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Abstract—Ultrasound image simulation is a well-explored field
with the main objective of generating realistic synthetic images,
further used as ground truth for computational imaging algo-
rithms, or for radiologists’ training. Several ultrasound simu-
lators are already available, most of them consisting in similar
steps: (i) generate a collection of tissue mimicking individual
scatterers with random spatial positions and random amplitudes,
(ii) model the ultrasound probe and the emission and reception
schemes, (iii) generate the RF signals resulting from the inter-
action between the scatterers and the propagating ultrasound
waves. This paper is focused on the first step. To ensure fully
developed speckle, a few tens of scatterers by resolution cell are
needed, demanding to handle high amounts of data (especially
in 3D) and resulting into important computational time. The
objective of this work is to explore new scatterer spatial distribu-
tions, with application to multiple coherent 2D slice simulations
from 3D volumes. More precisely, lazy evaluation of pseudo-
random schemes proves them to be highly computationally
efficient compared to uniform random distribution commonly
used. We also propose an end-to-end method from the 3D tissue
volume to resulting ultrasound images using coherent and 3D-
aware scatterer generation and usage in a real-time context.

Index Terms—Ultrasound imaging, simulation, 3D slice, scat-
terer distribution, blue-noise, low-discrepancy,

I. INTRODUCTION

Ultrasound imaging is used in number of medical ap-
plications due to its non-ionising, real-time and low-cost
characteristics. Therefore, a rich literature exists in the field
of ultrasound, ranging from innovative acquisition modes to
image reconstruction, processing and analysis methods. In this
context, generating synthetic ultrasound images, also known as
image simulation, plays a key role in the development and the
validation of new algorithms, allowing access to ground truth
data. Moreover, ultrasound simulation is also widely used to
provide data for training the practicians [1].

The main idea behind ultrasound image simulation is to
generate the radiofrequency (RF) signals, further used to
beamform the image, resulting from the interaction between
simulated ultrasound waves and a tissue mimicking map. The
shape of the synthetic ultrasound waves is related to the
geometry of the simulated probe and the emission strategy.
The tissue map generation is based on the assumption that
tissues are composed of small reflectors, called scatterers. The
scatterers are smaller than the wavelength, thus enabling the
diffusion of the ultrasound waves, similar to what happens in
real tissues [2]. Note that alternative solutions to scatterer maps
exist, such as image or texture-based approaches [3]. The gen-
eration of scatterer maps is controlled by their number, spatial

distribution (e.g., following a regular grid [4], eventually with
small random perturbations [5], or a random distribution [2]),
and amplitudes. For the latter, a standard approach is to
generate a random amplitude for each scatter [6], [7], usually
following a zero-mean Gaussian distribution with spatially
varying standard deviation [8]. This way of generating the
scatterer amplitudes requires the use of a map representative
of the tissues to be simulated, e.g., a medical image acquired
using MRI [9] or CT [10], or a cartoon image [8].

The number of scatterers to be generated is a crucial
parameter to ensure fully developed speckle: according to Rao
et al. [11], several scatterers (of the order of tens) need to be
generated per resolution cell. However, in practice this number
varies significantly depending on the approaches [1], [12]. To
the best of our knowledge, there is no study of the impact of
this parameter depending on the spatial sampling strategy.

Given the scatterers, the ultrasound images are computed
by simulating their interaction with ultrasound waves emitted
by a virtual probe. Usually, the simulators model the pressure
field occurring at the scatterer locations, e.g., as in Field II
[8], [13]. For the results presented in this paper, we used
SIMUS [14], a recent ultrasound simulator part of the MUST
(MATLAB Ultrasound Toolbox), which provides fast and
accurate simulations based on known probe parameters. It has
been shown in [15] that SIMUS produces results comparable
with those of Field II and other simulators.

Moreover, other methods exist, such as Monte Carlo path
tracing [16], or by convolving an interpolated version of the
scatterer map onto a regular grid with spatially invariant or
variant point spread functions [17]–[19].

Scatter-based ultrasound image simulation requires the gen-
eration and storage of a sufficiently large number of randomly-
distributed point scatterers to ensure fully-developed speckle.
This raises several challenges that will be addressed in this
paper. First, uniformly random scatterer distribution does not
ensure a uniform spatial coverage, thus facing the risk of
creating dark holes in the simulated ultrasound image. To
mitigate the need of further increasing the number of scatterers
per resolution cell in order to avoid this undesired effect,
some authors proposed, empirically, to use regular grids [4],
with local random perturbations imposing a maximum distance
between neighbouring scatterers [5]. Second, existing scatterer
distributions introduce considerable drawbacks when moving
to multiple 2D or 3D ultrasound simulations from 3D volumes.
The number of scatterers required, of the order of thousands
for 2D mediums, turns to tens or hundreds of billions in 3D.
Thus, their storage requirements and manipulation constraints
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Fig. 1. General usage of the proposed method: the probe is positioned over a generic MRI volume (here a pelvic MRI), then the corresponding scatterers
are extracted and used for ultrasound simulation. The scatterers are generated in real time and are spatially coherent through multiple probe positions. Such
scatterers can then be used in a state-of-the-art simulator or in a real time simulation method.

become important challenges. The main objectives of this
work are twofold: (i) to use a discrepency-based metric that
quantitatively characterizes the spatial coverage of a given
scatterer map in 2D or 3D, and (ii) to introduce specific
distributions and associated data structure and manipulation in
order to reduce storage and computation time drastically while
maintaining speckle properties, in order to handle multiple 2D
simulations from 3D volumes.

The methodology of generating and handling scatterers in
3D is evaluated herein in the framework of multiple 2D
ultrasound slice simulation from a 3D volume. Given a static
volumetric representation V : R3 → R (MRI, CT, function),
we propose an efficient approach to generate tissue-mimicking
scatterers in the volume, providing real-time scatterer ex-
traction depending on the probe location and characteristics,
low memory consumption and spatially-consistent speckle in
multiple 2D slice simulation. We demonstrate our approach on
several use-cases, including real-time simulation from physical
trackers providing the ultrasound probe position relatively to
the volume, as illustrated in Figure 1, using a pelvic MRI,
originally acquired for endometriosis diagnosis.

In this setting, the position of the probe is not known
in advance and changes in real time. Consequently, a large
amount of scatterers is required in the 3D volume in order
to simulate ultrasound images with fully developed speckle
independently of the slice orientation. This is challenging for
large volumes, from the perspectives of their storage and effi-
cient extraction for a given slice thickness. To mitigate these
issues, this paper explores different pseudo-random strategies
to spatially sample the scatterers. We propose to compute the
positions of the scatterers using a constant sequence of random
positions replicated in each cell of a regular 3D grid, and
generated on the fly when computing the probe slice. The
results reported show the computational efficiency of these
distributions compared to existing approaches (i.e. uniform
random distribution [8], [9] or regular grid distribution [4]). In
particular, fully developed speckle is obtained for a relatively
low number of scatterers per resolution cell compared to

classical strategies.

II. OVERVIEW

The main objective of this work was to propose a practical
way of generating and extracting thin 2D slice scatterers
from 3D scatterer distributions. By design, our approach can
efficiently extract large numbers of scatterers (e.g. 60 millisec-
onds for extracting a 50 by 10 by 60 mm3 slice containing
approximately 10, 000, 000 scatterers from a 100x100x100
mm3 volume) with low memory footprint (38 MB for the same
volume size with 343 scatterers per mm3).

Our proposal is designed as a two stages process, illustrated
in Figure 2. First, in pre-process, we built a memory-efficient
data-structure to support the scatterer generation, ensuring at
the same time good spatial coverage of the whole volumetric
medium (see Section V). Second, in real-time, corresponding
to a given acquisition zone (position and field-of-view of the
probe), we build the scatter map that can be used offline
by most existing US simulators, or for real-time simulated
ultrasound image visualisation within convolution-based sim-
ulators (Section V-E). To reach these goals, we reformulate
the scatterer extraction as a sampling problem, a topic widely
studied in computer graphics in the context of Monte Carlo
simulation and image rendering. In Section IV, we provide an
introduction on point sampling strategies and their properties,
in the context of this work.

Specifically, we designed our approach to ensure that scat-
terers cover any structure in the entire data area/volume.
Instead of generating and storing billions of scatterers, we pro-
vide a lazy yet efficient extraction (wrt. to a given acquisition
zone), minimizing the memory footprint and offering real-time
framerates. Our approach can be used either in 2D or 3D,
with arbitrary sensors (e.g. linear or matrix US probes). In the
following, we use 2D domains to illustrate the concepts behind
our work, and demonstrate performances in 3D domains that
are out of reach of most existing techniques.
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Fig. 2. Overview of the proposed approach. The data structure is created in a preprocessing step, as described in section V. Spatially-coherent scatterers are
generated according to the probe parameter (see Section V-E) and used to either visualize real-time simulated ultrasound images or exported toward off-line
simulators.

III. STATE OF THE ART ON ULTRASOUND SIMULATION

Simulating ultrasound images is an extensively explored
research topic. Even though some approaches diverge from
the scatterer representation, most of them fall under this
representation and focus their effort toward innovative or more
efficient use of scatterer maps.

A. 2D scatterer-based simulation

The main principle of most of existing ultrasound simulation
approaches reposes on the notion of scatterer [2]. Scatterers
represent point-like elements in the tissues that scatter the ul-
trasound wave in all directions. The echoes of these scatterers,
in this model, are responsible for the presence of the well-
known speckle noise in ultrasound images, induced by the
destructive and constructive interactions between the diffused
waves.

In addition to their spatial position, the scatterers are
assigned amplitudes supposed to mimic the tissues. This
amplitude represents the intensity of the returned signal when
interacting with the ultrasound waves. It generally follows a
zero-mean Gaussian distribution law, with a standard deviation
depending on the underlying medium [8]. The scatterers are
thus distributed randomly over a 2D medical image represent-
ing the imaged tissue, and their amplitude is drawn from a
distribution conditioned by the intensity of the pixel they fall
in. To obtain realistic simulated ultrasound images, medical
data is usually employed as a base for global appearance.
Therefore, a number of existing methods directly use medical
images acquired with other imaging modalities such as MRI
or CT [20], [21], or ultrasound images acquired in vivo
[22]. This ensures an efficient and visually correct simulation.
Furthermore, deep learning has been recently used to improve
the visual quality of the simulations [23].

Based on this scatterer representation, several methods exist
to simulate ultrasound images. Some of them use simple
convolution-based models allowing fast simulation [12], [17],
[18], other are based on more sophisticated physical simulation
of the acoustic pressure field generated by the probe at each

scatterer location, resulting into accurate but time-consuming
simulations [13], [15].

B. Multiple 2D image simulation from 3D data
Most of existing ultrasound simulation approaches are gen-

erating 2D images from 2D scatterer distributions, or from thin
3D scatterer slices. In this context, the idea of simulating 2D
ultrasound images from a fully 3D representation of the tissues
arises naturally, as it gets closer to the real-world ultrasound
imaging practice. With such a setup, simulating ultrasound
images for any position of the probe becomes possible, while
ensuring spatial coherence between the simulated slices. To
achieve this goal, Burger et al. [24] represented the medium
as a 3D mesh and computed its interactions with the probe to
simulate ultrasound slices.

However, the scatterer representation is still the state-of-
the-art in ultrasound simulation. Therefore, 3D scatterer map
generation from CT or MR volumes have been proposed, as-
sociated to 2D scatterer slice extraction to feed 2D simulators
[9], [10]. This straightforward generalization of 2D scatterer
maps to 3D faces several challenges, mostly related to memory
storage [16], spatial coverage [1] and computational time to
extract slices depending on the probe position.

IV. SCATTERER SPATIAL DISTRIBUTIONS USING
PSEUDO-RANDOM SEQUENCES

One of the main challenges in scatterer distribution is to
ensure a uniform coverage of the medium to be simulated.
This implies increasing the number of scatterers with standard
uniformly random distribution, or using empirical strategies
such as random perturbations of a regular grid. In this pa-
per, inspired from several works on point sampling [25]–
[27], we base the choice of the pseudo-random sequences
used to generate the scatterers’ positions, on the concepts of
discrepancy [25] and blue noise sampling [28], [29]. In this
way, theoretical guarantees on the good spatial coverage with a
minimum number of scatterers are obtained. Discrepancy and
blue noise are briefly introduces hereafter, with toy examples
highlighting their practical interest.
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A. Discrepancy
The discrepancy of a point set is a quantitative measure of

deviation from the uniform distribution. Intuitively, it measures
the spatial coverage of a given pointset. The calculations are
usually done in the unit hypercube of arbitrary dimension.

Given a sub-interval J of the s-dimensional unit hypercube
Is = [0, 1)s, s ≥ 1, and a point set X of N points x1, ..., xN ,
the measure MN was defined in [25] as follows:

MN (J) =
A(J,X)

N
− V (J),

where A(J,X) = Card(x ∈ X | x ∈ J), the number of X
points included in J, and V the Lebesgue measure of J, which
represents the generalization of length to any dimension (e.g.,
area in 2D, volume in 3D), as illustrated in Figure 3.

0 a b 1
0
c

d

1

0 1
0

1

0 1
0

1

Fig. 3. Left: Illustration of MN (J) computation for N = 500, J = [a, b)×
[c, d). A(J,X) = 219, A(J,X)

N
≈ 0.438, V (J) = (b − a) × (d − c) =

(0.81−0.15)×(0.73−0.075) ≈ 0.432, MN (J) = 0.006. Right: two point
sequences with respectively top: Dℓ2

N (X) = 0.0223 and bottom: Dℓ2
N (X) =

0.0060.

The discrepancy of the pointset X is defined as:

DN (X) = sup
J∈B

|MN (J)|, (1)

where B stands for the ensemble of subintervals of the s-
dimensional unit hypercube, i.e., B =

∏s
i=1[ai, bi) for 0 ≤

ai < bi ≤ 1.
However, keeping only the maximum of this value is not

representative of the overall distribution of the point sequence.
For this reason, averages are commonly used to compare two
point sequences [29]. Furthermore, the average in the sense
of the Euclidean norm (eq. 2), named ℓ2-discrepancy and
denoted Dℓ2

N (X) is efficiently computable and tractable in any
dimension using Warnock’s formula [30].

Dℓ2
N (X) =

√∫
B

MN (J)2 dJ (2)

A pseudo-random sequence defines a rule of dis-
tributing points in space. A sequence is considered of
”low-discrepancy” in the case where its discrepancy is
O(log(N)/N), with N the number of points generated. Such
ways of generating points with a good spatial coverage is of
interest in numbers of applications, in particular in computer

graphics. Therefore, an important literature exists to design
such sequences, where Halton [31], Sobol’ [32] or van der
Corput [33] sequences are considered as the state-of-the-art.

Figure 3 shows two point distributions with different spatial
coverage properties. One may easily observe that the bottom
distribution better covers the 2D space. The visual impression
is confirmed by the ℓ2-discrepancy values, roughly an order
of magnitude lower for the bottom example.

B. Blue noise sampling
Another approach of pseudo-random sampling is to consider

the frequency content of the sample points. Following the
same visible light spectrum analogy as white noise, different
categories of samplers have been proposed, such as pink noise
which promotes high frequencies, mainly used in biology [34]
or blue noise, aiming at attenuating the low frequencies as
illustrated in Figure 4.

Blue noise sampling is closely related to low discrepancy
sampling [35], [36], and is mainly used to increase the
perception aspect of the images [29]. The most standard
way of generating blue noise samples is using Poisson disk-
based approaches, such as Dart-Throwing [26], considered in
this work. Other approaches exist such as gradient descent
optimization methods, tile- or dithering-based methods [29].

Fig. 4. A blue-noise point set and its associated spectrum.

C. Specific pseudo-random sequences used
In this work, we evaluate the interest in ultrasound image

simulation of two pseudo-random sequences, namely the Dart-
Throwing (DT) [26], [29] and Cascaded Sobol’ [27].

DT is a pseudo random sampling scheme adapted from
the uniform distribution: random points are generated, and
rejected if too close to another already existing point. For
better performances, we use the relaxed form [26], where
the rejection radius (minimal distance between a drawn point
and the others) is reduced when a set number of rejections
(e.g. 1000) happen in a row. In ultrasound imaging, using
DT to generate the scatterers is appealing given its close
relationship with uniform distribution, the state-of-the-art of
existing techniques [8], [9].

Sobol’ [32] sequences are focused on low-discrepancy, guar-
anteeing good high-dimensional uniformity, and allowing to
generate points in arbitrary dimensions. Cascaded Sobol’ [27]
allows the creation of high dimensional samples that retain low
discrepancy through projection (the projection base comprises
consecutive dimensions), thus ensuring good spatial coverage
and thus being an appealing candidate in ultrasound image
simulation.

Hence, this work demonstrates the interest of these two
specific sequences for scatterer distribution and extraction in
the context of ultrasound simulations from large 3D volumes.
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V. METHOD

This section describes the proposed method of 3D scatterer
generation, designed to have a low memory footprint, and to
provide fast access to the scatterers. The full framework is
illustrated in Figure 2, and each of its main steps are detailed
in the subsections hereafter.

Every random process presented in this paper is controlled
through a main seed, allowing complete reproductibility of the
results.

A. Cell grid data structure

In this work, we structure the volume mimicking the tis-
sues using a regular cell grid. Each cell is a cube of fixed
dimensions that contains a given number of scatterers.

To illustrate the interest of the cell structure, let us consider
the following example. It is commonly admitted that multiple
scatterers per resolution cell, of the order of the wavelength
λ, are required to obtain a correct simulated image. For
simulating a 2D ultrasound image from a medium of 5 by
6 centimeters, at a central frequency of 3.0 MHz, using 10
scatterers per λ2 and ignoring the out-of-plane scatterers, about
40 scatterers must be placed every mm2, leading to 120, 000
scatterers to generate and store. Following the same scheme, to
populate a 3D medium of 10 cm3, about 80, 000, 000 scatterers
are needed, thus raising important computational challenges.

The proposed strategy, based on cells, allows solving this
challenge by considering the distribution of the scatterers
within one cell, and repeating the same pattern in all the other
cells. Thus, only the positions of the scatterers within one
cell need to be stored, instead of the whole population. This
process is usually called stratification, yielding to stratified
sampling strategies.

It is well known that repeating the sample scatterer distri-
bution in all the cells might introduce patterns, e.g., aliasing.
A common strategy is to disrupt each cell by a random
perturbation, such as a random rotation, a toric offset [37],
a random scrambling or a projection of a higher dimension
sequence. For the distribution techniques considered in this
work, DT and cascaded Sobol’, rotations and projections have
been retained, respectively. Rotations are used to conserve
the spatial properties of the sequences drawn using DT, and
projections are the core feature of cascaded Sobol’. This
disruption breaks the correlation between the sequences at a
minimal cost, and still allows for perfect consistency of the
grid.

In addition, the seed of the random sequence used to gener-
ate the scatterers amplitude is also stored for each cell instead
of the cell-dependant amplitudes. This seed is generated using
the main seed as a base. In this way, only an index (i.e.
the perturbation index), a position (to reposition the cell’s
scatterers in the volume), and a seed need to be stored per cell
to represent the full 3D positions and amplitudes associated
with the scatterers inside that cell.

B. Scatterer cell sequence

As explained in the previous subsection, the proposed
strategy to populate a 3D medium with scatterers reposes on
a grid of cells. The position of the scatterers inside all cells is,
up to a perturbation, the same. In this subsection, we discuss

the different approaches used in this work to spatially dis-
tribute the scatterers within one cell, called scatterer sequence
hereafter.

Our choice of the scatterer sequence is guided by two main
objectives: i) ensure a good spatial coverage with a small
number of scatterers per cell, and ii) maintain or increase
the fidelity (mainly from a statistical viewpoint, as detailed
in section VI) of the simulated ultrasound images compared
to a uniform random distribution over the whole 3D medium.
As already stated, we compare in this work the DT [26]
and Cascaded Sobol’ [27] sequences, illustrating blue-noise
and low-discrepancy properties respectively. Their efficiency
is compared with the baseline of randomly distributing the
scatterers over the whole volume and, inspired by [4], regular
scatterer distribution on a rectangular grid.

As explained previously, to avoid the pattern effect and
increase the randomness of the scatterer distribution, the DT
scatterer sequence is rotated randomly in each cell. The
rotation angle is randomly chosen from one of the 24 possible
cube rotations.

In the case of Cascaded Sobol’, the random base sequence
consists of high-dimension samples, (e.g., 11) that are pro-
jected on a subspace with the desired dimensions (e.g., 3).
As detailed in [27], low discrepancy is ensured by projection
on consecutive axes (i.e. (1, 2, 3), (2, 3, 4),...). In our case,
each cell stores a random projection index among all the
possible projections. To illustrate the principle of Cascaded
Sobol’, let us consider a simple 2D case with two samples
per cell, and a 5-dimension random sequence. Let us denote
by S = {(a1, a2, a3, a4, a5), (b1, b2, b3, b4, b5)} two drawn
high-dimensional (here 5D) points. In this example, the four
acceptable projections are P = {(1, 2), (2, 3), (3, 4), (4, 5)}.
Each cell is then assigned an index in 0, 1, 2, 3 and uses
the corresponding projection to generate its 2D samples. For
instance, storing only the index 2 in a cell implies that its
scatterers’ coordinates are {(a3, a4), (b3, b4)}.

For illustration purposes, Figure 5 shows 2D examples of a
7× 7 grid populated by 441 samples using the proposed and
baseline approaches. One may remark that the most common
strategy, which consists of populating the whole medium
without any grid structure, does not ensure a constant number
of scatterers and spatial coverage per cell.

C. Spectrum of the scatterer distributions

In addition to the spatial distribution of the scatterers, Figure
5 illustrates the corresponding spectral distribution. One may
remark that different schemes of distributing the scatterers in
the volume yield different spectral tendencies, which could
possibly affect the simulation results.

However, the scatterers used in ultrasound simulation are
not only defined by their positions, but also by their ampli-
tudes. For this reason, we present and discuss in the following
the spectra of points whose intensity are randomly dictated by
a standard normal distribution, as used in ultrasound simula-
tions. Figure 6 shows spectra obtained in the same conditions
as those presented in Figure 5, but with random scatterer inten-
sities. As the frequency patterns are mitigated by the random
point amplitudes, the spectra are more closely related to the
baseline (uniform randomly distributed points). Specifically,
blue noise patterns in Figure 5 tend to be attenuated as the
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(a) (b) (c)

(d) (e) (f)
Fig. 5. 2D illustration of different strategies for distributing nine scatterers of the same intensity per mm2 (441 samples in total) and associated spectrum:
a) baseline (uniform distribution over the whole medium), b) grid superimposed on the scatterer distribution in a), c) regular grid, d) DT without rotations,
e) DT with rotations, and f) Cascaded Sobol’.

frequency-aware nature of blue noise samplers (e.g. minimal
distance in DT) is disturbed by the change in importance
of the samples. This change can only decrease the coverage
and frequency properties of the scatterers, maintaining the
importance of the distribution strategies.

Those spectra still exhibit slight specificities depending on
the sequences. More precisely, one can observe that stratifica-
tion induces repetitions easily observed in the first column.
However, they are considerably attenuated as the density
increases, except for the regular disposition, up to finally
converging toward a spectrum indistinguishable from a white
noise. The effect of the perturbations applied to DT Figure
6 (row (d)) and Cascaded Sobol’ Figure 6 (row (e)) are also
highlighted here, helping to attenuate the frequency pattern at
low distribution rates.

D. Scatterers’ amplitudes
In this work, scatterers’ amplitudes are defined with respect

to a tissue mimicking volume. Depending on the medical
imaging modality, several approaches have been proposed to
compute the amplitude. Some works try to find an accurate
mapping or classifications of the tissues before using it in
the ultrasound simulation [10]. Others consider a direct re-
lationship between the two [9]. In this work, without loss of
generality, we follow the latter by using MRI volumes to scale
the scatterers’ amplitudes.

In practice, scatterers’ amplitudes are generated in a two-
step process. First, random numbers are drawn from a standard
normal distribution N (0, 1) using the cell random seed, using
a standard linear congruential random number generator. In
this way, each scatterer is assigned the same random amplitude
each time it needs to be generated. Second, each scatterer
amplitude is scaled by a value sampled at its position from
the tissue mimicking volume.

E. Extracting the scatterers
To identify the scatterers contributing to the simulation of

one 2D ultrasound image, we define an enclosing volume
called Acquisition Zone (AZ). The scatterers contained in
the AZ are then efficiently extracted form the grid to be

e)
So

bo
l’

d)
D

T
ro

ta
tio

n
c)

D
T

no
ro

ta
tio

n
b)

R
eg

ul
ar

a)
B

as
el

in
e

Density: 1 4 9 16

Fig. 6. Spectrum of different point distributions with varying intensities.
Points are represented on an image with the pixel intensity depending on
a standard normal distribution. 20 mm side square regions are represented
using the scheme presented in figure 5 and the indicated densities. Spectrums
span from −20MHz to 20MHz, with the zero frequency in the center. When
increasing the density, patterns decay at different rate depending on the
method, except for the regular strategy which remains aliased.

used in further simulation. The overall process is described
in Algorithm 1 and illustrated in Figure 7.

Our approach has three main steps. First, we identify the
cells overlapping the AZ as illustrated in Figure 7a and
Algorithm 1 line 1-4 (section V-E2). Then, for those cells,
the scatterers are generated (section V-E3), Algorithm 1 line
5, and tested against the AZ (section V-E4), Algorithm 1 line
7.

1) Acquisition Zone: In this work, the AZ is considered
rectangular. To compute inclusion efficiently, the AZ is defined
as a rectangular parallelepiped characterized by its width,
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a) b) c) d)

Fig. 7. 2D illustration of the scatterer extraction process (XY plane): a) cell identification by spatial hashing, and plane coordinate system b) scatterers
generation, c) scatterers selection, d) extracted scatterers

Algorithm 1: Slice extraction from a grid
(SliceExtraction)

Data:
G := Scatterer grid
AZ := Acquizition zone
Result:
Slice := Scatterer collection to be used for simulation
// see section V-E2

1 samplePoints← discretizeAZ(AZ)
2 foreach sample ∈ samplePoints do
3 cell = G.findEnclosingCell(sample)
4 if ¬cell.alreadyTreated() then

// see section V-E3
5 cellScatterers = cell.generateScatterers()
6 foreach scatterer ∈ cellsScatterers do

// see section V-E4
7 if AZ.isInside(scatterer) then
8 Slice = Slice+ scatterer

height and depth, defined by the probe properties. The position
and orientation are imposed by the probe location. This
choice is mainly guided by two reasons: (i) the scatterer
extraction becomes, in this case, a simple projection, and (ii)
the resulting scatterer volumes can be used for performing
different ultrasound simulations (based on different probe
characteristics, emission/reception schemes, etc) without the
need of regenerating them.

Note that given that ultrasound simulation time is generally
proportional to the number of scatterers, choosing the minimal
but enclosing AZ is of importance to avoid unnecessary
computations. More complex volume can also be considered
to model different probe or acquisition schemes.

2) Cell identification by spatial hashing: The goal of this
first step is to identify the cells lying in the AZ. Several
approaches can be considered, and we choose to use spatial
hashing for efficiency. This approach is based on the following
key idea: as the cells are stored in an ordered fashion in the
cell grid, and constructed in spatial order, it exists a unique
relationship between the cell coordinates (in 3D space) and the
cell index (in memory). In fact, any 3D coordinate within the
grid bounds can be quantified and converted to its enclosing
cell index with O(1) complexity. The extraction process then
becomes independent of the cell grid dimension and number
of cells, making the process scalable to large medical data.

In order to use spatial hashing, we first need to discretize
the AZ, as illustrated in Figure 7a. We place sample points in
the zone, such that every cell overlapped by the AZ contains
at least one of those samples. More precisely, the samples
are regularly placed (w.r.t. the probe coordinate system) in
3D dimensions and spaced by CellDim√

2
, ie. the maximum

distance separating two points inside a cell in the worst case
(45° along one axis). Additionally, we use a sampled zone
slightly bigger than the AZ (±CellDim in all directions) to
ensure detection of partially included cells. Finally, we hash
the sample coordinates to identify all the cells intersecting or
included in the AZ.

3) Generating the scatterers associated with a cell: As
seen in section V-A, the cells do not store the scatterers
coordinates and amplitudes, but rather a perturbation index
(e.g. rotation for DT, and projection for Cascaded Sobol’), a
random seed and its own position in the volume. Using the
base sequence stored in the grid, one can generate the position
of the scatterers using the perturbation on the base sequence
and adding its own position to each scatterer. Once the position
in the volume is known, the amplitude is computed as detailed
in section V-D.

This process generates positions and amplitudes using the
minimal data stored in the cell, and always yields the same
random scatterers during one program execution.

4) Efficiently determining if a point is inside the acquisition
zone: Given SGr = (SGr

x , SGr
y , SGr

z ) the scatterer position
in the grid coordinate system, its projection in the probe
coordinate system, denoted by SAZ = (SAZ

x , SAZ
y , SAZ

z ), is
given by:

SAZ = (SGr − Ta)×R−1
a , (3)

where Ta and Ra are the translation and rotation of the
probe, respectively. In the probe coordinate system, the AZ
is axis-aligned, allowing straightforward verification if SAZ is
included in the AZ or not.

F. Slice simulation
The scatterers generated following the procedure described

above, corresponding to the field-of-view of the probe located
at a given position, are used to simulate ultrasound slices. In
this work, two different ultrasound simulation approaches are
used and detailed in section VI. The first, inspired by the work
in [12], uses a 2D convolution between a point spread function
(PSF) and the scatterer map, and has the advantage of allowing
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an interactive time implementation. The second, performed
offline, is using SIMUS [14], a recent realistic scatter-based
2D ultrasound simulator.

VI. RESULTS

In this section, we evaluate our approach, both regard-
ing its performances (e.g., computational efficiency, memory
consumption) and its impact on simulation results. We also
compare the proposed scatterer sampling strategies (Sobol,
DT) with two baselines (regular and uniform sampling), and
an ablated version of our proposal, denoted DT no rotation.

Our prototype is implemented in C++ and source code
is made publicly available. We ran our experiments on an
AMD Ryzen 9 5900X with 32GB RAM. In Section VI-A, the
two different approaches to exploit the results of our method
and simulate ultrasound images (interactive time and offline)
are introduced. In Section VI-B, we present the impact of
our proposal in the case of a single simulated US image.
Section VI-C illustrates the benefit of our approach when
simulating multiple US images, for instance in the context
of real time freehand simulation. To facilitate the visual
inspection of the images, all presented simulated images are
log-compressed with a dynamic range of 35 dB, and then
converted in pixel brightness value. All images correspond to
a 50×60 mm zone.

A. Ultrasound Simulation
1) Interactive simulation: Convolution-based ultrasound

simulation has been proposed both in the spatial and frequency
domains [17], [18]. The main principle is to generate the
simulated ultrasound image by 2D convolution between a PSF
respecting the probe characteristics, and a collection of scatter-
ers. To achieve good computational performance, the scatterers
need to be converted into a regular grid of pixels, at the same
spatial resolution as the PSF. Herein, the method presented in
[12] is used to project the scatterers distributed in 3D in the
central plane of the probe. Any scatterer lying in the AZ is
then projected in the probe coordinate system and positioned
in a single central XY plane. With (SAZ

x , SAZ
y , SAZ

z , A) the
coordinates and amplitude of the scatterers in the probe system
and σz the elevational attenuation factor, the plane coordinates
and amplitudes (SPl

x , SPl
y , Ap) are obtained as follows:

SPl
x = SAZ

x

SPl
y =

√
(SAZ

y )2 + (SAZ
z )2

Ap = A · (− z2

2σ2
z
)

(4)

The parameter σz allows for fine-tuning the out-of-plane
influence of the medium.

A 2D image is then estimated by summing each scatterer
amplitude Ap in its closest pixel. This image is convolved by
a spatially-invariant PSF to obtain the simulated ultrasound
image. This method yields about 20 images per seconds for
a usual field of view, and benefits from the advantages of a
constant grid discussed further in this paper. Figure 8 presents
a visual comparison of an image obtained using this method
and SIMUS with the same scatterers generated from an MRI
volume. This result shows that real-time simulation based
on the convolution of a 2D scatterer map with the system

PSF produces visually acceptable results compared to offline
simulations. The interest of such real-time simulation is that it
is possible to preview the results before using computationally-
expensive simulators, or to generate data in bulk.

Fig. 8. Results of interactive simulation as compared to state-of-the-art
simulations. Left: slice of the base MRI in the center plane of the AZ, center:
interactive simulation obtained using the AZ (generated in approx. 50ms),
right: final SIMUS [14] simulation after extraction and export of the AZ
(generated in approx. 5min).

2) Offline simulations: The scatterer extraction proposed in
this work can simply replace the scatterer generation part of
all the example scripts for commonly used simulators (e.g.,
Field II or SIMUS), as the output after the projection are 3D
scatterers in an image coordinate system.

B. Simulation results
To assess the quality of the generated scatterer slices, the

proposed cell grid approach was compared with the base-
line method (uniformly random distribution) and the regular
scatterer grid, as illustrated in Figure 5. From the generated
scatterers, we simulated US images using SIMUS [14]. We
used two different virtual probes: the LA-530 probe (central
frequency of 3 MHz), and the l11-5v (central frequency of
7.6 MHz). The LA-530 probe is a typical low frequency
probe, yielding a large resolution cell and thus requires a
low density of scatterers. In contrast, the L11-5v probe has
a high central frequency, allowing better resolved images
and requiring a significantly larger number of scatterers. The
number of scatterers per resolution cells is given in Figures
9, 10 and 11. In all cases, we used the probe wavelength at
c = 1540 m/s as an approximation of the resolution cell size.

All the ultrasound simulations performed with SIMUS cor-
responded to a classical pulse echo focused scheme, with 32
and 24 active elements in emission and in reception for the
LA-530 and L11- 5v probes, respectively. The RF images were
beamformed using a classical DAS method, with dynamic
focusing in receive and a constant F-number of 0.77 and 2.14
respectively.

We used three different mediums to drive the scatterers
generation. First, CUBE: a synthetic 3D object with a simple
geometry: a cube of 9.5 mm3 with high echogenecity inside
a 100 mm3 low-echogenic cube. This example is tailored to
evaluates speckle statistics in homogeneous regions, and to
illustrate the out-of-plane scatterer influence. Second, PELVIC-
MRI: a pelvic T2 MRI volume in sagittal orientation. Note
that the MRI volume has not been specifically acquired for
this project, but used as example herein. It has been acquired
with a 1.5T scanner from GE Medical Systems in Toulouse
Hospital University and anonymized prior to its use in this
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work. We used this example to qualitatively evaluate the
proposed approach on real data. Third, EMPTY: a completely
homogenous medium used to evaluate speckle properties. Such
properties could be evaluated in any medium if a small enough
area is considered. However, in EMPTY, large homogenous area
can be used to make statistical properties more reliable.

1) Qualitative results: We report in Figures 9 and 10 the
simulation results on CUBE for each approach for varying
scatterer densities (from 1 to 125 scatterers per mm3). For both
probe configurations, DT with rotations and Cascaded Sobol’
produced stable and satisfying results even for low density
distributions. In contrast, the other strategies produced specific
artifacts. For example, in the case of 8 scatterers per mm3

(second row), regular sampling leads to visible patterns, while
uniform sampling produces dark holes due to irregular local
space coverage. In addition to the visual inspection, mean and
standard deviation values of the contrast-to-noise ratio (CNR)
over 32 runs are also reported in Figures 9 and 10. CNR
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Fig. 9. Top: comparison of simulation results obtained with SIMUS [14] for
different distribution schemes, using 1, 8, 27, 64 and 125 scatterers per mm3

using the parameters of an LA-530 probe. Mean and standard deviation of the
CNR over 32 runs reported in the bottom right corners. Bottom: large PSF
(normalized, arbitrary unit), which better simulate fully-developed speckle at
low density.
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Fig. 10. Top: comparison of simulation results obtained with SIMUS [14] for
different distribution schemes, using 1, 8, 27, 64 and 125 scatterers per mm3

using the parameters of a L11-5v probe. CNR Mean and standard deviation of
the CNR over 32 runs reported in the bottom right corners. Bottom: compact
PSF (normalized, arbitrary unit), which requires high density to create fully-
developed speckle.

values were computed using two volumes of the same size
and at the same depth, inside and outside the cubic inclusion.
They indicate that in terms of image contrast, the proposed
methods (DT no rotation, DT rotation and cascaded Sobol’) all
outperform the regular grid and are comparable to the baseline.

Similar behaviors can be observed with the PELVIC-MRI
(see Figure 11), where we compare the different approaches
on MRI-based simulations.

With our approach (Fig. 11 row (d)), the speckle noise
is more realistic and resolution is enhanced as quick as the
baseline, while avoiding artifacts or holes at low scatterer
counts, resulting in better resolved boundaries.

2) Quantitative analysis: We report in Figure 12 the mean
discrepancy of the scatterers locations (i.e. only the scatterers
coordinates, discrepancy does not account for amplitudes),
generated with DT, Cascaded Sobol’, and the baselines. As
expected, DT and Cascaded Sobol’ have lower discrepancy
values, with DT exhibiting a more stable and predictable



10

e)
So

bo
l’

d)
D

T
ro

ta
tio

n
c)

D
T

no
ro

ta
tio

n
b)

R
eg

ul
ar

a)
B

as
el

in
e

Density: 1 8 27
(/mm3)

Density: 0.01 0.07 0.22
(/resolution cell)

Fig. 11. Comparison of simulation results using the same base tissue in
the PELVIC-MRI scene obtained with SIMUS [14] for different distribution
schemes, using 1, 8 and 27 scatterers per mm3 and the parameters of a L11-
5v probe.

behavior when the number of scatterers increases.
In order to measure the impact on the ultrasound simulation,

we analyze the envelope ultrasound images wrt. the different
sampling strategies. Based on the central limit theorem, en-
velope ultrasound images are assumed to follow a Rayleigh
distribution in homogenous regions [19], [38]. Hereafter, the
potential of the proposed scatterer distribution strategies to
generate Rayleigh-distributed speckle is evaluated for dif-
ferent numbers of scatterer per mm3. For each experiment,
we computed the best fit Rayleigh law (using maximum
likelihood estimation) and compared it to the data distri-
bution using Kullback-Leibler (KL) divergence defined, for
two probability distribution P (x) and Q(x) as KL(P,Q) =∑

x∈X P (x)log P (x)
Q(x) . This measure of the divergence of a

probability distribution against a reference one is commonly
used to evaluate speckle statistics, in particular in ultrasound
simulation, see, e.g., [38].

Average results and their variance envelope on 32 trials are
reported in Figure 13. They show that despite their pseudo-
random nature, DT with rotations and Cascaded Sobol’ ap-
proaches ensure comparable results with the uniform random
distribution that converges naturally to a Rayleigh distribution.
In contrast, regular and DT without rotations strategies suffer
from their repetitive pattern distributions. Figure 14 illustrates
one typical case and shows that regular grid and DT without
rotations produce envelopes that do not match closely their
best fit, whereas DT with rotation and Cascaded Sobol’ are
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Fig. 12. Mean and variance values of ℓ2 discrepancy of the scatterers
distributions, for 500 runs (log scale).
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Fig. 13. Average and variance of KL divergence values of the simulated US
images histograms with their best fit Rayleigh distribution for 32 runs (log
scale) on the EMPTY scene, for all the evaluated scatterer distributions and
for increasing scatterer density, using the LA-530 probe. Variance may not be
visible as it is negligible except for biased sequences such as DT, no rotation

comparable to the baseline.
Those results show that the DT and Cascaded Sobol’ meth-

ods follow the same trend as the baseline method, ensuring
a satisfying quality for the resulting simulated ultrasound
images. We also observe a correlation between the scatterers
discrepancy and the KL divergence of the simulated images,
ie. lower discrepancy often leads to lower divergence. How-
ever, Cascaded Sobol’ seems less predictable regarding its
convergence when highly increasing the scatterer density, as
highlighted by the discrepancy measures.

Furthermore, the overall discrepancy of the grids used to
generate the scatterers is in good agreement with the quality
of the ultrasound simulations, confirming the intuition that the
scatterer coverage of the medium is an important factor.

3) Computational efficiency: Tables I and II report the time
necessary to extract a scatterer slice from grids constructed
following the different methods evaluated. They respectively
report the time relative to the scatterer density and the slice
thickness. In a real-time context, it represents the time required
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8 27 64 125 343

Regular 1.04 5.00 11.0 21.8 58.3

Baseline 350
(×336.9)

1 122
(×224.8)

2 668
(×242.5)

5 212
(×239.3)

14 294
(×245.2)

Sobol’ 1.82
(×1.75)

5.15
(×1.10)

11.0
(×1.00)

21.9
(×1.00)

59.3
(×1.01)

DT 1.93
(×1.86)

5.01
(×1.00)

11.1
(×1.00)

22.1
(×1.02)

60.1
(×1.03)

TABLE I
AVERAGE EXTRACTION TIME (MILLISECONDS, 1000 RUNS) RELATIVE TO

SCATTERER DENSITY IN A 100× 100× 100 MM3 VOLUME.

to get the spatially correct scatterers and thus the time left to
simulate the frame.

As explained in section V-E, for the methods that use the
cell grid structure, these computational times are independent
of the grid size. These results highlight the benefits of the
grid acceleration structure, compared to the baseline approach
that require each scatterer to be tested individually against
the probe field-of-view. They also prove that the computation
overhead associated with generating and transforming the
scatterers for each cell is negligible. The time of cells selection
is included in this processing time. However, sampling points
are pre-generated, and only positioning and testing times are
included in this scatterers test.

In the current framework, the scatterer selection step (testing
each scatterer of the selected cells) is the most demanding
step. This explains the linear scaling of time with respect to
the number of scatterers in cells or slice height.

4) Memory usage: The extraction and simulation processes
are the same regardless of the method employed, only the
scatterer volume memory usage is studied in this section.
In our prototype, a scatterer consists of 4 floats (position,
amplitude), represented by 16 Bytes. For the baseline method,
each scatterer needs to be explicitly stored as no a priori are
assumed on its position, leading to the following formula:

MemB = 16× density × volume. (5)

In contrast, the cell grid implementation only requires
storing each cell holding the perturbation index, random seed
and position. Given cells of 1mm3 as considered in this work,

1 2.5 5 10 20

Regular 10.5 21.0 33.1 64.4 120.1

Baseline 2 749
(×263.0)

2 767
(×132.2)

2 773
(×83.73)

2 787
(×42.29)

2 795
(×23.13)

Sobol’ 11.0
(×1.06)

21.3
(×1.02)

34.1
(×1.03)

67.0
(×1.03)

124.0
(×1.03)

DT 11.0
(×1.06)

21.8
(×1.04)

34.4
(×1.04)

67.3
(×1.05)

125.2
(×1.04)

TABLE II
AVERAGE EXTRACTION TIME (MILLISECONDS, 1000 RUNS) RELATIVE TO

SLICE THICKNESS (IN MM) FOR A FIXED (64 PER MM3) DENSITY.

and cell the memory usage of a single cell, the memory
requirements of the proposed method are:

MemG = cell × volume+ 16× density. (6)

It appears immediately that the grid structure, despite the
additional requirements per cell, uses substantially less mem-
ory as the volume or the density grows. In our implementation,
a single cell weights 40 Bytes, saving memory as long as the
density exceeds 3 scatterers per mm3.

To confirm these theoretical results, the memory use of a
simple program, only creating a volume, is measured using
Valgrind. We report measures in Table III. As they represent
the peak usage of a whole program, a slight overestimation is
expected independently of the method.

Density Baseline Cell grid
1 24 38.24
5 192 38.24

10 384 38.24
27 768 38.24
64 1 536 38.25

125 3 072 38.25
343 12 288 38.25

TABLE III
SCATTERERS MEMORY USAGE (MB) RELATIVE TO SCATTERER DENSITY

IN A 100× 100× 100 MM VOLUME

C. Interest of grid consistency for multiple slice simulation
In addition to accelerating the generation and extraction of

the scatterers, and drastically decreasing the memory space
requirements for large 3D volumes, the proposed approach
is also interesting for reproducing the correlation between
ultrasound slices simulated at close locations. This correlation
is ensured by the consistency of the scatterer generation from
one slice to another.

1) Speckle correlation: Within freehand acquisition of ul-
trasound images, it is expected that the speckle noise present in
images resulting from closely related probe positions is corre-
lated. In this scenario, the contributing tissue is predominantly
the same, as such, scatterers forming the speckle are shared,
giving rise to the correlation. This property is usually exploited
for estimating the relative position of acquired ultrasound
images [39]. This fundamental behaviour may not be observed
if the slices are generated independently.

To illustrate the potential of the proposed framework (gen-
erating the whole scatterer volume using a grid, and repeating
the same sequence in each cell) to ensure correlation between
neighboring slices, the following experiment was performed.
Several ultrasound slices were simulated, with an increasing
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distance compared to a fixed slice, with a step of 0.5 mm. Two
strategies have been adopted: using the proposed framework
that ensures scatterer consistency, and an approach that con-
sists of independently generating the scatterers from one slice
to another. Mean correlation coefficients between the moving
slices and the fixed one over ten runs, for both strategies, are
regrouped in Figure 15.
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Fig. 15. Evolution of slice correlation with respect to the distance from the
reference slice, using the LA-530 probe. Dots represent individual values and
curve the smoothed average over 10 runs.

As expected, closely located slices coming from the same
grid share a subset of the scatterers, and thus have correlated
speckle. Furthermore, this experiment comforts the hypothesis
of a resolution cell of the order of the millimeter, as higher
correlation is expected to appear when resolution cells overlap.

2) Out of plane influence: Ultrasound simulation is often
simplified by only considering scatterers in a 2D plane. How-
ever, using scatterers distributed in a 3D slice with a given
height allows for 3D positioned and correctly conditioned
scatterers, even in the image coordinate system. This way,
objects located just outside the imaging plane have an impact
on the resulting simulation, as they would have in a real
scenario.

Figure 16 displays simulation results for the specific case
using the LA-530 probe, where the imaging plane crosses
a cube precisely on an edge. With a typical 2D simulation,
this case would result in a simple line. With 3D generation,
increasing the slice thickness shows the influence of the
out of plane cube. The same effect may be appreciated on
images simulated from more complex structures, see results
on PELVIC-MRI experiment in Figure 16.

D. Code and prototypes

The method described in this paper has been used to create
a prototype of real-time freehand simulation, allowing full
exploration of simulated images from a 3D MRI volume using
position sensors. A video of this prototype is available in the
additional material. The code used to generate all scatterers
and simulations presented in this paper is also available at
https://github.com/STORM-IRIT/scus and can be used as-is or
as a library in other projects.

1mm
5mm

Fig. 16. Influence of the slice height (left: 1mm, right: 5mm, same probe)
on simulation results. Top: schematic representation of the slice in the scene
CUBE crossing an edge, middle: simulation result for the described situation,
bottom: illustration of the same phenomenon in PELVIC-MRI.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we demonstrate the benefit of using strati-
fied sampling strategies for the generation and extraction of
scatterers for ultrasound image simulation. Furthermore, the
use of stratified strategies allows for a fast and invariant the
generation of multiple slices from a volume, and outperforms
existing approaches in terms of visual and statistical properties
of the simulated images, as well as memory and computational
requirements. We also demonstrated the advantages of having
a consistent 3D scatterer volume, adding to the realism of
single or multiple slice generation while being able to create
simulations quickly, opening it to many applications. For
example, we believe that our approach opens new perspectives
toward the simulation of US images from large and complex
data (e.g. interactive free-hand simulation from full-body
scans).

The proposed method also opens interesting perspectives of
evolution, such as having a better fit for specific use-cases.
Fine-tuning the AZ shape and parameters w.r.t. to ultrasound
probe and emission/reception scheme parameters could be of
interest in order to optimize the number of extracted scatterers
per slice, and thus decrease the simulation time.
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In addition, the current framework allows exploring future
work as the inclusion of shadowing in the simulation, which
could be represented by a loss in scatterer intensity, probe
influence on the medium using a deformation function on
the acquired scatterers or the addition of a time dimension,
allowing the simulation of blood flow and movement.
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