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Abstract—Industrial Wireless Sensor Networks (IWSN) play a
key role in the Industry 4.0 revolution. The network infrastruc-
ture is critical to interconnect sensors and actuators and needs
to respect Key Performance Indicators. IEEE 802.15.4-TSCH
is a candidate technology for IWSN since it relies on scheduled
transmissions and frequency hopping to make the network more
reliable. However, distributed scheduling solutions fail to provide
high reliability and low end-to-end latency. Software Defined
Network (SDN) tends now to emerge in wireless networks as
well, where a controller is in charge of the whole network
configuration. But scheduled wireless networks require to go
beyond usual SDN forwarding rules by including the radio
resource allocation (dedicated time-frequency blocks). Moreover,
radio links are known to be unreliable, and we need to adapt
the control and data planes to make the network efficient. We
propose SDN-TSCH to orchestrate a scheduled network adapting
the SDN paradigm. More specifically, the controller is in charge
of i) selecting the time source, ii) maintaining a tree structure
for the control plane, with scheduled resources dedicated to
the control plane, and iii) installing a new data flow while
guaranteeing flow isolation. We also propose a very efficient
link quality estimation technique tailored for scheduled TSCH
networks. Our simulations highlight that the SDN controller can
allocate in SDN-TSCH just-enough resources to respect both
latency and reliability constraints.

Keywords—Industrial Internet of Things; Software Defined
Networking; scheduling; resource allocation; flow isolation

I. INTRODUCTION

Industry 4.0 relies on Wireless Sensor Networks (WSNs)
to automate industrial applications [1]. Typically, each de-
vice hosts a critical application that generates data packets
requiring high Quality of Service (QoS) in terms of reliability
and latency. Since wireless links are known to be lossy, the
communication network has to provide mechanisms to respect
these Service Level Agreements (SLAs).

IEEE 802.15.4-TSCH [2] is a good candidate for indus-
trial networks. It relies on a Time Division Multiple Access
(TDMA)-based Medium Access Control (MAC) layer with a
frequency hopping mechanism to provide reliable communi-
cations.

To respect the SLAs defined by each application, each
transmitter has to carefully select the resources to use in the
Frequency-Time Division Multiple Access (FTDMA) matrix.
Distributed algorithms such as the Minimal Scheduling Func-
tion (MSF) [3] are popular but cannot guarantee a collision-
free schedule, as demonstrated in Section V-B. Indeed, each

pair of nodes has to negotiate the resources to use, which may
create collisions with already established interfering flows.
Alternatively, centralized scheduling algorithms can provide
strict guarantees by exploiting graph-based and coloring ap-
proaches. However, most of them have been evaluated with
numerical analyses, assuming that all the inputs are known
accurately. More specifically, the scheduler is preconfigured
with the network topology and the traffic matrix.

Software Defined Networking (SDN) represents a promis-
ing solution: devices execute simple forwarding rules that
are installed by a controller. However, in wireless networks,
the controller has a broader role and needs to i) maintain
the network synchronized to exploit the FTDMA matrix
without collision, ii) support unreliable links in the control
and data planes and avoid collisions, iii) admit data flows
and install forwarding rules. SDNWISE-TSCH [4] represents
a pioneering piece of work to support a centralized controller.
However, it still suffers from collisions, as demonstrated in
Section V-A, resulting in packets that exceed QoS limits which
are unacceptable for most industrial applications.

In lossy networks, the controller can allocate addi-
tional radio resources for retransmissions to compensate for
packet loss. However, the controller may inaccurately es-
timate the link qualities. Under-estimation leads to over-
provisioning (energy wastage), and over-estimation leads to
under-provisioning (unreliability). Active techniques rely on
probes (aka control packets) transmitted regularly to estimate
the link quality [5]. However, a node must dedicate resources
for each neighbor, which represents an unacceptable amount
of energy and bandwidth. Passive techniques are less expen-
sive but may inaccurately estimate the link quality if packets
collide [6].

We already proposed a solution to implement a SDN archi-
tecture in IWSN [7]. The controller assigns radio resources to
maintain the control plane such that any device has a collision-
free path from and to the controller. In addition, the controller
can reserve radio resources for critical flows in the data plane
to respect end-to-end reliability and latency constraints per
flow. Packet forwarding uses a label-switching approach such
that a node automatically selects adequate radio resources to
forward a specific packet using a simple forwarding table. We
also defined the format of the report and the configuration
packets for the SDN network.
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We extend here this solution in the following way:
1) we propose a new discovery process to improve the

link quality estimation. In particular, we introduce a
new slotframe structure to allow the controller to assign
separated resources for Enhanced Beacons that are used
in the passive computation of link quality. By this means,
we prevent collisions from impacting the accuracy of the
estimation. In addition, we bound the discovery time such
that the controller has a consistent view before making
a decision;

2) we improve the time synchronization of the network by
delegating the TSCH time source selection for each new
device to the controller;

3) we compare our solution through a thorough simulation
campaign using Contiki-OS and Cooja with a state-of-
the-art distributed solution (MSF [3]) to highlight the
advantage of SDN, and with a state-of-the-art SDN
solution for IWSN (SDNWISETSCH [4]) to demonstrate
the relevance of maintaining a reliable control plane with
flow isolation.

It is important to note that our primary focus is not on
the scheduling algorithm itself, and we currently use a greedy
approach. However, our architecture allows for the integration
of any centralized algorithm if desired.

II. BACKGROUND & RELATED WORKS

We detail here background notions and related works on
IEEE 802.15.4-TSCH networks and SDN with a focus on
industrial WSN.

A. IEEE 802.15.4-TSCH Background

IEEE 802.15.4-TSCH is an operational mode designed
for low-power industrial applications. IEEE 802.15.4-TSCH
combines Time Division Multiple Access (TDMA) with a
frequency hopping mechanism to provide reliable and energy-
efficient communications. A scheduling mechanism deter-
mines when a transmitter must start its transmission (timeslot)
and which frequency to use (channel offset). The transmis-
sions are organized in a slotframe, i.e., a matrix of cells as
pairs of timeslots and channel offsets. Each node has in its
schedule a list of TX (respectively RX) cells during which it
has to stay awake to transmit (respectively receive) packets.

IEEE 802.15.4-TSCH exploits two types of cells in the
slotframe:
a dedicated cell is allocated to a single transmitter and one

or several receivers. Thus, the transmitter can engage its
transmission without contention;

a shared cell is allocated to a collection of transmitters,
resulting in potential collisions. If ack is expected but
not received, the transmitter waits for a random number
of shared cells to retransmit the packet. Collisions may
be frequent even with a low traffic intensity [8].

In IEEE 802.15.4-TSCH, nodes synchronize using periodic
Enhanced Beacons (EB). The packet piggybacks Information
Elements (IE), which is an extensible mechanism to exchange
information at the MAC sublayer. In particular, the Absolute
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Fig. 1: Simple TSCH schedule with shared and dedicated cells

Sequence Number (ASN) serves as a global clock in the
network. Since the timing is fixed (no backoff) in a timeslot,
the receiver can adjust its clock after any packet reception.
Figure 1 illustrates a simple TSCH schedule composed of
shared and dedicated cells. In this example, each node has
a dedicated cell to its parent in the routing tree and can use
the shared cell for broadcasting. The frequency hopping mech-
anism ensures that the same cell uses a different frequency in
consecutive slotframes.

B. Scheduling algorithms for industrial WSN

One of the main challenges of TSCH is how to schedule the
transmissions into the FTDMA matrix. Distributed algorithms
can be found in the literature, such as the 6TiSCH Minimal
Scheduling Function (MSF) [3]. MSF is the IETF standard
to allocate cells in the TSCH schedule in a distributed way.
MSF operation relies on three types of cells:

• minimal cells are used for broadcast control traffic (En-
hanced Beacons, and routing packets);

• autonomous cells are derived pseudo-randomly from the
ID of the transmitter (TX-cell) or the receiver (RX-cell).
Typically, a node uses a neighbor RX-cell to dynamically
negotiate additional cells with that neighbor with the
6P [9] protocol;

• negotiated cells are dedicated cells negotiated by a pair
of nodes to exchange traffic.

MSF generally relies on RPL to build the network topology
and derive autonomous cells. Upon RPL convergence, every
node requests its parent for one negotiated cell using an au-
tonomous cell. Then, a node can request additional negotiated
cells if its current schedule cannot handle its current traffic
load. Similarly, a node can remove negotiated cells in case
of unused cells in its schedule. However, MSF may converge
slowly because one single cell only can be allocated/removed
per time window.

DeTAS [10] is another distributed scheduler for TSCH. The
network is organized as a tree in which every node knows the
amount of traffic it will generate and receive from its children.
This information is transmitted hop-by-hop to the root tree.
Then, the schedule is initiated by the root and built at every
hop: each node assigns an alternate sequence of Tx and Rx
slots to every child node. Those sequences follow an even (Tx
slots are placed on even time slots) or odd (Tx slots are placed
on odd time slots) schedule regarding the relative position of



the node in the tree. Finally, channel offsets prevent collisions
from occurring. The main drawback of DeTAS lies in its static
schedule, which lacks the ability to be updated in response to
changing traffic conditions.

LDSF [11] proposes additional cells for retransmissions,
while still allocating cells back-to-back in the path to mini-
mize the end-to-end latency.

By contrast, centralized solutions allow the scheduling
algorithm to be executed on a centralized entity. AMUS [12]
proposes a greedy scheduling approach that allocates more
cells to nodes closer to the sink, assuming those nodes
have more traffic to forward. More advanced solutions rely
on a complete view of the network topology, as well as
the traffic requirements of nodes. TASA [13] represents a
pioneering piece of work in this field. It constructs a schedule
using graph coloring and a greedy allocation. Additional cells
can be allocated for retransmissions to make the network
reliable [14]. Various fog computing solutions have been
proposed to enhance network processing in close proximity
to the network edge. For instance, SPSRP [15] introduces
task-based fog computing with an efficient resource allocation
and task offloading algorithm. However, collecting network
information and redistributing the computed schedule on a
multi-hop wireless network can be a highly intricate and
complex process. SDN can serve as a practical solution for
this task.

C. SDN for industrial WSN

Software Defined Networking (SDN) [16] promises to make
the network more efficient and flexible by centralizing the
intelligence in a controller. Since the SDN controller has a
complete view of the network, it makes optimal decisions
on paths. The controller exploits a so-called southbound API
(e.g., OpenFlow) to collect information on the network and to
push forwarding rules on the devices.

SDN-WISE [17] proposes a pioneering piece of work to
adapt SDN paradigms to wireless networks. It focuses on
the aggregation problem when installing forwarding rules.
TinySDN [18] supports multiple controllers to reduce the
bottleneck problem, but it supports only basic actions, such as
forward and drop. IT-SDN [19] defines additional interfaces
for neighbor discovery and controller discovery. However, all
these solutions do not support scheduled networks, where the
controller needs to allocate radio resources. SD6WSN [20]
proposes a SDN architecture for 6LoWPAN networks to
reduce latency by leveraging the controller’s knowledge. It
deploys a SDN-based agent in each node, utilizing RPL
topology for control plane communication.

uSDN [21] implements the SDN concept in TSCH net-
works. It relies on a distributed routing protocol, RPL [22],
to maintain the control plane. In that way, each device has
a route to join the controller, that allocates resources when
a new flow is admitted. However, the distributed nature of
RPL may result in routing instabilities, inconsistencies, and
loops, making the control plane unstable. On the contrary,
Whisper [23] exploits a centralized controller that controls the
behavior of RPL and 6P protocols. The controller artificially

manipulates the RPL rank of a node to force parent changes,
setting up new paths. The controller also injects fake 6P
commands to (de)allocate time-frequency blocks between two
nodes. The resulting communication system is very complex,
requiring the nodes to fully implement RPL and 6P, while
SDN promises to simplify the network elements.

SDNWISE-TSCH [4] adapts SDN-WISE for scheduled
networks. This solution focuses mainly on the scheduling
process, computing the path and the number of resources to
allocate to each flow. However, the mechanisms proposed to
set up the control and data planes lack the necessary features
to guarantee reliability and efficiency. We are convinced that
securing the communication channel with the controller and
providing accurate network information to the controller are
the first mandatory steps toward an operational SDN solution.
Regardless of the SDN mechanisms in place, any scheduling
algorithm should be integrated into the controller.

III. PROBLEM STATEMENT

Industrial networks require bounded end-to-end latency and
high reliability. Thus, we need to define an efficient end-to-
end schedule for each critical flow to respect these constraints.
We propose to rely on a SDN controller that computes the
resource allocation and installs the forwarding rules. Each
device discovers already associated network nodes and then
engages in a procedure with the SDN controller to join
the network. More precisely, the controller deploys rules in
the control plane to establish the association of the new
device with the network, thereby configuring the data plane
accordingly. Table I presents the summary of the solutions
existing in the literature and their properties.

A. Topology Discovery

The controller needs to discover already associated nodes to
join the network. SDN-WISE [17] and SDNWISE-TSCH [4]
exploit extra beacon packets for topology discovery. A
broadcast packet is sufficient to be detected possibly by
all the neighbors, making this solution energy efficient. In
TinySDN [18], each node sends a probing packet to its
neighbors. However, sending unicast probes is expensive in
scheduled networks since dedicated bandwidth has to be
reserved a priori for each neighbor. Also, the existing traffic
of the network can be used to discover the neighbors. Several
solutions [20, 21, 23] exploit the RPL neighbor list instead
of performing topology discovery. However, it is proved that
RPL has inconsistencies in its routing table [24]. It is worth
noting that we need a continuous discovery process to detect
new neighbors.

B. Link quality estimation

The controller allocates radio resources based on the link
qualities it has collected. If the link quality is over-estimated,
the controller will not allocate enough bandwidth, leading to
SLAs violations. Over-provisioning is not a solution since it
would waste energy and bandwidth.

Link quality estimation has been broadly investigated in the
literature [25] with active versus passive techniques. Active



TABLE I: Summary of related works with supported features

Topology discovery Link quality estimation Reliability of the control/data planes

mode mechanism mode metric data/control
separation

collision-free
control plane

data flow isola-
tion

N
o

sc
he

du
lin

g SD6WSN [20] passive RPL DIO passive ETX no no no

SDN-WISE [17] active extra broadcast probing active RSSI no no no

TinySDN [18] active extra broadcast probing active ETX no no no

IT-SDN [19] active extra broadcast probing active ETX no no no

Sc
he

du
lin

g SDNWISE-TSCH [4] active extra broadcast probing active RSSI no no no

uSDN [21] passive RPL DIO passive ETX yes no no

Whisper [23] passive RPL DIO passive ETX no no no

techniques rely on the transmission of additional unicast
or broadcast packets. However, radio resources have to be
dedicated to probes in scheduled networks, wasting energy.
Passive techniques rely on existing control or data packets
to estimate the link quality. However, unbalanced traffic and
collisions may increase inaccuracy.

In [17, 4], the controller exploits the RSSI value of the
last beacon reported by each device. However, a high RSSI
does not directly lead to a high packet reception ratio [26].
TinySDN [18] uses rather probing packets. Each node trans-
mits a broadcast probing packet and waits for the unicast reply
of its neighbors. In this way, a node calculates the Expected
Transmission Count (ETX) toward each of its neighbors.
The solution presented in [20] relies on the routing protocol
(RPL) and more specifically on the ETX metric maintained
by RPL. Each node periodically sends unicast probing packets
to neighbors and calculates the corresponding ETX.

C. Reliable control plane

Making the control plane reliable is of uppermost impor-
tance for wireless networks. Accurate reports are essential for
the controller to make decisions, while reliable transmission of
commands is necessary to ensure globally consistent forward-
ing rules. Unfortunately, all the existing schemes do not focus
on this unreliability problem. Several solutions rely on a min-
hop routing for the control plane, which tends to favor longest
and thus most unreliable links [18]. Similarly, relying on
RPL is particularly risky since this routing protocol has been
proven to exhibit oscillations [27]. In scheduled networks,
it means reallocating resources through the new RPL tree.
To save energy, using the same resources for the control
and data planes [23] is particularly detrimental to reliability.
Only Baddeley [21] propose to separate the resources for the
control and data planes. However, they employ a distributed
scheduling mechanism for the control plane, which lacks
collision-free properties.

Maintaining a consistent SDN control plane in constrained
IWSNs imposes an additional energy overhead: the continuous
exchange of control messages introduces extra data transmis-
sions and processing tasks for the network devices. Therefore,
minimizing this energy cost becomes paramount to ensure the
efficient operation and longevity of battery-powered devices
within the network.

D. Reliable data plane

Critical applications require high reliability (e.g., end-to-
end PDR = 99%) while wireless networks are unreliable.
The SDN controller has to compensate with extra resources
for the weak links. A node that fails to send a packet will
use backup cells for retransmissions. Moreover, flow isolation
is a key enabler for the reliability of critical low-power
applications [8]. To the best of our knowledge, no solution
constructs a reliable data plane with flow isolation.

IV. SDN-TSCH
We propose SDN-TSCH for IWSN to respect Service Level

Agreements. It relies on the SDN paradigm and TSCH to
benefit from a centralized scheduler. SDN-TSCH addresses
all the requirements previously presented in Section III.

A. Tree structure to maintain the control plane

To avoid collisions, we allocate dedicated radio resources
for the control plane, such that a device can send reports
to the controller and receive commands from the controller.
To save energy, we need to minimize the number of resources
dedicated to the control plane. Thus, we propose to use a tree
structure: each device maintains a next hop (its parent) toward
the SDN controller. The controller selects the parent of each
joining device to keep in the tree structure only the best links:
good links mean less retransmissions.

B. Slotframe and schedule organization

We isolate the radio resources for the control and data
planes. More precisely, the slotframe (e.g., Fig. 2) regroups:
shared cells are used for broadcast traffic. More precisely,

these shared cells are divided into:
EB cells (e.g., cells 3, 9, and 15) allocated by the

controller to one single transmitter at a time so that
it can transmit its EBs.

non-EB cells (e.g., cells 0 or 6) allocated for the traffic
of the nodes that want to join the network (i.e., the
unassociated nodes). Typically, a joining node needs
to contact the SDN controller through one non-EB cell
(no cell has been already reserved for it).

dedicated control cells are used for the control plane: one
cell (in green) toward the parent to reach the controller
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(report packets), and one cell (in yellow) toward the
children (config packets). It is worth noting that no
collision can arise: one single transmitter is active at a
time;

dedicated data cells are assigned by the SDN controller for
each data flow. Forwarding rules guarantee flow isolation.
For the sake of conciseness, the data cells were not
depicted in Fig. 2.

We must make a clear distinction between EB and non-
EB shared cells. EBs cells are reserved by the controller and
cannot be used for the nodes that want to join the network.
Else, they could create collisions, leading to instabilities in
the control plane. For this purpose, the controller updates the
number of nodes that have joined the network, denoted as the
slotEBmax value. This value is transmitted to the root tree,
then piggybacked in all EBs for dissemination throughout the
network. In that way, all the nodes, including those joining
the network, can distinguish EB shared cells from non-EB
shared cells: if the slot ID is smaller than slotEBmax, the
shared cell is reserved for EBs, else, the cell can be used by
any unassociated node.

To minimize the collision probability, the EB cells should
be distributed in the slotframe. More precisely, we assign to
each shared cell a unique ID (designated as shared-id). Then,
we use a recursive algorithm (Fig. 3) to assign shared-ids
regularly in the slotframe. Recursively, the controller assigns

NBR 1
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NBR 3

NBR 4

Report period

90%

100%

95%

65%

Link quality Stop the discovery process
and send Report

TimeT1 T2 T3 T4 T5

Threshold ratio = 85%

Discovery time

Fig. 4: Discovery time of a joining node

the shared-ids to split the remaining available space into two
equal parts. For instance, in the first step, the shared-id1
is located in the middle of the slotframe (between 0 and
the slotframe length). As illustrated in Fig.3, the shared-id1
corresponds to the timeslot 30. Then, the subsequent shared-
ids are positioned in the middle of their respective halves.
Each node can apply the same recursive algorithm to identify
EB and non-EB cells using slotEBmax.

C. Link quality estimation & discovery process

Link quality estimation is achieved passively by listening to
EBs from neighbors during EB shared cells. Since we exploit
a collision-free schedule of EBs, counting the number of EBs
received from each neighbor is sufficient to estimate the PDR
according to Eq. 1:

P̂DR(n) =
counter(n) ∗ TEB

Treport
(1)

with counter(n) the EB counter of node n, TEB the period
of EBs, P̂DR(n) the measured Packet Delivery Ratio (PDR)
for n, and Treport the period of report.

Let us focus on the discovery process: a collection of nodes
has already joined the SDN-TSCH network, and a new node
turns its radio on to join the network. When it receives an
EB, it adjusts its clock to be synchronized with the network,
using the source of the EB as a time synchronization source.
The joining node also extracts the IEs from the EBs to get the
TSCH parameters (e.g., the slotframe length, the slotEBmax

value described previously) and installs the shared cells in
its slotframe. The discovery process stops when all good
neighbors (neighbors for which the link quality is above a
predefined threshold) have been seen for at least one Treport

period. More precisely, the process stops if Eq. 2 is satisfied:

∀n ∈ N|P̂DR(n) ≥ PDRmin, t0(n) + Treport ≥ t (2)

with t0(n) the receiving time of the first EB from n, N the
set of neighbors, and t the current time.

As illustrated in Fig. 4, the joining node stops the discovery
process only when the link quality of all good neighbors



(NBR1, NBR2, and NBR3) is measured for at least one
report period. This ensures a reliable margin in the measured
link quality. It is worth noting that the joining node does not
consider the discovery time of NBR4 as it proposes a PDR
lower than the threshold ratio.

The SDN controller needs real-time updates on the evolu-
tion of link qualities, and hence, computed PDRs are con-
tinuously transmitted to the controller every Treport once the
discovery process is completed.

D. Label switching

We use label switching for forwarding. Each time a node
receives a packet, it extracts the associated flow-id from
the header and adds the packet to the corresponding queue.
When the controller installs cells in the schedule, it flags the
corresponding cells with a flow-id. At the beginning of a TX-
cell flagged with flow-id X , the node transmits the first packet
of the corresponding queue. All the routing decisions rely on
the controller, and we predefine two flow-ids for the control
plane:
”to-controller” to handle the upward control packets gener-

ated by nodes;
”from-controller” to handle the downward packets generated

by the controller.

E. Joining processes

When a joining node has performed the discovery process,
it needs to join the SDN network. For his purpose, it creates
a report packet including the list of neighbors and their
associated PDR. This first report packet is sent in unicast
to the neighbor with the highest link quality to maximize the
transmission success probability. Since the joining node has
no configured control plane, it must use a non-EB shared cell
to transmit its report packet. That’s not the case for the
next-hop nodes: the report packet traverses hop-by-hop the
network to reach the controller in a reliable manner using the
”to-controller” flow-id.

When receiving a report packet, the controller verifies if
the report packet comes from a joining node. In that case, the
controller registers the node in the joined list and selects the
neighbor with the best link quality as the parent to maximize
the reliability of the control plane. Since the parent is also
used as the time source in TSCH, it minimizes the probability
of desynchronization. Then, the controller selects randomly
two dedicated cells in the slotframe for the control plane: one
for sending upward control packets to the parent node and
one for receiving downward control packets from the parent
node. Obviously, allocated cells must correspond to an unused
timeslot for the parent (half-duplex condition) and cannot be
allocated to another interfering link (collision-free condition).

Finally, the controller constructs two config packets
piggybacking these two cells to configure the control plane
of the joining node. To reach the joining node, the controller
can use the flow-id from-controller already configured in the
rest of the network (except the last hop). However, we need
to implement routing: several children may exist at each hop,
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and a config packet should be routed in the correct subtree,
toward the joining node. Hopefully, the controller knows the
complete topology and can compute a path to the joining
node. Thus, we implement source-routing: the whole path is
piggybacked in each config packet. Each node that receives
a config packet finds its position in the source routing list and
extracts the next address in the list.

When a node n receives the config packet, it exploits the
route and the schedule to update its configuration:

1) it extracts the flow-id and looks for its position in the
route. n searches for a pair of nodes in the route that
corresponds to the address of the transmitter of the
config packet, and its own address. We denote by i
the position of its address in the route (i ∈ [0, k[, k being
the number of nodes in the source routing path);

2) if i > 0, it installs the (i− 1)th element of the schedule
as the TX cells in its scheduling table;

3) if i < k − 1, it installs the ith element of the schedule
as RX cells in its scheduling table;

4) it forwards the config packet to the next hop fol-
lowing the source routing path. For configuring the
”to-controller” flow-id, nodes use the ”from-controller”
flow-id if i < k − 2, or the next available shared cell if
i = k−2. For configuring the ”from-controller” flow-id,
nodes use the ”from-controller” flow-id if i < k − 3,
or the next available shared cell if i = k − 3, or the
”to-controller” flow-id if i = k − 2. Indeed, the ”to-
controller” flow-id is installed first.

Figure 5 illustrates the control plane configuration. As a
joining node, node N sends a report packet to the con-
troller. Upon reception, the controller selects node B as
the parent of node N since it is the neighbor with the
highest link quality. It creates two config packets in-
cluding the addresses for source routing and the schedule.
More specifically, we encode the schedule of each hop
as <number_of_cells:list_of_cells>. Notably, the
first forwarding nodes do not have any cell to install
(number_of_cells = 0). It is worth noting that we always
configure a flow from the destination toward the source. This
approach allows for a generic scheme that enables the config-
uration of data flows in a reliable manner (see Section IV-F).



Thus, the configuration process starts from node N to B for
the flow ID ”from-controller”.

F. Resource allocation for the data plane

Any critical application opens a socket connection, describ-
ing its QoS requirements (i.e., end-to-end minimum reliability
and maximum latency). The node engages a call admission
by sending a flow-request to the controller through the
”to-controller” flow-id. When receiving a flow-request,
the controller constructs a schedule that respects the QoS
requirements:

1) the controller computes a path from the source to the des-
tination using the tree topology (through the node/parent
links);

2) the controller allocates backup dedicated cells for re-
transmissions for weakest links. Additional backup cells
are assigned until the minimum end-to-end reliability is
respected [28];

3) the controller schedules cells back to back (or as close
as possible) to minimize the end-to-end delay.

If the schedule computation is impossible, the request is
rejected, and the controller sends a negative (empty) config
packet to the source node. If the computation is successful,
the controller defines a new flow-id for the flow and con-
structs a config packet including the new schedule and the
corresponding flow-id. The controller uses a single config
packet to configure the whole path, which is composed of:

1) subpath from the root to the destination: the schedule
of this part is empty, and the node only forwards the
config packet with the from-controller cells;

2) subpath from destination to source: the configuration
starts from the destination node toward the source node.
Each node in this part extracts and installs the flow-id and
the corresponding cells. When the source node receives
the config packet, the whole path is configured, and it
starts sending packets without delay.

It is worth noting that the technique to identify the position
of a forwarding node (cf. subsection IV-E) is still valid when
a node is present in both subpaths. Indeed, we individually
identify each link in the whole path when installing the
schedule.

For the second part of the path, each node has to select
either the ”to-controller” or ”from-controller” flow-ids to
forward the config packet. To determine the direction, each
node checks if the address of the next hop is also present in
the list of nodes preceding its position in the source routing.
If this is the case, the next hop is an upper-hand node, and the
config packet uses the ”to-controller” flow-id. Otherwise,
the node uses the ”from-controller” flow-id to forward the
config packet.

Figure 6 illustrates a scenario where S is the source node.
The flow-request packet describes the flow requirements
(PDR = 90%, end-to-end delay = 70 ms) and the destination
D. In return, the config packet is forwarded by source
routing, first from A to D and then from D to S. The
controller allocates more cells to weak links (2 cells for
S→E and 2 cells for E→B) to meet the end-to-end PDR
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Fig. 6: Data flow Configuration in SDN-TSCH

of flow (90%). The controller allocates cells sequentially to
consider the end-to-end delay of flow (70 ms). The route
A − B − D − B − E − S is piggybacked in the config
packet. Thus, D knows B is an upper-hand node since B
is both present after and before D: it has to use the ”to-
controller” flow-id to forward the config packet. Inversely,
S is a downward node for E since S is only present after E:
it has to use the ”from-controller” flow-id.

V. PERFORMANCE EVALUATION

We implement SDN-TSCH in Contiki-ng to assess its
performance. We compared SDN-TSCH with two state-of-the-
art approaches:
MSF [3] is the IETF standard for distributed scheduling1,

combining autonomous and negotiated cells to avoid
collisions;

SDNWISE-TSCH [4] is a variant of SDNWISE to cope with
TSCH networks. SDNWISE-TSCH enables the SDN
architecture for Industrial Wireless Sensor Networks. It
computes a schedule taking into account the deadline of
each flow.

We simulate network sizes of 10, 20, 30, 40, and 50 nodes
with 10 random topologies per network size. Each node hosts
a critical application toward the sink node. Each application
needs an end-to-end Packet Delivery Ratio higher than 99%
and a deadline of 2 s. We use the default values for the
parameters of MSF [3]. Table II represents our different
parameters.

A. Comparison of SDN-TSCH and SDNWISE-TSCH

We compare SDN-TSCH with SDNWISE-TSCH to com-
pare two different SDN-based approaches. More precisely, we
i) evaluate the reliability and energy efficiency of the control

1https://github.com/alexrayne/contiki-ng.git

https://github.com/alexrayne/contiki-ng.git


TABLE II: Simulation parameters

Simulation
environ-
ment

OS: Contiki-ng (version 4.7)
Simulator: Cooja
https://github.com/Farzadv/Contiki-ng-SDN-TSCH.git
Simulation time: 2.2h
Propagation model: Unit Disk Graph Medium
Tx range = 100 m
Interference range = 150 m
Rx success = proportional to distance (100% - 0%)
Initial energy = 2400 mAH (AAA battery)
Energy consumption model = Energest tool in Contiki-ng
(tx curr = 17.7mA, rx curr = 20mA)

Topology Network sizes: 10, 20, 30, 40, and 50 nodes

Application
Number of data flow: 1 flow per node
Traffic pattern: Convergecast, Constant 1 packet every 5s
Required QoS: PDR >= 99%, Deadline <= 2s

SDN-
TSCH

TSCH EB period: 15s
SDN report period: 5 min
flow-request timeout: 50s

10 20 30 40 50
Network size

2000

4000

6000

8000

C
on

ve
rg

en
ce

 ti
m

e(
s)

SDN-TSCH SDNWISE-TSCH(2N) SDNWISE-TSCH(15N)

Fig. 7: Network convergence time

plane, and ii) assess the performance of the flow guarantees
in the data plane.

SDNWISE-TSCH employs shared cells for both EBs and
SDN control packets. According to [4], a network of 10 nodes
and slotframe size of 19 uses 2 shared cells. To accommodate
different network sizes without impacting the reliability of the
control plane of SDNWISE-TSCH, we propose to maintain
constant the time per node between two shared cells. Thus,
we define the default number of shared cells as follows:

Nshared−cells =
2 ∗ SFlength

19
∗N
10

≈ N∗SFlength∗0.01 (3)

with Nshared−cells the number of shared cells, N the number
of nodes, and SFlength the slotframe length.

1) Reliability and energy efficiency of the control plane:
Figure 7 shows the convergence time of each approach for
different network sizes. We define convergence as the time
when the last node in the network is admitted by the SDN
controller. We test two ratios of shared cells in the shared
control plane: i) 15N (eq. 3) and ii) 2N , which may create
more collisions for larger networks. With 2N shared cells,
the number of collisions becomes very high for medium-
sized networks. In the worst conditions, the network never
converges. With 15 shared cells per slotframe, SDNWISE-
TSCH succeeds to converge. However, the convergence time is
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still larger for SDNWISE-TSCH compared with SDN-TSCH.
Indeed, shared cells receive a peak of control traffic, and the
loss of control packets significantly impacts the convergence.

Using shared cells also impacts energy consumption, as
illustrated in Figure 8. We focus here on the power con-
sumption of the network during the convergence period. Using
only 15N shared cells consumes much energy: all the nodes
wake up during these slots. On the contrary, using only
2N shared cells is much more energy efficient (but with an
impact on reliability). Only SDN-TSCH is able to converge
fast while providing a very reasonable energy consumption:
using dedicated cells is much more efficient, even for control
traffic. Indeed, the nodes have to wake up less frequently, and
the transmissions are more reliable since we cannot create
collisions.

2) Data flow handling: We focus now on the scenario
illustrated in Figure 9 to assess the performance of the solution
to identify good paths. Nodes A, B, C, and S host critical
flows to the destination node D, and node S has two possible
paths to reach it. Path 1 has an end-to-end link quality of 45%
(0.8× 0.7× 0.8 = 0.45), while path 2 has an end-to-end link
quality of 25% (0.5× 0.5 = 0.25).

To configure the flow of node S, the SDNWISE-TSCH
controller selects path 2 based on the shortest path criteria.
It only allocates one cell for each hop and schedules cells
back to back to respect the flow deadline. However, most of
the transmissions fail because of low link quality. Besides,
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the buffering delay increases and the packets are received
after the deadline. Moreover, due to the lack of flow isolation,
node B uses any cell scheduled toward node D to send its
packets. While it allows using cells unused by the other flow,
it also impacts the reliability of the competing flows (from
S). Finally, 78% of packets are lost along the path, and 22%
of packets are received at the destination after the deadline.

Let us focus on the behavior of SDN-TSCH. The controller
selects path 1 when it admits the flow of S: the path uses
links with better quality, and fewer retransmissions would be
required to reach the same level of reliability. Besides, the
controller allocates a sufficient number of cells (including the
backup cells): 100% of the packets of node S are received
by the destination before the deadline. SDN-TSCH selects
efficient data paths and allocates enough resources while
guaranteeing flow isolation.

B. Comparison of SDN-TSCH and MSF

We compare SDN-TSCH with MSF to assess the differ-
ences between a centralized solution and a distributed solution
in terms of both reliability and energy efficiency. Figure 10
illustrates the end-to-end PDR of each flow. Clearly, MSF
provides very low reliability. With 20 nodes, the average
e2e PDR is larger than 95%, but some flows exhibit a PDR
of only 50%. The reliability is even worse with 50 nodes:
more flows are forwarded, and the region around the sink
becomes a bottleneck. Thus, MSF fails to provision enough
backup cells to provide high reliability. On the contrary, SDN-
TSCH achieves perfect end-to-end reliability, whatever the
conditions. Even better: the reliability is equal to 100% even
in the worst case, which is an expected property for industrial
networks.

Figure 11 illustrates the end-to-end delay. We plot the
2s deadline (horizontal line) to see its impact. MSF tends
to deliver packets very close to the deadline,but too many
packets are received after the deadline, particularly for large
networks. On the contrary, the SDN controller provisions
enough resources in SDN-TSCH. While the latency increases
because packets are forwarded through longer paths, the dead-
line is still respected. The packet losses correspond mostly to
statistical outliers.
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We compare the convergence of MSF and SDN-TSCH in
Figure 12. We define the convergence time for a flow as the
duration it takes for the flow’s Packet Delivery Ratio (PDR)
to reach the desired PDR. In MSF, increasing the network
size leads to longer convergence times: each hop of the path
needs to negotiate cells reactively. In addition, the arrival
of new flows impacts the performance of the ongoing ones
because MSF does not provide flow isolation. This observation
is clearer on Fig. 13, which illustrates the instantaneous PDR
of a given flow while MSF converges. As we can see, the PDR
value fluctuates significantly between 40% and 100% because
a new flow is admitted in the network and competes for the
same resources, or when a collision arises temporarily and the
corresponding cell has to be relocated. As a result, relying on
distributed algorithms, such as MSF, impacts convergence and
PDR. In SDN-TSCH, the flow convergence time is effectively
reduced to zero because the controller pre-configures the entire
path for a flow. Thus, we have an efficient call admission
scheme: the flow starts only when and if enough resources
can be scheduled all along the path.

Figure 14 focuses on efficiency. We measured the ratio
of the cells that are reserved for each link. To measure the
efficiency, we normalize this amount of cells by the required
number of cells computed directly from the parameters of the
PHY layer. We can note that MSF makes under-provisioning:
the ratio is smaller than 1.0, which means that the number
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of cells is insufficient to provide the expected end-to-end
reliability. In contrast, SDN-TSCH is based on an accurate
link quality estimation and allocates cells according to this
estimation. SDN-TSCH makes over-provisioning, allocating
more cells than the strict minimum. However, this safety mar-
gin compensates for the possible over-estimation, and SDN-
TSCH finally provides the expected end-to-end reliability.

We finally measured the network lifetime (Figure 15),
defined as the time until the first node dies due to depleted en-
ergy. MSF provides the longest network lifetime: since fewer
cells are reserved, nodes have to wake up less frequently.
Thus, they maximize their sleeping time, but at the cost of
poor reliability. SDN-TSCH achieves a shorter but comparable
lifetime and respects all the reliability and latency constraints.
Obviously, ensuring strong Service Level Agreements have an
impact on energy consumption. It corresponds to the price to
pay for a communication infrastructure dedicated to critical
applications.

VI. CONCLUSION & PERSPECTIVES

We have presented SDN-TSCH, a SDN solution for sched-
uled wireless networks with traffic isolation. The SDN con-
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troller establishes a collision-free control plane, allowing
devices to reliably connect to the controller through lossy
wireless links. To construct a precise network topology, we
propose an accurate link quality estimation approach without
generating extra control packets. The scheduler allocates cells
for EBs to avoid collisions for an accurate link quality estima-
tion. The SDN controller exploits this information to compute
a compact schedule that ensures end-to-end constraints. Our
simulation results demonstrated that SDN-TSCH satisfies end-
to-end flow constraints while converging in a timely manner
for a new node or flow admission. In addition, our solution
only selects the best links to construct the forwarding paths,
thanks to our link quality estimation. By contrast, SDNWISE-
TSCH relies on the shortest path criterion, which includes
links with low PDR, impacting the end-to-end PDR and delay.
Also, our solution outperforms MSF by converging faster
upon new flow admission, maintaining flow constraints, and
offering improved stability in providing a stable PDR to each
flow. However, it does come at the cost of higher energy
consumption.

In our future work, we aim to enhance the controller’s
capabilities by enabling continuous optimization. Indeed, link
qualities may change because of e.g., interference. In that
situation, the SDN controller has to detect changes and
relocate flows and resources to accommodate these changes.
We also need to propose additional mechanisms to be fault-
tolerant. Multipath may help to save energy while provid-
ing high reliability. However, we need to provide statistical
multiplexing to reduce the cost of energy consumption for
independent backup paths.
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