A\{0}.

It is well known that Ap(S,m) has exactly m elements, one for each class mod m. More
precisely, we have

Ap(S,m) = {w0, . . . ,wm−1 | wi = min(S∩ (i+mN))}.

For instance, min(A) = w0 = 0 and max(A) = wc−1 = c−1+m. Hence

{0,c−1+m} ⊆ A⊆ [[0,c−1+m]].

Moreover, denoting P∗ = P\{m}, it follows from the definition that

(2) P∗ ⊆ A∗.

The numerical semigroup S is completely determined by its Apéry set A via the formula

(3) S =
⊔
a∈A

(a+mN).

Thus, crucial data of a numerical semigroup S may be read on its Apéry set A = Ap(S,m),
e.g. its multiplicity m and conductor c, since m = |A| and c = max(A)−m+1.

2.3 Divsets models of numerical semigroups

Here we use divsets X as abstract models of numerical semigroups S, indeed of Apéry sets
Ap(S,m), via specific maps f : X → S.

Definition 2.11. Let S be a numerical semigroup and let X be a divset. A map f : X → S is a
morphism if f (uv) = f (u)+ f (v) for all u,v ∈ X.

Of course f (1) = 0 for any such morphism, as f (1) = f (1 ·1) = f (1)+ f (1).

Definition 2.12. Let S be a numerical semigroup of multiplicity m. Let A = Ap(S,m). A
divset model of S is a divset X with an injective morphism f : X → S such that f (X)⊆ A and
f (D(X)) = A∩D.

In particular, for all a ∈ A∩D, i.e. such that a = a1 + a2 for some a1,a2 ∈ A∗, there are
unique monomials u,u1,u2 ∈ X∗ such that

(4) f (u) = a, f (u1) = a1, f (u2) = a2,

and then of course u = u1u2.
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Remark 2.13. The purpose of a divset model of S is to capture the structure of A∩D, the set
of decomposable elements of the Apéry set of S. Indeed, understanding the structure of A∩D
is one of the keys to advances on Wilf’s conjecture W (S)≥ 0, as suggested by Proposition 3.9
below. Thus, despite the name, a divset model of S is really an abstract multiplicative model
of its Apéry set A, and more specifically of its decomposable elements.

Proposition 2.14. Let S be a numerical semigroup of multiplicity m and A = Ap(S,m). Let
f : X → S be a divset model of S. Then |X | ≤ m, f (X1)⊆ P∗ and A\ f (X)⊆ P∗.

Proof. Since f is injective and f (X) ⊆ A, we have |X | = | f (X)| ≤ |A| = m. Moreover
f (X∗) ⊆ A∗ since f (1) = 0. Let u ∈ X1. If f (u) /∈ P∗ then f (u) ∈ A∩D = A∗ \P∗. Since
A∩D = f (D(X)) by definition, there exists v ∈ D(X) such that f (u) = f (v). Hence u = v
since f is injective, a contradiction since deg(u) = 1 and deg(v)≥ 2. Finally, since 0 ∈ f (X)

and A∩D⊆ f (X), we have A\ f (X)⊆ A∗ \ (A∩D) = P∗.

Proposition 2.15. Let S be a numerical semigroup. Then S admits a divset model.

Proof. It is well known and easy to verify that, for any decomposable Apéry element a ∈
A∩D, if a = s1+ s2 with s1,s2 ∈ S∗, then necessarily s1,s2 ∈ A∗. For any a ∈ A∩D, consider
the unique decomposition a = pi1 + · · ·+ pid into primitive elements pi j ∈ P∗ which is of
minimal length d and lexicographically minimal in that length. Clearly, the same minimality
properties also hold for any nonempty subsum of pi1 + · · ·+ pid .

Let {p1, . . . , pn} ⊆ P∗ be the set of all primitive elements involved in the respective min-
imal decompositions of the elements in A∩D. Let X1 = {x1, . . . ,xn} be a set of n commuting
variables. We set u(pi) = xi for all 1 ≤ i ≤ n. Then, for all a ∈ A∩D, we associate to a the
monomial u(a) of degree d in {x1, . . . ,xn} mirroring, in multiplicative notation, the minimal
decomposition a = pi1 + · · ·+ pid . Let

X = {1}tX1t{u(a) | a ∈ A∩D}.

By the remark on subsums above, if a = a1 + a2 with a1,a2 ∈ A∗, then u(a) = u(a1)u(a2).
Hence X is a divset. Let f : X → S be the unique morphism induced by f (xi) = pi for all i =
1, . . . ,n. Then f is an injective morphism, f (X) ⊆ A and f (D(X)) = A∩D by construction.
Hence f : X → S is a divset model of S, as desired.

Example 2.16. Let S = 〈5,6,9〉. Then m = 5 and A∗ = {w1,w2,w3,w4}= {6,12,18,9} with
wi = min(S∩ (i+5N)) for 1≤ i≤ 4. Let

X = [x2
1,x

2
2] = {x2

1,x
2
2,x1,x2},

X ′ = [x3
1,x2] = {x3

1,x
2
1,x1,x2}.

The morphisms f : X → S and f ′ : X ′→ S, both induced by x1 7→ 6,x2 7→ 9, yield two distinct
divset models for S, since then x2

1 7→ 12 and x3
1,x

2
2 7→ 18.
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Remark 2.17. One advantage of divsets X as abstract models of Apéry sets A is that for any
u ∈ X∗, a decomposition u = vw with v,w ∈ X∗ is unique up to order, whereas in A∗, decom-
positions a = b+ c are seldom unique in general as seen in the above example. Moreover,
with divsets X one can use the terminology of monomials such as degree, divisibility and so
on, notions which are less intuitive in additive notation.

Remark 2.18. In a divset model f : X→ S, by removing from X variables xi ∈X1 not dividing
any u ∈ D(X), the resulting subset X ′ ⊆ X is still a divset and the restriction f ′ : X ′→ S of f
to X ′ is still a divset model since D(X ′) = D(X).

Recall that for a divset model f : X → S, we have |X | ≤ m where m = |A| is the multi-
plicity of S. The case |X | < m may occur if some primitive elements of S are not involved
in the decompositions of the elements of A∩D as sums of primitive elements, and are thus
harmlessly ignored by X . This may happen, for instance, for the right primitive elements, i.e.
the elements of P\L. Whereas the inclusion f (X1)⊆ P∗ might be strict, a key property of X
is that it models all elements of A∩D, as shown by the condition f (D(X)) = A∩D. Note the
equivalences

|X |= m ⇐⇒ f (X1) = P∗ ⇐⇒ f (X) = A.

3 Depth, W (S), W0(S)

We recall here some material for later use. Throughout this section, S is a numerical semi-
group of multiplicity m and conductor c.

Definition 3.1 (See [9]). The depth of S is the positive integer

q = dc/me.

Thus c = qm−ρ where ρ ∈ [[0,m−1]].

In fact ρ ∈ [[0,m−2]]. For otherwise, if ρ = m−1 then c ≡ 1 mod m, an absurdity since
then its Frobenius number F = c−1 = max(Z\S) would be a multiple of m.

3.1 The depth function

We keep the same notation as above, namely c = qm−ρ where ρ ∈ [[0,m−2]]. As in [6], we
partition S as S = ti∈NSi, where for all i ∈ N,

Si = S∩ [[im−ρ,(i+1)m−ρ−1]].

In particular, we have

S0 = {0}, S1 = [[m,2m−ρ−1]]∩S, . . . , Sq−1 = [[c−m,c−1]]∩S, Sq = [[c,c−1+m]].

This gives rise to the following function.
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Definition 3.2. The depth function δ : S→ Z is defined for all x ∈ S by

(5) δ(x) = i ⇐⇒ x ∈ Sq−i.

Equivalently, δ(x) is the unique integer such that

(6) x+δ(x)m ∈ [[c,c−1+m]],

i.e. δ(x) =
⌈c−x

m

⌉
.

The function δ assumes the following values. Recall that L = S∩ [[0,c−1]].

Lemma 3.3. For all x ∈ S, we have

δ(x) = q ⇐⇒ x = 0,

δ(x) ∈ [[1,q−1]] ⇐⇒ x ∈ L\{0},
δ(x) = 0 ⇐⇒ x ∈ [[c,c−1+m]],

δ(x)≤−1 ⇐⇒ x≥ c+m.

Proof. Straightforward from the definition.

We shall need the following estimates from [7, Proposition 6].

Proposition 3.4. For all x,y ∈ S, we have

(7) δ(x+ y)+q+1≥ δ(x)+δ(y)≥ δ(x+ y)+q−min(ρ,1).

Proof (Outline). First note that for all k, l ≥ 1, we have

Sk +Sl ⊂ Sk+l−min(ρ,1)∪Sk+l ∪Sk+l+1.

Set δ(x) = i,δ(y) = j. By (5), this means x ∈ Sq−i,y ∈ Sq− j. Hence

x+ y ∈ S2q−i− j−min(ρ,1)∪S2q−i− j∪S2q−i− j+1.

By (5) again, this means −q+ i+ j− 1 ≤ δ(x+ y) ≤ −q+ i+ j +min(ρ,1). The claimed
inequalities follow.

3.2 Total depth

Definition 3.5. Given a finite subset E ⊂ S, the total depth of E is

τ(E) = ∑
x∈E

δ(x).

Lemma 3.6. Let A = Ap(S,m), A∗ = A\{0} and D = S∗+S∗. Then
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(1) δ(A∗)⊆ [[0,q−1]],

(2) m = |P|+ |A∩D|,
(3) |L|= τ(A) = τ(A∗)+q.

Proof. Since A∗⊆ [[m,c−1+m]], it follows from Lemma 3.3 that δ(A∗)⊆ [[0,q−1]]. We have
|A∗| = m−1 and A∗ = (A∩P)t (A∩D). Also P = (A∩P)t{m}. Hence |P| = |A∩P|+1
and so

m = |A∗|+1 = |A∩D|+ |A∩P|+1 = |A∩D|+ |P|.

We have L = S∩ [[0,c−1]] = {0}t (S∩ [[m,c−1]]). Moreover, for all a ∈ A, we have

L∩ (a+mN) = a+[[0,δ(a)−1]]m.

Hence |L|= ∑a∈A δ(a) = τ(A). Since δ(0) = q, the formula |L|= q+ τ(A∗) follows.

3.3 The numbers W (S),W0(S)

The numbers W (S),W0(S) attached to the numerical semigroup S were introduced in [6].
The alternate notation E(S) =W0(S) was subsequently used in [1] and elsewhere. Recall the
notation D = S∗+S∗ and P = S∗ \D.

Notation 3.7. We denote Dq = D∩Sq = D∩ [[c,c−1+m]], and

W (S) = |P||L|− c,

W0(S) = |P∩L||L|− |A∩Dq|+ρ.

Thus, Wilf’s conjecture amounts to the inequality

(8) W (S)≥ 0

for all numerical semigroups S. The interest of W0(S) stems from the inequality

W (S)≥W0(S).

Therefore, if W0(S)≥ 0 then S satisfies Wilf’s conjecture in a somewhat stronger sense. For
instance, the following result is proved in [6].

Theorem 3.8. Let S be a numerical semigroup such that c≤ 3m. Then W0(S)≥ 0.

There are cases where W0(S) ≤ −1, but those are extremely rare. See [1, 8] for more
details. Note finally the equivalence W0(S) =W (S) ⇐⇒ P⊆ L.
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3.4 New formulas

The following formulas exhibit a closer relationship between W (S) and W0(S) than the orig-
inal defining ones in Notation 3.7. In particular, they better show that W0(S) only takes P∩L
into account and ignores P \L. The symbols A∗,P,D keep the same meaning as above. We
further denote Pq = P∩Sq = P∩ [[c,c−1+m]], pq = |Pq| and dq = |Dq|= |D∩ [[c,c−1+m]]|.

Proposition 3.9. Let S be a numerical semigroup. Then

W (S) = |P|τ(A∗)−|A∩D|q+ρ,

W0(S) = |P∩L|τ(A∗)−|A∩D|q+ρ.

Proof. We have
W (S) = |P||L|− c

= |P|(τ(A∗)+q)−qm+ρ

= |P|(τ(A∗)+q)−q(|P|+ |A∩D|)+ρ

= |P|τ(A∗)−|A∩D|q+ρ.

Moreover,
W (S) = |P||L|− c

= (|P∩L|+ pq)|L|−qm+ρ

= (|P∩L|+ pq)|L|−q(pq +dq)+ρ

= |P∩L||L|−qdq +ρ+ pq(|L|−q)

=W0(S)+ pq(|L|−q)

=W0(S)+ pqτ(A∗).

Corollary 3.10. We have
W (S)−W0(S) = |Pq|τ(A∗).

Proof. Since |P|= |P∩L|+ |Pq|, the proposition implies

W (S)−W0(S) = (|P|− |P∩L|)τ(A∗)
= |Pq|τ(A∗).

Corollary 3.11. We have {
W0(S)≤W (S),
W0(S) =W (S) ⇐⇒ P⊆ L.

Proof. Indeed, since P⊆ S1t·· ·tSq, we have Pq = /0 ⇐⇒ P⊆ L.

Corollary 3.12. If S is special of depth q, then W (S) = |P|τ(A∗)−|A∩D|q. �
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4 The graph of a divset
Let X be a divset in M = M (x1, . . . ,xn). Recall the notation X∗ = X \{1}. We canonically
associate to X a graph G = G(X) defined as follows. An edge in G is a pair {u1,u2} ⊆ X∗

such that u1u2 ∈ X∗. This defines the edge set E(G). The set V (G) of vertices of G is defined
as the set of the extremities of the edges. That is, V (G) = {u ∈ X∗ | ∃v ∈ X∗, uv ∈ X∗}. We
denote V (X) =V (G) and E(X) = E(G). For enhanced readability, we shall denote edges by
(u1,u2) rather than {u1,u2}, even though we still consider them as undirected edges. The
graph G has no multiple edges, but it may contain loops, namely all pairs (u,u) such that
u,u2 ∈ X∗.

An important measure of X in the sequel is the vertex-maximal matching number of the
graph G(X), defined below.

Notation 4.1. We set vm(X) = the largest number of vertices in a matching in G(X), i.e. of
vertices touched by pairwise disjoint edges (ui,vi) ∈ E(G).

We now consider a union of divsets.

Lemma 4.2. Let X ,Y be divsets in M . Then X ∪Y is a divset. Moreover, if X ∩Y = {1} then
vm(X ∪Y ) = vm(X)+vm(Y ).

Proof. Since both X ,Y are divisor-closed, the same holds for X ∪Y . Moreover, if X ∩Y =

{1}, then X∗∩Y ∗ = /0 and so G(X ∪Y ) = G(X)tG(Y ). Hence the matchings in G(X ∪Y )
are exactly the disjoint unions of a matching in G(X) and a matching in G(Y ).

4.1 The function µ(u1, . . . ,ur)

A divset X being spanned by its maximal monomials, it makes sense to introduce a useful
auxiliary notation for vm(X) in terms of spanning monomials.

Notation 4.3. Given monomials u1, . . . ,ur ∈M , we set µ(u1, . . . ,ur) = vm(X), where X =

[u1, . . . ,ur] is the divset spanned by the ui’s.

Determining µ(u1, . . . ,ur) is difficult in general, due to its intimate relationship with
matching numbers in graphs. Nevertheless, the case r = 1 is straightforward.

Proposition 4.4. Let u = xa1
1 · · ·xan

n ∈M \{1}. Then µ(u) = ∏
n
i=1(ai +1)−2.

Proof. Let X = [u] be the divset of divisors of u. Then µ(u) = vm(X), i.e. the maximal
number of vertices touched by a matching of the graph G = G(X). Now |X |= Πn

i=1(ai +1),
i.e. the number of divisors of u. These divisors may be regrouped in independent edges
of the form (v,u/v) where v is a divisor of u such that 0 ≤ deg(v) ≤ deg(u/v), and v is
lexicographically smaller than or equal to u/v if deg(v) = deg(u/v). The pair (1,u) must be
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discounted since 1 is not a vertex of G by definition. The other pairs constitute a matching
of G covering the whole of X \{1,u}. Hence µ(u) = vm(X) = |X \{1,u}|= ∏

n
i=1(ai +1)−

2.

Notation 4.5. For u∈M (x1, . . . ,xn), the support of u is supp(u)= {xi, xi|u}. More generally,
for any subset T ⊆M (x1, . . . ,xn), we set supp(T ) = ∪u∈T supp(u).

Corollary 4.6. Let u ∈M (x1, . . . ,xn)\{1}. If µ(u)≤ 5 then |supp(u)| ≤ 2. More precisely,
if µ(u)≤ 5 then u ∈ {1,x1, . . . ,x6

1,x1x2,x2
1x2} up to permutation of the variables.

Proof. Clearly, if v1 divides v2 in M , then µ(v1)≤ µ(v2). Assume µ(u)≤ 5. Since µ(x1x2x3)=

6, it follows that |supp(u)| ≤ 2. If u = xa
1, then 0≤ µ(u)≤ 5 ⇐⇒ 1≤ a≤ 6. And if u = xa

1xb
2

with a≥ b≥ 1, since µ(u) = (a+1)(b+1)−2, we have µ(u)≤ 5 ⇐⇒ b = 1 and a≤ 2.

Corollary 4.7. Let X ⊂M (x1, . . . ,xn) be a divset such that vm(X) ≤ 5. Then deg(X) ≤ 6
and Xk ⊆ {xk

1} for k = 4,5,6 up to permutation. Moreover, |supp(u)| ≤ 2 for all u ∈ X.

Proof. Let u ∈ X be such that deg(u)≥ 4. Since µ(u)≤ vm(X)≤ 5, the preceding corollary
implies u ∈ {x4

1,x
5
1,x

6
1}. In particular, deg(X) ≤ 6. Moreover, since µ(x4

1,x
4
2) ≥ 6 due to the

matching {(x1,x3
1),(x2,x3

2),(x
2
1,x

2
1),(x

2
2,x

2
2)} on 6 vertices in G(X), it follows that Xk ⊆ {xk

1}
for all k = 4,5,6 up to permutation of the variables, as stated. Finally, let u ∈ X . Since
µ(u)≤ vm(X)≤ 5, if follows from Corollary 4.6 that |supp(u)| ≤ 2.

We shall need the following bounds in the sequel, mostly in case |supp(u)|= 1 or 2.

Proposition 4.8. Let u ∈M (x1, . . . ,xn)\{1}. Then µ(u)≥ |supp(u)|(deg(u)−1).

Proof. Let u = ∏
n
i=1 xai

i with ai ∈ N for all i. Then µ(u) = ∏
n
i=1(ai + 1)− 2. Let us define

f (u) = supp(u)|(deg(u)− 1). We shall prove µ(u) ≥ f (u). Without loss of generality, we
may and will assume |supp(u)| = n, i.e. ai ≥ 1 for all 1 ≤ i ≤ n. In that case, the inequality
µ(u)≥ f (u) translates to

(9)
n

∏
i=1

(ai +1)−2≥ n(
n

∑
i=1

ai−1).

We proceed by induction on n. If n = 1 the inequality is an equality. Assume now n ≥ 2
and the inequality true for n− 1. As u is divisible by x1 · · ·xn by hypothesis, we proceed by
induction on the degree of u/(x1 · · ·xn). If u = x1 · · ·xn then (9) reduces to

2n ≥ n(n−1)+2.

This holds for all n≥ 1, whence (9) holds for x1 · · ·xn. Let now u = ∏
n
i=1 xai

i with ai ≥ 1 for
all i and assume that (9) holds for u. Up to symmetry, it suffices to prove that (9) holds for
uxn. Let v = ∏

n−1
i=1 xai

i , so that u = vxan
n . As easily seen by direct computation, we have

µ(uxn)−µ(u) = µ(v)+2,

f (uxn)− f (u) = n.

11



Thus, in order to prove that (9) holds for uxn, it suffices to show that

(10) µ(v)+2≥ n.

By the induction hypothesis, and since deg(v)≥ n−1, we have

µ(v)≥ f (v)

= (n−1)(deg(v)−1)

≥ (n−1)(n−2).

Hence (10) holds since (n−1)(n−2)≥ n−2 and we are done.

5 Focus on the special case
Throughout this section, S denotes a special numerical semigroup of multiplicity m, conduc-
tor c and depth q = dc/me= c/m. As above, A = Ap(S,m) and A∗ = A\{0}.

5.1 A lower bound on W (S)

With Wilf’s conjecture W (S)≥ 0 in the background, the next result yields a lower bound on
W (S) via a divset model X of S. Recalling Notation 4.1, to X we associate vm(X), i.e. the
vertex-maximal matching number of the graph G(X). Recall also the formula

W (S) = |P|τ(A∗)−|A∩D|q

of Proposition 3.9, since ρ = qm− c = 0 here.

Theorem 5.1. Let S be a special numerical semigroup of depth q. Let X be a divset model of
S and let n = |X1|. Then

(1) τ(A∗)≥ vm(X)q/2,

(2) W (S)≥ ((n+1)vm(X)−2|D(X)|)q/2.

Proof. By hypothesis, there is an injective morphism f : X → S such that f (X) ⊆ A and
f (D(X)) = A∩D. Let G = G(X) = (V,E) be the graph of X . Set k = vm(X). Hence, there
is a subset M ⊆V ⊆ X∗ of cardinality |M|= k such that

M =
⊔̀
i=1

zi,

where z1, . . . ,z` ∈ E are pairwise disjoint edges – here considered as subsets of V . Loops are
allowed, so |zi| ∈ {1,2} for all i. We have

(11) |M|= k = |z1|+ · · ·+ |z`|.
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Let z ∈ {z1, . . . ,z`}. Then z = {u1,u2} with u1,u2 ∈ X∗ such that u1u2 ∈ X∗. Let

a1 = f (u1), a2 = f (u2), a = f (u1u2).

Then a = a1 + a2 since f is a morphism, and a ∈ A∗ since f (X∗) ⊆ A∗. We have δ(a) ≥ 0
since τ(A∗)⊆ [[0,q−1]] by Lemma 3.6. Hence

δ(a1)+δ(a2)≥ q+δ(a1 +a2) = q+δ(a)≥ q

by the right inequality in (7) and the value ρ = 0. We have f (z) = {a1,a2} and so

(12) τ( f (z)) = δ(a1)+δ(a2)≥ q.

If |z|= 1, then a1 = a2 and δ(a1)≥ q/2. Therefore, whether |z|= 1 or |z|= 2, in either case
we have

τ( f (z))≥ |z|q/2.

Since this holds for all z ∈ {z1, . . . ,z`}, it follows that

τ( f ({z1, . . . ,z`})) =
`

∑
i=1

δ( f (zi))≥ (
`

∑
i=1
|zi|)q/2.

Since ∑
`
i=1 |zi|= |M|= k by (11), it follows that τ( f ({z1, . . . ,z`}))≥ kq/2. And since

f ({z1, . . . ,z`})⊆ f (X∗)⊆ A∗,

we conclude that

τ(A∗)≥ τ( f (X∗))≥ τ( f ({z1, . . . ,z`}))≥ kq/2 = vm(X)q/2,

as desired.
It remains to prove the formula W (S) ≥ ((n + 1)vm(X)− 2|D(X)|)q/2. By Proposi-

tion 3.9, we have W (S) = |P|τ(A∗)− |A∩D|q+ ρ. Since τ(A∗) ≥ vm(X)q/2 and ρ = 0,
this yields W (S) ≥ (|P|vm(X)/2− |A ∩D|)q. Finally, since |P| ≥ |X1|+ 1 = n + 1 and
|A∩D|= | f (D(X))|= |D(X)|, the desired inequality follows.

Corollary 5.2. Let S be a special numerical semigroup such that |P| ≥m/4. Let X be a divset
model of S. If vm(X)≥ 6 then S satisfies Wilf’s conjecture.

Proof. Assume vm(X) ≥ 6. Let q be the depth of S, so that c = qm. Theorem 5.1 implies
τ(A∗) ≥ vm(X)q/2 ≥ 3q, whence |L| ≥ 4q since |L| = τ(A∗)+ q by Lemma 3.6 (3). Thus
|P||L| ≥ (m/4)(4q) = qm = c, i.e. W (S)≥ 0 as claimed.
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5.2 Tame divsets

Definition 5.3. Let X be a divset and let n = |X1|. We say that X is tame if

2|D(X)| ≤ (n+1)vm(X),

and wild otherwise.

Proposition 5.4. Let S be a special numerical semigroup. Let f : X → S be a divset model of
S. If X is tame, then W0(S)≥ 0 and hence S satisfies Wilf’s conjecture.

Proof. Set X1 = {x1, . . . ,xn}. Since X is tame, we have (n+1)vm(X)≥ 2|D(X)|.
Claim. We have f (V1)⊆ P∗∩L. Indeed, f (V1)⊆ f (X1)⊆ P∗ by Proposition 2.14. Moreover,
if xi ∈V1, there exists u ∈ X∗ such that xiu ∈ X∗. Hence

f (xi)+ f (u) = f (xiu) ∈ f (X∗)⊆ A∗ ⊆ [[m,c−1+m]].

Since f (u) ∈ A∗ whence f (u) ≥ m, it follows that f (xi) ≤ c− 1, i.e. f (xi) ∈ L. This settles
the claim.

As c = qm with q ≥ 2, we have P∩L = (P∗∩L)t{m}. Since f is injective, the claim
implies

|P∩L|= |P∗∩L|+1≥ | f (V1)|+1≥ |X1|+1 = n+1.

Now |A∩D|= | f (D(X))|= |D(X)|, and τ(A∗)≥ vm(X)q/2 by Theorem 5.1.

Summarizing, and using the formula for W0(S) in Proposition 3.9, we have

W0(S) = |P∩L|τ(A∗)−|A∩D|q
≥ (n+1)vm(X)q/2−|A∩D|q
=
(
(n+1)vm(X)−2|D(X)|)

)
q/2.

Now (n+1)vm(X)−2|D(X)| ≥ 0 since X is tame. Hence W0(S)≥ 0.

Almost all of the divsets involved in the proof of the main result in this paper turn out to
be tame. But here is an example of a wild divset.

Example 5.5. Let X = [x3
1,x

2
1x2,x1x2

2,x
3
2], i.e. the set of all monomials of degree at most 3

in x1,x2. Then |X∗| = |X1|+ |D(X)| = 2+(3+ 4) = 9. Here n = |V1| = 2 and |D(X)| = 7.
Moreover, vm(X) = 4 as witnessed by the vertex-maximal matching {(x1,x2

1),(x2,x2
2)} of the

graph G(X). Hence

(n+1)vm(X)−2|D(X)|= 3 ·4−2 ·7 =−2,

so that X is wild. However, it can be shown that for any special numerical semigroup S
modeled by X, one has |P| ≥ 7, whence

W (S) = |P|τ(A∗)−|A∩D|q≥ 7 ·vm(X)q/2−|D(X)|q = 14q−7q = 7q.
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Thus, all such numerical semigroups S satisfy Wilf’s conjecture. See also the end of Sec-
tion 7.6. Interestingly, those S include the five smallest numerical semigroups satisfying
W0(S)≤−1 as described in [8].

Remark 5.6. It follows from Corollary 5.2 that, in order to settle Wilf’s conjecture for special
numerical semigroups S satisfying |P| ≥ m/4, we need only consider divsets X satisfying
vm(X) ≤ 5. In the sequel, we will classify and analyze all divsets X satisfying this strong
restriction on vm(X). But before that, let us settle the independent case deg(X) = 2.

6 The case deg(X) = 2

We prove here that divsets of degree 2 are tame. By Proposition 5.4, this establishes Wilf’s
conjecture for all special numerical semigroups S admitting a divset model X of degree 2, i.e.
such that A∩D = P∗+P∗. For the proof, we need the following lemma about the classical
matching number in graphs, i.e. the maximum number of independent edges.

Lemma 6.1. Let H = (H1,H2) be a simple bipartite graph without isolated vertices, with
matching number k. Then

|E(H)| ≤ k ·max(|H1|, |H2|).

Proof. We may assume |H1| ≤ |H2|. Then k ≤ |H1|. Let M be a maximal matching with k
edges, say

M = {(xi,yi) | xi ∈ H1,yi ∈ H2,1≤ i≤ k}.
Claim. |H1| = k. Assume not. Let then xk+1 ∈ H1 \ {x1, . . . ,xk}. Since H does not have
isolated vertices, it follows that xk+1 has a neighbour z∈H2. Now necessarily z∈ {y1, . . .yk},
for otherwise there would be a new edge (xk+1,z) independent of M, which would then yield
a matching of cardinality k+1, a contradiction. Up to renumbering, we may assume z = yk,
i.e.

(xk+1,yk) ∈ E.

As |H2| ≥ |H1| ≥ k+1, there is a vertex yk+1 ∈ H2 \{y1, . . . ,yk}. Since yk+1 is not isolated,
it has a neighbour z ∈ H1. But as in the preceding reasoning, we have z ∈ {x1, . . . ,xk}, for
otherwise the edge (z,yk+1) would be independent of M, a contradiction. Up to renumbering,
we may assume z = xk. Thus

(xk,yk+1) ∈ E.

But then, by suppressing the edge (xk,yk) of M and replacing it by the two independent edges
(xk+1,yk),(xk,yk+1), we obtain a matching

M′ = Mt{(xk+1,yk),(xk,yk+1)}\{(xk,yk)}

of cardinality k+1, a contradiction. This finishes the proof of the claim, whence

|H1|= k.
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Since H = (H1,H2) is bipartite, we have |E| ≤ |H1||H2|= k|H2|, as claimed.

Theorem 6.2. Let X be a divset of degree 2, i.e. such that D(X) = X2. Then X is tame.

Proof. Let V be the vertex set of the graph G(X). Since the vertices of G(X) are the strict
factors of the elements of D(X) by construction, and since D(X) = X2 by hypothesis, it
follows that V ⊆ X1. Without loss of generality, we may assume V = X1, since the elements
of X1 \V are ignored by G(X). Set V = X1 = {x1, . . . ,xn}. Then |D(X)| ≤ n(n+ 1)/2. Let
M ⊆ D(X) be a maximal set of pairwise coprime monomials. Denote by V2 ⊆ V1 the set of
variables involved in M. Let n2 = |V2|. Since M corresponds to a matching in G(X) with
vertex set V2, we have

vm(X)≥ n2.

Case 1. V2 =V1. In this case we are done. Indeed, we then have n2 = n, so that vm(X)≥ n.

And since |D(X)| ≤ n(n+1)/2, it follows that

(n+1)vm(X)−2|D(X)| ≥ (n+1)n−2n(n+1)/2 = 0,

as desired.
Case 2. Assume V2 6=V1. Let V3 =V1 \V2 and n3 = |V3|= n−n2. By maximality of M, every
monomial u = xix j ∈ D(X) with i≤ j satisfies xi ∈V2 or x j ∈V2. Let N ⊆ D(X) be a largest
possible subset of pairwise coprime monomials xix j with xi ∈V2,x j ∈V3. Let k = |N|. Then
k is the matching number of G(X), i.e. the largest possible cardinality of a set of independent
edges. We have

k ≤min(n2,n3)

and k ≥ 1 since V3 6= /0. Each xix j ∈ N independently contributes a summand 2 to vm(X).
Thus

(13) vm(X)≥ (n2− k)+2k = n2 + k.

Next, we claim that

(14) |D(X)| ≤ n2(n2 +1)/2+ k max(n2,n3).

Indeed, as V3 induces the empty subgraph in G(X), every monomial in D(X) has its sup-
port in [V2,V2] or [V2,V3]. Now the preceding lemma implies that the number of monomials
with support in [V2,V3] is less than or equal to k max(n2,n3). This proves (14). Combined
with (13), this yields

(n+1)vm(X)−2|D(X)| ≥ (n+1)(n2 + k)−n2(n2 +1)−2k max(n2,n3).

It remains to show that the right-hand side is non-negative. Since n = n2 +n3, we have

(n+1)(n2 + k)−n2(n2 +1)−2k max(n2,n3) = n2(n+1)−n2(n2 +1)+ k(n+1−2max(n2,n3))

= n2n3 + k(n2 +n3 +1−2max(n2,n3))

= n2n3 + k(min(n2,n3)−max(n2,n3)+1)
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since n2 +n3 = min(n2,n3)+max(n2,n3). But for any k ≤ a≤ b, we have

ab+ k(a−b+1) = k(a+1)+b(a− k)

≥ k(a+1).

Hence (n+1)(n2+k)−n2(n2+1)−2k max(n2,n3)≥ k(min(n2,n3)+1)≥ 0, as desired.

Corollary 6.3. Let S be a special numerical semigroup such that A∩D ⊆ P∗+P∗. Then S
satisfies Wilf’s conjecture.

Proof. Let f : X → S be a divset model. Let G = (V,E) be the graph of X . By Remark 2.18,
we may assume X1 ⊆V . Moreover, since f (D(X)) = A∩D⊆ P∗+P∗, we may assume that
D(X) ⊆ X1 ·X1, i.e. that deg(X) = 2. Whence X is tame by Theorem 6.2 and so W0(S) ≥ 0
by Proposition 5.4.

7 The case deg(X)≥ 3

The case deg(X) = 2 having been settled in Section 6, from here on we only consider divsets
X satisfying deg(X)≥ 3. Moreover, towards our main result, we only need consider divsets X
such that vm(X)≤ 5 as observed in Remark 5.6. Hence we may assume deg(X)≤ 6. Indeed,
if deg(X)≥ 7 then vm(X)≥ 6 by Proposition 4.4, whence Remark 5.6 applies. We shall also
need Corollary 4.6, according to which

(15) µ(u)≤ 5 =⇒ u ∈ {1,x1, . . . ,x6
1,x1x2,x2

1x2}

for all u∈M (x1, . . . ,xn) up to permutation of the variables. Thus, a divset X ⊂M (x1, . . . ,xn)

such that vm(X)≤ 5 only contains monomials of the above form.

In this section, all statements and proofs on divsets X in M (x1, . . . ,xn) are understood up
to permutation of the variables xi, almost always tacitly so; occasionally, we may say “up to
permutation”. Moreover, for bounds on vm(X) and on µ(u) for u ∈ X , we shall constantly
use Lemma 4.2, Proposition 4.4 and Proposition 4.8, here again almost always tacitly so.
We shall also constantly use that vm(X) ≥ vm(Y ) for any subdivset Y ⊆ X , including the
particular case vm(X)≥ µ(u) for any u ∈ X .

7.1 On divsets X satisfying vm(X)≤ 5

A observed above, for our main result we only need to consider divsets X such that vm(X)≤
5. Here is a first restriction used very often in the sequel.

Lemma 7.1. Let X ⊂M (x1, . . . ,xn) be a divset such that vm(X)≤ 5. Then either |supp(X3)| ≤
2 or X3 ⊆ x2

1X1 up to permutation. In particular, X3 contains at most two cubes.
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Proof. Assume that |supp(X3)| ≥ 3 and that X3 contains two monomials u1,u2 such that x2
1

divides u1 but not u2. Therefore, up to permutation of the variables, X3 contains one the
following subsets:

{x3
1,x

3
2,x

3
3}, {x3

1,x
2
2x3}, {x2

1x2,x1x2
3}, {x1x2

2,x1x2
3}.

However, as vm(X)≤ 5 by hypothesis, none of these subsets is allowed in X . Indeed, in each
case we have a matching covering 6 vertices:

• µ(x3
1,x

3
2,x

3
3) = 6 due to the matching (x1,x2

1), (x2,x2
2), (x3,x2

3), or by Lemma 4.2.

• µ(x3
1,x

2
2x3) = 6 due to the matching (x1,x2

1), (x2,x2x3), (x3,x2
2).

• µ(x2
1x2,x1x2

3) = 6 due to the matching (x1,x1x2), (x2,x2
1), (x3,x1x3).

• µ(x1x2
2,x1x2

3) = 6 due to the matching (x1,x2
2), (x2,x1x2), (x3,x1x3).

This concludes the proof.

The relevant cases vm(X) = 2,3,4,5 will be successively considered in the next sections.

7.2 The case vm(X) = 2

Proposition 7.2. Let X be a divset in M (x1, . . . ,xn) such that vm(X) = 2 and deg(X) ≥ 3.
Then |D(X)| ≤ n+1 and X is tame.

Proof. Let u∈X be such that deg(u)≥ 3. We have µ(u)≤ vm(X) = 2. On the other hand, the
inequality µ(u) ≥ |supp(u)|(deg(u)− 1) of Proposition 4.8 implies µ(u) ≥ deg(u)− 1 ≥ 2.
Thus µ(u) = 2, deg(u) = 3 and u = x3

1 up to permutation. Hence D(X) = {x3
1}tX2 and, since

vm(X) = 2, all monomials in X2 must be divisible by x1. That is, up to permutation we have

X = [x3
1,x1x2, . . . ,x1xk]

for some k ≤ n. Hence |D(X)| = |X3|+ |X2| = 1+ k ≤ n+ 1. Therefore X is tame since
2|D(X)|= 2(k+1)≤ (n+1)vm(X).

7.3 The case vm(X) = 3

Proposition 7.3. Let X be a divset in M (x1, . . . ,xn) such that vm(X) = 3 and deg(X) ≥ 3.
Then |D(X)| ≤ n+2 and X is tame.

Proof. We have deg(X)≤ 4. Indeed, monomials u of degree deg(u)≥ 5 satisfy µ(u)≥ 4 by
Proposition 4.8, and hence are forbidden in X as vm(X) = 3.

Case 1: deg(X) = 3. The set X3 cannot contain x2
1x2 since µ(x2

1x2) = 4 > vm(X). Similarly,
X3 cannot contain {x3

1,x
3
2} since µ(x3

1,x
3
2) = 4. It follows that X3 = {x3

1}. We now consider
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X2. It contains x2
1 since X is divisor-closed. As µ(x3

1,x2x3) = 4 and µ(x3
1,x

2
2,x

2
3) = 4, we must

have
X2 ⊆ {x2

1,x1x2, . . . ,x1xn,x2
2}.

Equality is possible. Indeed, let X = [x3
1,x1x2, . . . ,x1xn,x2

2]. Then vm(X) = 3, since a match-
ing of G(X) on 3 vertices is given by the edges {(x1,x2

1),(x2,x2)}, and this matching is
vertex-maximal since every edge of G(X) besides (x2,x2) touches x1. Concluding the case
vm(X) = 3 and deg(X) = 3, we have

|D(X)|= |X3|+ |X2| ≤ 1+(n+1).

It follows that X is tame since 2|D(X)| ≤ 2(n+2)≤ 3(n+1) = vm(X)(n+1).

Case 2: deg(X) = 4. Then X4 = {x4
1} by Corollary 4.6 and (15). As above, we still have X3 =

{x3
1} and X2 ⊆ {x2

1,x1x2, . . . ,x1xn,x2
2}. But here, x2

2 is excluded from X since µ(x4
1,x

2
2) = 4. It

follows that X ⊆ [x4
1,x1x2, . . . ,x1xn]. Equality is possible, since then vm(X) = 3 as witnessed

by the vertex-maximal matching {(x1,x2),(x2
1,x

2
1)}. Here

|D(X)|= |X4|+ |X3|+ |X2| ≤ 1+1+(n) = n+2

again, whence X is tame.

Corollary 7.4. Let S be a special numerical semigroup such that |P| ≥m/3. Then W (S)≥ 0.

This result is already known in the general case, without assuming that S is special [7].
But the proof below in the special case c ∈ mN is much shorter than in the general case as
given in [7].

Proof. We proceed as in the proof of Corollary 5.2. Let X be a divset model of S. If vm(X)≥
4, then Theorem 5.1 implies τ(A∗) ≥ vm(X)q/2 ≥ 2q, whence |L| ≥ 3q by Lemma 3.6 (3),
implying |P||L| ≥ (m/3)(3q) = qm = c, i.e. W (S) ≥ 0 as desired. Therefore, we only need
consider the case vm(X) = 3, which is settled above. Since X is then tame, it follows from
Proposition 5.4 that W (S)≥ 0.

7.4 The case vm(X) = 4

Proposition 7.5. Let X be a divset on n variables such that vm(X)= 4. Then |D(X)| ≤ 2n+3.

Proof. Given d ≥ 3, let X be a divset of maximal cardinality such that X1 = {x1, . . . ,xn},
deg(X) = d and vm(X) = 4. We have d ≤ 5, for otherwise, if u ∈ X satisfies deg(u)≥ 6, then
vm(X)≥ µ(u)≥ 5.

Case 1: d = 3. We claim that |D(X)|= 2n+3. We distinguish three subcases.

Case 1.1: |supp(X3)| = 1. Then X3 = {x3
1}. We now consider X2. We have X2 \ x1X1 6= /0,

since vm([{x3
1}∪ x1X1]) = 2 only. Let u ∈ X2 \ x1X1 with |supp(u)| maximal, namely 1 or 2.
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If |supp(u)|= 1 then u = x2
2 up to permutation, and X2 \x1X1 = {x2

2,x
2
3} in order to attain

vm(X) = 4 precisely. In that case we have X = [x3
1,x1x2, . . . ,x1xn,x2

2,x
2
3]. It satisfies all the

constraints, including vm(X) = 4. Here |X3|= 1 and |X2|= n+2, so that |D(X)|= n+3.
If |supp(u)|= 2 then u = x2x3 up to permutation. The equality µ(x3

1,x2x3) = 4 = vm(X)

implies X2 ⊆ {x1,x2,x3}X1, for the presence in X2 of any monomial not divisible by x1, x2

or x3 would result in vm(X)> 4. If n = 3, the maximal cardinality under these conditions is
achieved by

X = [x3
1,x1x2,x1x3,x2

2,x2x3,x2
3].

In this case |D(X)|= 7 = 2n+1. If n≥ 4, the maximal cardinality is achieved by

X = [x3
1,x1x2, . . . ,x1xn,x2

2,x2x3, . . . ,x2xn].

In this case |X2|= 2n−1, whence |D(X)|= 2n.

Case 1.2: |supp(X3)|= 2. Then x2
1x2 ∈ X3, and since µ(x2

1x2) = 4 = µ(x3
1,x

2
1x2,x1x2

2,x
3
2), we

have X3 = {x3
1,x

2
1x2,x1x2

2,x
3
2} by maximality of |X |. Lemma 4.2 then implies that every other

monomial u ∈D(X) is divisible by x1 or x2. The maximal cardinality under these constraints
is achieved by

X = [x3
1,x

2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn].

For instance vm(X) = 4 as desired, since every edge of G(X) touches {x1,x2}. Here |X3|= 4
and |X2|= 2n−1. It follows that |D(X)|= |X3|+ |X2|= 2n+3.

Case 1.3: |supp(X3)| ≥ 3. It then follows from Lemma 7.1 that X3 ⊆ x2
1X1 with n≥ 3. Hence

we may assume
X3 = {x3

1,x
2
1x2, . . . ,x2

1xn}

with n ≥ 3. We have vm(X) = µ(x2
1x2) = 4. Hence all u ∈ D(X) are divisible by x1 or x2,

since otherwise vm(X) > 4 would result. Hence X3 ⊆ {x3
1,x

2
1x2, . . . ,x2

1xn}. The maximal
cardinality under the present conditions is achieved by

X = [x3
1,x

2
1x2, . . . ,x2

1xn].

For instance vm(X) = 4, since every edge of G(X) touches {x1,x2
1}. Here |X3|= |X2|= n. It

follows that |D(X)|= 2n.

Case 2: d = 4. Then X4 = {x4
1} by Corollary 4.6 and (15). Since µ(x4

1) = 3 and vm(X) = 4,
there is at most one monomial u∈D(X) not divisible by x1 and it must satisfy µ(u) = 1. Thus
u = x2

2 up to permutation, and u is actually allowed in X . Indeed, the maximal cardinality
under the present conditions is achieved by

X = [x4
1,x

2
1x2, . . . ,x2

1xn,x2
2].

We do have vm(X) = 4 since every edge of G(X) except (x2,x2) touches {x1,x2
1}. Here

|X4|= 1, |X3|= n and |X2|= n+1. It follows that |D(X)|= 2n+2.
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Case 3: d = 5. Then X5 = {x5
1} and X4 = {x4

1} for the same reasons as above. Since µ(x5
1) =

4 = vm(X), it follows that every u ∈ D(X) must be divisible by x1. The monomial u = x1x2
2

is forbidden in X3 since x2
2 is forbidden in X . However, the x2

1xi are allowed. Indeed, the
maximal cardinality under the present conditions is achieved by

X = [x5
1,x

2
1x2, . . . ,x2

1xn].

We do have vm(X) = 4 since every edge of G(X) touches {x1,x2
1}. Here |X5| = |X4| =

1 and |X3| = |X2| = n. It follows that |D(X)| = 2n+ 2. This concludes the proof of the
proposition.

Corollary 7.6. (of the proof) Let X be a divset on n variables such that vm(X) = 4. Then X
is tame, except for

(16) X = [x3
1,x

2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn].

Proof. Since vm(X) = 4, it follows from the definition that X is tame if and only if |D(X)| ≤
2n+ 2. The proof of Proposition 7.5 shows that |D(X)| ≤ 2n+ 2, i.e. X is tame, except for
the divset X given by (16), which satisfies |D(X)|= 2n+3.

Remark 7.7. For the wild X given by (16), we shall provide in Section 7.6 an ad-hoc proof
that the numerical semigroups modeled by this X still satisfy Wilf’s conjecture.

7.5 The case vm(X) = 5

Proposition 7.8. Let X be a divset on n variables such that vm(X) = 5. Then |D(X)| ≤ 2n+4
and X is tame. Up to permutation of the variables, the only case for which |D(X)| = 2n+4
is X = [x3

1,x
2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn,x2

3].

Proof. Given d ≥ 3, we shall consider divsets T ⊆M (x1, . . . ,xn) satisfying the conditions

(17) deg(T ) = d, vm(T ) = 5.

We have d ≤ 6, for otherwise, if u ∈ T satisfies deg(u)≥ 7, then vm(T )≥ µ(u)≥ 6.
Corollary 4.6 and (15) imply that T3 only contains monomials of the form x2

i x j with
1 ≤ i, j ≤ n. We have µ(x3

1,x
3
2,x

3
3) = 6. Hence T3 contains at most two cubes. Moreover, we

have T4 ⊆ {x4
1} and T5 ⊆ {x5

1}.
Let X be a divset of maximal cardinality such that X1 = {x1, . . . ,xn} and satisfying (17).

To determine |X |, we start by determining all minimal divsets Y in M (x1, . . . ,xn) satisfy-
ing (17). Then, for each such Y , we determine all maximal extensions Z ⊇ Y satisfying (17).
The maximal cardinality attained by those Z will yield |X |. We shall find |D(X)|= 2n+4, as
desired.
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Case 1: d = 3. The minimal divsets Y satisfying (17) are:

Y = [x3
1,x

3
2,x

2
3], [x

3
1,x

2
2,x

2
3,x

2
4], [x

3
1,x

2
2,x3x4], [x2

1x2,x2
3].

Indeed, if Y3 contains two cubes, then since µ(x3
1,x

3
2) = 4, only a square x2

i with i≥ 3 can be
minimally adjoined to get vm(Y ) = 5 exactly. Similarly, if Y3 contains a single cube, then
since µ(x3

1) = 2, the only ways to minimally reach vm(Y ) = 5 is to adjoin {x2
2,x

2
3,x

2
4} or

{x2
2,x3x4}. Finally, if Y3 contains no cube, it must contain x2

1x2 and then, since µ(x2
1x2) = 4,

the only way to minimally raise it to µ(Y ) = 5 exactly is to adjoin x2
3.

Let us now seek, for each such Y , its maximal extensions Z ⊂ M (x1, . . . ,xn) subject
to (17).

• For Y = [x3
1,x

3
2,x

2
3] and n≥ 3, the unique maximal extension Z subject to (17) is

(18) Z = [x3
1,x

2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn,x2

3].

An instance of a vertex-maximal matching of G(Z) is given by the three independent edges
(x1,x2

1), (x2,x2
2), (x3,x3). We do have vm(Z) = 5 since every edge of G(Z) except (x3,x3)

touches a vertex in {x1,x2}. Here Z3 = {x3
1,x

2
1x2,x1x2

2,x
3
2} and X2 = x1X1∪x2X1∪{x2

3}. Thus
|Z3|= 4 and |Z2|= 2n, whence

|D(Z)|= |Z2|+ |Z3|= 2n+4.

• For Y = [x3
1,x

2
2,x

2
3,x

2
4] and n≥ 4, the unique maximal extension Z subject to (17) is

(19) Z = [{x3
1}∪〈x1,x2,x3,x4〉2∪{x1x5, . . . ,x1xn}].

First note that adjoining to Y any monomial u of degree at least 2 with support in {x5, . . . ,xn}
is not allowed, since it would yield vm(Y )≥ 6. Let Y ′ = [〈x1,x2,x3,x4〉2∪{x1x5, . . . ,x1xn}].
For this extension Y ′ of Y \ {x3

1}, we have vm(Y ′) = 4 since every edge of G(Y ′) touches a
vertex in {x1,x2,x3,x4}. The adjunction of x3

1 to Y ′, giving Z, allows the new vertex x2
1 in the

resulting graph. For instance, a vertex-maximal matching of G(Z) is given by the independent
edges (x1,x2

1),(x2,x3),(x4,x4). Here |Z3|= 1 and |Z2|=
(5

2

)
+(n−4) = n+6, whence

|D(Z)|= |Z2|+ |Z3|= n+7≤ 2n+3

since n≥ 4.

• The case Y = [x3
1,x

2
2,x3x4] is similar. The same analysis as above shows that, given n ≥ 4,

the unique maximal extension Z subject to (17) is again the one in (19).

• Finally, for Y = [x2
1x2,x2

3] and n≥ 3, the unique maximal extension Z subject to (17) is

(20) Z =

{
[x3

1,x
2
1x2,x2

1x3, . . . ,x2
1xn,x2

3] if n≥ 4,
[x3

1,x
2
1x2,x2

1x3,x2
2,x2x3,x2

3] if n = 3.
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Indeed, first note that µ(x2
1x2,x1x2

3) = 6, as witnessed by the three independent edges (x2
1,x2),

(x1,x1x2), (x3,x1x3). Similarly, µ(x2
1x2,x2

3,x1x2
2) = 6 and µ(x2

1x2,x2
i x j)≥ 6 for i, j ≥ 2. Thus,

the only monomials allowed in Z3 are the x2
1xi for i ≥ 1. Let Y = [x3

1,x
2
1x2,x2

1x3, . . . ,x2
1xn].

Then vm(Y ) = 4 since vm(x2
1x2) = 4 and every edge of G(Y ) touches a vertex in {x1,x2

1}.
Since Z = Y ∪{x2

3}, we conclude that vm(Z) = 5 thanks to the new independent loopy edge
(x3,x3).

– If n≥ 4, no new monomial of degree 2 may be added to Z2 without augmenting vm(Z),
since µ(x2

1x4,x2
2,x

2
3) = µ(x2

1x4,x2x3) = 6 for instance. Thus in this case, we have |Z3|= n and
Z2 = x1{x1, . . . ,xn}∪{x2

3}, so that |Z2|= n+1 and

|D(Z)|= |Z2|+ |Z3|= 2n+1.

– For n = 3, we may still adjoin {x2
2,x2x3} without augmenting vm(Y ), and the unique

maximal extension of Y in this case is Z = [x3
1,x

2
1x2,x2

1x3,x2
2,x2x3,x2

3]. We then have

|D(Z)|= |Z2|+ |Z3|= 6+3 = 9 = 2n+3.

We have now described all maximal divsets Z ⊂M (x1, . . . ,xn) satisfying (17). The con-
clusion is that |D(Z)| ≤ 2n+ 4 in all cases, with equality attained exclusively by the case
in (18). We conclude that the divset X of maximal cardinality satisfying (17) is

X = [x3
1,x

2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn,x2

3]

up to permutation. It satisfies |D(X)|= 2n+4.

Case 2: d = 4. By Corollary 4.6 and (15), we have X4 = {x4
1}. Let X ′ = X \ {x4

1}. Then
vm(X ′)≤ vm(X) = 5 and deg(X ′) = 3. Moreover, |D(X)|= |D(X ′)|+1. We have |D(X ′)| ≤
2n+ 4 by the above results. If |D(X ′)| < 2n+ 4 then |D(X)| ≤ 2n+ 4 and we are done. If
|D(X ′)|= 2n+4, then X ′ is as in (18), i.e.

X ′ = [x3
1,x

2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn,x2

3].

But the case X ′∪{x4
1} is not eligible since µ(x4

1,x
3
2,x

2
3) = 3+2+1= 6. However, suppressing

the last x2
3 makes

X ′′ = [x4
1,x

2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn]

eligible since every edge besides (x2
1,x

2
1) touches {x1,x2}.

Summarizing, if vm(X) = 5 and deg(X) = 4 then |D(X)| ≤ 2n+4, as desired.

Case 3: d = 5. By the above, we have X5 = {x5
1}, X4 = {x4

1} and {x3
1} ⊆ X3. We have

µ(x5
1,x

3
2) = µ(x5

1,x1x2
2) = 6. But µ(x5

1,x
2
1x2, . . . ,x2

1xn) = 4 since every edge touches {x1,x2
1}.

By adding x2
2, we obtain X = [x5

1,x
2
1x2, . . . ,x2

1xn,x2
2], which satisfies µ(X) = 5 and is maximal.

It is unique up to permutation. We have |D(X)|= |X5|+ |X4|+ |X3|+ |X2|= 1+1+n+n+1=
2n+3. Summarizing, if vm(X) = 5 and deg(X) = 5 then |D(X)| ≤ 2n+3.
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Case 4: d = 6. By the above, we have X6 = {x6
1}, X5 = {x5

1}, X4 = {x4
1} and {x3

1} ⊆ X3.
We have µ(x6

1,x
2
2) = 6. Hence X2 ⊆ x1X1. We have µ(x6

1,x1x2, . . . ,x1xn) = 5 since every
edge besides (x3

1,x
3
1) touches {x1,x2

1}. It is unique up to permutation. We have |D(X)| =
|X6|+ |X5|+ |X4|+ |X3|+ |X2|= 1+1+1+n+n = 2n+3. Summarizing, if vm(X) = 5 and
deg(X) = 6 then |D(X)| ≤ 2n+3.

Having covered all relevant cases 3 ≤ deg(X) ≤ 6, the proof that vm(X) = 5 implies
|D(X)| ≤ 2n+4 is now complete.

7.6 A wild case

Let X be a divset in n variables. If vm(X) = 4 then X is tame if and only if |D(X)| ≤ 2n+2.
But for the exceptional divset X given by (16), namely

(21) X = [x3
1,x

2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn],

we have vm(X) = 4 and |D(X)|= 2n+3 as seen in Corollary 7.6. Since X is wild, we need
a separate proof that the numerical semigroups modeled by X satisfy Wilf’s conjecture.

It would suffice to show that for m = |X |= 3n+4, there is no morphism f : X → Z/mZ.
We can prove so much. But here we will present another proof, using the level function on a
numerical semigroup S, which is closely linked to the depth function δ on S.

Definition 7.9. Let S be a numerical semigroup of multiplicity m, conductor c and depth
q = dc/me= δ(0). The level function on S is the function

λ : S→ N

defined by λ(s) = q−δ(s) = ds/me for all s ∈ S.

Thus λ(0) = 0 and, for all i ∈ Z,

λ(s) = i ⇐⇒ s ∈ [[im−ρ,(i+1)m−ρ−1]],

where ρ= qm−c∈ [[0,m−2]]. In particular, for the Apéry set A=Ap(S,m) and A∗=A\{0},
since A∗ ⊆ [[m+1,c−1+m]], we have

(22) λ(A∗)⊆ [[1,q]].

We shall need the following estimates from [7]. They are a straightforward consequence
of the analogous estimates in Proposition 3.4 for the function δ.

Proposition 7.10. Let S be as above. For all s1,s2 ∈ S, we have λ(s1+s2)∈ [[λ(s1)+λ(s2)−
1,λ(s1)+λ(s2)+1]]. Moreover, if c∈mN, then λ(s1+s2)∈ [[λ(s1)+λ(s2),λ(s1)+λ(s2)+1]].

Proof. Straightforward from Proposition 3.4.
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We now deal with the wild divset X given by (21). We start with the case n≥ 3. The case
n = 2, namely for X = [x3

1,x
2
1x2,x1x2

2,x
3
2], will be dealt with separately afterwards.

Proposition 7.11. Let X = [x3
1,x

2
1x2,x1x2

2,x
3
2,x1x3, . . . ,x1xn,x2x3, . . . ,x2xn] with n ≥ 3. Let S

be a numerical semigroup modeled by X such that c = qm. Then S satisfies Wilf’s conjecture.

Proof. We may and will assume q≥ 4, since by Theorem 3.8, Wilf’s conjecture holds in case
c≤ 3m, i.e. when q≤ 3. We will show that W0(S)≥ 3. Let A = Ap(S,m) and A∗ = A\{0}.
Then A∗ is essentially given by the additive version of X∗, namely

A∗ = {a,b,c3, . . . ,cn;2a,a+b,2b,a+c3, . . . ,a+cn,b+c3, . . . ,b+cn;3a,2a+b,a+2b,3b},

where a↔ x1, b↔ x2 and ci↔ xi for all 3≤ i≤ n. Let us record some initial observations:

• |A∗|= (n+3)+2(n−2)+4 = 3n+3.

• |A∩D|= |A∗|−n = 2n+3.

• {a,b,c3, . . . ,cn} ⊆ P∩L by Proposition 2.14. Hence |P∩L| ≥ n+1 since m ∈ P∩L.

Denote Λ(A∗) = ∑x∈A∗ λ(x). Then

Λ(A∗) = |A∗|q− τ(A∗)

since τ(A∗) = ∑x∈A∗ δ(x) and λ(x) = q− δ(x) for all x ∈ S. We first seek a lower bound
on τ(A∗) via an upper bound on Λ(A∗). For that, we use the inequalities given by Proposi-
tion 7.10 in the special case c = qm, namely

1) λ(x+ y)≤ λ(x)+λ(y)+1,

2) λ(x+ y)≥ λ(x)+λ(y)

for all x,y ∈ S. Without loss of generality, we may assume λ(a)≤ λ(b). By 1), it follows that
λ(2a)≤ 2λ(a)+1≤ 2λ(b)+1,

λ(a+b)≤ λ(a)+λ(b)+1≤ 2λ(b)+1,

λ(2b)≤ 2λ(b)+1.

Since b+ ci ∈ A∗, we have λ(b+ ci)≤ q by (22). It then follows from 2) that

q≥ λ(b+ ci)≥ λ(b)+λ(ci),

whence λ(ci) ≤ q− λ(b) for all 3 ≤ i ≤ n. We now convert these upper bounds on λ into
lower bounds on δ. Using δ(x) = q−λ(x) and so δ(a)≥ δ(b), we get:

δ(a)+δ(b)≥ 2δ(b) = 2(q−λ(b)),

δ(2a),δ(a+b),δ(2b)≥ q−2λ(b)−1,

δ(ci)≥ λ(b) for all 3≤ i≤ n.
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Inserting these bounds in τ(A∗)≥ δ(a)+δ(b)+δ(2a)+δ(a+b)+δ(2b)+∑
n
i=3 δ(ci) yields

τ(A∗)≥ 2(q−λ(b))+3(q−2λ(b)−1)+(n−2)λ(b)

= 5q+(n−10)λ(b)−3.

Hence, using the formula for W0(S) in Proposition 3.9 for ρ = qm− c = 0, we have

W0(S)≥ (n+1)τ(A∗)−|A∩D|q
≥ (n+1)(5q+(n−10)λ(b)−3)− (2n+3)q

= (3n+2)q+(n+1)(n−10)λ(b)−3(n+1).

We now use q≥ λ(3b)≥ 3λ(b), the inequality q≥ λ(3b) following from 3b ∈ A∗ and (22).

Case 1. λ(b) = 1. Here we use our stronger hypothesis q ≥ 4. This yields W0(S) ≥ 4(3n+
2)+(n+1)(n−10)−3(n+1) = n2−5. Hence W0(S)≥ 4 since n≥ 3 by assumption.

Case 2. λ(b)≥ 2. Here we only use q≥ 3λ(b). This yields

W0(S)≥ (3(3n+2)+(n+1)(n−10))λ(b)−3(n+1)

= (n2−4)λ(b)−3(n+1)

≥ 2n2−3n−11.

Hence W0(S)≥ 9 if n≥ 4.

Case n = 3,λ(b)≥ 3. The above estimate W0(S)≥ (n2−4)λ(b)−3(n+1) yields

W0(S)≥ 15−12 = 3.

Case n = 3,λ(b) = 2. It remains to consider the case n = 3 and λ(b) = 2. The inequality
W0(S)≥ (3n+2)q+(n+1)(n−10)λ(b)−3(n+1) obtained earlier yields here

W0(S)≥ 11q−68.

Recall q≥ 3λ(b), whence q≥ 6 here. If q≥ 7 we are done: W0(S)≥ 9.

It remains to consider one last subcase, namely n = 3,λ(b) = 2,q = 6. Since n = 3, we have

A∗ = {a,b,c,2a,a+b,2b,a+ c,b+ c,3a,2a+b,a+2b,3b}.

We have q = 3λ(b) ≤ λ(3b) ≤ q. Hence λ(3b) = q = 3λ(b). This implies λ(2b) = 2λ(b).
Indeed, we have 2λ(b)≤ λ(2b)≤ 2λ(b)+1, and if we had λ(2b) = 2λ(b)+1, it would imply
λ(3b) ≥ λ(b)+λ(2b) ≥ 3λ(b)+ 1, a contradiction. Hence λ(2a),λ(a+ b),λ(2b) ≤ 2λ(b).
Thus

τ(A∗)≥ δ(a)+δ(b)+δ(2a)+δ(a+b)+δ(2b)+δ(c)

≥ q−λ(a)+q−λ(b)+q−λ(2a)+q−λ(a+b)+q−λ(2b)+q−λ(c)

≥ 5q−8λ(b)+q−λ(c).
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Now q≥ λ(b+c)≥ λ(b)+λ(c), so that q−λ(c)≥ λ(b). Hence τ(A∗)≥ 5q−7λ(b) = 8λ(b).
Thus

W0(S)≥ (n+1)τ(A∗)− (2n+3)q

≥ 4τ(A∗)−9q

≥ 32λ(b)−27λ(b)

= 5λ(b).

Hence W0(S)≥ 5λ(b) = 10.

Finally, let us consider the case n= 2 for X given by (21) and already seen in Example 5.5.

Proposition 7.12. Let X = [x3
1,x

2
1x2,x1x2

2,x
3
2]. Let S be a numerical semigroup modeled by X

such that c = qm. Then S satisfies Wilf’s conjecture.

Proof. In the present case, for some specific S, the number W0(S) may actually take the
value −1. However, we can still show W (S)≥ 0. Indeed, up to possibly irrelevant primitive
elements, we have

A = {0,a,b,2a,a+b,2b,3a,2a+b,a+2b,3b}.

Since δ(3a),δ(3b)≥ 0, it follows that δ(a)+δ(2a)≥ q and δ(b)+δ(2b)≥ q. Hence τ(A∗)≥
2q. Since |A∩D|= 7, we have

W (S)≥ |P|τ(A∗)−|A∩D|q
≥ (2|P|−7)q.

Since we may assume |P| ≥ 4 by Theorem 1.2, we conclude that W (S) ≥ q and we are
done.

7.7 Main theorem

We are now in a position to prove our main result.

Theorem 7.13. Let S be a special numerical semigroup such that |P| ≥m/4. Then S satisfies
Wilf’s conjecture, i.e. W (S)≥ 0.

Proof. Let X be a divset model of S. If deg(X) = 1, then D(X) = /0, in which case Theo-
rem 5.1 (2) implies W (S) ≥ (n+1)vm(X)q/2 ≥ 0. If deg(X) = 2, then X is tame as shown
in Section 6, whence W0(S)≥ 0 by Proposition 5.4.

Assuming now deg(X) ≥ 3, we switch to considerations on vm(X). Since X contains
a monomial u of degree 3, it follows from the inequality µ(u) ≥ |supp(u)|(deg(u)− 1) of
Proposition 4.8 that µ(u) ≥ 2, whence vm(X) ≥ 2. If vm(X) ≥ 6 then S satisfies Wilf’s
conjecture by Corollary 5.2. The remaining cases vm(X) = 2,3,4,5 are dealt with in Sec-
tion 7.2, 7.3, 7.4 and 7.5, respectively. All divsets X in these cases, with the sole excep-
tion of (16), are shown to be tame in Propositions 7.2, 7.3, 7.8 and Corollary 7.6, implying
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W0(S) ≥ 0 by Proposition 5.4. The wild case (16) is treated in Section 7.6. For it, the fact
that S satisfies Wilf’s conjecture is proved in Proposition 7.11 for n≥ 3 and Proposition 7.12
for n = 2.

8 Concluding comments
(1) We have shown that Wilf’s conjecture holds for special numerical semigroups S satisfying
|P| ≥ m/4. Attempting to extend that result to the case |P| ≥ m/5 with the same method
would require two steps. The first one is to classify all divsets X such that vm(X)≤ 7, versus
vm(X) ≤ 5 in the present paper. This step should be doable. However, more wild divsets
will emerge. The second step, probably the more demanding one, consists in finding ad-hoc
proofs, as in Section 7.6, that the numerical semigroups modeled by these wild divsets do
satisfy Wilf’s conjecture. Methods from additive combinatorics may be needed for this task,
for instance to prove that a wild divset X of cardinality m cannot be embedded in the cyclic
group Z/mZ.

(2) Proving Wilf’s conjecture in the general case |P| ≥ m/4, i.e. without the hypothesis
c ∈mN as in this paper, is probably achievable with the same method, yet at the cost of more
technical details to take care of.

(3) In [4], Wilf’s conjecture is shown by computer and new ideas to hold up to genus g≤ 100,
a significant jump from the previously available verification up to g≤ 66. See [3] for an early
source of these new ideas. Still in [4], the verification of Wilf’s conjecture in the special case
c ∈ mN is pushed up to genus g≤ 120 by computer and using the main result of this paper.
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