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Divsets, numerical semigroups and Wilf’s conjecture

October 9, 2023

Abstract

Let S⊆N be a numerical semigroup with multiplicity m = min(S\{0}) and conduc-
tor c = max(N\S)+1. Let P be the set of primitive elements of S, and let L be the set of
elements of S which are smaller than c. Wilf’s conjecture (1978) states that the inequal-
ity |P||L| ≥ c always hold. The conjecture has been shown to hold in case |P| ≥ m/2 by
Sammartano in 2012, and subsequently in case |P| ≥ m/3 by the author in 2020. The
main result in this paper is that Wilf’s conjecture holds in case |P| ≥ m/4 with c ∈ mN.

0 Caution
This document is the starting point of a full paper to be gradually completed in successive
versions within the next few weeks of Fall 2023.

1 Introduction
A numerical semigroup is a cofinite submonoid S of N, i.e. a subset containing 0, stable
under addition and with finite complement N \ S. Equivalently, it is a set of the form S =

〈a1, . . . ,an〉=Na1+ · · ·+Nan where a1, . . . ,an are positive integers with gcd(a1, . . . ,an) = 1,
called generators of S. The least such n is usually denoted e and called the embedding
dimension of S, see below.

Let S be a numerical semigroup and S∗ = S\{0}*. A primitive element of S is an element
a ∈ S∗ \ (S∗+ S∗), i.e. an element of S∗ which is not the sum of two elements of S∗. We
denote by P = P(S) the set of primitive elements of S, and by D(S) = S∗ \P(S) = S∗+S∗ the
set of decomposable elements of S. It is easy to see that P is finite and is the unique minimal
generating set of S. The embedding dimension of S is e = e(S) = |P|, the multiplicity of S is
m = m(S) = minS∗, the Frobenius number of S is F = F(S) = max(Z\S) and the conductor
of S is c = c(S) = F +1, satisfying c+N⊆ S and minimal with respect to that property. The
genus of S is g = g(S) = |N \ S|, its number of gaps. We partition S as S = LtR, where
L = L(S) = {a ∈ S | a < F(S)} and R = R(S) = {a ∈ S | a > F(S)}, the left part and right
part of S, respectively.
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Currently, one of the main open problems on numerical semigroups is the following con-
jecture, first stated as a question by Wilf [21].

Conjecture 1.1 (Wilf, 1978). Let S be a numerical semigroup. Then |P||L| ≥ c.

See [5] for a survey on the conjecture up to 2018. Among many partial results, the
conjecture has been shown to hold in case |P| ≥ m/2 by Sammartano in 2012 [19], and
subsequently in case |P| ≥ m/3 by the author in 2020 [9]. The main result in this paper is as
follows.

Theorem 1.2. Let S be a numerical semigroup such that c ∈ mN and |P| ≥ m/4. Then S
satisfies Wilf’s conjecture.

The motivation to focus on the case c ∈ mN is justified in Section 2.

2 Special numerical semigroups
Given a numerical semigroup S, consider the Euclidean division of its conductor c by its
multiplicity m with nonpositive remainder:

(1) c = qm−ρ, 0≤ ρ≤ m−1.

As in [11], we call the integer q = dc/me the depth of S. The particular case c = qm,
i.e. with ρ = 0, might well be the heart of Wilf’s conjecture. Indeed, the proofs of Wilf’s
conjecture in either case c ≤ 3m [8] or |P| ≥ m/3 [9] can be significantly shortened when
ρ = 0. Moreover, the first five instances of the very rare “near-misses in Wilf’s conjecture”
all belong to this case [10].

These facts lead us to believe that if Wilf’s conjecture fails for some exotic numerical
semigroups, then it already fails in cases where ρ= 0. This justifies introducing the following
terminology.

Definition 2.1. A numerical semigroup S is special if c ∈ mN, where m is its multiplicity and
c is its conductor.

For instance, the ordinary numerical semigroup Om = {0}∪ (m+N) is special since it
satisfies c = m. The above discussion leads us to consider the special case as a priority in
research on Wilf’s conjecture.

In this context, we extend here the validity of Wilf’s conjecture to the case |P| ≥ m/4 for
special numerical semigroups. More generally, using the notation in (1), our main result in
this paper reads as follows.

Theorem 2.2. Let S be a numerical semigroup satisfying |P| ≥m/4. Then |P||L| ≥ c−m+ρ.
Morever, if S is special, then |P||L| ≥ c, i.e. S satisfies Wilf’s conjecture.
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3 The Apéry set
Notation 3.1. Let S be a numerical semigroup of multiplicity m. We denote by A = AP(S,m)

the Apéry set of S with respect to m, defined as

A = S\ (m+S).

We set A∗ = A\{0}.

Definition 3.2. Let S be a numerical semigroup of multiplicity m ≥ 2 and conductor c. The
level function of S is λ : S→ N defined by λ(s) = ds/me for all s ∈ S. Thus λ(s) = l if and
only if s ∈ S∩ [[lm−ρ,(l +1)m−ρ−1]].

Proposition 3.3. Let S be a numerical semigroup with level function λ : S→N. Then λ(s1 +

s2) ∈ {λ(s1)+λ(s2)−1,λ(s1)+λ(s2),λ(s1)+λ(s2)+1} for all s1,s2 ∈ S.

Proof. Let li = λ(si) for i = 1,2. Then si ∈ S∩ [[lim−ρ,(li+1)m−1−ρ]] for i = 1,2. Hence
s1 + s2 ∈ S∩ [[(l1 + l2)m−2ρ,(l1 + l2 +2)m−2−2ρ]]. Etc.

Definition 3.4. Let S be a numerical semigroup of depth q≥ 1. The depth function of S is the
function δ : S→ Z defined by δ(s) = q−λ(s) for all s ∈ S.

Notation 3.5. Given a finite subset X ⊂ S, we denote by τ(X) its total depth, i.e. τ(X) =

∑x∈X δ(x).

Proposition 3.6. Assume S is special of depth q. Then W (S) = |P|τ(A∗)−|A∩D|q.

4 Divsets
Notation 4.1. Let x1, . . . ,xn be commuting variables. We denote by M = {xa1

1 · · ·xan
n | (a1, . . . ,an)∈

Nn} the set of all monomials in x1, . . . ,xn. For d ∈ N, we denote by Md ⊂ M the subset of
monomials u ∈M of degree d.

Definition 4.2. A divset is a finite set X of monomials in n variables x1, . . . ,xn which is stable
under taking divisors. That is, for all u ∈ X, if v ∈M and v|u then v ∈ X.

Example 4.3. X = {x3
1,x

2
1x2,x2

1,x1x2,x1,x2,1} is a divset in the variables x1,x2.

Notation 4.4. Given a set of U of monomials in {x1, . . . ,xn}, we denote by [U ] the set of
divisors of the elements of U. That is, [U ] = {v ∈M | ∃u ∈ X ,v|u}.

In the above example X = {x3
1,x

2
1x2,x2

1,x1x2,x1,x2,1}, we have X = [x3
1,x

2
1x2].

Definition 4.5. Let X be a divset. We define the degree of X as

deg(X) = max{deg(u) | u ∈ X}.
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Notation 4.6. Let X be a divset. We denote by max(X) the maximal elements of X under
divisibility, i.e. the set of those u ∈ X which do not divide any v ∈ X \{u}.

Clearly, a divset X is completely determined by max(X), as X = [max(X)].

Notation 4.7. Let X be a divset on the variables {x1, . . . ,xn}. For all d ≥ 0, we denote
Xd = X ∩Md = {u ∈ X | deg(u) = d}.

For instance, we have X0 = {1} and X1 = {x1, . . . ,xn}.

Notation 4.8. Let X be a divset. We denote by D(X) = {u ∈ X | deg(u) ≥ 2}, i.e. the set of
decomposable monomials in X. Thus X = {1}tX1tD(X). We denote X∗ = X \{1}.

4.1 The graph of a divset

Let X be a divset. We canonically associate to X a graph G = G(X) defined as follows. An
edge in G is a pair {u1,u2} with u1,u2 ∈ X∗ such that u1u2 ∈ X . This defines the edge set
E(G). The set V (G) of vertices of G is defined as the set of the extremities of the edges. Said
otherwise, we have V (G) = {u ∈ X∗ | ∃v ∈ X∗, uv ∈ X}.

An important measure of X in the sequel is the vertex-maximal matching number of the
graph G(X), defined below.

Notation 4.9. We set vm(X) = the largest cardinality of a subset Y ⊆ X∗ obtained as the set
of vertices of a matching in G(X), i.e. a union of pairwise disjoint pairs {u,v} ⊆ Y such that
uv ∈ X.

Definition 4.10. Let X be a divset on n variables. We say that X is tame if

(n+1)vm(X)≥ 2|D(X)|.

We say that X wild if it is not tame.

The link with Wilf’s conjecture will become clear in the next section.

4.2 Divsets and numerical semigroups

In a numerical semigroup S of multiplicity m, its Apéry set with respect to m carries key
information on the structure of S.

Notation 4.11. Let S be a numerical semigroup of multiplicity m. We denote by A = AP(S,m)

the Apéry set of S with respect to m, defined as

A = S\ (m+S).

We set A∗ = A\{0}.
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It is well known that AP(S,m) has exactly m elements, one for each class mod m. More
precisely, we have

AP(S,m) = {w0, . . . ,wm−1 | wi = min(S∩ (i+mN))}.

It turns out that divsets can be considered as a sort of abstract model for Apéry sets. This
will be made more precise below.

Definition 4.12. Let S be a numerical semigroup and X a divset. A morphic map from X to S
is a map f : X → S such that f (1) = 0 and f (uv) = f (u)+ f (v) for all u,v ∈ X.

Definition 4.13. Let S be a numerical semigroup of multiplicity m. Let A=AP(S,m). A divset
representation of S is a injective morphic map f : X → S, where X is a divset of cardinality
|X |= m and such that f (X) = A.

Proposition 4.14. Let S be a numerical semigroup of multiplicity m. Then S admits at least
one divset representation.

Proof. The key point is the well known fact that, for any Apéry element a ∈ A∗, if there is a
decomposition a = s1 + s2 with s1,s2 ∈ S∗, then necessarily s1,s2 ∈ A∗.

Proposition 4.15. Let S be a numerical semigroup such that c∈mN and which is represented
by a tame divset X. Then S satisfies Wilf’s conjecture.

Proof. We have τ(X∗)≥ vm(X)q/2. Hence

W0(S) = |P∩L|τ(X∗)−|X ∩D|q
≥ (n+1)vm(X)q/2−|X ∩D|q
=
(
(n+1)vm(X)−2|X ∩D|)

)
q/2.

Since X is tame by hypothesis, we have (n+1)vm(X)−2|X ∩D| ≥ 0. Hence W0(S)≥ 0.

5 The case deg(X) = 2

We prove here that divsets of degree 2 are tame. This establishes Wilf’s conjecture for all
special numerical semigroups S such that D(S) ⊆ P+P. In order to do so, we need the fol-
lowing lemma about the classical matching number in graphs, namely the maximum number
of independent edges.

Lemma 5.1. Let H = (H1,H2) be a simple bipartite graph without isolated vertices, with
matching number k. Then

|E(H)| ≤ k ·max(|H1|, |H2|).
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Proof. We may assume |H1| ≤ |H2|. Then k ≤ |H1|. Let M be a maximal matching with k
edges, say

M = {(xi,yi) | xi ∈ H1,yi ∈ H2,1≤ i≤ k}.

Claim. |H1| = k. Assume not. Let then xk+1 ∈ H1 \ {x1, . . . ,xk}. Since H does not have
isolated vertices, it follows that xk+1 has a neighbour z∈H2. Now necessarily z∈ {y1, . . .yk},
for otherwise there would be a new edge (xk+1,z) independent of M, which would then yield
a matching of cardinality k+1, a contradiction. Up to renumbering, we may assume z = yk,
i.e.

(xk+1,yk) ∈ E.

As |H2| ≥ |H1| ≥ k+1, there is a vertex yk+1 ∈ H2 \{y1, . . . ,yk}. Since yk+1 is not isolated,
it has a neighbour z ∈ H1. But as in the preceding reasoning, we have z ∈ {x1, . . . ,xk}, for
otherwise the edge (z,yk+1) would be independent of M, a contradiction. Up to renumbering,
we may assume z = xk. Thus

(xk,yk+1) ∈ E.

But then, by suppressing the edge (xk,yk) of M and replacing it by the two independent edges
(xk+1,yk),(xk,yk+1), we obtain a matching

M′ = Mt{(xk+1,yk),(xk,yk+1)}\{(xk,yk)}

of cardinality k+1, a contradiction. This finishes the proof of the claim, whence

|H1|= k.

Since H = (H1,H2) is bipartite, we have |E| ≤ |H1||H2|= k|H2|, as claimed.

Proposition 5.2. Let X be a divset of degree 2, i.e. such that D(X) = X2. Then X is tame, i.e.
(n+1)vm(X)≥ 2|D(X)|, where n = |X1|.

Proof. Let V = {x1, . . . ,xn}, the set of variables dividing the monomials of X ∩D. Then
|X ∩D| ≤ n(n+1)/2. Let M ⊆ X ∩D be a maximal set of monomials of degré 2 and pairwise
coprime. Denote V1 ⊆ V the set of variables involved in M. Let V2 = V \V1, n1 = |V1| and
n2 = |V2|= n−n1. By construction, we have

τ(V1)≥ n1q/2.

Case 1. V1 = V . In this case we are done. Indeed, we then have τ(V ) = τ(V1) ≥ nq/2, and

since |X ∩D| ≤ n(n+1)/2, it follows that

W (S) = |P|τ(V )−|X ∩D|q
≥ (n+1)nq/2−n(n+1)/2 ·q
≥ 0.
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Case 2. Assume V1 6= V , i.e. V2 6= /0. By maximality of M, it follows that every monomial
u = xix j ∈ X ∩D with i ≤ j satisfies xi ∈ V1. Let k be the maximum number of monomials
u = xix j with xi ∈ V1, x j ∈ V2 and pairwise coprime. We have k ≤ min(n1,n2), but also
k ≥ 1 since V2 6= /0. For each such pair (v1,v2) ∈ V1×V2 , i.e. with v1v2 ∈ X ∩D, we have
δ(v1)+δ(v2)≥ q. This already contributes kq to τ(X). Thus

(2) τ(X)≥ (n1− k)q/2+ kq.

Next, we claim that

(3) |X ∩D| ≤ n1(n1 +1)/2+ k max(n1,n2).

Indeed, as V2 is the empty graph, every monomial in X ∩D has its support in [V1,V1] or
[V1,V2]. But the preceding lemma implies that the number of monomials with support in
[V1,V2] is less than or equal to k max(n1,n2). This proves (3).

Now, W (S)≥ (n+1)τ(V )−|X ∩D|q. Hence, by (2) and (3), we have

W (S)≥ (n+1)((n1− k)/2+ k)q−n1(n1 +1)/2− k max(n1,n2))q

= ((n+1)(n1 + k)−n1(n1 +1)−2k max(n1,n2))q/2.

It remains to show that (n+1)(n1 + k)−n1(n1 +1)−2k max(n1,n2)≥ 0. We have

(n+1)(n1 + k)−n1(n1 +1)−2k max(n1,n2) = n1(n+1)−n1(n1 +1)+ k(n+1−2max(n1,n2))

= n1n2 + k(n1 +n2 +1−2max(n1,n2))

= n1n2 + k(min(n1,n2)−max(n1,n2)+1)

since n1 +n2 = min(n1,n2)+max(n1,n2). But if k ≤ a≤ b, we have

ab+ k(a−b+1) = k(a+1)+b(a− k)

≥ k(a+1).

It follows that (n+1)(n1 + k)−n1(n1 +1)−2k max(n1,n2)≥ k(min(n1,n2)+1).
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