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Introduction

A numerical semigroup is a cofinite submonoid S of N, i.e. a subset containing 0, stable under addition and with finite complement N \ S. Equivalently, it is a set of the form S = ⟨a 1 , . . . , a n ⟩ = Na 1 + • • • + Na n where a 1 , . . . , a n are positive integers with gcd(a 1 , . . . , a n ) = 1, called generators of S. The least such n is usually denoted e = e(S) and called the embedding dimension of S. The multiplicity of S is m = m(S) = min S * , where S * = S \ {0}. The Frobenius number of S is F = F(S) = max(Z \ S) and the conductor of S is c = c(S) = F + 1, satisfying c+N ⊆ S and minimal with respect to that property. The genus of S is g = g(S) = |N\S|, its number of gaps. We partition S as S = L ⊔ R, where L = L(S) = {a ∈ S | a < F(S)} and R = R(S) = {a ∈ S | a > F(S)}, the left part and right part of S, respectively.

A primitive element of S is an element a ∈ S * \ (S * + S * ), i.e. an element of S * which is not the sum of two elements of S * . We denote by P = P(S) the set of primitive elements of S, and by D = D(S) = S * + S * the set of decomposable elements of S. It is easy to see that P is contained in [m, c + m -1] ∩ N and hence is finite, and is the unique minimal generating set of S. Thus |P| = e(S).

One of the main open problems on numerical semigroups is the following conjecture, first raised as a question by Wilf [START_REF] Wilf | A circle-of-lights algorithm for the money-changing problem[END_REF].

Conjecture 1.1 [START_REF] Wilf | A circle-of-lights algorithm for the money-changing problem[END_REF]. Let S be a numerical semigroup. Then |P(S)||L(S)| ≥ c(S).

See [START_REF] Delgado | Conjecture of Wilf: a survey[END_REF] for a survey on the conjecture up to 2018. Among many available partial results, we shall need here the following ones, grouped for convenience in a single statement.

Theorem 1.2. Let S be a numerical semigroup. Then S satisfies Wilf's conjecture if either |P| ≤ 3, or |P| ≥ m/3, or c ≤ 3m.

The solution in case |P| = 2 is due to Sylvester [START_REF] Sylvester | Mathematical questions with their solutions[END_REF]; its extension to |P| ≤ 3 is due to Fröberg et al. [START_REF] Fröberg | On numerical semigroups[END_REF]. The solution in case |P| ≥ m/2 is due to Sammartano [START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF]; its extension to |P| ≥ m/3 is achieved in [START_REF] Eliahou | A graph-theoretic approach to Wilf's conjecture[END_REF]. Finally, the case c ≤ 3m is settled in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF]. The main result in this paper extends the case |P| ≥ m/3 in Wilf's conjecture as follows.

Theorem 1.4. Let S be a numerical semigroup such that |P| ≥ m/4 and c ∈ mN. Then S satisfies Wilf's conjecture.

What motivates the added hypothesis c ∈ mN? As it happens, the proofs of Wilf's conjecture in either case c ≤ 3m [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF] or |P| ≥ m/3 [START_REF] Eliahou | A graph-theoretic approach to Wilf's conjecture[END_REF] can be significantly shortened when c ∈ mN. Moreover, the first five instances of the very rare "near-misses in Wilf's conjecture" all belong to this case [START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF]. These facts lead us to consider the case c ∈ mN as a priority in research on Wilf's conjecture. Indeed, we believe that if the conjecture fails, then it will already fail in case c ∈ mN. Whence the following terminology. Definition 1.5. A numerical semigroup S is special if its conductor c is a multiple of its multiplicity m, i.e. if c ∈ mN.

For instance, the ordinary (or superficial) numerical semigroup O m = {0}∪(m+N) is special since it satisfies c = m.
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In Section 2, we introduce divsets as abstract models of Apéry sets. In Section 3, we recall a few things about the depth and the functions W (S),W 0 (S). In Section 4, we introduce and study the graph of a divset. In Section 5, we start focusing on special numerical semigroups. In Section 6, we settle Wilf's conjecture for special numerical semigroups modeled by divsets of degree 2. In Section 7, we consider the relevant divsets of degree at least 3 and conclude the proof of the main theorem. A very short Section 8 contains some concluding remarks. 

• • • x a n n | (a 1 , . . . , a n ) ∈ N n } of monomials in these variables. Notation 2.1. The degree of u = x a 1 1 • • • x a n n ∈ M is deg(u) = ∑ i a i , the standard one. For d ∈ N, we denote by M d = ⟨x 1 , . . . , x n ⟩ d the subset of monomials of degree d in M . Definition 2.2. A divset in M is a finite subset X ⊂ M which is stable under taking divisors. That is, for all u ∈ X and v ∈ M , if v|u then v ∈ X.
Said otherwise, a divset is a finite downset or order ideal in M under divisibility. In the above example

Example 2.3. X = {x 3 1 , x 2 1 x 2 , x 2 1 , x 1 x 2 , x 1 , x 2 , 1} is a divset in M = ⟨x 1 , x 2 ⟩. Definition 2.4. Let X be a divset. The degree of X is deg(X) = max{deg(u) | u ∈ X}.
X = {x 3 1 , x 2 1 x 2 , x 2 1 , x 1 x 2 , x 1 , x 2 , 1}, we have X = [x 3 1 , x 2 1 x 2 ]
. Notation 2.6. Let X be a divset. We denote by max(X) the maximal elements of X under divisibility. That is, max(X) is the set of those u ∈ X which do not divide any v ∈ X \ {u}.

Clearly, a divset X is spanned by max(X), i.e. X = [max(X)].

Notation 2.7. Let X be a divset in M . For d ∈ N, we set X d = X ∩M d = {u ∈ X | deg(u) = d}.
For instance, we have

X 0 = M 0 = {1} and X 1 ⊆ M 1 = {x 1 , . . . , x n }. Notation 2.8. Let X be a divset. We denote by D(X) = {u ∈ X | deg(u) ≥ 2}, i.e. the set of decomposable monomials in X. Thus X = {1} ⊔ X 1 ⊔ D(X). We set X * = X \ {1}. Remark 2.9. Let X ⊂ M (x 1 , . . . , x n-1 ) be a divset. Let x n be a new variable. Then X ∪ {x n } is a divset in M (x 1 , . . . , x n ). Conversely, if the only multiple of x n in X is x n itself, i.e. if x n is maximal in X under divisibility, then X \ {x n } is a divset in M (x 1 , . . . , x n-1 ).
This gives rise to the following definition.

Definition 2.10. A divset X ⊂ M (x 1 , . . . , x n ) is reduced if for all 1 ≤ i ≤ n, the set X \ {x i } is no longer a divset. Equivalently, if for all 1 ≤ i ≤ n, there is some v ∈ X * such that x i v ∈ X.

The Apéry set

Let S be a numerical semigroup of multiplicity m and conductor c. Its Apéry set contains key information on its structure. We briefly recall its definition and basic properties.

Definition 2.11. The Apéry set of S with respect to m is defined as A = Ap(S, m) = S\(m+S). We denote A * = A \ {0}.

It is well known that Ap(S, m) has exactly m elements, one for each class mod m. More precisely, we have Ap(S, m) = {w 0 , . . . , w m-1 | w i = min(S ∩ (i + mN))}.

For instance, min(A) = w 0 = 0 and max(A

) = w c-1 = c + m -1. Hence A ⊆ [[0, c + m -1]].
Moreover, denoting P * = P \ {m}, it follows from the definition that (1)

P * ⊆ A * .
The numerical semigroup S is completely determined by its Apéry set A via the formula

(2) S = a∈A (a + mN).
Thus, crucial data of a numerical semigroup S may be read on its Apéry set Ap(S, m), e.g. its multiplicity m and its conductor c.

Divsets models of numerical semigroups

Here we use divsets X as abstract models of numerical semigroups S -really of their Apéry set Ap(S, m) -via specific maps f : X → S.

Definition 2.12. Let S be a numerical semigroup and X a divset. A map f :

X → S is a morphism if f (uv) = f (u) + f (v) for all u, v ∈ X.
Of course f (1) = 0 for any such morphism, as

f (1) = f (1 • 1) = f (1) + f (1).
Definition 2.13. Let S be a numerical semigroup of multiplicity m. Let A = Ap(S, m). A divset model of S is a divset X with an injective morphism f : X → S such that f (X) ⊆ A and f (D(X)) = A ∩ D.

In particular, for all a ∈ A ∩ D, i.e. such that a = a 1 + a 2 for some a 1 , a 2 ∈ A * , there are unique monomials u, u 1 , u 2 ∈ X * such that

(3) f (u) = a, f (u 1 ) = a 1 , f (u 2 ) = a 2 ,
and then of course u = u 1 u 2 .

Remark 2.14. The purpose of a divset model of S is to capture the structure of A ∩ D, the set of decomposable elements of the Apéry set of S, one of the keys to advances on Wilf's conjecture as shown by Proposition 3.9 below. Thus, despite the name, a divset model of S is really an abstract multiplicative model of its Apéry set A, or at least of its decomposable elements.

Proposition 2.15. Let S be a numerical semigroup of multiplicity m and A = Ap(S, m). Let f : X → S be a divset model of S. Then |X| ≤ m, f (X 1 ) ⊆ P * and A \ f (X) ⊆ P * .

Proof. Since f is injective and

f (X) ⊆ A, we have |X| = | f (X)| ≤ |A| = m. Moreover f (X * ) ⊆ A * since f (1) = 0. Let u ∈ X 1 . If f (u) / ∈ P * then f (u) ∈ A ∩ D = A * \ P * . Since A ∩ D = f (D(X)) by definition, there exists v ∈ D(X) such that f (u) = f (v). Hence u = v since f is injective, a contradiction since deg(u) = 1 and deg(v) ≥ 2. Finally, since 0 ∈ f (X) and A ∩ D ⊆ f (X), we have A \ f (X) ⊆ A * \ (A ∩ D) = P * .
Proposition 2.16. Let S be a numerical semigroup. Then S admits a divset model.

Proof. It is well known and easy to verify that, for any decomposable Apéry element

a ∈ A ∩ D, if a = s 1 + s 2 with s 1 , s 2 ∈ S * , then necessarily s 1 , s 2 ∈ A * . For any a ∈ A ∩ D, consider the unique decomposition a = p i 1 + • • • + p i d into primitive elements p i j ∈ P * which is lexico- graphically minimal of minimal length d. Clearly, for any nonempty subsum of p i 1 +• • •+ p i d ,
the same minimality properties hold.

Let {p 1 , . . . , p n } ⊆ P * be the set of all primitive elements involved in the respective minimal decompositions of the elements in A ∩ D. Let X 1 = {x 1 , . . . , x n } be a set of n commuting variables. We set u(p i ) = x i for all 1 ≤ i ≤ n. Then, for all a ∈ A ∩ D, we associate to a the monomial u(a) of degree d in {x 1 , . . . , x n } mirroring, in multiplicative notation, the minimal decomposition a

= p i 1 + • • • + p i d . Let X = {1} ⊔ X 1 ⊔ {u(a) | a ∈ A ∩ D}.

By the remark on subsums above, if a

= a 1 + a 2 with a 1 , a 2 ∈ A * , then u(a) = u(a 1 )u(a 2 ). Hence X is a divset. Let f : X → S be the unique morphism induced by f (x i ) = p i for all i = 1, . . . , n. Then f is an injective morphism, f (X) ⊆ A and f (D(X)) = A ∩ D by construction. Hence f : X → S is a divset model of S, as desired. Example 2.17. Let S = ⟨5, 6, 9⟩. Then m = 5 and A * = {w 1 , w 2 , w 3 , w 4 } = {6, 12, 18, 9} with w i = min(S ∩ (i + 5N)) for 1 ≤ i ≤ 4. Let X = [x 2 1 , x 2 2 ] = {x 2 1 , x 2 2 , x 1 , x 2 }, X ′ = [x 3 1 , x 2 ] = {x 3 1 , x 2 1 , x 1 , x 2 }.
The morphisms f : X → S and f ′ : X ′ → S both induced by x 1 → 6, x 2 → 9 yield two distinct divset models for S, as easily verified using 18 = 2 • 9 = 3 • 6.

Remark 2.18. One advantage of divsets X as abstract models of Apéry sets A is that for any u ∈ X * , a decomposition u = vw with v, w ∈ X * is unique up to order, whereas in A * , decompositions a = b + c are seldom unique in general as seen in the above example. Moreover, with divsets X one can use the terminology of monomials such as degree, divisibility and so on, notions which are less intuitive in additive notation.

Remark 2. [START_REF] Alfonsín | The Diophantine Frobenius problem[END_REF]. In a divset model f : X → S, by removing from X variables x i ∈ X 1 not dividing any u ∈ D(X), the resulting subset X ′ ⊆ X is still a divset and the restriction f ′ :

X ′ → S of f to X ′ is still a divset model since D(X ′ ) = D(X).
Recall that for a divset model f : X → S where S is of multiplicity m, we have |X| ≤ m. We need a name for the case of equality.

Definition 2.20. Let S be a numerical semigroup of multiplicity m. A full divset model of S is a divset model f : X → S such that |X| = m.
Thus, for a full divset model f : X → S, we have f (X 1 ) = P * and so f (X) = A.

3 Depth, W (S), W 0 (S)

We recall here some material for later use. Throughout this section, S is a numerical semigroup of multiplicity m and conductor c. Definition 3.1 (See [START_REF] Eliahou | Gapsets and numerical semigroups[END_REF]). The depth of S is the positive integer q = ⌈c/m⌉.

Thus c = qm -ρ where ρ ∈ [[0, m -1]]. In fact ρ ∈ [[0, m -2]].
For otherwise, if ρ = m -1 then c ≡ 1 mod m, an absurdity since then its Frobenius number F = c -1 = max(Z \ S) would be a multiple of m.

The depth function

We keep the same notation as above, namely c = qmρ where ρ ∈ [[0, m -2]]. As in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF], we partition S as S = ⊔ i∈N S i , where for all i ∈ N,

S i = S ∩ [[im -ρ, (i + 1)m -ρ -1]].
In particular, we have

S 0 = {0}, S 1 = [[m, 2m -ρ -1]] ∩ S, • • • S q-1 = [[c -m, c -1]] ∩ S, S q = [[c, c + m -1]
]. This gives rise to the following function.

Definition 3.2. The depth function δ : S → Z is defined for all x ∈ S by

(4) δ(x) = i ⇐⇒ x ∈ S q-i .
Equivalently, δ(x) is the unique integer such that

(5) x + δ(x)m ∈ [[c, c + m -1]], i.e. δ(x) = c-x m .
The function δ assumes the following values. Recall that

L = S ∩ [[0, c -1]].
Lemma 3.3. For all x ∈ S, we have

δ(x) = q ⇐⇒ x = 0, δ(x) ∈ [[1, q -1]] ⇐⇒ x ∈ L \ {0}, δ(x) = 0 ⇐⇒ x ∈ [[c, c + m -1]], δ(x) ≤ -1 ⇐⇒ x ≥ c + m.
Proof. Straightforward from the definition.

We shall need the following estimates from [10, Proposition 6].

Proposition 3.4. For all x, y ∈ S, we have (6) δ(x + y) + q + 1 ≥ δ(x) + δ(y) ≥ δ(x + y) + qmin(ρ, 1).

Proof (Outline). First note that for all k, l ≥ 1, we have

S k + S l ⊂ S k+l-min(ρ,1) ∪ S k+l ∪ S k+l+1 .
Set δ(x) = i, δ(y) = j. By (4), this means x ∈ S q-i , y ∈ S q-j . Hence

x + y ∈ S 2q-i-j-min(ρ,1) ∪ S 2q-i-j ∪ S 2q-i-j+1 .
By (4) again, this means -q + i + j -1 ≤ δ(x + y) ≤ -q + i + j + min(ρ, 1). The claimed inequalities follow.

Total depth

Definition 3.5. Given a finite subset E ⊂ S, the total depth of E is

τ(E) = ∑ x∈E δ(x). Lemma 3.6. Let A = Ap(S, m), A * = A \ {0} and D = S * + S * . Then (1) δ(A * ) ⊆ [[0, q -1]], (2) m = |P| + |A ∩ D|, (3) |L| = τ(A) = τ(A * ) + q. Proof. Since A * ⊆ [[m, c+m-1]], it follows from Lemma 3.3 that δ(A * ) ⊆ [[0, q-1]]. We have |A * | = m -1 and A * = (A ∩ P) ⊔ (A ∩ D). Also P = (A ∩ P) ⊔ {m}. Hence |P| = |A ∩ P| + 1 and so m = |A * | + 1 = |A ∩ D| + |A ∩ P| + 1 = |A ∩ D| + |P|.
We have

L = S ∩ [[0, c -1]] = {0} ⊔ (S ∩ [[m, c -1]]).
Moreover, for all a ∈ A, we have

L ∩ (a + mN) = a + [[0, δ(a) -1]]m.
Hence |L| = ∑ a∈A δ(a) = τ(A). Since δ(0) = q, the formula |L| = q + τ(A * ) follows.

The numbers W (S),W 0 (S)

The numbers W (S),W 0 (S) attached to the numerical semigroup S were introduced in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF]. The alternate notation E(S) = W 0 (S) was subsequently proposed in [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF] and elsewhere. Recall the notation D = S * + S * and P = S * \ D.

Notation 3.7. We denote D q = D ∩ S q = D ∩ [[c, c + m -1]], and 
W (S) = |P||L| -c, W 0 (S) = |P ∩ L||L| -|A ∩ D q | + ρ.
Thus, Wilf's conjecture amounts to the inequality (7) W (S) ≥ 0 for all numerical semigroups S. The interest of W 0 (S) stems from the inequality

W (S) ≥ W 0 (S).
Therefore, if W 0 (S) ≥ 0 then S satisfies Wilf's conjecture in a somewhat stronger sense. For instance, the following result is proved in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF].

Theorem 3.8. Let S be a numerical semigroup such that c ≤ 3m. Then W 0 (S) ≥ 0.

There are cases where W 0 (S) ≤ -1, but those are extremely rare. See [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF][START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF] for more details. Note finally the equivalence W 0 (S) = W (S) ⇐⇒ P ⊆ L.

New formulas

The following formulas exhibit a closer relationship between W (S) and W 0 (S) than the original defining ones in Notation 3.7. In particular, they better show that W 0 (S) only takes P ∩ L into account and ignores P \ L. The symbols A * , P, D keep the same meaning as above. We further denote

P q = P ∩ S q = P ∩ [[c, c + m -1]], p q = |P q | and d q = |D q | = |D ∩ [[c, c + m -1]]|.
Proposition 3.9. Let S be a numerical semigroup. Then

W (S) = |P|τ(A * ) -|A ∩ D|q + ρ, W 0 (S) = |P ∩ L|τ(A * ) -|A ∩ D|q + ρ.
Proof. We have

W (S) = |P||L| -c = |P|(τ(A * ) + q) -qm + ρ = |P|(τ(A * ) + q) -q(|P| + |A ∩ D|) + ρ = |P|τ(A * ) -|A ∩ D|q + ρ. Moreover, W (S) = |P||L| -c = (|P ∩ L| + p q )|L| -qm + ρ = (|P ∩ L| + p q )|L| -q(p q + d q ) + ρ = |P ∩ L||L| -qd q + ρ + p q (|L| -q)
= W 0 (S) + p q (|L|q)

= W 0 (S) + p q τ(A * ).

Corollary 3.10. We have W (S) -W 0 (S) = |P q |τ(A * ).

Proof. Since |P| = |P ∩ L| + |P q |, the proposition implies

W (S) -W 0 (S) = (|P| -|P ∩ L|)τ(A * ) = |P q |τ(A * ).
Corollary 3.11. We have

W 0 (S) ≤ W (S), W 0 (S) = W (S) ⇐⇒ P ⊆ L.
Proof. Indeed, since P ⊆ S 1 ⊔ • • • ⊔ S q , we have P q = / 0 ⇐⇒ P ⊆ L.

Corollary 3.12. If S is special of depth q, then W (S) = |P|τ(A * ) -|A ∩ D|q. □

The graph of a divset

Let X be a divset. We canonically associate to X a graph G = G(X) defined as follows.

An edge in G is a pair {u 1 , u 2 } ⊆ X * such that u 1 u 2 ∈ X * . This defines the edge set E(G).

The set V (G) of vertices of G is defined as the set of the extremities of the edges. That is,

V (G) = {u ∈ X * | ∃v ∈ X * , uv ∈ X * }. We denote V (X) = V (G) and E(X) = E(G).
For enhanced readability, we shall denote edges by (u 1 , u 2 ) rather than {u 1 , u 2 }, even though we still consider them as undirected. The graph G has no multiple edges, but it may contain loops, namely all pairs (u, u) such that u, u 2 ∈ X * .

An important measure of X in the sequel is the vertex-maximal matching number of the graph G(X), defined below. Notation 4.1. We set vm(X) = the largest number of vertices in a matching in G(X), i.e. of vertices touched by pairwise disjoint edges

(u i , v i ) ∈ E(G).
We now consider a union of divsets.

Lemma 4.2. Let X,Y be divsets in M (x 1 , . . . , x n ). Then X ∪ Y is a divset. Moreover, if X ∩Y = {1} then vm(X ∪Y ) = vm(X) + vm(Y ).
Proof. Since both X,Y are divisor-closed, the same holds for X ∪Y . Moreover, G(X ∪Y ) = G(X) ⊔ G(Y ) since X * ∩Y * = / 0. Hence the matchings in X ∪Y are exactly the disjoint unions of matchings in X and in Y .

The function µ(u 1 , . . . , u r )

A divset X being spanned by its maximal monomials, it makes sense to introduce a useful auxiliary notation for vm(X) in terms of spanning monomials. Notation 4.3. Given monomials u 1 , . . . , u r ∈ M , we set µ(u 1 , . . . , u r ) = vm(X), where X = [u 1 , . . . , u r ] is the divset spanned by the u i 's.

Determining µ(u 1 , . . . , u r ) is difficult in general, due to its intimate relationship with matching numbers in graphs. Nevertheless, the case r = 1 is straightforward.

Proposition 4.4. Let u = x a 1 1 • • • x a n
Notation 4.5. For u ∈ M (x 1 , . . . , x n ), the support of u is supp(u) = {x i , x i |u}. More generally, for any subset T ⊆ M (x 1 , . . . , x n ), we set supp(T ) = ∪ u∈T supp(u).

Corollary 4.6. Let u ∈ M (x 1 , . . . ,

x n ) \ {1}. If µ(u) ≤ 5 then | supp(u)| ≤ 2. More precisely, if µ(u) ≤ 5 then u ∈ {1, x 1 , . . . , x 6 1 , x 1 x 2 , x 2 1 x 2 } up to permutation of the variables. Proof. Clearly, if v 1 divides v 2 in M , then µ(v 1 ) ≤ µ(v 2 ). Assume µ(u) ≤ 5. Since µ(x 1 x 2 x 3 ) = 6, it follows that | supp(u)| ≤ 2. If u = x a 1 , then 0 ≤ µ(u) ≤ 5 ⇐⇒ 1 ≤ a ≤ 6. And if u = x a 1 x b 2 with a ≥ b ≥ 1, since µ(u) = (a + 1)(b + 1) -2, we have µ(u) ≤ 5 ⇐⇒ b = 1 and a ≤ 2.
Corollary 4.7. Let X be a divset such that vm(X) ≤ 5. Then deg(X) ≤ 6 and X k ⊆ {x k 1 } for k = 4, 5, 6 up to permutation of the variables.

Proof. Let u ∈ X be such that deg(u) ≥ 4. Since µ(u) ≤ vm(X) ≤ 5, the preceding corollary implies u ∈ {x 4 1 , x 5 1 , x 6 1 }. In particular, deg(X) ≤ 6. Moreover, since µ(x 4 1 , x 4 2 ) ≥ 6 because of the matching {(x 1 ,

x 3 1 ), (x 2 , x 3 2 ), (x 2 1 , x 2 1 ), (x 2 2 , x 2 
2 )} on 6 vertices in G(X), it follows that X k ⊆ {x k

1 } for all k = 4, 5, 6 up to permutation of the variables, as stated.

We shall need the following bounds in the sequel, mostly in case | supp(u)| = 1 or 2. Proof. Let u = ∏ n i=1 x a i i with a i ∈ N for all i. Then µ(u) = ∏ n i=1 (a i + 1) -2. Let us define f (u) = supp(u)|(deg(u) -1). We shall prove µ(u) ≥ f (u). Without loss of generality, we may and will assume | supp(u)| = n, i.e. a i ≥ 1 for all 1 ≤ i ≤ n. In that case, the inequality µ(u) ≥ f (u) translates to

(8) n ∏ i=1 (a i + 1) -2 ≥ n( n ∑ i=1 a i -1).
We proceed by induction on n. If n = 1 the inequality is an equality. Assume now n ≥ 2 and the inequality true for n -1. As u is divisible by x 1 • • • x n by hypothesis, we proceed by induction on the degree of u/(

x 1 • • • x n ). If u = x 1 • • • x n then (8) reduces to 2 n ≥ (n -1)(n -2).
This holds for all n ≥ 1, whence (8) holds for

x 1 • • • x n . Let now u = ∏ n i=1
x a i i with a i ≥ 1 for all i and assume that (8) holds for u. Up to symmetry, it suffices to prove that (8) holds for ux n . Let v = ∏ n-1 i=1 x a i i , so that u = vx a n n . As easily seen by direct computation, we have

µ(ux n ) -µ(u) = µ(v) + 2, f (ux n ) -f (u) = n.
Thus, in order to prove that (8) holds for ux n , it suffices to show that ( 9)

µ(v) + 2 ≥ n.
By the induction hypothesis, and since deg(v) ≥ n -1, we have

µ(v) ≥ f (v) = (n -1)(deg(v) -1) ≥ (n -1)(n -2).
Hence [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF] holds since (n -1)(n -2) ≥ n -2 and we are done.

Focus on the special case

Throughout this section, S denotes a special numerical semigroup of multiplicity m, conductor c and depth q = ⌈c/m⌉ = c/m. As above, A = Ap(S, m) and A * = A \ {0}.

A lower bound on W (S)

With Wilf's conjecture W (S) ≥ 0 in the background, the next result yields a lower bound on W (S) via a divset model X of S. Recalling Notation 4.1, to X we associate vm(X), the vertexmaximal matching number of the graph G(X). Recall also the formula W (S) = |P|τ(A * ) -|A ∩ D|q of Proposition 3.9.

Theorem 5.1. Let S be a special numerical semigroup of depth q. Let X be a divset model of S and let n = |X 1 |. Then

(1) τ(A * ) ≥ vm(X)q/2,

(2) W (S) ≥ ((n + 1) vm(X) -2|D(X)|)q/2.

Proof. By hypothesis, there is an injective morphism f :

X → S such that f (X) ⊆ A and f (D(X)) = A ∩ D. Let G = G(X) = (V, E) be the graph of X. Denote k = vm(X). Hence, there is a subset M ⊆ V ⊆ X * of cardinality |M| = k such that M = ℓ i=1 z i ,
where z 1 , . . . , z ℓ ∈ E are pairwise disjoint edges -here considered as subsets of V . Loops are allowed, so |z i | ∈ {1, 2} for all i. We have

(10) |M| = k = |z 1 | + • • • + |z ℓ |. Let z ∈ {z 1 , . . . , z ℓ }. Then z = {u 1 , u 2 } with u 1 , u 2 ∈ X * such that u 1 u 2 ∈ X * . Let a 1 = f (u 1 ), a 2 = f (u 2 ), a = f (u 1 u 2 ).
Then a = a 1 + a 2 since f is a morphism, and a ∈ A * since f (X * ) ⊆ A * . We have δ(a) ≥ 0 since τ(A * ) ⊆ [[0, q -1]] by Lemma 3.6. Hence δ(a 1 ) + δ(a 2 ) ≥ q + δ(a 1 + a 2 ) = q + δ(a) ≥ q by the right inequality in ( 6) and the value ρ = 0. We have f (z) = {a 1 , a 2 } and so

τ( f (z)) = δ(a 1 ) + δ(a 2 ) ≥ q. If |z| = 1 then a 1 = a 2 and δ(a 1 ) ≥ q/2, whereas if |z| = 2 then τ( f (z)) = δ(a 1 ) + δ(a 2 ) ≥ q. Summarizing, we have τ( f (z)) ≥ |z|q/2
for all z ∈ {z 1 , . . . , z ℓ }. Hence [START_REF] Eliahou | A graph-theoretic approach to Wilf's conjecture[END_REF], it follows that τ( f ({z 1 , . . . , z ℓ })) ≥ kq/2. And since

τ( f ({z 1 , . . . , z ℓ })) = ℓ ∑ i=1 δ( f (z i )) ≥ ( ℓ ∑ i=1 |z i |)q/2. Since ∑ ℓ i=1 |z i | = |M| = k by
f ({z 1 , . . . , z ℓ }) ⊆ f (X * ) ⊆ A * , we conclude that τ(A * ) ≥ τ( f (X * )) ≥ τ( f ({z 1 , . . . , z ℓ })) ≥ kq/2,
as desired. It remains to prove the formula W (S) ≥ ((n + 1) vm(X) -2|D(X)|)q/2. By Proposition 3.9, we have W (S) = |P|τ(A * ) -|A ∩ D|q + ρ. Since τ(A * ) ≥ vm(X)q/2 and ρ = 0, this yields

W (S) ≥ (|P| vm(X)/2 -|A ∩ D|)q. Finally, since |P| ≥ |X 1 | + 1 = n + 1 and |A ∩ D| = | f (D(X))| = |D(X)|, the desired inequality follows.
Corollary 5.2. Let S be a special numerical semigroup of depth q such that |P| ≥ m/4. Let X be a divset model of S. If vm(X) ≥ 6 then S satisfies Wilf's conjecture.

Proof. Assume vm(X) ≥ 6. Theorem 5.1 implies τ(A * ) ≥ vm(X)q/2 ≥ 3q, whence |L| ≥ 4q by Lemma 3.6 (3). Thus |P||L| ≥ (m/4)(4q) = qm = c, i.e. W (S) ≥ 0 as claimed.

Tame divsets

Definition 5.3. Let X be a divset and let n = |X 1 |. We say that X is tame if

2|D(X)| ≤ (n + 1) vm(X),
and wild otherwise. Proposition 5.4. Let S be a special numerical semigroup. Let f : X → S be a divset model of S. If X is tame, then W 0 (S) ≥ 0 and hence S satisfies Wilf's conjecture.

Proof. Let n = |X 1 |. Since X is tame, we have (n + 1) vm(X) ≥ 2|D(X)|. Claim. We have f (V 1 ) ⊆ P * ∩ L. Indeed, we have f (V 1 ) ⊆ f (X 1 ) ⊆ P * by Proposition 2.15. Moreover, if x i ∈ V 1 , there exists u ∈ X * such that x i u ∈ X * . Hence f (x i ) + f (u) = f (x i u) ∈ f (X * ) ⊆ A * ⊆ [[m, c + m -1]]. Since f (u) ∈ A * hence f (u) ≥ m, it follows that f (x i ) ≤ c -1, i.e. f (x i ) ∈ L. This settles the claim.
As c = qm with q ≥ we have

P ∩ L = (P * ∩ L) ⊔ {m}. Since f is injective, the claim implies |P ∩ L| = |P * ∩ L| + 1 ≥ | f (V 1 )| + 1 ≥ |X 1 | + 1 ≥ n + 1. Now |A ∩ D| = | f (D(X))| = |D(X)
|, and τ(A * ) ≥ vm(X)q/2 by Theorem 5.1. Summarizing, and using the formula for W 0 (S) in Proposition 3.9, we have

W 0 (S) = |P ∩ L|τ(A * ) -|A ∩ D|q ≥ (n + 1) vm(X)q/2 -|A ∩ D|q = (n + 1) vm(X) -2|D(X)|) q/2. Now (n + 1) vm(X) -2|D(X)| ≥ 0 since X is tame. Hence W 0 (S) ≥ 0.
Almost all of the divsets involved in the proof of the main result in this paper turn out to be tame. But here is an example of a wild divset.

Example 5.5. Let X = [x 3 1 , x 2 1 x 2 , x 1 x 2 2 , x 3 2 ] 
, i.e. the set of all monomials of degree at most

3 in x 1 , x 2 . Then |X * | = |X 1 | + |D(X)| = 2 + (3 + 4) = 9. Here n = |V 1 | = 2 and |D(X)| = 7.
Moreover, vm(X) = 4 as witnessed by the vertex-maximal matching {(x 1 , x 2 1 ), (x 2 , x 2 2 )} of the graph G(X). Hence

(n + 1) vm(X) -2|D(X)| = 3 • 4 -2 • 7 = -2,
so that X is wild. However, it can be shown that for any special numerical semigroup S modeled by X, one has |P| ≥ 7, whence

W (S) = |P|τ(A * ) -|A ∩ D|q ≥ 7 • vm(X)q/2 -|D(X)|q = 14q -7q = 7q.
Thus, all such numerical semigroups S satisfy Wilf's conjecture. See also the end of Section 7.5. Interestingly, those S include the five smallest numerical semigroups satisfying W 0 (S) ≤ -1 as described in [START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF].

Remark 5.6. It follows from Corollary 5.2 that, in order to settle Wilf's conjecture for special numerical semigroups S satisfying |P| ≥ m/4, we need only consider divsets X satisfying vm(X) ≤ 5. This strong restriction allows us to classify and analyze all such divsets in the sequel. Before that, we settle the independent case deg(X) = 2.

The case deg(X) = 2

We prove here that divsets of degree 2 are tame. This establishes Wilf's conjecture for all special numerical semigroups S such that A = {0}∪P * ∪(P * +P * ). For the proof, we need the following lemma about the classical matching number in graphs, i.e. the maximum number of independent edges. But then, by suppressing the edge (x k , y k ) of M and replacing it by the two independent edges (x k+1 , y k ), (x k , y k+1 ), we obtain a matching

M ′ = M ⊔ {(x k+1 , y k ), (x k , y k+1 )} \ {(x k , y k )}
of cardinality k + 1, a contradiction. This finishes the proof of the claim, whence

|H 1 | = k. Since H = (H 1 , H 2 ) is bipartite, we have |E| ≤ |H 1 ||H 2 | = k|H 2 |, as claimed.
Proposition 6.2. Let X be a divset of degree 2, i.e. such that D(X) = X 2 . Then X is tame, i.e. 2|D(X)| ≤ (n + 1) vm(X), where n = |V ∩ X 1 | and V is the vertex set of the graph G(X).

Proof.

Let V 1 = V ∩ X 1 = {x 1 , . . . ,
x n }, the set of variables dividing the monomials in D(X) = X 2 . We have

V = V 1 since if u ∈ V , there exists v ∈ V such that uv ∈ D(X) = X 2 , implying deg(u) = deg(v) = 1. Clearly |D(X)| ≤ n(n + 1)/2. Let M ⊆ D(X) be a maximal set of pairwise coprime monomials. Denote by V 2 ⊆ V 1 the set of variables involved in M. Let n 2 = |V 2 |. Since M corresponds to a matching in G(X) with vertex set V 2 , we have vm(X) ≥ n 2 . Case 1. V 2 = V 1 .
In this case we are done. Indeed, we then have n 2 = n, so that vm(X) ≥ n.

And since |D(X)| ≤ n(n + 1)/2, it follows that

(n + 1) vm(X) -2|D(X)| ≥ (n + 1)n -2n(n + 1)/2 = 0, as desired. Case 2. Assume V 2 ̸ = V 1 . Let V 3 = V 1 \ V 2 and n 3 = |V 3 | = n -n 2 .
By maximality of M, every monomial u = x i x j ∈ D(X) with i ≤ j satisfies x i ∈ V 2 or x j ∈ V 2 . Let N ⊆ D(X) be a largest possible subset of pairwise coprime monomials x i x j with

x i ∈ V 2 , x j ∈ V 3 . Let k = |N|.
We have k ≤ min(n 2 , n 3 ) and k ≥ 1 since V 3 ̸ = / 0. Each x i x j ∈ N independently contributes a summand 2 to vm(X). Thus [START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF] vm(X)

≥ (n 2 -k) + 2k = n 2 + k. Next, we claim that (12) |D(X)| ≤ n 2 (n 2 + 1)/2 + k max(n 2 , n 3 ).
Indeed, as V 2 induces the empty subgraph in G(X), every monomial in D(X) has its support in

[V 1 ,V 1 ] or [V 1 ,V 2 ]
. Now the preceding lemma implies that the number of monomials with support in [V 1 ,V 2 ] is less than or equal to k max(n 2 , n 3 ). This proves [START_REF] Eliahou | Gapsets and numerical semigroups[END_REF]. Combined with [START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF], this yields

(n + 1) vm(X) -2|D(X)| ≥ (n + 1)(n 2 + k) -n 2 (n 2 + 1) -2k max(n 2 , n 3 ).
It remains to show that the right-hand side is non-negative. Since n = n 2 + n 3 , we have

(n + 1)(n 2 + k) -n 2 (n 2 + 1) -2k max(n 2 , n 3 ) = n 2 (n + 1) -n 2 (n 2 + 1) + k(n + 1 -2 max(n 2 , n 3 )) = n 2 n 3 + k(n 2 + n 3 + 1 -2 max(n 2 , n 3 )) = n 2 n 3 + k(min(n 2 , n 3 ) -max(n 2 , n 3 ) + 1) since n 2 + n 3 = min(n 2 , n 3 ) + max(n 2 , n 3 ). But for any k ≤ a ≤ b, we have ab + k(a -b + 1) = k(a + 1) + b(a -k) ≥ k(a + 1). Hence (n +1)(n 2 +k)-n 2 (n 2 +1)-2k max(n 2 , n 3 ) ≥ k(min(n 2 , n 3 )+1) ≥ 0, as desired.
Corollary 6.3. Let S be a special numerical semigroup such that A = {0} ∪ P * ∪ (P * + P * ).

Then S satisfies Wilf's conjecture.

Proof. Let f : X → S be a divset model. Let G = (V, E) be the graph of X. By Remark 2.19, we may assume X 1 ⊆ V . Moreover, since f (D(X)) = A ∩ D ⊆ P * + P * , we may assume that D(X) ⊆ X 1 • X 1 , i.e. that deg(X) = 2. We conclude with Propositions 5.4 and 6.2.

The case vm(X) = 3

Inserting these bounds in τ

(A * ) ≥ δ(a) + δ(b) + δ(2a) + δ(a + b) + δ(2b) + ∑ n i=3 δ(c i ) yields τ(A * ) ≥ 2(q -λ(b)) + 3(q -2λ(b) -1) + (n -2)λ(b) = 5q + (n -10)λ(b) -3.
Hence, using the formula for W 0 (S) in Proposition 3.9 for ρ = qmc = 0, we have

W 0 (S) ≥ (n + 1)τ(A * ) -|A ∩ D|q ≥ (n + 1)(5q + (n -10)λ(b) -3) -(2n + 3)q = (3n + 2)q + (n + 1)(n -10)λ(b) -3(n + 1).
We now use q ≥ λ(3b) ≥ 3λ(b), the inequality q ≥ λ(3b) following from 3b ∈ A * and ( 19). Recall q ≥ 3λ(b), whence q ≥ 6 here. If q ≥ 7 we are done: W 0 (S) ≥ 9.

It remains to consider one last subcase, namely n = 3, λ(b) = 2, q = 6. Since n = 3, we have A * = {a, b, c, 2a, a + b, 2b, a + c, b + c, 3a, 2a + b, a + 2b, 3b}.

We have q = 3λ(b) ≤ λ(3b) ≤ q. Hence λ(3b) = q = 3λ(b). This implies λ(2b) = 2λ(b). Indeed ≥ qλ(a) + qλ(b) + qλ(2a) + qλ(a + b) + qλ(2b) + qλ(c) ≥ 5q -8λ(b) + qλ(c). Finally, let us consider the case n = 2 for X given by ( 18) and already seen in Example 5.5.

Proposition 7.10. Let X = [x 3 1 , x 2 1 x 2 , x 1 x 2 2 , x 3 2 ]. Let S be a numerical semigroup modeled by X such that c = qm. Then S satisfies Wilf's conjecture.

Proof. In the present case, for some very specific S, the number W 0 (S) may actually take the value -1. However, we can still show W (S) ≥ 0. Indeed, up to possibly irrelevant primitive elements, we have A = {0, a, b, 2a, a + b, 2b, 3a, 2a + b, a + 2b, 3b}.

Since δ(3a), δ(3b) ≥ 0, it follows that δ(a) + δ(2a) ≥ q and δ(b) + δ(2b) ≥ q. Hence τ(A * ) ≥ 2q. Since |A ∩ D| = 7, we have W (S) ≥ |P|τ(A * ) -|A ∩ D|q ≥ (2|P| -7)q.

Since we may assume |P| ≥ 4 by Theorem 1.2, we conclude that W (S) ≥ q and we are done.

Concluding comments

(1) We have shown that Wilf's conjecture holds for special numerical semigroups S satisfying |P| ≥ m/4. Attempting to extend that result to the case |P| ≥ m/5 with the same method would require two steps. The first one is to classify all divsets X such that vm(X) ≤ 7, versus vm(X) ≤ 5 in the present paper. This step should be doable, at least with machine help. However, more wild divsets will emerge. The second step, probably the more demanding one, consists in finding ad-hoc proofs, as in Section 7.5, that the numerical semigroups modeled by these wild divsets do satisfy Wilf's conjecture. Methods from additive combinatorics may be needed for this task, for instance to prove that a wild divset X of cardinality m cannot be embedded in the cyclic group Z/mZ.

(2) Proving Wilf's conjecture in the general case |P| ≥ m/4, i.e. without the hypothesis c ∈ mN as in this paper, is probably achievable with the same method, yet at the cost of many more technical details to take care of.

Notation 1 . 3 .

 13 For a, b ∈ Z, we denote by [[a, b]] = [a, b] ∩ Z the integer interval they span.

Notation 2 . 5 .

 25 Given a finite subset U ⊂ M , we denote by [U] the set of divisors of the elements of U, i.e. [U] = {v ∈ M | ∃u ∈ U, v|u}. We call [U] the divset spanned by U.

Proposition 4 . 8 .

 48 Let u ∈ M (x 1 , . . . , x n ) \ {1}. Then µ(u) ≥ | supp(u)|(deg(u) -1).

Case 1 . 3 .

 13 λ(b) = 1. Here we use our stronger hypothesis q ≥ 4. This yields W 0 (S) ≥ 4(3n + 2) + (n + 1)(n -10) -3(n + 1) = n 2 -5. Hence W 0 (S) ≥ 4 since n ≥ 3 by assumption. Case 2. λ(b) ≥ 2. Here we only use q ≥ 3λ(b). This yieldsW 0 (S) ≥ (3(3n + 2) + (n + 1)(n -10))λ(b) -3(n + 1) = (n 2 -4)λ(b) -3(n + 1) ≥ 2n 2 -3n -11. Hence W 0 (S) ≥ 9 if n ≥ 4. Case n = 3,λ(b) ≥ 3. The above estimate W 0 (S) ≥ (n 2 -4)λ(b) -3(n + 1) yields W 0 (S) ≥ 15 -12 = Case n = 3, λ(b) = 2. It remains to consider the case n = 3 and λ(b) = 2. The inequality W 0 (S) ≥ (3n + 2)q + (n + 1)(n -10)λ(b) -3(n + 1) obtained earlier yields here W 0 (S) ≥ 11q -68.

  , we have 2λ(b) ≤ λ(2b) ≤ 2λ(b) + 1, and if we had λ(2b) = 2λ(b) + 1, it would imply λ(3b) ≥ λ(b) + λ(2b) ≥ 3λ(b) + 1, a contradiction. Hence λ(2a), λ(a + b), λ(2b) ≤ 2λ(b). Thus τ(A * ) ≥ δ(a) + δ(b) + δ(2a) + δ(a + b) + δ(2b) + δ(c)

  Now q ≥ λ(b + c) ≥ λ(b) + λ(c), so that qλ(c) ≥ λ(b). Hence τ(A * ) ≥ 5q -7λ(b) = 8λ(b). Thus W 0 (S) ≥ (n + 1)τ(A * ) -(2n + 3)q ≥ 4τ(A * ) -9q ≥ 32λ(b) -27λ(b) = 5λ(b).Hence W 0 (S) ≥ 5λ(b) = 10.

  Lemma 6.1. Let H = (H 1 , H 2 ) be a simple bipartite graph without isolated vertices, with matching number k. Then|E(H)| ≤ k • max(|H 1 |, |H 2 |).Proof. We may assume|H 1 | ≤ |H 2 |. Then k ≤ |H 1 |.Let M be a maximal matching with k edges, sayM = {(x i , y i ) | x i ∈ H 1 , y i ∈ H 2 , 1 ≤ i ≤ k}. Claim. |H 1 | = k. Assume not. Let then x k+1 ∈ H 1 \ {x 1 , . . . ,x k }. Since H does not have isolated vertices, it follows that x k+1 has a neighbour z ∈ H 2 . Now necessarily z ∈ {y 1 , . . . y k }, for otherwise there would be a new edge (x k+1 , z) independent of M, which would then yield a matching of cardinality k + 1, a contradiction. Up to renumbering, we may assume z = y k , i.e. (x k+1 , y k ) ∈ E. As |H 2 | ≥ |H 1 | ≥ k + 1, there is a vertex y k+1 ∈ H 2 \ {y 1 , . . . , y k }. Since y k+1 is not isolated, it has a neighbour z ∈ H 1 . But as in the preceding reasoning, we have z ∈ {x 1 , . . . , x k }, for otherwise the edge (z, y k+1 ) would be independent of M, a contradiction. Up to renumbering, we may assume z = x k . Thus (x k , y k+1 ) ∈ E.

n ∈ M \ {1}. Then µ(u) = ∏ n i=1 (a i + 1) -2.Proof. Let X = [u], the divset of divisors of u. Then µ(u) = vm(X), i.e. the maximal number of vertices touched by a matching of the graph G(X). Now |X| = Π n i=1 (a i + 1), the number of divisors of u. These divisors may be regrouped in independent edges of the form (v, u/v) where v is a divisor of u such that 0 ≤ deg(v) ≤ deg(u/v), and v is lexicographically smaller than or equal to u/v if deg(v) = deg(u/v). The pair (1, u) must be discounted since 1 is not a vertex of G by definition. The other pairs constitute a matching of G covering the whole of X \ {1, u}. Hence µ(u) = vm(X) = |X \ {1, u}| = ∏ n i=1 (a i + 1) -2.
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 [START_REF] Delgado | A verification of Wilf's conjecture up to genus 100[END_REF]The case deg(X) ≥ 3

The case deg(X) = 2 being settled, from here on we only consider divsets X satisfying deg(X) ≥ 3. Moreover, towards our main result, we only need divsets X such that vm(X) ≤ 5 as observed in Remark 5.6. Hence we may assume deg(X) ≤ 6. Indeed, if deg(X) ≥ 7 then vm(X) ≥ 6 by Proposition 4.4, whence Remark 5.6 applies. We shall also need Corollary 4.6, according to which [START_REF] Fröberg | On numerical semigroups[END_REF] µ(u) ≤ 5 =⇒ u ∈ {1, x 1 , . . . ,

for all u ∈ M (x 1 , . . . , x n ) up to permutation of the variables. Thus, a divset X ⊂ M (x 1 , . . . , x n )

such that vm(X) ≤ 5 only contains monomials of the above form.

In this section, all statements and proofs on divsets X in M (x 1 , . . . , x n ) are understood up to permutation of the variables x i , almost always tacitly so; occasionally, we may say "up to permutation". Moreover, for bounds on vm(X) and on µ(u) for u ∈ X, we shall constantly use Lemma 4.2, Proposition 4.4 and Proposition 4.8, here again almost always tacitly so. We shall also constantly use that vm(X) ≥ vm(Y ) for any subdivset Y ⊆ X, including the particular case vm(X) ≥ µ(u) for any u ∈ X.

7.1 On divsets X satisfying vm(X) ≤ 5

A observed above, for our main result we only need to consider divsets X such that vm(X) ≤ 5. Here is a first restriction used very often in the sequel.

Lemma 7.1. Let X ⊂ M (x 1 , . . . , x n ) be a divset such that vm(X) ≤ 5. Then either | supp(X 3 )| ≤ 2 or X 3 ⊆ x 2 1 X 1 up to permutation. In particular, X 3 contains at most two cubes. Proof. Assume that | supp(X 3 )| ≥ 3 and that X 3 contains two monomials u 1 , u 2 such that x 2 1 divides u 1 but not u 2 . Therefore, up to permutation of the variables, X 3 contains one the following subsets:

}. However, as vm(X) ≤ 5 by hypothesis, none of these subsets is allowed in X. Indeed, in each case we have a matching covering 6 vertices:

3 ), or by Lemma 4.2.

• µ(x 3 1 , x 2 2 x 3 ) = 6 due to the matching (x 1 , x 2 1 ), (x 2 , x 2 x 3 ), (x 3 , x 2 2 ).

2 ), (x 2 , x 1 x 2 ), (x 3 , x 1 x 3 ). This concludes the proof.

The relevant cases vm(X) = 3, 4, 5 will be successively considered in the next sections. Proposition 7.2. Let X be a divset in M (x 1 , . . . , x n ) such that vm(X) = 3 and deg(X) ≥ 3.

Then |D(X)| ≤ n + 2 and X is tame.

Proof. We have deg(X) ≤ 4. Indeed, monomials u of degree deg(u) ≥ 5 satisfy µ(u) ≥ 4 by Proposition 4.8, and hence are forbidden in X as vm(X) = 3.

Then vm(X) = 3, since a matching of G(X) on 3 vertices is given by the edges {(x 1 , x 2 1 ), (x 2 , x 2 )}, and is vertex-maximal since every edge of G(X) besides (x 2 , x 2 ) touches x 1 . Concluding the case vm(X) = 3 and deg(X) = 3, we have

Case 2: deg(X) = 4. Then X 4 = {x 4 1 } by Corollary 4.6 and (13). As above, we still have

2 ) = 4. It follows that X ⊆ [x 4 1 , x 1 x 2 , . . . , x 1 x n ]. Equality is possible, since then vm(X) = 3 as witnessed by the vertex-maximal matching {(x 1 , x 2 ), (x 2 1 , x 2 1 )}.

Here

again, whence X is tame.

Corollary 7.3. Let S be a special numerical semigroup such that |P| ≥ m/3. Then W (S) ≥ 0.

This result is already known in the general case, without assuming that S is special [START_REF] Eliahou | A graph-theoretic approach to Wilf's conjecture[END_REF]. But the proof below in the special case c ∈ mN is much shorter than in the general case as given in [START_REF] Eliahou | A graph-theoretic approach to Wilf's conjecture[END_REF].

Proof. We proceed as in the proof of Corollary 5.2. Let X be a divset model of S. If vm(X) ≥ 4, then Theorem 5.1 implies τ(A * ) ≥ vm(X)q/2 ≥ 2q, whence |L| ≥ 3q by Lemma 3.6 (3), implying |P||L| ≥ (m/3)(3q) = qm = c, i.e. W (S) ≥ 0 as desired. Therefore, we only need to consider the case vm(X) = 3, which is settled above. Since X is then tame, it follows from Proposition 5.4 that W (S) ≥ 0.

The case vm(X) = 4

Proposition 7.4. Let X be a divset on n variables such that vm(X) = 4. Then |D(X)| ≤ 2n+3.

Proof. Given d ≥ 3, let X be a divset of maximal cardinality such that X 1 = {x 1 , . . . , x n }, deg(X) = d and vm(X) = 4. We have d ≤ 5, for otherwise, if u ∈ X satisfies deg(u) ≥ 6, then vm(X) ≥ µ(u) ≥ 5. Case 1: d = 3. We claim that |D(X)| = 2n + 3. We distinguish three subcases.

2 up to permutation, and

for the presence in X 2 of any monomial not divisible by x 1 , x 2 or x 3 would result in vm(X) > 4. If n = 3, the maximal cardinality under these conditions is achieved by

In this case

2 ), we have

2 } by maximality of |X|. Lemma 4.2 then implies that every other monomial u ∈ D(X) is divisible by x 1 or x 2 . The maximal cardinality under these constraints is achieved by

1 X 1 with n ≥ 3. Hence we may assume

Hence all u ∈ D(X) are divisible by x 1 or x 2 , since otherwise would yield vm(X) > 4. Hence X 3 ⊆ {x 3 1 , x 2 1 x 2 , . . . , x 2 1 x n }. The maximal cardinality under the present conditions is achieved by

For instance vm(X) = 4, since every edge of G(X) touches {x 1 , x 2 1 }.

Case 2: d = 4. Then X 4 = {x 4 1 } by Corollary 4.6 and (13). Since µ(x 4 1 ) = 3 and vm(X) = 4, there is at most one monomial u ∈ D(X) not divisible by x 1 and it must satisfy µ(u) = 1. Thus u = x 2 2 up to permutation, and u is actually allowed in X. Indeed, the maximal cardinality under the present conditions is achieved by

We do have vm(X) = 4 since every edge of G(X) except

Case 3: d = 5. Then X 5 = {x 5 1 } and X 4 = {x 4 1 } for the same reasons as above. Since µ(x 5 1 ) = 4 = vm(X), it follows that every u ∈ D(X) must be divisible by

2 is forbidden in X. However, the x 2 1 x i are allowed. Indeed, the maximal cardinality under the present conditions is achieved by

We do have vm(X) = 4 since every edge of G(X) touches {x 1 , x 2 1 }.

This concludes the proof of the proposition.

Remark 7.5. A divset X on n variables such that vm(X) = 4 is tame if and only if |D(X)| ≤ 2n + 2. The above result only states |D(X)| ≤ 2n + 3. This is optimal, since we found a case where |D(X)| = 2n + 3. For this wild case, we shall provide in Section 7.5 an ad-hoc proof that the numerical semigroups modeled by it still satisfy Wilf's conjecture.

7.4

The case vm(X) = 5 Proposition 7.6. Let X be a divset on n variables such that vm(X) = 5. Then |D(X)| ≤ 2n +4 and X is tame. Up to permutation of the variables, the only case for which |D(X

Proof. Given d ≥ 3, we shall consider divsets T ⊆ M (x 1 , . . . , x n ) satisfying the conditions ( 14)

We have d ≤ 6, for otherwise, if u ∈ T satisfies deg(u) ≥ 7, then vm(T ) ≥ µ(u) ≥ 6. Corollary 4.6 and (13) imply that T 3 only contains monomials of the form x 2 i x j with 1 ≤ i, j ≤ n. We have µ(x 3 1 , x 3 2 , x 3 3 ) = 6. Hence T 3 contains at most two cubes. Moreover, we have T 4 ⊆ {x 4 1 } and T 5 ⊆ {x 5 1 }. Let X be a divset of maximal cardinality such that X 1 = {x 1 , . . . , x n } and satisfying [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF].

To determine |X|, we start by determining all minimal divsets Y in M (x 1 , . . . , x n ) satisfying [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF]. Then, for each such Y , we determine all maximal extensions Z ⊇ Y satisfying [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF].

The maximal cardinality attained by those Z will yield |X|. We shall find |X| = 2n + 4, as desired. Case 1: d = 3. The minimal divsets Y satisfying [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF] are:

Indeed, if Y 3 contains two cubes, then since µ(x 3 1 , x 3 2 ) = 4, only a square x 2 i with i ≥ 3 can be minimally adjoined to get vm(Y ) = 5 exactly. Similarly, if Y 3 contains a single cube, then since µ(x 3 1 ) = 2, the only ways to minimally reach vm(Y ) = 5 is to adjoin {x 2 2 , x 2 3 , x 2 4 } or {x 2 2 , x 3 x 4 }. Finally, if Y 3 contains no cube, it must contain x 2 1 x 2 and then, since µ(x 2 1 x 2 ) = 4, the only way to minimally raise it to µ(Y ) = 5 exactly is to adjoin x 2 3 .

Let us now seek, for each such Y , its maximal extensions Z ⊂ M (x 1 , . . . , x n ) subject to [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF].

3 ] and n ≥ 3, the unique maximal extension Z subject to ( 14) is

An instance of a vertex-maximal matching of G(Z) is given by the three independent edges

] and n ≥ 4, the unique maximal extension Z subject to ( 14) is

First note that adjoining to Y any monomial u of degree at least 2 with support in {x 5 , . . . , x n } is not allowed, since it would yield vm(Y

1 to Y ′ , giving Z, allows the new vertex x 2 1 in the resulting graph. For instance, a vertex-maximal matching of G(Z) is given by the independent edges {x 1 ,

is similar. The same analysis as above shows that, given n ≥ 4, the unique maximal extension Z subject to ( 14) is again the one in [START_REF] Kaplan | The proportion of Weierstrass semigroups[END_REF].

3 ] and n ≥ 3, the unique maximal extension Z subject to ( 14) is

Indeed, first note that µ(x 2 1 x 2 , x 1 x 2 3 ) = 6, as witnessed by the three independent edges {x 2 1 ,

2 ) = 6 and µ(x 2 1 x 2 , x 2 i x j ) ≥ 6 for i, j ≥ 2. Thus, the only monomials allowed in Z 3 are the 2 3 }, we conclude that vm(Z) = 5 thanks to the new independent loopy edge {x 3 , x 3 }.

-If n ≥ 4, no new monomial of degree 2 may be added to Z 2 without augmenting vm(Z), since µ(x 2 1 x 4 , x 2 2 , x 2 3 ) = µ(x 2 1 x 4 , x 2 x 3 ) = 6 for instance. Thus in this case, we have

-For n = 3, we may still adjoin {x 2 2 , x 2 x 3 } without augmenting vm(Y ), and the unique maximal extension of Y in this case is

. We then have

We have now described all maximal divsets Z ⊂ M (x 1 , . . . , x n ) satisfying ( 14). The conclusion is that |D(Z)| ≤ 2n + 4 in all cases, with equality attained exclusively by the case in [START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF]. We conclude that the divset X of maximal cardinality satisfying ( 14) is

up to permutation. It satisfies |D(X)| = 2n + 4.

Case 2: d = 4. By Corollary 4.6 and (13), we have

3 ) = 6. However, suppressing the last x 2 3 makes it eligible since every edge besides {x

Case 3: d = 5. By the above, we have X 5 = {x 5 1 }, X 4 = {x 4 1 } and {x 3 1 } ⊆ X 3 . We have µ(x 5 1 , x 3 2 ) = µ(x 5 1 , x 1 x 2 2 ) = 6. But µ(x 5 1 , x 2 1 x 2 , . . . , x 2 1 x n ) = 4 since every edge touches {x 1 , x 2 1 }. By adding x 2 2 , we obtain X = [x 5 1 , x 2 1 x 2 , . . . , x 2 1 x n , x 2 2 ], which satisfies µ(X) = 5 and is maximal. Case 4: d = 6. By the above, we have X 6 = {x 6 1 }, X 5 = {x 5 1 }, X 4 = {x 4 1 } and {x 3 1 } ⊆ X 3 . We have µ(x 6 1 , x 2 2 ) = 6. Hence X 2 ⊆ x 1 X 1 . We have µ(x 6 1 , x 1 x 2 , . . . , x 1 x n ) = 5 since every edge besides {x 3 1 , x 3 1 } touches {x 1 , x 2 1 }. It seems to be unique. We have

Having covered all relevant cases 3 ≤ deg(X) ≤ 6, the proof that vm(X) = 5 implies |D(X)| ≤ 2n + 4 is now complete.

A wild case

Let X be a divset in n variables. If vm(X) = 4 then X is tame if and only if |D(X)| ≤ 2n + 2. But for

we have vm(X) = 4 and |D(X)| = 2n + 3 as seen above. Since X is wild, we need a separate proof that the numerical semigroups modeled by X satisfy Wilf's conjecture. It would suffice to show that for m = |X| = 3n + 4, there is no morphism f : X → Z/mZ. We can prove so much. But here we will present another proof, using the level function on a numerical semigroup S, which is closely linked to the depth function δ on S. Definition 7.7. Let S be a numerical semigroup of multiplicity m, conductor c and depth q = ⌈c/m⌉ = δ(0). The level function on S is the function λ : S → N defined by λ(s) = qδ(s) = ⌈s/m⌉ for all s ∈ S.

As easily seen, we have λ(0) = 0 and, for all i ∈ Z,

We shall need the following estimates from [START_REF] Eliahou | A graph-theoretic approach to Wilf's conjecture[END_REF]. They are a straightforward consequence of the analogous estimates in Proposition 3.4 for the function δ. Proposition 7.8. Let S be as above. For all s 1 , s 2 ∈ S, we have λ(

Proof. Straightforward from Proposition 3.4.

We now deal with the wild divset X given by [START_REF] Moscariello | On a conjecture by Wilf about the Frobenius number[END_REF]. We start with the case n ≥ 3. The case n = 2, namely for X

2 ], will be dealt with separately afterwards. Proposition 7.9. Let X = [x 3 1 , x 2 1 x 2 , x 1 x 2 2 , x 3 2 , x 1 x 3 , . . . , x 1 x n , x 2 x 3 , . . . , x 2 x n ] with n ≥ 3. Let S be a numerical semigroup modeled by X such that c = qm. Then S satisfies Wilf's conjecture.

Proof. We may and will assume q ≥ 4, since by Theorem 3.8, Wilf's conjecture holds in case c ≤ 3m, i.e. when q ≤ 3. We will show that W 0 (S) ≥ 3. Let A = Ap(S, m) and A * = A \ {0}. Then A * is essentially given by the additive version of X * , namely Since b + c i ∈ A * , we have λ(b + c i ) ≤ q by [START_REF] Alfonsín | The Diophantine Frobenius problem[END_REF]. It then follows from 2) that q ≥ λ(b + c i ) ≥ λ(b) + λ(c i ), whence λ(c i ) ≤ qλ(b) for all 3 ≤ i ≤ n. We now convert these upper bounds on λ into lower bounds on δ. Using δ(x) = qλ(x) and so δ( (3) In [START_REF] Delgado | A verification of Wilf's conjecture up to genus 100[END_REF], Wilf's conjecture is shown by computer and new ideas to hold up to genus g ≤ 100, a jump from the previously available verification up to g ≤ 66. Still in [START_REF] Delgado | A verification of Wilf's conjecture up to genus 100[END_REF], the verification of Wilf's conjecture in the special case c ∈ mN is pushed up to genus g ≤ 120 by computer and using the main result of this paper.
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