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Feature attribution is a fundamental task in both machine learning and data analysis, which involves determining the contribution of
individual features or variables to a model’s output. This process helps identify the most important features for predicting an outcome.
The history of feature attribution methods can be traced back to General Additive Models (GAMs). In recent years, gradient-based
methods and surrogate models have been applied to unravel complex Artificial Intelligence (AI) systems, but these methods have
limitations. To address the limitations of existing methods and advance the current state-of-the-art, we define a novel feature attribution
framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA). Our framework harnesses the power of
argumentation by treating each feature as an argument that can either support, attack or neutralize a prediction. Additionally, CA-FATA
formulates feature attribution as an argumentation procedure, and each computation has explicit semantics, which makes it easily
understandable. CA-FATA also easily integrates side information, such as users’ contexts, resulting in more accurate predictions. Our
experiments on two real-world datasets demonstrate that CA-FATA, or one of its variants, outperforms existing argumentation-based
methods and achieves competitive performance compared to existing context-free and context-aware methods.
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explanation.
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1 INTRODUCTION
1 Feature attribution has been a long-standing practice in the field of machine learning to determine the contribution of
individual features or variables to a model’s overall output. This method has also been applied in recommender models
to explain their behaviors [19, 24, 26, 33, 34]. The process of feature attribution helps identify the most important
features for predicting an outcome and areas for model improvement. The origin of feature attribution methods can
be traced back to General Additive Models (GAMs) [13]. Although GAMs are inherently interpretable, they often
suffer from limited expressivity [21]. In recent years, gradient-based methods [2] have been employed to disentangle
complex Artificial Intelligence (AI) systems. These methods determine the importance of a feature 𝑥 in a function 𝑓 by
calculating the derivative of 𝑓 with respect to the feature 𝑥 . However, gradient-based methods may struggle with simple
tasks that require understanding a moderately local region [6], and interpreting such gradients can be challenging
for non-experts. To address the issue of gradient-based methods, surrogate models such as LIME [26] and SHAP [19]
have emerged as two prominent post-hoc explanation methods. However, the limitations of these methods have been
recognized. LIME inherently suffers from stability issues [31], as for SHAP [19] the attribution of feature importance
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through mathematically formalizable properties (i.e., local accuracy, missingness, and consistency) may not always
align with users’ expectations for explanations [17].

In recent years, argumentation-based methods have gained significant attention in the field of eXplainable Artificial
Intelligence (XAI) [29]. This is due to the clear and understandable means of representing relations, such as support
and attack, offered by Argumentation Frameworks (AFs), which provide explicit meanings to the computation. Under
AFs, decision-making processes can be visually depicted, and optimal decisions can be explained using well-defined
properties [29]. Weighted arguments are used to represent the strength of arguments and the dialectical relations
between them, such as support and attack. The strength function of arguments can be carefully designed to satisfy the
generalized concepts of weak balance [24] and weak monotonicity [22], which characterize how arguments influence
the decision-making process (we will revisit the two notions in Section 2). These methods can be used to explain
decisions made through a graphical representation of the decision-making process. Context-Aware Recommender
System (CARS) [1] is an important research topic in recommender systems. CARSs can model users’ preferences under
different contextual situations with finer granularity and generate more personalized recommendations adapted to
users’ contexts. We believe that context is also crucial in argumentation frameworks, as certain arguments that are
considered “good” in one context may become less accurate in another context. Therefore, it is important to leverage
contexts when applying argumentation [27].

In light of the interpretability challenges associated with traditional feature attribution methods, it is reasonable to
explore new avenues for improving the explainability of machine learning models. Since argumentation inherently
offers interpretability, one such approach is to leverage argumentation techniques to attribute feature importance. In
this paper, we introduce a novel framework for feature attribution called Context-Aware Feature Attribution Through
Argumentation (CA-FATA). The framework employs argumentation to attribute importance to each feature, considering
them as arguments that can either support, attack or neutralize a prediction. CA-FATA formulates feature attribution
under argumentation frameworks, providing each computation with explicit semantics, thereby ensuring interpretability.
Additionally, the framework allows for the integration of side information, such as user contexts, resulting in more
accurate predictions. Our experiments on two real-world datasets demonstrate that CA-FATA outperforms existing
argumentation-based methods and achieves competitive performance compared to existing context-free and context-
aware methods. Therefore, CA-FATA can ensure the explainability of recommendations, while not sacrificing the
accuracy of prediction.

2 RELATEDWORK
Among the existing argumentation frameworks, three types can be identified: Abstract Argumentation Framework
(AAF) [10], Bipolar Argumentation Framework (BAF) [8], Tripolar Argumentation Framework (TAF) [11]. An AAF
is composed of a set of pairs < A,R− >, where R− denotes a set of attack relations between arguments such that
∀a1, a2 ∈ A, (a1, a2) ∈ R− denotes that argument a1 attacks argument a2. The relation “attacks” indicates a contradiction
between two arguments. For example, considering a1 “This user does not like the feature of this item (one actor of
a movie)” and a2 “This item can be recommended to this user”. It is evident that a1 attacks a2. BAFs contain a set of
triplets, < A,R−,R+ >, R− represents attack as in AAF. Similarly, R+ denotes a set of support relations between
arguments such that ∀a1, a2 ∈ A, (a1, a2) ∈ R+ denotes that argument a1 supports argument a2. TAFs contain a set of
quadruples: < A,R−,R+,R0 >, where R− represents the attack relations, R+ denotes the support relations and R0

means neutralizing relations. In this work, we have chosen to adopt TAFs that comprise three types of relations between
arguments: attack, support, and neutralizing. This is because features of items may support, attack, or neutralize the
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Fig. 1. Illustration of the framework of CA-FATA.

recommendation of items, indicating users’ preferences towards features. As we will discuss later, the strength of the
arguments in the TAFs presented in this paper is based on the users’ ratings towards features.

Our research is closely related to two previous works: the Aspect-Item framework (A-I) introduced in [22, 24] and the
Attribute-Aware Argumentative Recommender (𝐴3𝑅) proposed in [33]. Both A-I and 𝐴3𝑅 use argumentation to predict
users’ ratings towards items, treating items and features as arguments that may attack or support each other to explain
recommendations in an argumentative manner. However, these methods do not consider the influence of user contexts.

Weak balance and weak monotonicity allow for deriving intuitive explanations in an argumentative way. Essentially,
the concept of weak balance concerns the impact of an argument on its affectees when the argument is the sole factor
affecting them, while the idea of weak monotonicity focuses on how the potency of an argument changes when one of
its affecters is silenced relative to the neutral point.

Weak balance: The intuition behind this notion is that if the affecter increases the strength of the affectee, then
it supports the affectee. This idea has been formalized as weak balance in [24]. According to weak balance, relations
under argumentation frameworks such as attacks (or supports, neutralizes) can be characterized as connections among
affecters and affectees in the following way: if one affecter is isolated as the single argument that affects the affectee,
then the former reduces (or increases, does not change) the latter’s predicted rating with respect to the neutral point.

Weak monotonicity : The idea is intuitive: if the affecter supports the affectee, then muting the affecter would
decrease the strength of the affectee; if the affecter attacks the affectee, then muting the affecter would increase the
strength of the affectee; if the affecter neutralizes the affectee, then muting the affecter would not change the strength
of the affectee. This intuition has been formalized as weak monotonicity in [5]. This property is formulated for two TAFs:
from < A,R−,R+,R0 > to < A′,R−′

,R+′ ,R0′ > after modifying certain arguments (e.g. muting certain features).
3 OUR FRAMEWORK: CA-FATA

Figure 1 depicts the structure of CA-FATA, which consists of three steps: (i) Computing the representation of target users
under the target contextual situation to ensure that users’ preferences are adapted to contexts and that the dialectical
relations of arguments are also context-aware; (ii) Computing users’ ratings towards features of items under the given
contextual situation, which are then used to determine the dialectical relations; (iii) Aggregating the ratings obtained in
the previous step to generate users’ ratings towards items.

Computing user representation (Step 1): The ultimate representation of a user is determined by the user’s
contextual situation. In this step, our goal is to compute the representation of users that is adapted to the target
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contextual situation. To achieve this, we begin by computing the importance of each contextual factor in Equation 1.
The importance computed here is similar to the relevance weight in [7]. However, unlike in these two works, where the
relevance weight of the context is set empirically, in our work, the importance of the context is learned in a data-driven
way. Intuitively, 𝜋𝑐 𝑓𝑢 characterizes the extent to which user 𝑢 wants to take contextual factor 𝑐 𝑓 into account.

𝜋
𝑐 𝑓
𝑢 =

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (⟨u, cf⟩))∑
𝑐 𝑓 ∈𝐶 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (⟨u, cf⟩)) (1)

In sequence, we compute the representation of the contextual situation 𝑐𝑠 by summing up all the vectors representing
contextual conditions multiplied by 𝜋

𝑐 𝑓
𝑢 : cs =

∑
𝑐𝑑∈𝑐𝑠

𝜋
𝑐 𝑓
𝑢 cd, where cs is the vector that denotes contextual situation 𝑐𝑠 .

The next step is to aggregate the representation of contextual situation 𝑐𝑠 with the representation of user 𝑢 to obtain a
specific representation of user 𝑢 under the contextual situation 𝑐𝑠 . To avoid having an excessive number of parameters1,
we sum u and cs. By aggregating information from a contextual situation 𝑐𝑠 and a user 𝑢, each user 𝑢 gets a specific
representation 𝒖𝒄𝒔 under a contextual situation 𝑐𝑠: 𝒖𝒄𝒔 = u + cs

Computing users’ ratings towards features (Step 2): The feature types in this paper are similar to the relations
in knowledge graphs, which are directed graphs consisting of entity-relation-entity triplets [15]. For instance, the
triplet (𝐻𝑎𝑟𝑟𝑦𝑃𝑜𝑡𝑡𝑒𝑟, ℎ𝑎𝑠𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝑀𝑖𝑘𝑒𝑁𝑒𝑤𝑒𝑙𝑙) indicates that the movie Harry Potter is directed by Mike Newell. Here,
ℎ𝑎𝑠𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 is a relation in the knowledge graph that pertains to movies, and in this paper, it corresponds to the feature
type 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟 . We quantify the importance of each feature type using Equation 2.

𝜋𝑡𝑢𝑐𝑠 =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (⟨𝒖𝒄𝒔 , at⟩))∑

𝑡 ∈𝑡𝑖 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (⟨𝒖𝒄𝒔 , at⟩))
(2)

To compute users’ ratings towards features, we adopt the inner product again: P𝑎𝑡
𝑢𝑐𝑠

= 𝑔(𝒖𝒄𝒔 , at). The representation
of a user under one context differs from that under another context. As a result, the representation of user 𝑢𝑐𝑠 is specific
to each context, and the importance of feature type and user’s rating towards features is also context-aware.

Aggregating ratings towards features (Step 3): After calculating the importance of each feature type and users’
ratings towards each feature, 𝑢’s rating towards 𝑖 under 𝑐𝑠 is:

𝑟 (𝑢,𝑖 ) =
∑︁
𝑡 ∈𝑡𝑖

𝜋𝑡𝑢𝑐𝑠 ∗
∑
𝑎𝑡 ∈𝑎𝑡𝑡

𝑖
P𝑎𝑡
𝑢𝑐𝑠

|𝑎𝑡𝑡
𝑖
|

(3)

where 𝑡𝑖 denotes all the feature types of item 𝑖 . It should be noted that the actual value of the user 𝑢’s rating for item 𝑖

is a real number between −1 and 1, as defined in previous works such as [22, 24]. It is noteworthy that Equation 3 is
remarkably similar to additive models, indicating that our model belongs to the family of generalized additive models.
This similarity allows for easy identification of the contribution of each feature.
4 CONTEXT-AWARE EXPLANATIONS

Recall that the true rating 𝑟 (𝑢,𝑖 ) is a real number between -1 and 1, then the co-domain of P𝑎𝑡
𝑢𝑐𝑠

is also expected to be
between -1 and 1. Therefore, when P𝑎𝑡

𝑢𝑐𝑠
> 0, then 𝜎 (𝑎𝑡) > 0, indicating that 𝑎𝑡 is an argument that supports 𝑟𝑒𝑐𝑖 2;

when P𝑎𝑡
𝑢𝑐𝑠

= 0, then 𝜎 (𝑎𝑡) = 0, indicating that 𝑎𝑡 is an argument that neutralizes 𝑟𝑒𝑐𝑖 ; when P𝑎𝑡
𝑢𝑐𝑠

< 0, then 𝜎 (𝑎𝑡) < 0,
indicating that 𝑎𝑡 is an argument that attacks 𝑟𝑒𝑐𝑖 . Therefore, the TAF corresponding to a user-item interaction (𝑢, 𝑖)
under 𝑐𝑠 can be defined as follows:

1Note that other aggregation methods such as concatenation are also possible but more parameters are induced. We leave this exploration for future work.
2Semantically, users 𝑢 prefers feature 𝑎𝑡
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at1

at2

at3

item

+0.52

-0.11

0

Fig. 2. A graphical representation of an argumentation procedure in a recommendation scenario. Each node represents an argument,
the value on the arc denotes the strength and polarity of the argument, “+” denotes supports, “-” denotes attacks, and “0” denotes
neutralizes.
Table 1. Three explanation templates for user-item interaction under contextual situation 𝑐𝑠 = (𝑐𝑑1, 𝑐𝑑2, 𝑐𝑑3, . . . ) , 𝑆𝑅 denotes “strong
recommendation”,𝑊𝑅 denotes “weak recommendation”, 𝑁𝑅 “not recommended”.

Scenario Content Example

𝑆𝑅
𝑎𝑡1 = argmax

𝑎𝑡 ∈𝑎𝑡𝑖
P𝑎𝑡
𝑢𝑐𝑠

When 𝑐𝑑 , we recommend you this item

𝑎𝑡2 = argmax
𝑎𝑡 ∈𝑎𝑡𝑖 \𝑎𝑡1

P𝑎𝑡
𝑢𝑐𝑠

because you like 𝑎𝑡1 and 𝑎𝑡2 .

𝑐𝑑 = argmax
𝑐𝑑∈𝑐𝑠

𝜋
𝑐𝑓
𝑢

𝑊𝑅
𝑎𝑡1 = argmax

𝑎𝑡 ∈𝑎𝑡𝑖
P𝑎𝑡
𝑢𝑐𝑠

When 𝑐𝑑 , we recommend you this item

𝑎𝑡2 = argmin
𝑎𝑡 ∈𝑎𝑡𝑖 \𝑎𝑡1

P𝑎𝑡
𝑢𝑐𝑠

because you like 𝑎𝑡1 although you

𝑐𝑑 = argmax
𝑐𝑑∈𝑐𝑠

𝜋
𝑐𝑓
𝑢 dislike 𝑎𝑡2 .

𝑁𝑅
𝑎𝑡1 = argmin

𝑎𝑡 ∈𝑎𝑡𝑖
P𝑎𝑡
𝑢𝑐𝑠

When 𝑐𝑑 , we do not recommend you

𝑎𝑡2 = argmin
𝑎𝑡 ∈𝑎𝑡𝑖 \𝑎𝑡1

P𝑎𝑡
𝑢𝑐𝑠

this item because you dislike 𝑎𝑡1 and 𝑎𝑡2 .

𝑐𝑑 = argmax
𝑐𝑑∈𝑐𝑠

𝜋
𝑐𝑓
𝑢

Definition 4.1. The TAF corresponding to (𝑢, 𝑖) under 𝑐𝑠 is a 4-tuple:< A,R−,R+,R0 > such that:R− = {(𝑎𝑡, 𝑟𝑒𝑐𝑖 ) |P𝑎𝑡
𝑢𝑐𝑠

<

0}; R+ = {(𝑎𝑡, 𝑟𝑒𝑐𝑖 ) |P𝑎𝑡
𝑢𝑐𝑠

> 0}; R0 = {(𝑎𝑡, 𝑟𝑒𝑐𝑖 ) |P𝑎𝑡
𝑢𝑐𝑠

= 0}.

According to the definition, P𝑎𝑡
𝑢𝑐𝑠

determines the polarity of arguments: if P𝑎𝑡
𝑢𝑐𝑠

is positive then the argument
(feature) supports the recommendation of item 𝑖 to user 𝑢; if P𝑎𝑡

𝑢𝑐𝑠
is negative then the argument (feature) attacks

the recommendation of item 𝑖 to user 𝑢; if P𝑎𝑡
𝑢𝑐𝑠

is 0 then the argument neutralizes the recommendation. By setting
𝜎 (𝑎𝑡) = P𝑎𝑡

𝑢𝑐𝑠
and 𝜎 (𝑟𝑒𝑐𝑖 ) = 𝑟 (𝑢, 𝑖), TAF corresponding to (𝑢, 𝑖) under 𝑐𝑠 satisfies weak balance and weak monotonicity

(Proof omitted due to lack of space). As a running example, Figure 2 presents the TAF for a user-item interaction under
the contextual situation 𝑐𝑠 . In this TAF, each feature of the item represents an argument. The user’s rating towards each
feature determines the strength and polarity of the argument, thereby reflecting the user’s preference. The strength of
argument 1 is +0.52, indicating that the user likes feature 1 (e.g., a movie director or actor), and this feature supports
the recommendation of the item to the user. The strength of argument 2 is −0.11, indicating that the user does not like
feature 2 and that this feature attacks the recommendation of the item to the user. Finally, the strength of argument 3 is
0, indicating that this feature does not influence the user’s rating. Note that, according to the three steps in Section 3,
the prediction score could differ under different contexts, even for the same user and item. Therefore, the corresponding
TAFs would also differ.

After conducting the above analyses, we propose three explanation templates in Table 1, similar to the three
explanation types in [22], but with the inclusion of users’ contexts. In each scenario, we select the most influential
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contextual condition (as determined by Equation 1). For “strong recommendation”, we propose selecting the two
strongest arguments (aka. features) that support the recommendation of the item. In “weak recommendation”, we
propose selecting the strongest argument that supports the recommendation of the item and the strongest one that
attacks the recommendation of the item. In “not recommended”, we propose selecting the two strongest arguments
(aka. features) that attack the recommendation of the item. Each template includes contextual information along with
the corresponding arguments that either support or attack the recommendation of the item. In summary, CA-FATA is a
versatile model that can be used to explain both the reasons for recommended items as well as the reasons why some
items should not be recommended. Additionally, users have the flexibility to define their own templates according to
their specific needs.

5 GENERATING RECOMMENDATIONS USING CA-FATA
Since the problem of explainable recommendations also involves generating high-quality predictions. In this section, we
will conduct experiments on four real-world datasets to address the following research questions: RQ1, can CA-FATA
achieve competitive performance compared to baseline methods? What are the advantages of CA-FATA compared to
baseline methods? RQ2, how does context influence the performance of CA-FATA? RQ3, how does the importance of
feature type affect the performance of CA-FATA?

5.1 Datasets and experiment setting

We have conducted experiments on the following real-world datasets: Frappé: This dataset is collected by [3]. This
dataset originated from Frappé, a context-aware app recommender. There are 96 303 logs of usage from 957 users under
different contextual situations, 4 082 apps are included in the dataset. Following [28], we apply log transformation to
the number of interactions. As a result, the number of interactions is scaled to 0 − 4.46. Each contextual situation is
composed of 7 contextual conditions and five types of features. Yelp: This dataset contains users’ reviews on bars and
restaurants in metropolitan areas in the USA and Canada. Consistent with previous studies by [12, 35], we use the
records between January 1, 2019 to December 31, 2019, which contains 904 648 observations. There are 8 contextual
factors and three feature types. For the two datasets, we have adopted the 10-core setting, following [32], to ensure data
quality. This means that only users with at least 10 interactions are kept.

We compare the following baselines: (i) MF [16]: This classic collaborative filtering method only considers user-item
pairs and computes the inner product of the vectors representing users and items to make predictions. (ii) CAMF-C [4]:
An extension of MF that incorporates the global influence of contexts on ratings. (iii) FM [25]: A strong baseline that
models the second-order interactions between all information related to user-item interactions. (iv) NeuMF [14]: A
method that combines matrix factorization and MLP (Multi-Layer Perceptron) to model the latent features of users and
items. (v) ECAM-NeuMF [28]: An extension of NeuMF that integrates contextual information. Note that the authors
in [28] do not release the implementation detail, for the NeuMF part, we empirically set the MLP factor size as 8, the
sizes of the hidden layer as (16, 8, 4), the GMF (Generalized Matrix Factorization) factor size as 16. This setting also
applies to pure NeuMF. (vii) A-I [22–24]: An argumentation-based framework that computes users’ ratings towards
features, which are then aggregated to obtain the ratings towards items. Following [24]3, we set the “collaborative
factor” as 0.8, 20 most similar users are selected, and all the feature importance is set as 0.1.

In these two datasets, users give explicit ratings towards items, therefore the squared loss is utilized to optimize
parameters of CA-FATA: 𝐿 =

∑
(𝑢,𝑖,𝑐𝑠 ) ∈T (𝑟 (𝑢,𝑖,𝑐𝑠 ) − 𝑟 (𝑢,𝑖,𝑐𝑠 ) )2 + _∥Θ∥22, where T is the training set, 𝑟 (𝑢,𝑖,𝑐𝑠 ) is the

3For detail please refer to https://github.com/CLArg-group/KR2020-Aspect-Item-Recommender-System.

6

https://github.com/CLArg-group/KR2020-Aspect-Item-Recommender-System


Context-aware feature attribution through argumentation Conference acronym ’XX, June 03–05, 2023, Woodstock, NY

Table 2. Comparison between CA-FATA and baselines on RMSE and MAE, the second best are underlined. FATA is basically a variant
of CA-FATA, the difference between CA-FATA and FATA is that FATA does not consider users’ contexts and is actually the 𝐴3𝑅 [33]
model. The version with “AVG” means that the importance of each feature type is set the same for all users.

Model Yelp Frappé

RMSE MAE RMSE MAE

Context-free MF 1.1809 0.9446 0.8761 0.6470
NeuMF 1.1710 0.8815 0.6841 0.5207

Context-aware

FM 1.1703 0.9412 0.7067 0.5796
CAMF-C 1.1693 0.9241 0.7283 0.5727
LCM 1.1687 0.9294 0.6952 0.5396

ECAM-NeuMF 1.1098 0.8636 0.5599 0.4273

Argumentation-based A-I 1.3978 1.1205 1.1711 0.9848

Our propositions

FATA 1.1434 0.9059 0.6950 0.5439
AVG-FATA 1.1611 0.9314 0.6970 0.5461
CA-FATA 1.1033 0.8519 0.5154 0.3910

AVG-CA-FATA 1.1035 0.8637 0.5254 0.4025

predicted rating and 𝑟 (𝑢,𝑖,𝑐𝑠 ) denotes the actual rating, _ denotes the regularization parameter to reduce over-fitting,
Θ denotes the parameters of CA-FATA. We implement CA-FATA using Pytorch4 and we optimize the parameters
using mini-batch Adam. The testing platform is Tesla P100-PCIE, 16GB memory in CPU. The hyper-parameters are
tuned through a grid search: the learning rate is tuned on [10−5, 10−4, 10−3, 10−2, 10−1]; the batch size is tuned on
[128, 256, 512, 1024, 2048, 4096]; regularization parameter is tuned on range [5 ∗ 10−5, 10−4, 5 ∗ 10−3, 10−3, 10−2]. The
embedding size is tuned on [8, 16, 32, 64, 128, 256]. Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE)
are selected as the primary evaluation metrics. We follow the convention established in [9, 18, 28] by splitting the
datasets into a training set, a test set, and a validation set, with a ratio of 8 : 1 : 1.
5.2 Rating prediction (RQ1)

Table 2 presents the results of the rating prediction experiments. We observe that CA-FATA performs better than all
baselines on both the Yelp dataset and the Frappé dataset, indicating its superiority in handling complex contextual
information. The following are some specific observations: (i) CA-FATA performswell on the two datasets, outperforming
all baselines, demonstrating its ability to model users’ preferences under different contexts. Another advantage of
CA-FATA is the ability to provide argumentative explanations, which is not possible for these baselines. (ii) Compared to
A-I, on Yelp, CA-FATA achieves a significant reduction in RMSE and MAE. (iii) A horizontal comparison of Frappé and
Yelp datasets shows that CA-FATA performs better on Frappé than on Yelp. We attribute this difference to the sparsity
of the dataset, as Yelp is still highly sparse even after applying the 10-core setting, with a sparsity of 99.84%, while
Frappé has a sparsity of 94.47%. To summarize, the advantages of CA-FATA are as follows: (i) it achieves competitive
performance compared to both context-free and context-aware baselines. These baselines use factorization-based
methods such as MF, FM, and CAMF-C, and some combine neural networks like NeuMF and ECAM-NeuMF, which
makes them difficult to interpret. On the other hand, CA-FATA provides explicit semantics for each computation and
generates argumentative explanations (see Table 1 for some examples); (ii) compared to the argumentation-based
method A-I, CA-FATA significantly improves prediction accuracy and generates context-aware explanations.
5.3 Abalation study (RQ2 and RQ3)

In order to investigate the impact of contextual factors on the performance of CA-FATA, we propose an alternative
approach called FATA, which neglects user contexts, identical to the 𝐴3𝑅 model proposed in [33]. Results presented in
Table 2 (refer to rows 11 and 13) demonstrate that CA-FATA outperforms FATA, indicating that incorporating user
4Access to source code is provided in https://github.com/JinfengZh/ca-fata/tree/master
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(a) Cluster of users according to importance of
each contextual factor

(b) Average importance of each contextual fac-
tor of users from cluster 0

(c) Average importance of each contextual fac-
tor of users from cluster 1

(d) Average importance of each contextual fac-
tor of users from cluster 2

(e) Average importance of each contextual fac-
tor of users from cluster 3

Fig. 3. A case study on Frappé that shows the clustering of users according to the contextual factor importance learned by𝐶𝐴−𝐹𝐴𝑇𝐴.
The histogram shows the average importance of each contextual factor in the cluster.

contexts enables more nuanced modeling of user preferences and improves prediction accuracy. This conclusion is
reinforced by the superior performance of CAMF-C overMF and ECAM-NeuMF over NeuMF. To investigate the influence
of feature type importance on our proposed model’s performance, we introduce AVG-CA-FATA and AVG-FATA for
CA-FATA and FATA, respectively (refer to rows 12 and 14 in Table 2). In these models, the importance of each feature
type is uniformly set for all users. For instance, in Frappé, where there are five feature types, the importance is set to 0.2
for all users, while in Yelp, where there are three feature types, the importance is set to 0.33. Results demonstrate that
AVG-CA-FATA performs worse than CA-FATA, as does AVG-FATA when compared to FATA. Furthermore, comparisons
between FATA, AVG-FATA, CA-FATA, and AVG-CA-FATA confirm the advantages of incorporating user contexts and
modeling feature type importance across users.

To further visualize the impact of context, we represent each user by their contextual factor importance, computed
using Equation 1. We use the Frappé dataset as an example, where a vector of seven dimensions represents each user:
(𝜋𝑑𝑎𝑦𝑡𝑖𝑚𝑒

𝑢 , 𝜋
𝑤𝑒𝑒𝑘𝑑𝑎𝑦
𝑢 , 𝜋𝑖𝑠𝑤𝑒𝑒𝑘𝑒𝑛𝑑

𝑢 , 𝜋ℎ𝑜𝑚𝑒𝑤𝑜𝑟𝑘
𝑢 , 𝜋𝑤𝑒𝑎𝑡ℎ𝑒𝑟

𝑢 , 𝜋
𝑐𝑜𝑢𝑛𝑡𝑟𝑦
𝑢 , 𝜋

𝑐𝑖𝑡𝑦
𝑢 ). We apply K-means clustering for its simplicity

and effectiveness [30], and find that four clusters best fit the dataset, as illustrated in Figure 3(b). We then use UMAP [20]
to visualize the clustering results. Note that other dimension reduction techniques could also be used, but we choose
UMAP because it can preserve the underlying information and general structure of the data. The average importance of
each contextual factor in the seven clusters is shown in Figures 3(b), 3(c), 3(d), 3(e), revealing that users pay different
levels of attention to contextual factors in the different clusters. Note that the same visualization applies to the Yelp
data, due to limited space, we have omitted the visualization on the Yelp dataset.
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6 CONCLUSIONS AND PERSPECTIVES

In light of the interpretability challenges associated with existing feature attribution methods, we present a novel feature
attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA). CA-FATA
is a feature attribution framework that treats features as arguments that can either support, attack, or neutralize a
prediction using argumentation procedures. This approach provides explicit semantics to each step and allows for
easy incorporation of user context to generate context-aware recommendations and explanations. The argumentation
scaffolding in CA-FATA is designed to satisfy two important properties: weak balance and weak monotonicity, which
highlights how features influence a prediction. These properties help identify important features and study how
they influence the prediction task. We also introduce three explanation scenarios - strong recommendation, weak
recommendation, and not recommended, which can be used to explain why items have been recommended or not
recommended. Further investigation shows that CA-FATA can be integrated with interactive RSs, which take into
account immediate user feedback to improve and adapt recommendations on the go, please refer to here for more
details. Our experimental results show that CA-FATA outperforms several strong baselines regarding RMSE, MAE,
highlighting its ability to provide both accuracy, too. In the future, we plan to explore the applicability of CA-FATA
in other domains (e.g. under the ranking prediction scenario.) to verify its generalizability. To compute the score of
contextual factor and feature type, we adopted the inner product (in Equation 2). We plan to explore other functions for
this purpose. Additionally, we intend to conduct user studies to evaluate and compare the qualities of explanations
generated by other explanation methods.
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