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DYNAMICS OF AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES:
CLASSIFICATION, EXAMPLES AND OUTLOOK

SERGE CANTAT AND ROMAIN DUJARDIN

ABSTRACT. We first present an overview of our previous work on the dynamics of subgroups of
automorphism groups of compact complex surfaces, together with a selection of open problems
and new classification results. Then, we study two families of examples in depth: the first one
comes from folding plane pentagons, and the second one is a family of groups introduced by
Jérémy Blanc, which exhibits interesting new dynamical features.
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INTRODUCTION

This article is the sixth of a series dedicated to the dynamics of groups of automorphisms of
compact complex surfaces [18, 26, 24, 25, 23]. Our purpose is to review our previous work and
to enrich it with new examples, applications, and open problems. Let us briefly summarize its
contents and new features.

In the first two sections, we offer a detailed presentation of our results, illustrated with a large
number of open questions.

A standing assumption in our previous papers is that the surfaces into consideration are pro-
jective. It is natural to question this assumption and to relate the classification of surfaces to the
dynamics of their groups of automorphisms. This is dealt with in the first part of the paper: in
§ 3.3, we show that only projective surfaces can carry “non-elementary” automorphism groups
and we describe a few examples on Hopf surfaces in § 3.4.

Then, we explain how our theory applies to the following geometric examples:
(1) The first one comes from classical Euclidean geometry, and is given by folding plane

pentagons of given side length along their diagonals. Surprisingly enough, this gives rise to a
group action on a K3 surface, which is reminiscent of the Wehler family of examples, which
has been a thread in our work. These examples are studied in Part 2. Section 5 describes the
underlying algebraic geometry of the problem, which goes back to the work of Darboux [35]
on quadrilaterals and elliptic functions. The ergodic theory of random pentagon foldings is
analyzed in Section 6, in the spirit of the work of Benoist and Hulin [7, 8].

(2) In Part 3 (Sections 7 to 10), we focus on groups of automorphisms introduced by Blanc
in [12]. Each of these examples is determined by the choice of a plane cubic curve C Ă P2

C, an
integerm ě 3, andm points q1, . . ., qm onC. To each qj , one associates a Jonquières involution,
that fixes C pointwise and preserves the pencil of lines through qj . The group generated by these
m involutions lifts to a group of automorphisms on a rational surface X which is obtained by
blowing-up 5m points of C. A key property of these automorphism groups is that they preserve
a singular volume form with poles along the strict transform CX of C and whose total mass is
infinite. Using our previous results, we prove that, for an appropriate choice of the points qi,
the only ergodic stationary measures on XpRq are fixed points and are contained in CXpRq. In
particular, random orbits almost surely converge, on average, to the curve CXpRq. Thus, as we
shall explain, this behavior differs strongly from that of automorphisms of non-rational surfaces.

1. OVERVIEW AND OPEN PROBLEMS

In this section, we provide a detailed overview of our former results, with short introductions
to their proofs, as well as a description of our main new results and examples.

1.1. From orbit closures to stationary measures. Let X be a compact space and Γ be an
infinite group of homeomorphisms of X . We make the standing assumption that Γ is countable;
this will actually not be a restriction in the cases of interest to this paper. Our general aim is
to study the dynamics of such an action. In particular we wish to address the following usual
problems:
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(Pb1) describe the orbit closures Γ ¨ x, for x P X;
(Pb2) study the finite orbits of Γ

(1.1) PerpΓq “ tx; Γ ¨ x is finiteu ;

by definition, points of PerpΓq will be called Γ-periodic points.
(Pb3) classify Γ-invariant measures, that is, probability measures µ on X such that f˚µ “ µ

for all f P Γ;
(Pb4) describe the asymptotic distribution of Γ-orbits.

Observe that the last question is not properly formulated until a specific way of going to infinity
in Γ (in other words, a notion of “time”) has been described. A common choice for this is to fix
a probability measure ν on Γ such that xSupppνqy “ Γ and to explore Γ by walking at random
according to ν. Then the notion of asymptotic distribution of the orbit of x P X may either refer
to the asymptotics of the orbital averages

(1.2)
ż

δfn´1¨¨¨f0pxqdνpf0q ¨ ¨ ¨dνpfn´1q,

or to the time averages along random trajectories

(1.3)
1

n

n
ÿ

k“1

δfn´1¨¨¨f0pxq

for νN-almost every pfnqně0. In both cases, understanding the limit points essentially boils
down to the following problem:

(Pb5) classify ν-stationary probability measures.

Of course, (Pb5) subsumes (Pb3). To understand the meaning and relevance of (Pb5), let us first
recall that a probability measure µ on X is ν-stationary if

(1.4) µ “ ν ˚ µ :“

ż

f›µ dνpfq.

Since the measure in Equation (1.2) is the n-th convolution ν˚n ˚ δx, any limit point of this
sequence of measures is ν-stationary. Breiman’s ergodic theorem shows that the same is true for
the random empirical measures in Equation (1.3) (see [11, §3.2]). In particular, ifK is a compact
Γ-invariant subset of X , then starting from x P K one constructs ν-stationary measures with
support in K; these may also be obtained by applying a fixed point theorem to the operator
µ ÞÑ ν ˚ µ acting on probability measures on K. As a consequence, taking K “ Γ ¨ x, we see
that a solution to (Pb5) is also useful for (Pb1). This approach, using ergodic theoretic methods
to study orbit closures (that is, use (Pb5) and (Pb3) to study (Pb1)), is now commonplace in this
area of research.

So, the set of stationary measures on X is a non-empty, compact and convex subset of the
set of probability measures on X . It contains Γ-invariant probability measures, but in many
situations invariant measures fail to exist. Thus, stationary measures can be viewed as the correct
analogues of invariant measures when studying (large) groups of transformations instead of
cyclic groups (i.e. the iterations of a single homeomorphism). In this respect, it may seem
hopeless at first sight to classify all stationary measures, but, in fact, they often satisfy rigidity
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properties which make such a classification feasible. Results in homogeneous dynamics, in
particular the work of Ratner [78, 77, 58] and Benoist and Quint [9], illustrate perfectly this
line of thought. Similar phenomenon also appear in non-homogeneous dynamics, notably in the
work of Eskin and Mirzhakani [51] and Brown and Rodriguez Hertz [16]. Our work is strongly
influenced by these former results and the methods developed to reach them.

Remark 1.1. For ν-stationary (resp. Γ-invariant) measures, there is a notion of ergodicity: such
a measure is ergodic if it is an extremal point of the compact convex set of ν-stationary (resp. Γ-
invariant) measures. It is a non-trivial result that these two notions coincide, that is a ν-stationary
measure µ is ergodic if and only if every almost Γ-invariant subset A (i.e. µpfpAq∆Aq “ 0 for
every f P Γ) has measure 0 or 1. Hence, in the classification problems (Pb5) and (Pb3), it is
enough to restrict to ergodic measures.

1.2. Non-elementary groups of automorphisms and the classification of surfaces. In this
paper, X will be a compact complex surface. We denote by AutpXq its group of holomorphic
diffeomorphisms, which we call automorphisms, even when X is not algebraic. The group Γ

will be contained in AutpXq.
It would also be natural to consider actions by automorphisms on quasi-projective or affine

surfaces, for instance by polynomial automorphisms of C2, or even by birational transforma-
tions. Extending our results to this more general setting or to higher dimensions is an important
challenge, which would undoubtedly lead to serious difficulties. References include [19, 79, 57]
(see also Example 1.6, Remark 1.17, Question 1.14, and Theorem 2.2 below).

Two related constraints will be imposed on Γ. Firstly, Γ must be sufficiently large to expect
some measure rigidity property. For instance, if Γ is abelian, its stationary measures are auto-
matically invariant; and if Γ is generated by an automorphism with positive entropy, there are
uncountably many invariant ergodic measures, without any hope of classifying them. Secondly,
the action of Γ on the cohomology of X must also be “sufficiently large”. To explain this, recall
that AutpXq is a complex Lie group and, assuming X to be Kähler, a theorem of Fujiki and
Lieberman asserts that the connected component AutpXq0 of AutpXq is a subgroup of finite
index in the kernel of the homomorphism

(1.5) AutpXq Q f ÞÑ f˚ P GLpH2pX;Zqq

that describes the action on the cohomology. Then, using the invariance of the intersection form
onH2pX;Zq, the Hodge index theorem, and the Tits alternative, one obtains easily (see [21, 26])
the equivalence of the following properties for any subgroup Γ Ă AutpXq

(a) the image Γ˚ of Γ in GLpH2pX;Zqq is not virtually Abelian;
(b) the image Γ˚ of Γ in GLpH2pX;Zqq contains a pair of linear maps pf˚, g˚q generating a

non-Abelian free group;
(c) Γ contains a pair of automorphisms pf, gq with positive topological entropy generating a

non-Abelian free group.

Moreover, the classification of compact Kähler surfaces implies that if these properties are sat-
isfied for some Γ Ă AutpXq, then either X is a torus or AutpXq0 is trivial. From this, one
deduces that, up to finite index, only two distinct regimes need to be studied:
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(1) the case where Γ is contained in AutpXq0,
(2) the case where Γ satisfies the three equivalent properties (a), (b), (c).

The first case boils down to homogeneous dynamics, the main example being given by subgroups
of PGL3pCq acting by linear projective transformations on P2pCq. Thus, we focus on the second
case that is, we shall impose that Γ satisfies (a), (b), (c).

Even if our understanding of non-Kähler compact complex surfaces is less satisfactory, we
shall see in Section 3 that these properties are also relevant in this more general context. So, we
introduce the following

Definition 1.2. Let X be a compact complex surface. A subgroup Γ of AutpXq is non-
elementary if Γ˚ contains a non-Abelian free group, otherwise, it is elementary.

A first important result, proven below in Section 3, says that the existence of a non-elementary
subgroup Γ Ă AutpXq forcesX to be projective, hence, by the GAGA principle, it also forces Γ

to act by regular algebraic transformations. Consequently, the study of non-elementary actions
belongs to algebraic dynamics.

Theorem 1.3. Let X be a compact complex surface such that there exists a non-elementary
subgroup Γ Ă AutpXq. Then X is projective and it must be a blow-up of P2, a K3 surface, an
Enriques surface, or an Abelian surface

A consequence is that, unless X is a torus, AutpXq0 is trivial, hence AutpXq is discrete, and
the countability assumption on Γ is automatically satisfied. As suggested by this theorem, ex-
amples of non-elementary group actions are scarce and rely on algebro-geometric constructions.
Besides the following two classes of examples, several new ones will be discussed in this paper.

Example 1.4. The first examples are found on (certain) compact tori X “ C2{Λ. Recall that
every automorphism of such a surface is induced by an affine transformation x P X ÞÑ Ax`B,
where A P GL2pCq preserves Λ and B P C2. By Theorem 1.3, if AutpXq is non-elementary,
then X must be projective, that is, be an Abelian surface.

More generally, a Kummer group pX,Γq is, by definition, a compact complex surface X
endowed with a subgroup Γ of AutpXq, such that there exists a torus X 1 “ C2{Λ, a subgroup
Γ1 Ă AutpX 1q, and a generically finite, dominant rational map ϕ : X 1 Ñ X that semi-conjugates
Γ1 to Γ (i.e. ϕ˝Γ1 “ Γ˝ϕ). We refer to [24, §4] for details and a classification of such examples.
Kummer examples can be analyzed with tools from homogeneous dynamics, and as we will see,
they often stand out for their exceptional, distinctive properties, somewhat similar to those of
monomial, Tchebychev, and Lattès mappings in one-dimensional dynamics (see [20]).

Example 1.5. Consider the family of all K3 surfaces in P1 ˆ P1 ˆ P1 (equivalently, smooth
surfaces of tri-degree p2, 2, 2q); they depend on 26 parameters. If X is such a surface, the
three natural projections onto P1 ˆ P1 are dominant morphisms of degree 2, and each of them
determines a regular involution of X (which exchanges the two points in the fibers). Thus, X
comes with a group Γ Ă AutpXq, generated by this involutions. For a general choice of X ,
Γ is non-elementary. We shall refer to these examples pX,Γq as Wehler examples. These
were studied thoroughly in our work (see [26, 24, 23]). The family of pentagon folding groups
introduced in Part 2 is in many ways reminiscent from the Wehler family.
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Example 1.6. Let us mention an example which is unfortunately excluded by our assumptions,
because the surface is not compact (when compactifying the surface, the automorphisms become
birational transformations). Consider the affine surface M0 Ă C3 defined by

(1.6) x2 ` y2 ` x2 “ 3xyz.

It is a cubic surface, endowed with three natural 2-to-1 ramified covers onto C2, obtained by
forgetting one of the variables, each of which defining a regular involution onM0. The dynamics
of the group generated by these involutions was studied by Markov in his 1879 thesis, in relation
to the study of binary quadratic forms and Diophantine approximation, and M0 is now called
the Markov surface. It can be considered as a degenerate Wehler example. We refer to [19, 40,
79, 57] and [80] in this volume for a dynamical viewpoint on these surfaces.

1.3. Further remarks: parabolic elements, fields of definition, irrational surfaces. From
now on we will assume that Γ Ă AutpXq is non-elementary and therefore that X is projective.
Our strongest results feature an additional hypothesis on Γ, namely the existence of parabolic
elements. The vocabulary is as follows. An automorphism f P AutpXq is elliptic if f˚ is a
finite order element of GLpH2pX;Zqq. It is loxodromic if the spectral radius λf of f˚ isą 1; in
that case, λf is the only eigenvalue of f˚ with modulusą 1, it is simple, and logpλf q is equal to
the topological entropy of f : X Ñ X . Otherwise, f is parabolic; this means that some iterate
pf˚qk, for some k ě 1, is unipotent and distinct from the identity. In this case, there is a unique
genus 1 fibration π : X Ñ B which is f -invariant; this means that there is an automorphism fB
of the Riemann surface B such that π ˝ f “ fB ˝ π; moreover, fB has finite order, except if
X is a torus C2{Λ. Hence, assuming X is not a torus and changing f into a positive iterate, f
preserves every fiber, each smooth fiber is a genus 1 curve, and f acts upon it as a translation;
such maps are referred to as Halphen twists. The analysis of these parabolic automorphisms
leads to rich structures and is connected to the field of discrete integrable systems (see [25, §3]
for an account, and [47] for a thorough treatment).

With this vocabulary, Γ is non-elementary if and only if it contains a pair of loxodromic ele-
ments pf, gq that generates a non-Abelian free group. The hypothesis that Γ contains a parabolic
element is of a different nature –it is analogous, in Ratner’s theory, to the existence of unipotent
elements. If Γ contains two parabolic elements preserving distinct fibrations, then Γ is non-
elementary; conversely, if Γ contains a parabolic element and is non-elementary, then it contains
two parabolic elements with distinct invariant fibrations. We refer to [21, 26] for these results.

Our results may also depend on the field of definition. When X is projective, X and Γ are
defined by polynomial equations and formulas with coefficients in a subfield of C. Some of our
results require that X and Γ be defined over R, in which case one might restrict the dynamics to
the real part XpRq Ă X . Some require that X and Γ are defined over Q.

Another thing that the reader should keep in mind comes from the classification of surfaces.
By Theorem 1.3, surfaces for which AutpXq is non-elementary fall into two types.

– If X is rational, then X is a blow-up of the plane P2 at at least 10 points; as we shall see, a
non-elementary subgroup Γ Ă AutpXq may or may not preserve a continuous volume form.
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– If X is not rational, then X is a blow-up of a K3, Enriques, or Abelian surface X0; moreover,
by the uniqueness of the minimal model, the group AutpXq is obtained by pulling back of a
subgroup of AutpX0q. On X0, there is a natural AutpX0q-invariant volume form, induced by
the triviality of the canonical bundle KX0 or its square Kb2

X0
. This volume form lifts to X as

an AutpXq-invariant form which vanishes only along the exceptional divisor of the birational
morphism X Ñ X0.

Some of our dynamical results do require the existence of such an invariant volume form, a
hypothesis that might fail only for rational surfaces. Note that if X is irrational and defined over
R, there is an AutpXRq-invariant volume form on XpRq as well.

1.4. Stiffness. Let us now come back to our five initial problems. As explained in the previous
sections, we only deal with non-elementary group actions on projective surfaces. We refer to [26,
§10.3] for elementary actions on compact Kähler surfaces and to § 3.4 below for some remarks
on the non-Kähler case.

We say that a probability measure µ on X is Zariski diffuse if it gives no mass to proper
Zariski closed subsets of X . Ergodic stationary or invariant measures which are not Zariski
diffuse are easily analyzed (see [26, Prop. 10.6]), so we focus on Zariski diffuse measures.

In certain situations, (Pb5) is actually equivalent to (Pb3); this happens whenever all ν-
stationary measures are invariant: this is the stiffness (or ν-stiffness) property of Fursten-
berg [56]. An obvious obstruction to stiffness is when there is no Γ-invariant measure at all.
The overall philosophy of [26] is the converse: non-elementary group actions on compact com-
plex surfaces admitting a natural Zariski diffuse invariant measure tend to be stiff (in fact, this
“principle” also applies to elementary groups). In this respect, recall from § 1.3, that if X is not
rational, then, working on the minimal model X0 of X , there is a natural invariant volume form.

Let us be more specific. Let Γ Ă AutpXq be a non-elementary group of automorphisms of a
complex projective surface. Fix a probability measure ν on Γ satisfying the generating condition

(S) Supppνq generates Γ

and the moment condition

(M)
ż

´

log }f}C1pXq ` log
›

›f´1
›

›

C1pXq

¯

dνpfq ă `8.

Condition (S) is natural if we want the random dynamics to faithfully describe the group action
and necessary. Condition (M) is necessary to apply the tools of smooth ergodic theory; note
that by the Cauchy estimates, it automatically implies the same finiteness for the Ck norm.
Pick an ergodic ν-stationary measure µ. Then µ admits two Lyapunov exponents λ´ ď λ`.
These exponents are defined by applying the Oseledets theorem fiberwise to the (non-invertible)
dynamical system associated to the random dynamics:

(1.7) F` :
ΩˆX ÝÑ ΩˆX
pω, xq ÞÝÑ pσω, f1

ωpxqq

where Ω “ AutpXqN, ω “ pfnqně0, σ is the shift and fnω “ fn´1˝¨ ¨ ¨ ¨ ¨ ¨˝f0 (so that f1
ω “ f0).

If λ´ ă 0 ă λ`, one says that µ is hyperbolic. Then, Oseledets theorem provides a measur-
able line field of stable directions Esωpxq defined for νN ˆ µ-almost every pω, xq. We say that
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Es is non-random if it does not depend on ω; more precisely, if for µ-almost every x, there is
a line Espxq Ă TxX such that Esωpxq “ Espxq for νN-almost every trajectory ω. Our first key
result is the following (see [26, Thms C and 9.1]).

Theorem 1.7. Let Γ Ă AutpXq be a non-elementary group of automorphisms of a (necessarily
projective) compact complex surface. Let ν be a probability measure on Γ satisfying Conditions
(S) and (M), and let µ be a Zariski diffuse, ergodic, and hyperbolic ν-stationary measure. If the
field of Oseledets stable directions is non-random, then µ is Γ-invariant.

When λ` ě λ´ ě 0, the invariance principle of Crauel [33] (this terminology is due to
Avila-Viana [3]) directly implies that µ is invariant. Thus, if Γ preserves a volume form, we
have λ` ` λ´ “ 0, and for the stiffness problem we just have to consider hyperbolic measures.

Now, assume in addition thatX and Γ are defined over R, thatXpRq is non-empty, and that Γ

preserves an area form on XpRq; more generally, we can consider a Γ-invariant, smooth, totally
real surface Σ Ă X on which Γ preserves an area form. Then, we can apply the results of Brown
and Rodriguez Hertz [16], which assert that for a volume preserving action on a 2-dimensional
real surface, the randomness of the stable line field Esωpxq implies the invariance of µ (see [16,
Thm 3.4]). From this and the previous considerations, we get:

Theorem 1.8. Let Γ Ă AutpXq be a non-elementary group of automorphisms of a compact
complex surface. Let ν be a probability measure on Γ satisfying Conditions (S) and (M). Let
Σ Ă X be a Γ-invariant, smooth, totally real surface that supports a Γ-invariant area form.
Then, any Zariski diffuse ν-stationary measure on Σ is Γ-invariant.

We expect that similar techniques will provide the same result on the complex surface X ,
without restricting to a real submanifold. Indeed, the following result ought to be true: under
the assumptions of Theorem 1.7, if Γ preserves a smooth volume form on X , then every Zariski
diffuse ν-stationary measure is Γ-invariant. In particular, this automatic invariance of Zariski
diffuse stationary measures should hold for K3 surfaces. At the time of writing these lines, new
results have been announced by Brown, Eskin, Filip and Rodriguez-Hertz [15], which should
complete this story.
Notes on the proof.– The proof of Theorem 1.7 occupies most of [26]. It relies on the fol-
lowing chain of ideas: if Es is non-random then either (1) µ satisfies a strong form of zero
fiber entropy (see Section 2 for this notion) which makes it invariant or (2) the (global) stable
manifolds W s

ωpxq, obtained from Pesin theory, are non-random as well. Now, almost every
stable manifold W s

ωpxq is biholomorphic to C and, to any non-constant entire curve C Ñ X ,
one can associate its so-called Ahlfors-Nevannlina currents (obtained as limits of integration on
large disks in C). Thus, to almost every point pω, xq is associated a set of closed positive cur-
rents. In this dynamical situation, we show that there is in fact a unique current T sω associated to
W s
ωpxq and that T sω depends only on ω. Thus, if the stable manifolds are non-random, the T sω are

non-random as well, hence so are their cohomology classes rT sωs P H
2pX,Rq. But these coho-

mology classes can be analyzed by looking at the action of Γ onH2pX;Rq. Using Furstenberg’s
theory of random products of matrices (applied to the action of pΓ˚, νq on H2pX,Rq) and the
non-elementary assumption, we prove that these classes rT sωs should in fact depend non-trivially
on ω. This contradiction rules out case (2), and the theorem follows.
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1.5. A new instance of stiffness. Theorem 1.8 requires the existence of an invariant area form.
In Part 3, we study a family of examples on rational surfaces, first defined by Blanc in [12],
that do not preserve any smooth volume form. The following theorem summarizes the main
properties of our examples:

Theorem 1.9. Let C be a smooth, connected, real cubic curve in P2. Let k ě 4 be an integer.
One can find a set of 5k points of CpCq, consisting of 3k real points and k pairs of complex
conjugate points, such that, after blowing up the plane at these 5k points, one gets the following
objects:

(1) a rational surface X , in which the strict transform CX of C is a curve of genus 1;
(2) a non-elementary group Γ Ă AutpXq isomorphic to the free product ˚k

1 Z{2Z;
(3) a rational 2-form ΩX that does not vanish, has poles of order 1 along CX , and is Γ-

invariant;
(4) X , Γ, CX , and ΩX are defined over R; the total volume of ΩX ^ ΩX is infinite and,

after restriction to XpRq, the total area of ΩX is also infinite.

The dynamics on XpCq satisfies:

(5) every orbit Γ ¨ x Ă XpCq is infinite, except for x P CXpCq, in which case Γ ¨ x “ txu;
(6) pΩX ^ ΩXq-almost every Γ-orbit is dense in XpCq.

And for the real dynamics on XpRq we get:

(7) every infinite orbit in XpRq is dense in XpRq;
(8) if ν is a probability measure on Γ satisfying Conditions (S) and (M), then every ergodic

ν-stationary measure on XpRq is a Dirac mass δx at some point x P CXpRq; such
stationary measures have zero Lyapunov exponents;

(9) the action of Γ on H1pXpRq;Rq has a positive Lyapunov exponent (in the sense of
Furstenberg’s theory).

The last property contains in particular the existence of automorphisms f P Γ with an eigen-
valueą 1 onH1pXpRq;Rq: such automorphisms have positive entropy in the real locusXpRq.
The proof occupies all of Part 3 and uses most of our previous results. In particular, the data (C
and the points that we blow up) must be defined over Q.

It is interesting to compare this family of examples with the following ones coming from
homogeneous dynamics.

Example 1.10. Consider the group SL2pRq, acting by linear projective transformations on the
real projective line P1pRq. The diagonal action on P1pRq ˆ P1pRq preserves the form

(1.8)
dx^ dy

px´ yq2
.

This meromorphic section of the canonical bundle KP1ˆP1 does not vanish and has a double
pole along the diagonal; its total area is infinite. Now, consider Γ “ SL2pZq Ă SL2pRq acting
diagonally on P1pRqˆP1pRq. The closure of every Γ-orbit is equal to P1pRqˆP1pRq or to ∆.
If ν is a probability measure on Γ satisfying Condition (S), then there is a unique ν-stationary
measure µν on P1pRqˆP1pRq, this measure is supported on ∆, and it is not invariant. Moreover,
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the action of Γ on π1pP1pRq ˆP1pRqq » Z2 is trivial, and the entropy of every f P Γ vanishes.
The standard action of SL2pZq on R2 Ă P2pRq provides a similar example, for which the origin
is fixed and rational points have discrete orbits in R2.

Notes on the proof.– The mechanism for the stiffness property in Theorem 1.9 is quite dif-
ferent from that of Theorem 1.8. This time, we use Theorem 1.7 and [16], together with the
existence of a singular invariant volume to prove by contradiction that all ergodic stationary
probability measure µ have vanishing Lyapunov exponents. So by the invariance principle all
stationary measures are invariant, and the existence of parabolic elements in the group allows
for a complete classification (see Theorem 1.13 below).

All the examples of non-elementary groups encountered so far admit an invariant probability
measure.

Question 1.11. Does there exist a non-elementary group action on a rational projective surface
without any invariant probability measure?

Such an example could be found only on a rational surface. A natural candidate would be
Lesieutre’s tri-Coble examples, briefly described in § 4.4 below.

Another question, which is somehow dual to the previous one, is the following:

Question 1.12. If Γ Ă AutpXq is a non-elementary subgroup preserving a smooth volume
form, does Γ admit a hyperbolic stationary measure on X (for some probability measure on Γ

satisfying (S) and (M))?

If Γ possesses a parabolic element, then by [23, Thm 1.3], the invariant volume itself is hy-
perbolic. In the general case, if there is no hyperbolic measure, then by the invariance principle,
every stationary measure is invariant, so this is really a question about the classification of in-
variant measures (more precisely, about the second line of the table in Section 2). Note that
without the volume preserving assumption, Theorem 1.9 shows that the answer to this question
(on XpRq) is negative. Note also the connection with the following fundamental open problem
from conservative dynamics: if f is a volume-preserving loxodromic automorphism on a com-
pact complex surface X , does the invariant volume have positive measure theoretic entropy?

These questions, as well as the proof of Theorem 1.9 are a source of motivation for the
classification of invariant measures, which we discuss now.

1.6. Classification of invariant measures. Probability measures invariant under a non-elemen-
tary group are subject to so many constraints that it is reasonable to hope for a complete classi-
fication. Still, in its full generality, this problem remains out of reach for the moment1.

Theorem 1.13. Let Γ Ă AutpXq be a non-elementary group of automorphisms of a projec-
tive surface containing a parabolic element. Let µ be an ergodic, Zariski diffuse, Γ-invariant
measure. There exists a proper Γ-invariant subvariety Z Ă X such that:

1To illustrate the difficulty of this kind of question, it may be interesting to recall that Furstenberg’s famous
problem asking for a classification of measures on the circle invariant under ˆ2 and ˆ3 is still open to date (this is
however quite different from our setting since it concerns an Abelian semigroup).
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– either µ is a measure with a smooth positive density in XzZ;
– or there exists a Γ-invariant totally real surface embedded in XzZ such that µ is a

measure with a smooth positive density on Σ.

This result, obtained in [18, 25], shows that if Γ is non-elementary and contains a parabolic
element, the classification problem for invariant measures is completely solved (see [25, Thm A]
for a precise statement). This classification comes with an almost complete description of orbit
closures (which is most satisfactory under additional assumptions, see § 1.9). A consequence of
this classification and of the results described in Section 1.7 is that if Γ does not preserve any
curve, there are only finitely many ergodic Γ-invariant measures, unless X is a torus.
Notes on the proof.– The first input to prove Theorem 1.13 is that if h P Γ is a parabolic
automorphism preserving the fibers of a genus 1 fibration π : X Ñ B, then h acts as a uniquely
ergodic translation on most fibers of π (it also acts periodically on a dense, countable set of
fibers). Thus, any h-invariant measure can be described in terms of its disintegration along the
fibers of π. From this it follows rather easily that any ergodic Zariski diffuse Γ-invariant measure
satisfies a local homogeneity property (i.e. some local invariance under connected groups of
translations), which implies that it is either absolutely continuous with respect to the Lebesgue
measure on X , or to the Lebesgue measure on an immersed totally real surface Σ. The delicate
issue is to show, in the latter situation, that Σ globalizes to an embedded submanifold outside
some algebraic subset Z.

When Γ does not contain parabolic elements, the classification of invariant measures is still
at an early stage, and is arguably the main open problem in our program. It can be subdivided in
several sub-problems of independent interest; since the discussion at this point becomes rather
technical, we defer it to Section 2. Let us just mention one open question, which we formulate
in the easiest context of automorphisms of the affine plane.

Question 1.14. Can one construct two polynomial automorphisms f and g of C2 such that

(i) f and g fix the origin o;
(ii) there is a germ of holomorphic diffeomorphism ϕ : pC2, oq Ñ pC2, oq that conjugates

f and g simultaneously to two elements of SU2pCq;
(iii) the group generated by f and g is a non-Abelian free group.

Our expectation is that such an example does not exist. If such an example were to be found,
it would have an invariant probability measure for each small sphere centered at the origin.

1.7. Finite orbits and arithmetic dynamics. For a non-elementary group Γ, the existence of a
finite orbit is an overdetermined property. Indeed, if f P AutpXq is a loxodromic element, then
its periodic points of sufficiently large period form a countable subset of X , and any Γ-periodic
point must be f -periodic for every f P Γ. Since Γ is non-elementary, it contains two loxodromic
automorphisms f and g satisfying no algebraic relation (see § 1.2). In this case it is expected
that Perpfq X Perpgq is finite, or contained in a curve of xf, gy-periodic points

Example 1.15. To implement these ideas, a first approach is to work in families and prove
generic results. In the family of Wehler examples (see Example 1.5), we proved in [24, Thm
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A] that a very general member has no periodic orbit. Such a result is still open for other natural
families (see Questions 4.2 and 6.6 below). In this paper, we develop new methods to get similar
results for pentagon foldings (see Part 2) and Blanc’s examples (see Part 3).

A deeper problem is to deal with specific, individual examples. Then the existence of infin-
itely many finite orbits for a non-elementary group falls into the setting of unlikely intersection
problems (see [87]), and it will not be a surprise to the experts that methods from arithmetic
geometry arise here. For instance, the following result was established in [24, Thm B].

Theorem 1.16. Let X be a projective surface defined over Q. Let Γ Ă AutpXq be a non-
elementary group, defined over Q and containing a parabolic element. If PerpΓq is Zariski
dense, then pX,Γq is a Kummer example.

Thus, when X is not a Kummer surface, PerpΓq is the union of a Γ-invariant curve, together
with finitely many isolated points2.
Notes on the proof.– Fix a probability measure ν on Γ with finite support generating Γ. First,
we construct a height function hν on XpQq such that

ř

f νpfqh ˝ f “ λνh for some λ ą 1. It
follows that Γ-periodic points have zero height. Assuming the existence of a Zariski dense set
of periodic orbits, and using Yuan’s equidistribution theorem for small points, we construct a
Γ-invariant measure with special properties. To conclude, we use the classification of invariant
measures described in Theorem 1.13, and a rigidity result proved in [27]. The existence of
parabolic elements is used at several places in the proof, notably to apply Theorem 1.13 (see [24,
§6.3] for a discussion). Corvaja, Tsimerman and Zannier [31] recently proved a closely related
theorem which also requires parabolic elements. Their proof is based on different ideas (o-
minimal geometry, variation of the canonical height for families of elliptic curves, etc).

Remark 1.17. In [54], Wehler examples with a finite but large number of periodic points are
constructed. In the closely related case of Markov type surfaces

(1.9) x2 ` y2 ` z2 “ xyz ` ax` by ` cz ` d,

where pa, b, c, dq P C4 is a parameter, all possible finite orbits have been classified (see [70]).
The only parameter with infinitely many periodic orbits is p0, 0, 0, 4q; the corresponding surface
is the quotient of the multiplicative group Cˆ ˆCˆ by the involution pu, vq ÞÑ p1{u, 1{vq, and
the group action on Mp0,0,0,4q lifts to the monomial action of GL2pZq; finite orbits correspond
to torsion points. Thus, the situation is perfectly similar to that of Kummer examples, but for a
multiplicative torus.

Surprisingly enough, Theorem 1.16 can be used to prove the same result when X and Γ are
defined over C; in that case we must suppose (for technical reasons) that Γ does not preserve
any curve, and the existence of infinitely many periodic orbits then implies that X is a torus
(see [24, Thm C]). Related, stronger, results were obtained for polynomial automorphisms of
C2, and more generally affine surfaces [48, 1]. This motivates the following question:

2Here, we use the following fact: if Γ acts by automorphisms on a curve C with a Zariski dense set of periodic
points, then the image of Γ in AutpCq is finite. Indeed, C has only finitely many irreducible components, and if a
subgroup Γ0 acts on some irreducible component Ci by fixing a subset Fi such that the Euler characteristic of CizFi
is negative, then the restriction of Γ0 to Ci is finite.
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Question 1.18. Can we classify pairs of automorphisms pf, gq of positive entropy on a compact
projective surface having a Zariski dense set of common periodic points? Or having the same
maximal entropy measure?

Note that in the second question the common maximal entropy measure would be a xf, gy-
invariant measure, so we are back to the theme of § 1.6. If one can show that this measure is
smooth, then the main result of [27] implies that pX, xf, gyq is a Kummer example; the proof of
Theorem 1.16 relies on this fact.

In one-dimensional algebraic dynamics, unlikely intersection problems are better understood.
For instance, one can produce uniform bounds on the number of common periodic points (instead
of orbits) for pairs of distinct quadratic maps z ÞÑ z2 ` c, z ÞÑ z2 ` c1: we refer to [38, 39] for
precise results. Here is a version of this problem for non-elementary groups of automorphisms:

Question 1.19. Is there a uniform bound for # PerpΓq in the family of (smooth) Wehler exam-
ples?

Note that for a general parameter in the Wehler family there is no invariant curve, so PerpΓq

is indeed finite (see [26, Prop. 3.6]). Examples of Wehler groups with # PerpΓq ě 288 were
constructed in [54] (see Remark 1.17). On the other hand, some singular Wehler examples are
Kummer hence give rise to a dense set of periodic orbits (see [20, Ex. 8.3]).

Let us conclude this section with a last question which may be considered as a variation on
a prediction of Kawaguchi and Silverman [63]. Assume that X and Γ are defined over Q and
that Γ is non-elementary. Fix a polarization H of X , denote by h : XpQq Ñ R` a Weil height
associated to H . For every f P AutpXq, let

(1.10) degHpfq “ H ¨ pf˚Hq.

Fix a point x P XpQq with a Zariski dense orbit, and set

(1.11) Npx;Rq :“ # ty P Γ ¨ x ; hpyq ď Ru .

Kawaguchi and Silverman suggested that the Zariski density of Γ ¨ x should imply that hpfpxqq
is of the same order of magnitude as degpfq. More precisely, introduce the counting function

(1.12) NdegpRq :“ # tf P Γ ; degpfq ď Ru ,

and ask:

Question 1.20. If Γ Ă AutpXq is a non-elementary automorphism group defined over Q, and
x P X has a Zariski dense orbit, does Npx;Rq grow like NdegpRq?

The group Γ acts on a hyperbolic space HX Ă H1,1pX;Rq (see Section 3), and logpdegHpfqq

is comparable to the distance in HX between the cohomology class pH ¨Hq´1{2rHs and its im-
age by f˚. From this, we see that NdegpRq is a classical counting function for orbits of discrete
isometry groups in hyperbolic geometry. As a consequence, NdegpRq grows like Rα, where α
is the Hausdorff dimension of the limit set of the isometry group Γ˚ Ă IsompHXq (see [5, 41]).
Question 1.20 was answered positively by Baragar in [5] for some K3 examples; this problem is
also well understood for Markov surfaces (see [57] for an account). The interested reader should
also consult [52].
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1.8. Equidistribution and uniform expansion. Up to now, we addressed Problems (Pb2),
(Pb3), (Pb5), i.e. the study of stationary and invariant measures. We asserted in § 1.1 that
classifying stationary measures is the key step to understand the asymptotic, stochastic distri-
bution of orbits, or more precisely the limiting behavior of the averages (1.2) and (1.3). This
assertion, while certainly correct, hides a final difficulty. Imagine an ideal situation where the
set of ν-stationary measures is completely described, and its extremal points are given by some
smooth (or Zariski diffuse) measure µ0 and a finite or countable set of finite orbits. If x P X is
a general point, the limit points of the averages (1.2) and (1.3) are convex combinations of these
ergodic measures. The problem is to decide which combinations do arise; this is where uniform
expansion comes into play. Let ν be a probability measure on AutpXq, and set Γ “ xSupppνqy.
We say that ν is uniformly expanding if there exists c ą 0 and an integer n0 such that for every
x P X and every v P TxXzt0u,

(1.13)
ż

log
}Dxfpvq}

}v}
dνpn0qpfq ě c,

where νpnq denotes the nth convolution power of ν, and the norm is relative to some given
Riemannian metric onX . This notion was introduced in non-linear random dynamics in [73, 30],
notably to get equidistribution results analogous to those obtained in homogeneous dynamics
in [50, 10]. Now, suppose that ν is uniformly expanding and satisfies

(M`) there exists p ą 1 such that
ż

´

log }f}C1pXq ` log
›

›f´1
›

›

C1pXq

¯p
dνpfq ă `8.

Let F be a finite Γ-orbit. Then, if x P X has an infinite orbit, any cluster value of the sequence
of measures in (1.2) or (1.3) gives zero mass to F (see [23, Thm 4.3]). Indeed, the uniform
expansion condition makes F repelling on average, an idea which is formalized by the notion of
Margulis function. So in the ideal situation described above, every infinite orbit equidistributes
towards the smooth stationary measure µ0. Moreover, in the real volume-preserving setting,
where two natural Zariski diffuse ergodic measures exist, given respectively by an invariant
volume form on X and an invariant area form on XpRq, we can also decide which orbits are
equidistributed with respect to the first or the second measure (see [23, §4.3]).

In homogeneous dynamics, establishing uniform expansion boils down to an expansion prop-
erty for a random product of matrices. In a non-linear context, the situation is more delicate;
fortunately, an abstract ergodic criterion for expansion was devised in [73, 30], which fits well
with our holomorphic setting. This leads to a neat necessary and sufficient condition for uniform
expansion on non-rational surfaces (see [23, Thm 1.5]):

Theorem 1.21. Let X be a compact complex surface which is not rational. Let Γ Ă AutpXq
be a non-elementary group containing parabolic elements. Let ν be a probability measure on
AutpXq satisfying Conditions (S) and (M). Then, ν is uniformly expanding if and only if the
following two conditions hold:

(1) every finite Γ-orbit is uniformly expanding;
(2) there is no Γ-invariant algebraic curve.

Again, we assume that Γ contains a parabolic element because the classification of invariant
measures is used in the proof.



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 15

In many interesting situations, we have a family pXλ; ΓλqλPΛ of non-elementary automor-
phism groups, parameterized by some quasi-projective manifold. Then, as in Example 1.15,
we developed tools to exclude the existence of proper, Zariski closed invariant subsets for very
general parameters λ P Λ. Hence, for these parameters, uniform expansion holds. In addition,
Condition 1.13 is robust under C1 perturbations, so this dense subset of uniformly expanding
parameters is automatically promoted to an open and dense subset. In Part 2, we apply these
ideas to the dynamics of random pentagon foldings.

Another interesting consequence of uniform expansion is that a volume preserving uniformly
expanding action on a (connected, compact, real or complex) surface is automatically ergodic
with respect to the invariant volume. This follows from a Hopf-type argument (see [46, 30]). An
interesting question (which goes beyond complex dynamics) is whether such an ergodicity can
be made quantitative (for uniformly expanding actions). To formalize this question, denote by
dvol the invariant volume form. Then, consider the Markov operator

(1.14) Pν : ϕ ÞÑ

ż

ϕ ˝ f dνpfq

acting on some Banach space of continuous functions. Then, the question is to determine the
speed of convergence of Pnν towards

ş

ϕdvol. Is it exponential? A positive answer seems beyond
reach for the moment, since it is open even in the homogeneous case, except for linear maps on
tori, for which the Fourier techniques of [14] provide effective estimates.

1.9. Back to orbit closures. Putting together the results of §§ 1.4, 1.6, 1.7 and 1.8, we arrive
at a complete understanding of orbit closures, under rather strong assumptions (see [23, Thm.
10.1]).

Theorem 1.22. Let X be a compact complex surface which is not rational. Let Γ Ă AutpXq be
a non-elementary group containing parabolic elements, and satisfying conditions (1) and (2) of
Theorem 1.21. Then there exists a finite set F and a real-analytic (possibly singular) totally real
surface Σ, both Γ-invariant, such that

– if x P F then Γ ¨ x is finite;
– if x P ΣzF , then Γ ¨ x is a union of components of Σ;
– otherwise Γ ¨ x “ X .

Under less stringent hypotheses, but still assuming that Γ contains parabolic elements, weaker
results on orbit closures are obtained in [25, §8], which deserve further study.

Problem 1.23. Complete the classification of orbit closures when Γ is non-elementary and con-
tains a parabolic element.

Comments.– In [25, §8], we classified closed, Γ-invariant subsets F whose accumulation locus
AccpFq is not contained in some explicit invariant algebraic subset STangΓ. Thus, when there
is no proper invariant algebraic subset, or more generally when uniform expansion holds, this
leads to a complete classification. In the general case we must understand the situation where
AccpΓ ¨ xq Ă STangΓ. It is easy to see that in this situation x must be g-periodic for each
parabolic g P Γ. In this case one expects that x P PerpΓq, but this result is not yet available
(see [31] for partial results). See Theorem 10.5 below for a worked out example.
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2. APPENDIX: CLASSIFICATION OF INVARIANT MEASURES

This section is a complement to § 1.6 and may be skipped on a first reading. We discuss what
needs to be done to describe invariant probability measures for non-elementary groups that, a
priori, do not contain parabolic elements.

2.1. Reducing the number of cases. We fix a complex projective surfaceX and a non-elementary
subgroup Γ of AutpXq. Let µ be a Zariski diffuse, ergodic, Γ-invariant probability measure. It
is useful to introduce a probability measure ν on Γ satisfying Conditions (S) and (M) in or-
der to speak about the Lyapunov exponents of µ; since they depend on ν, we denote them by
λ´pνq ď λ`pνq.

A preliminary observation is that the exponents cannot be simultaneously positive (resp. nega-
tive), because in such a case a classical Pesin-theoretic argument implies that µwould be atomic.
So λ´pνq ď 0 ď λ`pνq and if λ´pνq “ λ`pνq, then both exponents vanish. This gives three
distinct possibilities: either λ´pνq ă 0 ă λ`pνq, or exactly one of the exponents vanish, or
both of them vanish. We shall also distinguish three possibilities, depending on the number of
invariant line fields: (1) no invariant line field, or pair of invariant line fields; (2) there exists a
measurable Γ-invariant line field E Ă TX; (3) there exists an invariant measurable pair of line
fields E1, E2 Ă TX . This leads to the following table of 12 possibilities:

no invariant line field
or pair of line fields

DE ď TX
invariant line field

DE1, E2 ď TX pair
of invariant line fields

Dν, λ`pνq “ λ´pνq “ 0 A1 A2 A3
@ν, λ`pνq “ λ´pνq “ 0 B1 B2 B3
Dν, λ´ ă λ` & λ´λ` “ 0 C1 C2 C3
Dν, λ`pνq ă 0 ă λ´pνq D1 D2 D3

Let us discuss this table and the relationship between its entries. Note that the third row of
this table does not appear in the volume preserving case.

2.1.1. The first column. The case when both exponents vanish (the first line) is analyzed in
Section 7 of [23]. In case A1, Theorems 7.2 and 7.3 of [23] imply that the cocycle given by
the action of Γ on the projectivization of the tangent space is measurably reducible to a compact
group. In particular A1 implies B1.

The proof of Theorem 5.1 in [16] (see §13.2.4) shows that case C1 reduces to case D1.

2.1.2. The second column. When there is a measurable invariant line field x ÞÑ Epxq, the
Lyapunov exponent in the direction of E, which is one of λ´pνq or λ`pνq, is given by the
explicit formula

(2.1) λEpνq “

ż

log
›

›Df |Epxq
›

›dµpxqdνpfq “

ż

λEpf, µqdνpfq,

where λEpf, µq is the integrated Lyapunov exponent of µ as an f -invariant measure (note that
µ is not necessarily f -ergodic). The second exponent admits also a simple expression, because
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it is equal to λ´pνq ` λ`pνq ´ λEpνq, and

(2.2) λ´pνq ` λ`pνq “

ż

log |Jacfpxq|dµpxqdνpfq,

where Jac is the Jacobian determinant with respect to any given smooth volume form on X .
Let us show that A2 reduces to B2, C2 or D2. There are two possibilities: either λEpf, µq “ 0

for every f , or not. In the first case we are in situation B2. In the second, we can change ν to put
more weight on an element with λEpf, µq ‰ 0 to impose λEpνq ‰ 0; doing so, we fall in C2 or
D2 (moreover, in C2 the non-vanishing exponent is along the invariant line field).

2.1.3. The third column. There are two possibilities: either every f P Γ preserves (resp. ex-
changes) the directions E1 and E2 almost everywhere, or not. In the first case, there is an index
2 subgroup preserving both directions, and we are in a special case of column 2. Otherwise, the
directions are intertwined by the dynamics, and we claim that we are in case B3 (this argument
is a variation on [16, Lem. 5.2]). Indeed, note that by definition there is a set of positive, hence
full, µ-measure where E1pxq ‰ E2pxq, and let

(2.3) Λpνq “
1

2

ż

`

log
›

›Df |E1pxq

›

›` log
›

›Df |E2pxq

›

›

˘

dµpxqdνpfq.

By ergodicity, for pνN ˆ µq-almost every pω, xq and every v P E1pxq Y E2pxqz t0u,

(2.4) lim
nÑ`8

1

n
log }Dfnω pxq} “ Λpνq.

If λ`pνq “ λ´pνq, then, by the preliminary remark, both exponents vanish. If λ´pνq ă λ`pνq,
then by Oseledets’ theorem, for µ-a.e. x there is a line Espxq such that if v R Espxq, then
1
n log }Dfnω pxq} Ñ λ`. Thus Espxq R tE1pxq, E2pxqu and Λ “ λ`. But now there is a set of
3 invariant directions, so the projective tangent action recurs to a compact set (see the proof of
Theorem 7.3 in [23]) and we conclude that λ`pνq “ λ´pνq “ 0, a contradiction.

2.1.4. Summary. After these reductions, the situation is summarized in the following table. Col-
ored cells do not need to be treated because they reduce to other ones.

no invariant line field
or pair of line fields

DE ď TX
invariant line field

DE1, E2 ď TX pair
of invariant line fields

Dν, λ`pνq “ λ´pνq “ 0
@ν, λ`pνq “ λ´pνq “ 0 B1: Fatou behavior? B2 B3
Dν, λ` ă λ´ & λ´λ` “ 0 C2
Dν, λ`pνq ă 0 ă λ´pνq D1: µ homogeneous? D2: µ not Z. diffuse?

2.2. Comments. Let us now analyze some of the remaining cases. We first note that we do not
know any example, nor even a possible model for the dynamics, for the cases B2, B3, and C2
(in C2 it would make sense to further distinguish the cases whether the Lyapunov exponent in
the invariant direction vanishes or not).
‚ B1: in that case, [23, Thm. 7.3] shows that the cocycle describing the action of Γ on the

projectivized tangent bundle of X is measurably reducible to a compact subgroup of GL2pCq.
This suggests a Fatou-type behavior for the dynamics. Must an invariant measure of type B1 be
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contained in the Fatou set of the Γ-action? As far as we know, there is no known example of a
Fatou domain for a non-elementary group action by automorphisms on a projective surface. See
Question 1.14 for a related problem.
‚ D1: µ is hyperbolic and there is no invariant line field. The techniques of [16] show that in

this case µ has some homogeneity properties along stable and unstable manifolds. This implies
in particular that µ has positive fiber entropy (as a ν-stationary measure). In a nutshell, recall
that the fiber entropy can be defined by

(2.5) hµpX, νq “ hνNˆµpF`q ´ hνNpσq

and it quantifies the relative entropy of F` in the fibers of the projection ΩˆX Ñ X (of course
this definition needs to be adapted when hνNpσq “ 8, see [26, §7.6] for a brief presentation).
In the volume preserving (rational) case, it should expected that, under assumption D1, µ is
either absolutely continuous or absolutely continuous along some real analytic surface Σ. In the
general case, this has to be replaced by a SRB property. Partial results in this spirit include [16,
Thm 5.1] and [26, Thm 11.1] for the real case. In the general complex case, such a result seems
to be out of reach for the moment, even using [15]. The most delicate point would be to construct
Σ from an information on the stable and unstable conditionals of µ only.
‚ D2: µ is hyperbolic and there is an invariant line field. Since µ is Γ-invariant, the natural

extension of pF`, νN ˆ µq is pF, νZ ˆ µq, where F is the skew product over the 2-sided shift
associated to the random dynamical system pX, ν, µq (see [26, §7.1]). For this invertible dynam-
ical system, the invariant line field corresponds to either Es or Eu. Note that by the invariance
of µ, F´1 is the skew product map associated to the random dynamical system induced by the
reversed measure ν̌, defined by ν̌pfq “ νpf´1q. Therefore, ifE “ Eu, E is the stable Oseledets
bundle associated to the random dynamical system pX, ν̌, µq. From this discussion, we conclude
that in either case we may assume that E “ Es, i.e. the field of Oseledets stable directions is
non-random. Theorem 9.1 in [26] then asserts that hµpX, νq “ 0, and furthermore by [23, Thm.
B.1], hµpfq “ 0 for every f P Γ. In other words, µ is a common zero entropy measure for all
group elements. We expect that such a situation does not happen, so the conclusion should be
that a Zariski diffuse invariant measure cannot satisfy D2.

2.3. A dual point of view and an example. Let us remark that another way of formulating this
problem is to start with a loxodromic automorphism f of X and some f -invariant measure µ
and to ask for a description of the stabilizer of µ in AutpXq (cf. [16, Thm 5.1] and [26, Thm
11.1]). Here is one instance of this problem:

Question 2.1. Let f be a loxodromic automorphism of a complex projective surface X , and let
µf be its unique invariant measure of maximal entropy. Is the stabilizer of µ in AutpXq virtually
Abelian?

To conclude, we answer a similar question in the specific case of polynomial automorphisms
of the plane. One goal here is to illustrate some dynamical similarities between affine and
projective surfaces. Before stating our result, recall that the Jacobian determinant Jacpfq of
such an automorphism f is constant; when Jacpfq “ ˘1, the Lebesgue measure LebR2 is
invariant and f is said to be conservative.
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Theorem 2.2. Let f be a polynomial automorphism of R2. Let µ be an ergodic f -invariant
measure with positive entropy supported on R2. If g P AutpR2q satisfies g›µ “ µ, then:

(a) either f and g are conservative and µ is the restriction of LebR2 to a Borel set of positive
measure invariant under f and g;

(b) or the group generated by f and g is solvable and virtually cyclic; in particular, there exists
pn,mq P Z2ztp0, 0qu such that fn “ gm.

Remark 2.3. With the techniques developed in [19], the same result should apply to the dynam-
ics of OutpF2q acting on the real part of the character surfaces of the once punctured torus.

Sketch of Proof. Since the proof is a direct adaptation of [26, Thm 11.1], we briefly explain the
argument and leave the details to the reader.

Set Γ “ xf, gy. Since its entropy is positive, f is of Hénon type in the sense of [67]: it is
conjugate to a composition of generalized Hénon maps, as in [53, Thm. 2.6]. Thus, the support
of µ is a compact subset of R2, because the basins of attraction of the line at infinity for f
and f´1, respectively, cover the complement of a compact subset of C2. In addition µ must be
Zariski diffuse, because its entropy is positive.

Let w be an element of Γ and set h “ wfw´1; then h is also of Hénon type. We follow the
proof of [26, Thm 11.1], which leads us to three cases.

Case 3 is treated exactly in the same way and implies that µ is absolutely continuous. This
implies that f is conservative and, µ being ergodic for f , it must be the restriction of LebR2 to
some Γ-invariant subset.

In Cases 1 and 2, arguing as in [26, Thm 11.1] and keeping the same notation, we arrive at
W sph, xq “ W spf, xq or W upf, xq on a set of positive measure. For a Hénon type automor-
phism of C2, the closure of any stable manifold is equal to the forward Julia set J`, and J`

carries a unique positive closed current T` of mass 1 relative to the Fubini Study form in P2pCq

(see [85]). So we infer that T`h “ T`f or T`h “ T´f ; as a consequence, the Green functions of f
and h satisfy G`h “ G`f or G`h “ G´f , respectively.

The group AutpC2q is the amalgamated product the affine and the elementary subgroups
along their intersection. Let T be the associated Bass-Serre tree. Each u P AutpC2q gives rise
to an isometry u˚ of T and, u is of Hénon type if and only if u˚ is loxodromic (its axis Geopu˚q

is the unique u˚-invariant geodesic, and u˚ acts as a translation along it). From [67, Thm. 5.4],
G`h “ G`f implies Geoph˚q “ Geopf˚q; changing f into f´1, G`h “ G´f gives Geoph˚q “

Geopf´1
˚ q “ Geopf˚q because Geopf´1

˚ q “ Geopf˚q. Since w˚Geopf˚q “ Geoph˚q, we see
that Γ preserves Geopf˚q; so, all u P Γ of Hénon type satisfy Geopu˚q “ Geopf˚q. From [67,
Prop. 4.10], we conclude that Γ is solvable and virtually cyclic. �
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Part 1. Classification and first examples

3. SURFACES ADMITTING NON-ELEMENTARY GROUPS OF AUTOMORPHISMS

3.1. More Kähler vovabulary. Let X be a compact Kähler surface. Recall from § 1.1 that a
subgroup Γ Ă AutpXq is non-elementary when its image Γ˚ Ă GLpH˚pX,Zqq contains a non-
Abelian free subgroup. By Hodge theory, Γ acts on H1,1pX,Rq by preserving the intersection
form, which is of Minkowski type; thus Γ acts by isometries on the associated hyperbolic space
HX , which is the component of the hyperboloid

(3.1)
 

u P H1,1pX,Rq; xu|uy “ 1
(

containing the class of a Kähler form. Then Γ is non-elementary in the sense of § 1.2 if, and only
if the induced subgroup of IsompHXq is non-elementary in the sense of hyperbolic geometry
(this is the original definition from [26, §2]). The classification of automorphisms in the elliptic,
parabolic, and loxodromic types, as described in Section 1.3, corresponds exactly to the three
possible types of isometries of hyperbolics spaces. By theorems of Gromov and Yomdin, f P
AutpXq has positive entropy if and only if f is loxodromic: indeed, the translation length of f˚

on HX is equal to the topological entropy of f : X Ñ X and to the logarithm of the spectral
radius λpfq of f˚ on H1,1pX;Rq (see [21]). By a ping pong argument (see Lemma 3.1 below),
we can add the following characterization to the equivalent conditions (a)-(c) of § 1.2.

(d) Γ contains a non-Abelian free group all of whose elements (distinct from idX ) have positive
entropy (i.e. are loxodromic).

3.2. Non-elementary groups of automorphisms on general surfaces. Let M be a compact
manifold. Exactly as in the complex case, let us say that a group Γ of homeomorphisms of M is
non-elementary if its image Γ˚ in GLpH˚pM ;Zqq contains a non-Abelian free subgroup.

Lemma 3.1. Let M be a compact manifold, and Γ be a non-elementary subgroup of Diff8pMq.
Then Γ contains a non-Abelian free group Γ0 such that the topological entropy of every f P
Γ0ztidu is positive.

Proof. We split the proof in two steps. The first one concerns groups of matrices, the second
one is where topological entropy enters into place.

Step 1.- The image Γ˚ of Γ in GLpH˚pM ;Zqq contains a free subgroup Γ˚1 , such that every
element of Γ˚1ztidu has spectral radius larger than 1.

The proof uses basic ideas involved in Tits’s alternative, here in the simple case of subgroups
of GLnpZq. Let N be the rank of H˚t.f.pM ;Zq, where t.f. stands for “torsion free”. Fix a basis of
this free Z-module. Then Γ˚ determines a subgroup of GLN pZq. Our assumption implies that
the derived subgroup of Γ˚ contains a non-Abelian free group Γ˚0 of rank 2.

If all (complex) eigenvalues of all elements of Γ˚0 have modulus ď 1, then by Kronecker’s
lemma all of them are roots of unity. This implies that Γ˚0 contains a finite index nilpotent
subgroup (see Proposition 2.2 and Corollary 2.4 of [6]), contradicting the existence of a non-
Abelian free subgroup. Thus, there is an element f˚ in Γ˚0 with a complex eigenvalue of modulus
α ą 1. Let m be the number of eigenvalues of f˚ of modulus α, counted with multiplicities.
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Consider the linear representation of Γ˚0 on
ŹmH˚pM ;Cq; the action of f˚ on this space

has a unique dominant eigenvalue, of modulus αm; the corresponding eigenline determines an
attracting fixed point for f˚ in the projective space Pp

ŹmH˚pM ;Cqq; the action of f˚ on the
topological space Pp

ŹmH˚pM ;Cqq is proximal. Let

(3.2) t0u “W0 ĂW1 Ă ¨ ¨ ¨ ĂWk ĂWk`1 “

m
ľ

H˚pM ;Cq

be a Jordan-Hölder sequence for the representation of Γ˚: the subspacesWi are invariant and the
induced representation of Γ˚ onWi`1{Wi is irreducible for all 0 ď i ď k. Let V be the quotient
space Wi`1{Wi in which the eigenvalue of f˚ of modulus αm appears. Since Γ˚0 is contained
in the derived subgroup of Γ, the linear transformation of V induced by f˚ has determinant 1;
thus, dimpV q ě 2. Now, we can apply Lemma 3.9 of [6] to (a finite index, Zariski connected
subgroup of) Γ˚0 |V : changing f if necessary, both f˚|V and pf´1q˚|V are proximal, and there
is an element g˚ in Γ˚ that maps the attracting fixed points a`f and a´f P PpV q of f˚|V and
pf˚|V q´1 to two distinct points (i.e. ta`f , a

´
f u X tg

˚pa`f q, g
˚pa´f qu “ H). Then, by the ping-

pong lemma, large powers of f˚ and g˚˝f˚˝pg˚q´1 generate a non-Abelian free group Γ˚1 Ă Γ˚

such that each element h˚ P Γ˚1ztidu has an attracting fixed point in PpV q. This implies that
every element of Γ˚1ztidu has an eigenvalue of modulus ą 1 in H˚pM ;Cq.

Step 2.- Since Γ˚1 is free, there is a free subgroup Γ1 Ă Γ such that the homomorphism
Γ1 Ñ Γ˚1 is an isomorphism. By Yomdin’s theorem [86], all elements of Γ1ztidu have positive
entropy, and we are done. �

Theorem 3.2. Let M be a compact complex surface such that there exists a non-elementary
subgroup Γ Ă AutpMq. Then M is Kähler.

Proof. By Lemma 3.1,M admits an automorphism of positive topological entropy. It was shown
in [17] that this property implies that M is Kähler. �

3.3. Projectivity.

Theorem 3.3. Let X be a compact complex surface and Γ be a non-elementary subgroup of
AutpXq. Then X is projective, and is birationally equivalent to a rational surface, an Abelian
surface, a K3 surface, or an Enriques surface.

The next sections will provide examples of non-elementary groups of automorphisms for each
of these four classes of surfaces.

It follows from this classification that when X is not rational, there is a canonical volume
form preserved by Γ; moreover, such a form induces an invariant volume form on XpRq when
the action is by real automorphisms (see [25, Rmk 2.3]). This constraint has deep consequences
on the dynamics of Γ.

Let us prove Theorem 3.3. If Γ is a non-elementary group of automorphisms on X , Theo-
rem 3.2 asserts that X must be Kähler. Then the last assertion of the theorem readily follows
from the classification given in [21, Thm 10.1]. What remains to show is that a compact Kähler
surface admitting a non-elementary automorphism group is projective. The proof follows closely
the arguments given in [21] and [81].
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Lemma 3.4 (see also [81], Thm. 2.2). Let f be a loxodromic automorphism of a compact Kähler
surface X . The following properties are equivalent:

(1) on H2,0pX;Cq, f˚ acts by multiplication by a root of unity;
(2) X is projective.

Remark 3.5. If X supports a loxodromic automorphism, then dimH2,0pX,Cq ď 1. When
this dimension equals 1, that is when X is a torus or K3 surface, H2,0pX;Cq is generated by a
holomorphic 2-form ΩX that does not vanish and satisfies

ş

X ΩX ^ ΩX “ 1. It is unique up
to multiplication by a complex number of modulus 1. So for every f , we can write f˚ΩX “

JpfqΩX , and the Jacobian determinant

(3.3) f P AutpXq ÞÑ Jpfq P U1

defines a unitary character on the group AutpXq. It follows that the first condition of Lemma 3.4
can be reformulated as:

(1’) either H2,0pX;Cq “ 0 or Jpfq is a root of unity.

Moreover, by Kodaira’s embedding theorem, X is projective when H2,0pX;Cq “ 0.

Proof of Lemma 3.4. The characteristic polynomial χf of f˚ : H2
t.f.pX;Zq Ñ H2

t.f.pX;Zq is a
monic polynomial with integer coefficients. Since f is loxodromic, f˚ has a real eigenvalue
λpfq ą 1. Besides λpfq and λpfq´1, all other roots of χf have modulus 1, so λpfq is a
reciprocal quadratic integer or a Salem number (see § 2.4.3 of [21] for more details). Thus, the
decomposition of χf into irreducible factors can be written as

(3.4) χf ptq “ Sf ptq ˆRf ptq “ Sf ptq ˆ
m
ź

i“1

Cf,iptq

where Sf is a Salem polynomial or a reciprocal quadratic polynomial, and the Cf,i are cyclo-
tomic polynomials. In particular if ξ is an eigenvalue of f˚ and a root of unity, we see that ξ is
a root of Rf ptq but not of Sf ptq.

The subspace H2,0pCq Ă H2pX;Cq is AutpXq-invariant. By Hodge index theorem, the
hermitian form Ω P H2,0pCq ÞÑ

ş

X Ω ^ Ω is positive definite and AutpXq-invariant. Thus,
all eigenvalues of f˚ on H2,0pCq have modulus 1. Note, furthermore, that if an eigenvalue of
f˚|H2,0pX;Cq is not a root of unity, then it is a root of Sf .

Assume that all eigenvalues of f˚ on H2,0pX;Cq are roots of unity. Then KerpSf pf
˚qq Ă

H2pX;Rq is a f˚-invariant subspace of H1,1pX;Rq. This subspace is defined over Q and is of
Minkowski type; in particular, it contains integral classes of positive self-intersection. Thus, by
the Kodaira embedding theorem, X is projective.

Conversely, assume that X is projective. The Néron-Severi group NSpX;Qq Ă H1,1pX;Rq

is f˚-invariant and contains vectors of positive self-intersection; so, by the description of the
linear action of Γ given in [26, Prop. 2.8], NSpX;Rq contains all isotropic lines associated to
loxodromic automorphisms. Now, any f˚ invariant subspace defined over Q and containing
the eigenspace associated to λpfq contains KerpSf pf

˚qq, hence KerpSf pf
˚qq Ă NSpX;Qq. In

particular, KerpSf pf
˚qq does not intersectH2,0pX;Cq, which is invariant, and we conclude that

all eigenvalues of f˚ on H2,0pX;Cq are roots of unity. �
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Lemma 3.6. Let X be a compact Kähler surface. If X is not projective, then AutpXq˚ is
virtually Abelian and if it contains a loxodromic element it is virtually cyclic.

Proof. Let Γ Ă AutpXq be a free subgroup (possibly reduced to a cyclic group or to tidu) such
that every f P Γz tidu is loxodromic. Since X is not projective, Lemma 3.4 and Remark 3.5
show that h2,0pXq “ 1 and that Γ acts faithfully by scalar multiplication onH2,0pX;Cq. Indeed
otherwise the kernel of Γ Ñ GLpH2,0pX;Cqqwould contain loxodromic elements andX would
be projective. From this, we deduce that Γ has rank at most 1, hence AutpXq is elementary. To
conclude, we refer to Theorem 3.2 of [21], which says that there are two possibilities: either
AutpXq˚ contains a finite index, cyclic subgroup generated by a loxodromic automorphism;
or AutpXq˚ contains a finite index, Abelian subgroup, all of whose non-trivial elements are
parabolic (permuting the fibers of a genus 1 fibration on X). �

We can now conclude the proof of Theorem 3.3: indeed we already know that X is Kähler by
Theorem 3.2, and then it is projective by Lemma 3.6.

3.4. Remarks on the non-Kähler case. Consider the Hopf surface Xα obtained by taking the
quotient of C2z tp0, 0qu by the group of homotheties px, yq ÞÑ pαmx, αmyq, for some α P Cˆ

with |α| ă 1. Taking the quotient of C2ztp0, 0qu by all homotheties, we get the projective line
P1pCq: this yields a fibration η : Xα Ñ P1pCq with fibers isomorphic to the genus 1 curve
Eα “ Cˆ{

@

αZ
D

.
Recall that a subgroup Γ Ă SL2pCq is non-elementary if it contains a non-Abelian free group

and is not relatively compact; equivalently, Γ induces a non-elementary group of isometries of
the hyperbolic space H3, whose boundary is S2 » P1pCq. By definition the limit set LimpΓq is
the closure of the set of fixed points of loxodromic elements of Γ.

Let us fix such a non-elementary group Γ. Let ν be a probability measure on SL2pCq, whose
support generates Γ as a closed semigroup. It follows from Furstenberg’s theory of random
products of matrices that LimpΓq is the unique closed, minimal Γ-invariant subset of P1pCq,
and there is a unique ν-stationary measure µP1pCq on P1pCq; moreover, the support of µP1pCq

coincides with LimpΓq.
Now, consider the action of Γ on Xα induced by the natural action of Γ on C2. The fibration

η : Xα Ñ P1pCq is Γ-equivariant. Any f P Γ acts by scalar multiplication along the fibers of
C2ztp0, 0qu Ñ P1pCq. Since the multiplication z ÞÑ βz induces a translation on the elliptic
curve Eα, the action of Γ on Xα is an isometric extension of the action on P1pCq, so we are
in the setting of [59]. From this we obtain: if Γ is Zariski dense in SL2pCq, viewed as a real
Lie group, then Xα supports a unique minimal invariant subset ΛX and a unique ν-stationary
measure µX ; this measure is not Γ-invariant; both ΛX and µX are invariant under the action of
Cˆ on Xα by homotheties; and the marginal η˚µX of µX is equal to µP1pCq(

3).

3With the notation of [59], theKAN` decomposition of SL2pCq can be chosen in such a way thatA “ Rˆ` is the
group of diagonal matrices with real positive coefficients, and its centralizer M in the maximal compact subgroup K
is S1, the group of diagonal matrices with eigenvalues of modulus 1. Then, the product MA is just Cˆ, the group of
complex diagonal matrices in SL2pCq. In particular, this group is connected (it corresponds to the group C in [59]).
Thus, our assertions follows from the main theorems stated on the second page of [59].
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Now, take α P Rˆ` and assume that Γν is a non-elementary subgroup of SL2pRq (in particular,
Γν is not Zariski dense in the real Lie group SL2pCq). The limit set LimpΓq is contained in
P1pRq; thus, the ν-stationary measures on Xα are supported in the preimage of P1pRq by the
fibration η. There is, in that case, a one parameter family of such measures, parametrized by an
angle θ P R{Z. Indeed, the plane R2 Ă C2 is Γ-invariant, and the projection of R2ztp0, 0qu

in Xα supports a unique ν-stationary measure µXpRq. Then, all the stationary measures are
obtained by “rotating” µXpRq by px, yq ÞÑ expp2iπθq ¨ px, yq.

Remark 3.7. Let X be a Hopf or a Inoue surface. According to the description of AutpXq by
Namba, Matumoto and Nakagawa (see [28, 75]), either AutpXq is virtually solvable, or X is a
Hopf surface obtained as a quotient of its universal cover C2ztp0, 0qu by a group of homotheties

(3.5) Φm,npx, yq “ pα
mξnx, αmξnyq

where α P Cˆ has modulus ă 1, ξ is a root of unity (of order q for some q ě 1), and pm,nq P
Zˆ Z{qZ. Taking a finite cover brings us back to the case ξ “ 1, which we just described.

Remark 3.8. If X is a Kodaira fibration, then X comes with an AutpXq-invariant fibration on
an elliptic curve with elliptic fibers. In this case every stationary measure is invariant. This
follows for instance from the fact that such actions are distal (see [56, Thm. 3.5]).

These remarks do not exhaust all possible non-Kähler compact complex surfaces. Indeed,
there are other examples of surfaces in class VII. Moreover, the classification of VII0 surfaces is
not complete yet (even, as far as we know, if we assume that AutpXq is not virtually nilpotent) .

Question 3.9. Let X be a non-Kähler compact complex surface. Suppose there is a probability
measure ν on AutpXq such that X supports a ν-stationary measure which is not Γν-invariant
and has a Zariski dense support. Then must X be a Hopf surface?

4. FROM ENRIQUES TO RATIONAL SURFACES

In this Section we start with by describing two families of surfaces with non-elementary au-
tomorphism groups, obtained by taking quotients of K3 surfaces by an involution. For Enriques
surfaces, the involution is fixed point free; this is not the case for Coble surfaces. We briefly
mention the examples of Blanc, whose detailed study is the purpose of Part 3, and conclude with
an example of Lesieutre of a non-elementary group on a rational surface without invariant curve.
Coble, Blanc, and Lesieutre surfaces are all rational, but their dynamical features happen to be
quite different: this stems from the existence or non-existence of a global invariant measure.

4.1. Enriques (see [32, 45]). Recall that Enriques surfaces are quotients of K3 surfaces by
fixed point free involutions. According to Horikawa and Kondō ([60, 61, 66]), the moduli space
ME of complex Enriques surfaces is a rational quasi-projective variety of dimension 10. An
Enriques surface X is nodal if it contains a smooth rational curve; such rational curves have
self-intersection ´2, and are called nodal-curves or p´2q-curves. Nodal Enriques surfaces form
a set of codimension 1 in ME .
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For any Enriques surfaceX , the lattice pNSpX;Zq, qXq is isomorphic to the orthogonal direct
sum E10 “ U kE8p´1q (4). Let WX Ă OpNSpX;Zqq be the subgroup generated by reflexions
about classes u such that u2 “ ´2, and WXp2q be the subgroup of WX acting trivially on
NSpX;Zq modulo 2. Both WX and WXp2q have finite index in OpNSpX;Zqq. The following
result is due independently to Nikulin and Barth and Peters (see [45] for details and references).

Theorem 4.1. If X is an Enriques surface which is not nodal,

(1) the homomorphism AutpXq Q f ÞÑ f˚ P GLpH2pX,Zqq is injective,
(2) its image satisfies WXp2q Ă AutpXq˚ ĂWX .

In particular, AutpXq˚ is a finite index subgroup in OpNSpX;Zqq, thus AutpXq˚ is a lattice in
the rank 1 Lie group OpNSpX;Rqq » O1,9pRq and it acts irreducibly on NSpX;Rq.

This implies that AutpXq is non-elementary, contains parabolic automorphisms, and does not
preserve any curve (because AutpXq does not have a fixed point in H2pX;Rq). From these
properties, and from [25], we obtain a classification of AutpXq-invariant probabilitity measures
on unnodal complex Enriques surfaces; from [24], we know that AutpXq has only finitely many
finite orbits. On the other hand, we expect that generically all orbits are infinite:

Question 4.2. Is it true that if X PME is a general (resp. very general) Enriques surface, then
AutpXq does not have any finite orbit?

If the answer is positive, then one could also apply the main results of [23] to describe the
distribution of random orbits on (real, unnodal) Enriques surfaces.

4.2. Coble (see [22]). In this article, a Coble surface is, by definition, obtained by blowing up
the ten nodes of a general rational sextic curve C0 Ă P2. The result is a rational surface X with
a large group of automorphisms. To be precise, consider the canonical class kX Ă NSpX;Zq;
since KP2 is OP2p´3q and since we blow up the nodes of C0, one gets

(4.1) ´ 2kX “ rCs and kX “ ´3e0 `

10
ÿ

i“1

eppiq

where C is the strict transform of C0 in X , and pe0, epp1q, . . . , epp10qq is the basis of NSpXq

given by the classes of the total transform of a line and the exceptional divisors Ei obtained
by blowing up the ten double points pi of C0. The orthogonal complement kKX is a lattice
of dimension 10, isomorphic to E10, and we define WXp2q exactly in the same way as for
Enriques surfaces. Then, AutpXq˚ preserves the decomposition kX ‘ kKX . As before we say
that X is unnodal when it does not contain any smooth rational curve of self-intersection ´2.
If X is unnodal, the AutpXq˚ contains WXp2q, in particular it is non-elementary (see [22],
Theorem 3.5).

Let us explain this result in a more explicit way (see [22]). Let C0 be a general rational
sextic as before. Choose one of the double points of C0, say pi, and consider the cubic curve

4Here, U is the standard 2-dimensional Minkowski lattice, pZ2, x1x2q, and E8 is the root lattice given by the
corresponding Dynkin diagram; so E8p´1q is negative definite, and E10 has signature p1, 9q (see [32, Chap. II]).
Also, in this paper NSpX;Zq denotes the torsion free part of the Néron-Severi group, which is sometimes denoted
by NumpX;Zq in the literature on Enriques surfaces.
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Ci containing the remaining 9 points. Then, C0 and 2Ci generate a pencil of sextic curves, with
base points at the pj , j ‰ i. Blowing up these 9 points, we obtain a surface Xi with a genus 1

fibration πi : Xi Ñ P1
C; the sextic C0 lifts to a nodal fiber of πi and 2Ci gives a smooth multiple

fiber. The 9 exceptional divisors Ej , j ‰ i, determine 9 multisections of πi, each of degree 2.
Each pair pj, kq, j, k ‰ i, defines an automorphism gjk of Xi, acting by translation along the
fibers of πi: the translation on the fiber Xi,b :“ π´1

i pbq is by the divisor of degree 0 defined by

(4.2) τjk :“ pEk ´ EjqXi,b P Pic0pXi,bq.

For a general choice of C0, the gjk generate a free Abelian group Ai of rank 8; its elements,
except the identity, are parabolic automorphisms of Xi preserving the fibration πi (hence also
the singular point pi of the strict transform of C0 in Xi). Thus, blowing-up pi, the group Ai
lifts to a subgroup of AutpXq. In this way we obtain 10 copies Ai of Z8 in AutpXq, acting
as parabolic groups with respect to distinct genus 1 fibrations. In particular, AutpXq is non-
elementary. Note that the strict transform of C0 is AutpXq-invariant and is contained in a fiber
of πi for each index i.

Also, Coble surfaces are degenerations of Enriques surfaces; thus, Coble surfaces share many
features of Enriques surfaces, but there are also interesting differences. For instance, AutpXq
preserves the class kX , and this class is non-trivial. Moreover, there is a holomorphic section
of ´2KX vanishing exactly along the strict transform C Ă X of the rational sextic curve C0;
this means that there is a meromorphic section ΩX “ ξpx, yqpdx ^ dyq2 of 2KX that does not
vanish and has a simple pole along C. Thus, the formula

(4.3) volXpUq “

ż

U
|ξpx, yq| dx^ dy ^ dx^ dy “

ż

U
|ξpx, yq| pidx^ dxq ^ pidy ^ dyq

determines a measure volX “ “ Ω
1{2
X ^Ω

1{2
X ”. The total mass of this measure is finite. Indeed, if

locally C “ tx “ 0u then ξpx, yq “ ηpx, yq{x where η is regular; thus, |ξ| “ |η| |x|´1 is locally
integrable because 1

rα is integrable with respect to rdrdθ when α ă 2. We may assume that it
is a probability after multiplying ΩX by some adequate constant, and this measure is AutpXq-
invariant, because volX is uniquely determined by the complex structure (see also Remark 4.3
below). In particular the ergodic theory of Coble examples can be studied with the techniques
of [26].

4.3. Blanc. Another family of examples was introduced by Blanc in [12]. Here we describe
them informally, a more detailed presentation will be given in Part 3.

Start with a smooth cubic curve C Ă P2. If q is a point of C, the Jonquières involution as-
sociated to pC, qq is the birational involution σq of P2 characterized by the following properties:
it fixes C pointwise and it preserves the pencil of lines through q. The indeterminacy points of
σq are q and the four tangency points of C with this pencil, which may be “infinitely near” q.
Thus, the indeterminacies of σq are resolved by blowing-up points of C, possibly several times.
After such a sequence of blow-ups σq becomes an automorphism of a rational surface that fixes
pointwise the strict transform of C. In particular, if we blow-up further points of this curve, σq
lifts to an automorphism of the new surface.
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Pick a finite number of points qi P C0, i “ 1, . . . , k, and resolve simultaneously the indeter-
minacies of the Jonquières involutions σi :“ σqi determined by the qi. The result is a rational
surface X , together with a subgroup Γ :“ xs1, . . . , sky of AutpXq. Blanc proves in [12, 13]
that:

(1) there are no relations between these involutions, that is, Γ is a free product

xs1, . . . , sky »
k
˚
i“1

Z{2Z;

(2) the composition of two distinct involutions si ˝ sj is parabolic;
(3) the composition of three distinct involutions is loxodromic.

In addition, there is a meromorphic section ΩX of KX with a simple pole along the strict
transform of C0, however, contrary to Coble surfaces, the form volX :“ ΩX ^ ΩX is not
integrable (its total mass is infinite). This observation will play a crucial role in Part 3.

Remark 4.3. If Γ Ă AutpXq is generated by involutions and there is a meromorphic form Ω

such that f˚Ω “ ξpfqΩ for every f P Γ, then ξpfq “ ˘1: this is the case for Blanc’s examples
or general Coble surfaces, since WXp2q is also generated by involutions (see [45]).

4.4. Lesieutre. In [69], Lesieutre constructs rational surfaces X with the following properties:
AutpXq contains three involutions τi, i “ 1, 2, 3, such that the group Γ :“ xτ1, τ2, τ3y Ă

AutpXq and f :“ τ1 ˝ τ2 ˝ τ3 satisfy

(1) X and Γ are defined over Q;
(2) Γ is non-elementary, and isomorphic to pZ{2Zq ‹ pZ{2Zq ‹ pZ{2Zq;
(3) Γ does not contain any parabolic element;
(4) f is loxodromic and does not preserve any curve.

In particular, AutpXq does not preserve any rational section of KX (moreover, ´KX is not
pseudo-effective).

Thus, the situation is quite different from Enriques, Coble and Blanc surfaces, since there is
neither parabolic automorphism nor invariant algebraic volume form. Our results are so far not
powerful enough to describe the finite orbits or stationary measures for such an example.
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Part 2. Pentagon folding and dynamics on K3 surfaces

5. THE SPACE OF PENTAGONS AND THE FOLDING GROUPS

The automorphism groups of Wehler surfaces were discussed at length in our previous papers.
Here we describe another family of K3 surfaces with a non-elementary group action, coming
from the geometry of pentagons in the euclidean plane.

Remark 5.1. The “folding” terminology is borrowed from [7, 8], which was a source of motiva-
tion for these results. There is a vast amount of literature on length-preserving transformations in
spaces of polygons, notably motivated by algorithmic questions: see for instance Section 5.3.2
in the monograph [37] where our folding transformations are referred to as “flips”.

5.1. Spaces of plane pentagons. Let ` “ p`0, . . . , `4q P R5
ą0 be a 5-tuple of positive real

numbers such that there exists a pentagon with side lengths `i; this imposes a a condition on the
`i, defined by explicit inequalities, and we say that ` is admissible if this condition is satisfied.
Here a pentagon is just an ordered set of points paiqi“0,...,4 in the Euclidean plane R2, such that
distpai, ai`1q “ `i for i “ 0, . . . , 4 (with a5 “ a0 by definition, in other words we consider
indices modulo 5); pentagons are not assumed to be convex, and two distincts sides rai, ai`1s

and raj , aj`1s may intersect at a point which is not one of the ai’s.
Let Pentp`q be the set of pentagons with side lengths p`iq4i“0. Note that Pentp`q is naturally

a real algebraic variety, defined by polynomial equations of the form distpai, ai`1q
2 “ `2i .

For every i, ai is one of the two intersection points tai, a1iu of the circles of respective centers
ai´1 and ai`1 and radii `i´1 and `i. The transformation exchanging these two points ai and a1i,
while keeping the other vertices fixed, defines an involution of Pentp`q, that we denote by si´1

(this choice for the index will be convenient later). Geometrically, it corresponds to folding (or
reflecting) the pentagon along the diagonal pai´1ai`1q. It commutes with the action of the group
SO2pRq ˙ R2 of positive isometries of the plane, hence, it induces an involution σi´1 on the
quotient space

(5.1) Pent0p`q “ Pentp`q{pSO2pRq ˙R2q.

Each element of Pent0p`q admits a unique representative with a0 “ p0, 0q and a1 “ p`0, 0q,
so as before Pent0p`q is a real algebraic variety, which is easily seen to be of dimension 2 (see
[34, 84]). We will see below that, when it is smooth, it is a real K3 surface. The five involutions
σi act by algebraic diffeomorphisms on this surface, and for a general choice of lengths, the
group generated by these involutions is non-elementary.

Remark 5.2. If we consider quadrilateral instead of pentagons, the corresponding space

(5.2) Quad0p`0, `1, `2, `3q

is a curve of genus 1 and the involutions typically generate an infinite dihedral group. The cor-
responding dynamical system, both on the space of quadrilaterals and the space of quadrilaterals
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modulo isometries, was studied in depth in [49, 7, 8]. With n-gons, n ě 4, one would get
Calabi-Yau manifolds of dimension n´ 3 (5).

5.2. Algebraic geometry of Pent0p`q. To analyze the algebraic structure and geometry of
Pent0p`q, we view a plane pentagon with side lengths `0, . . . , `4 modulo translations as the
data of a 5-tuple of vectors pviqi“0,...,4 in R2 (identified with C) of respective length `i such that
ř

i vi “ 0. Write vi “ `iti with |ti| “ 1. Then the action of SO2pRq can be identified to the
diagonal multiplicative action of U “ tα P C ; |α| “ 1u on the ti:

(5.3) α ¨ pt0, . . . , t4q “ pαt0, . . . αt4q.

Now, following Darboux [35], we consider the surface X in P4
C defined by the equations

(5.4)

#

`0z0 ` `1z1 ` `2z2 ` `3z3 ` `4z4 “ 0

`0{z0 ` `1{z1 ` `2{z2 ` `3{z3 ` `4{z4 “ 0

where rz0 : . . . : z4s is some fixed choice of homogeneous coordinates, and the second equation
must be multiplied by z0z1z2z3z4 to obtain a homogeneous equation of degree 4.

Remark 5.3. This surface is isomorphic to the Hessian of a cubic surface (see [44, §9]). More
precisely, consider a cubic surface S Ă P3

C whose equation F can be written in Sylvester’s
pentahedral form, that is, as a sum F “

ř4
i“0 λiF

3
i for some complex numbers λi and linear

forms Fi with
ř4
i“0 Fi “ 0. By definition, its Hessian surfaceHF is defined by detpBiBjF q “ 0.

Then, using the linear forms Fi to embed HF in P4
C, we obtain the surface defined by the pair

of equations
ř4
i“0 zi “ 0 and

ř4
i“0

1
λizi

“ 0. Thus, HF is our surface X , for `2i “ λi. We refer
to [43, 36, 42, 82] for an introduction to these surfaces and their birational transformations.

For completeness, let us directly prove some of its basic properties.

Lemma 5.4. Let ` “ p`0, . . . , `4q be an element of pC˚q5. The surface X` Ă P4
C defined by

the system (5.4) has 10 singularities at the points qij determined by the system of equations
`izi ` `jzj “ 0, zk “ zl “ zm “ 0 with i ă j and ti, j, k, l,mu “ t0, 1, 2, 3, 4u. In the
complement of these ten isolated singularities, X` is smooth if and only if

(5.5)
4
ÿ

i“0

εi`i ‰ 0 @εi P t˘1u .

Note that for positive `i’s, violation of condition (5.5) means that there exist a degenerate
pentagon with lengths `i.
Notation.– We shall use the notation X instead of X` when the dependence on ` is not crucial.

Proof. We first look for singularities in the complement of the hyperplanes zi “ 0, and work
in the chart z0 “ 1. Then, if we substitute z4 “ ´p`0 ` `1z1 ` `2z2 ` `3z4q{`4 in the second
equation of (5.4), we obtain an affine equation of X in the chart z0 “ 1, namely:

(5.6)
`1
z1
`
`2
z2
`
`3
z3
´

`24
`0 ` `1z1 ` `2z2 ` `3z3

` `0 “ 0.

5This follows from computations which are similar to the ones used to prove Lemma 5.4 and Lemma 5.5 below,
the difference being that the singularities of X are not isolated when n ě 6.
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The singularities are determined by the system of equations z2
1 “ z2

2 “ z2
3 “ `´2

4 p`0 ` `1z1 `

`2z2``3z3q
2. So, by symmetry, at a singularity where none of the coordinates vanishes we must

have zi “ εiz for some εi “ ˘1 and a common factor z ‰ 0; this is precisely Condition (5.5).
Looking for singularities with one coordinate equal to 0, say z1 “ 0 in the chart z0 “ 1, we

obtain the system of equations

(5.7)

$

’

&

’

%

0 “ p`0z2z3 ` `3z2 ` `2z3qp`0 ` `2z2 ` `3z3q ` p`
2
1 ´ `

2
4qz2z3

0 “ `1z3p`0 ` 2`2z2 ` `3z3q

0 “ `1z2p`0 ` `2z2 ` 2`3z3q

together with `0 ` `2z2 ` `3z3 ` `4z4 “ 0 and `1z2z3z4 “ 0 (in particular, z2, z3 or z4 must
vanish). The solutions of this system are given by z1 “ z2 “ z3 “ 0, which gives the point
q04 “ r`4 : 0 : 0 : 0 : ´`0s, or z1 “ z2 “ 0 and `0 ` `3z3 “ 0, which corresponds to
q03 “ r`3 : 0 : 0 : ´`0 : 0s, or z1 “ z3 “ 0 which gives q02, or z1 “ z4 “ 0 but then either
z2 “ 0 or z3 “ 0 and we end up again with q02 and q03. The result follows by symmetry. �

Lemma 5.5. If ` P pC˚q5 satisfies Condition (5.5), then the ten singularities are simple nodes
(Morse singularities) and the surface X is a (singular) K3 surface: a minimal resolution X̂ of
X is a K3 surface, which is obtained by blowing-up its ten nodes, thereby creating ten rational
p´2q-curves.

Proof. Working in the chart z0 “ 1 and replacing z4 by ´p`0 ` `1z1 ` `2z2 ` `3z3q{`4, the
quadratic term of the equation of X at the singularity pz1, z2, z3q “ p0, 0, 0q is p´`0{`4qQ,
where

(5.8) Qpz1, z2, z3q “ `1z2z3 ` `2z1z3 ` `3z1z2

is a non-degenerate quadratic form (its determinant is 2`1`2`3 ‰ 0). So locally X is holomor-
phically equivalent to the quadratic cone tQ “ 0u, hence to a quotient singularity pC2, 0q{η

with ηpx, yq “ p´x,´yq. The minimal resolution of such a singularity is obtained by a simple
blow-up of the ambient space, the exceptional divisor being a p´2q-curve in the smooth sur-
face X̂ . The adjunction formula shows that there is a holomorphic 2-form ΩX on the regular
part ofX; locally, ΩX lifts to an η-invariant form Ω1X on C2zt0u, which by the Hartogs theorem
extends across the origin to a non-vanishing 2-form. To recover X̂ , one can first blow-up C2

at the origin and then take the quotient by (the lift of) η: a simple calculation shows that Ω1X
determines a non-vanishing 2-form on X̂ . After such a surgery is done at the ten nodes, X̂ is a
smooth surface with a non-vanishing section ofKX̂ ; since it contains at least ten rational curves,
it cannot be an Abelian surface, so it must be a K3 surface. �

Remark 5.6. Let Lij be the line defined by the equations zi “ 0, zj “ 0, `0z0`¨ ¨ ¨` `4z4 “ 0;
each of these ten lines is contained in X , each of them contains 3 singularities ofX (namely qkl,
qlm, qkm with obvious notations), and each singularity is contained in three of these lines. If one
projects them on a plane, the ten lines Lij form a Desargues configuration (see [42, 43]).

5.3. The real part. All this works for any choice of complex numbers `i ‰ 0. When the `i are
real, X is endowed with two real structures. First, one can consider the complex conjugation

(5.9) c : rzis ÞÑ rzis
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on P4pCq and restrict it to X: this gives a first antiholomorphic involution cX . Another one is

(5.10) sX : rzis ÞÑ r1{zis.

To be more precise, consider first, the quartic birational involution J P BirpP4
Cq defined by

Jprzisq “ r1{zis; J preserves X , it determines a birational transformation JX P BirpXq, and
on X̂ it becomes an automorphism because every birational transformation of a K3 surface is
regular. Moreover, J commutes to c. Thus, sX “ JX ˝cX determines a second antiholomorphic
involution sX̂ of X̂ . In what follows, we denote by pX, sXq this real structure (even if it would
be better to study it on X̂); its real part is the fixed point set of sX , i.e. the set of points in XpCq
with coordinates of modulus 1: the real part does not contain any of the singularities of X , this
is why we prefer to stay in X rather than lift everything to X̂ . In conclusion, if p`iq P pR˚`q

5,
with the real structure defined by sX , the real part of X coincides with Pent0p`0, . . . , `4q.

Remark 5.7. When `i ą 0 for every i, a complete description of the possible homeomorphism
types for the real locus (in the smooth and singular cases) is given in [34]: in the smooth case, it
is an orientable surface of genus g “ 0, . . . , 4 or the disjoint union of two tori; if one includes
singular surfaces, one gets a total of 19 topological types. In particular if Pent0p`q is discon-
nected, it is the disjoint union of two tori. The space of possible side lengths can be tesselated
in cells corresponding to smooth surfaces Pent0p`q, with walls corresponding to singular sur-
faces. Cells are encoded by a 2 ˆ 2 “code-matrix” in [34, Table 4]. With this viewpoint, the
disconnected surfaces correspond to exactly three cells (see Figure 1 below).

Remark 5.8. The involution J preserves X and the two real structures pX, cXq and pX, sXq. It
lifts to a fixed point free involution ĴX on X̂ , and X̂{ĴX is an Enriques surface. On pentagons,
J corresponds to the symmetry px, yq P R2 ÞÑ px,´yq that reverses orientation. Thus we see
that the space of pentagons modulo affine isometries is an Enriques surface. When X acquires
an eleventh singularity which is fixed by JX , then X̂{ĴX becomes a Coble surface: see [42, §5]
for nice explicit examples. This happens for instance when all lengths are 1, except one which
is equal to 2 (this corresponds to t “ 1{4 in [42, §5.2]).

5.4. Involution and the folding groups. Let us express the folding transformations in coordi-
nates. Given i ‰ j in t0, . . . , 4u (consecutive or not) we define an involution pti, tjq ÞÑ pt1i, t

1
jq

preserving the vector `iti ` `jtj by taking the symmetric of ti and tj with respect to the line
directed by `iti ` `jtj . In coordinates, t1k “ u{tk for some u of modulus 1, and equating
`iti ` `jtj “ `it

1
i ` `jt

1
j one obtains

(5.11) pt1i, t
1
jq “

ˆ

u

ti
,
u

tj

˙

, with u “
`iti ` `jtj

`it
´1
i ` `jt

´1
j

.

Observe that these computations also make sense when the `i are complex numbers, or when we
replace the ti by the complex numbers zi. This defines a birational involution σij : X 99K X ,

(5.12) σijrz0 : . . . : z4s “ rz
1
0 : . . . : z14s

with z1k “ zk if k ‰ i, j, z1i “ vzj , and z1j “ vzi with v “ p`izi ` `jzjq{p`izj ` `jziq.
Again, since every birational self-map of a K3 surface is an automorphism, these involutions
σij are elements of AutpX̂q that commute with the antiholomorphic involution sX̂ ; hence, they



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 32

generate a subgroup of AutpX̂; sX̂q. Thus we have constructed a family of projective surfaces
X̂ , depending on a parameter ` P P4pCq, endowed with a group of automorphisms generated by
involutions.

For consecutive sides, i.e when j “ i ` 1 modulo 5 (in the next few lines, all indices are
considered modulo 5) σi,i`1 corresponds to the folding transformation described in § 5.1 and
denoted by σi there. We define the folding group Γ (resp. the extended folding group Γext) to
be the group generated by the 5 folding involutions σi,i`1 (resp. the group generated by all 10
involutions σij). Likewise, for given m P t0, . . . , 4u we introduce the subgroup Γm (resp. Γext

m )
stabilizing the side m, that is the group generated by the 3 folding involutions σi,i`1 such that
m R ti, i` 1u (resp. by the 6 involutions σij with m R ti, ju).

Remark 5.9. Pick a singular point qij , and project X from that point onto a plane, say the plane
tzi “ 0u in the hyperplane P “ t`0z0 ` ¨ ¨ ¨ ` `4z4 “ 0u. One gets a 2-to-1 cover X Ñ P2

C,
ramified along a sextic curve (this curve is the union of two cubics, see [82]). The involution σij
permutes the points in the fibers of this 2 to 1 cover: if x is a point of X , the line joining qij and
x intersects X in the third point σijpxq. The singularity qij is an indeterminacy point, mapped
by σij to the opposite line Lij .

Proposition 5.10. For a general parameter ` P pC˚q5:

(1) X is a K3 surface with ten nodes, which admits two real structures cX and sX when ` P
P4pRq;

(2) if i, j, k are three distinct indices (modulo 5), then σij ˝ σjk is a parabolic transformation
on X̂; its invariant fibration is induced by πlm : rz0 : . . . : z4s ÞÑ rzl : zms where l and m
are the complementary indices (i.e. ti, j, k, l,mu “ t0, 1, 2, 3, 4u);

(3) if i, j, k, and l are four distinct indices (modulo 5), then σij commutes to σkl.
(4) the folding group Γ (resp. the extended folding group Γext) is a non-elementary subgroup of

AutpX̂; sX̂q that does not preserve any algebraic curve;
(5) likewise, the subgroup Γm stabilizing the side m is non-elementary, and its invariant curves

in X̂ are contained in the total transform of the lines Lml for l ‰ m (see Remark 5.6).

Remark 5.11. In [42], Dolgachev computes the action of σij on NSpX̂q. This contains a proof
of this proposition. He also describes, up to finite index, the Coxeter group generated by the σij .
The automorphism groups of X̂ and of the Enriques surface X̂{ĴX are described in [43] and
[83].

The next example shows that the folding groups can be elementary for certain parameters.

Example 5.12. Say that a pentagon is equilateral if `0 “ `1 “ `2 “ `3 “ `4. Let XeqpRq

be the surface of all equilateral pentagons, modulo rotations, translations, and dilatations. It
is connected and of genus 4. On Xeq, the group generated by the involutions is finite and
isomorphic to S5, because σi,jpti, tjq “ ptj , tiq (see Equation 5.11). So, this highly symmetric
case is also highly degenerate.

Proof of Proposition 5.10. We already established Assertion (1) in the previous lemmas. For
Assertion (2), denote by l,m the indices for which ti, j, k, l,mu “ t0, . . . , 4u, and consider the
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linear projection πlm : P4pCq 99K P1pCq defined by rz0 : . . . : z4s ÞÑ rzl : zms. The fibers of
πlm are the hyperplanes containing the plane tzl “ zm “ 0u, which intersects X on the line
Llm. This line is a common component of the pencil of curves cut out by the fibers of πlm on
X , and the mobile part of this pencil determines a fibration πlm|X : X Ñ P1 whose fibers are
the plane cubics

(5.13) p`lzl``mzmqp`mzl``lzmqzizjzk “ zlzmp`izjzk``jzizk``kzizjqp`izi``jzj``kzkq,

with rzl : zms fixed. The general member of this fibration is a smooth cubic, hence a curve of
genus 1.

Then σij and σjk preserve πlm|X , and along the general fiber of πlm|X each of them is
described by Remark 5.9; for instance, σijpxq is the third point of intersection of the cubic with
the line pqij , xq. Thus, writing such a cubic as C{Λrzl:zms, σij acts as z ÞÑ ´z ` bij , for some
bij P C{Λrzl:zms that depends on rzl : zms and the parameter `; it has four fixed points on the
cubic curve, which are the points of intersection of the cubic (5.13) with the hyperplanes zi “ zj
and zi “ ´zj ; equivalently, the line pqij , xq is tangent to the cubic at these four points.

By Lemma 5.14 below, either σij ˝ σjk is of order ď 66 (in fact of order ď 12 because it
preserves πlm|X fiber-wise), or it is parabolic. In other words, the locus in the parameter space
where σij ˝σjk is not parabolic is defined by the equation pσij ˝σjkq12 “ id. Since there do exist
pentagons for which σij ˝ σjk is of infinite order (indeed, this reduces to the corresponding fact
for quadrilaterals, see Example 5.13 below), we conclude that σij ˝σjk is parabolic for general `.

Assertion (3) follows directly from the fact that σij changes the coordinates zi and zj but
keeps the other three fixed.

To prove Assertion (4), we see that for a general parameter `, Γ contains two such parabolic
automorphisms associated to distinct fibrations πlm and πl1m1 so it is non-elementary (this fol-
lows from Theorem 3.2 in [21]). To show that Γ does not preserve any curve in X̂ , assume by
way of contradiction that E Ă X̂ be a Γ-periodic irreducible curve, and denote by F its image
in P4

C under the projection X̂ Ñ X . If F is a point, it is one of the singularities qij . Note
that Γ acts transitively on the singularities of X: given any pair of singularities pq, q1q, there is
an element of Γ which is well defined at q and q1 and maps q to q1. Thus, we can assume that
j “ i ` 1, and changing E into its image under (the lift of) σij P Γ the curve F becomes the
line Lij . So, we may assume that F is an irreducible curve. Now, the orbit of F is periodic
under the action of the parabolic automorphisms gi “ σij ˝ σjk, with j “ i ` 1 and k “ i ` 2

modulo 5. Since the invariant curves of a parabolic automorphism are contained in the fibers of
its invariant fibration, we deduce that F is contained in the fibers of each of the projections πlm
with m “ l ` 1, which is impossible. So there is no invariant curve.

The corresponding statement for Γext follows immediately.
The reasoning for (5) is similar. Without loss of generality, assume m “ 0. Then again Γm

is non-elementary since it contains the parabolic elements σ12 ˝ σ23 and σ23 ˝ σ34 (with distinct
associated fibrations π04 and π01. Reasoning as above shows that if E Ă X̂ is any Γ-periodic
irreducible curve projecting to a curve in X , then its image F in X is contained in a fiber of
each of the projections π01, π02, π03 and π04. So we conclude that F Ă tz0 “ 0u, but then the
equation ofX forces another coordinate to vanish, and we conclude that F is one of the L0l. �
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Example 5.13. Let us give some geometric explanations for Assertion (2) of Proposition 5.10.
Choose pl,mq “ p1, 2q, and normalize the pentagons so that a0 “ p0, 0q and t0 “ 1, which
means that a1 “ p`0, 0q. In homogeneous coordinates, this corresponds to the normalization
r1 : z1 : z2 : z3 : z4s with zi “ ti. The pentagons contained in a fiber of π12|X have three
fixed vertices, namely a0, a1 and a2. The remaining free vertices a3 and a4 move along the
circles centered at a2 and a0, of respective radii `2 and `4, with the constraint a3a4 “ `3. These
circles are two conics, the fiber is an elliptic curve which is a 2-to-1 cover of each of these
two conics, the involutions σ23 and σ34 preserve these fibers, and σ23 ˝ σ34 is a translation on
the elliptic curve. Forgetting the vertex a1, we obtain a quadrilateral pa0, a2, a3, a4q, and one
recovers the transformations described in [7]. The side lengths of this quadrilateral are `2, `3,
`4 and }ÝÝÑa0a2}, hence the translation vector (which only depend on these lengths) varies non-
trivially when deforming the pentagon, which corresponds to the twisting property of parabolic
transformations.

Lemma 5.14. Let X be a K3 or Enriques surface, and π : X Ñ B be a genus 1 fibration. If
g P AutpXq maps some fiber F of π to a fiber of π, then g preserves the fibration and either g is
parabolic or it is periodic of order ď 66.

Proof. Since g maps F to some fiber F 1, it maps the complete linear system |F | to |F 1|, but both
linear systems are made of the fibers of π. So g preserves the fibration and is not loxodromic. If
g is not parabolic it is elliptic, and its action on cohomology has finite order since it preserves
H2pX,Zq. On a K3 or Enriques surface every holomorphic vector field vanishes identically, so
AutpXq0 is trivial and the kernel of the homomorphism AutpXq Q f ÞÑ f˚ is finite (see [21,
Theorem 2.6]); as a consequence, any elliptic automorphism has finite order. The upper bound
on the order of g was obtained in [64]. �

6. RANDOM FOLDINGS AND ERGODIC THEORY

We have now gathered enough geometric information to draw some dynamical consequences
on the dynamics of pentagon folding.

6.1. Dynamics on Pent0p`q. Recall that the folding groups Γ, Γext and Γm were defined in
§ 5.4. Recall also that a parameter ` P R5

ą0 is admissible when it corresponds to at least one
pentagon.

Recall from Remark 5.7 that XpRq » Pent0p`q can be disconnected, in which case it is the
disjoint union of two tori. This happens in 3 of the 19 possible configurations listed in [34], the
shapes of which are sketched in Figure 1. Such a pentagon cannot be deformed continuously
to its reflection along the horizontal side, hence the configuration space is disconnected. On the
other hand,

(1) folding it along its longest diagonal maps it into the other component, so Γ and Γext act
transitively on the set of components of Pent0p`q;

(2) the involutions preserving the horizontal side preserve each component of Pent0p`q, so
Γm preserves each component of Pent0p`q for m “ 0.
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FIGURE 1. Pentagons with disconnected configuration spaces (respectively corre-
sponding to the codes

`

X X
X X

˘

,
`

Ă H

Ă H

˘

and
`

Ă Ą
Ă Ą

˘

in [34, Table 4])

In the next two statements, “general” means that the conclusions of Proposition 5.10 are
satisfied.

Proposition 6.1. For a general admissible parameter ` P R5
ą0, the action of Γ (resp. of Γext)

on Pent0p`q is ergodic with respect to its natural volume form. Likewise, for m P t0, . . . , 4u the
action of Γm is ergodic on each Γm-orbit of connected components of Pent0p`q.

Proof. Since Γ has no invariant curve and acts transitively on the set of components of Pent0p`q,
the result follows from case (c) of [25, Thm A]. For Γm, the same argument applies, upon adding
the observation that the Γm-invariant curves do not intersect Pent0p`q. �

Theorem 6.2. Let ` P R5
ą0 be a general admissible parameter. Fix a probability measure ν on

Γ (resp. Γext) satisfying the moment condition (M), and whose support generates Γ (resp. Γext).
Then all ν-stationary measures on Pent0p`q are invariant, and the ergodic invariant measures
are given by:

– finitely many periodic orbits;
– volPent0p`q.

In particular, the set of ν-stationary measures is a finite dimensional simplex.

Proof. This follows from Proposition 6.1, the stiffness theorem of [26], and the finiteness of the
set of finite orbits established in [24, Thm C]. �

Remark 6.3. The classification of stationary measures also holds for Γm, except that in this
case we cannot apply [24, Thm C] to infer the finiteness of the set of periodic orbits, because of
the existence of invariant curves.

The random ergodic theorem then implies that for volPent0p`q-almost every pentagon x P

Pent0p`q, the sequence of empirical measures 1
n

řn
k“1 δfkωpxq is almost surely equidistributed on

Pent0p`q. As explained in § 1.8, to deduce the more precise result that this random equidistribu-
tion holds for every pentagon with infinite orbit we need some information about periodic orbits.
This is where it is useful to work with the extended folding group.
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Theorem 6.4. For a very general admissible parameter ` P R5
ą0, every orbit of Γext in Pent0p`q

is infinite. Hence, for such a parameter, the only ergodic Γext-invariant probability measure on
Pent0p`q is the natural volume.

We thus obtain the following equidistribution result (the moment condition (M`) was defined
in § 1.8):

Corollary 6.5. Fix a probability measure ν on Γext satisfying the moment condition (M`) and
generating Γext. There is an open and dense subset of full measure in the set of admissible
parameters ` such that for any x P Pent0p`q: either Γext ¨ x is finite or for νN-almost every ω,

1

n

n
ÿ

k“1

δfkωpxq Ñ volPent0p`q

as nÑ `8.

Proof. By [23, Thm 1.5], at a very general parameter the action of Γext is uniformly expanding.
Since uniform expansion is an open property, it holds on a dense open set. Then the equidistri-
bution result follows from [23, Thm 10.4] �

Proof of Theorem 6.4. By Theorem 6.2, it suffices to prove the first assertion. If this assertion
were not correct, then, arguing exactly as in [24, Thm A], we would find a finite index subgroup
Γ1 Ă Γext such that the algebraic set

(6.1) Z “
 

p`, xq P C5 ˆX`pCq, x P X`pCq,@f P Γ1, fpxq “ x
(

has a Zariski dense projection to C5. Since Γext does not preserve any curve inX` (for a general
`), then so does Γ1, and as a consequence, the natural projection π : Z Ñ C5 is generically
finite. Then, there exists a Zariski dense open subset W Ă C5 such that above W , π is a finite
unramified cover and the surfaces X̂` are all smooth.

Since R5
ą0 is Zariski dense in C5, the intersection Wą0pRq :“W XR5

ą0 is the complement
of a proper Zariski closed subset of R5

ą0. Reducing this open set slightly (by cutting out addi-
tional hypersurfaces if necessary), we may assume that every connected component of Wą0pRq

is simply connected. If Wi is such a connected component (for the euclidean topology), and
if p`, xq is a point of Z with projection ` P Wi, then there is a unique continuous (algebraic)
section

(6.2) `1 PWi ÞÑ p`1, x1q P Z
of π defined on Wi that maps ` to p`, xq. This will be refered to as the continuous continuation
of the Γ1-fixed point x. Moreover, under our contradiction hypothesis, we may choose Wi and
p`, xq such that the section defined in (6.2) takes its values x1 in Pent0p`1q (i.e. in the real part of
the complex surface X`1 for the real structure defined in (5.10)). We fix such a pair pWi, p`, xqq,
where x corresponds to a normalized pentagon paiq (i.e. a0 “ p0, 0q, a1 “ p`0, 0q).

Recall that a planar polygon is said to be degenerate, or flat, if it is contained in a line (ie. its
vertices are collinear). Since we can choose ` as we wish in the open set Wi, we may assume
that

(6.3) no line contains three of the vertices ai.
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In particular, x itself is not flat.
The triangle pa2a3a4q and the quadrilaterals a0a2a3a4 (with side lengths `5 :“ }ÝÝÑa0a2}, `2,

`3, `4) and a1a2a3a4 (with side lengths `1, `2, `3, and `6 :“ }ÝÝÑa1a4}) are non-degenerate. These
quadrilaterals are periodic for the respective transformations σ23 ˝ σ34 and σ12 ˝σ23. Therefore,
by the Darboux alternative for quadrilaterals (see [35, 7, 62] and also Example 5.13), their side
lengths satisfy a non-trivial relation. More precisely, given the lengths `1, . . . , `4, there exists a
countable set D5 “ D5p`2, `3, `4q and D6 “ D6p`1, `2, `3q such that

(6.4) `5 P D5p`2, `3, `4q and `6 P D6p`1, `2, `3q.

We now deform the pentagon by varying `0 while keeping the other side lengths fixed; this
gives a variation `1 “ p`10, `1, . . . , `4q of ` inWi, and a continuation x1 “ pa1iq P Z of x (with the
normalization a10 “ p0, 0q and a11 “ p`0, 0q). Let us show that for `1 near `, the continuation x1

of x is geometrically determined, in a unique way, by the length conditions (6.4). Since
›

›

ÝÝÑ
a10a

1
2

›

›

varies continuously and must stay inD5, it is constant, hence the triangle a10a
1
1a
1
2 has side lengths

`10, `1 and `5 which defines it uniquely up to isometry. Since the initial triangle a0a1a2 is not flat,
then the point a12 is uniquely determined as a continuation of a2. Similarly, the triangle a10a

1
1a
1
4

determines a14. Finally, since the lengths `2 and `3 are fixed and the triangle a2a3a4 is not flat,
the continuation a13 is uniquely determined. In conclusion, the periodicity of x1 under the action
of σ23 ˝σ34 and of σ12 ˝σ23 determines x1 as `0 varies; thus, in what follows we can forget about
Z: the section p`1, x1q is, in fact, given by the geometric construction we have just described.

To reach the desired contradiction, we now argue that the periodicity of x1 under the parabolic
automorphism σ13˝σ34 creates an additional rigidity that cannot be satisfied (we might use σ12˝

σ24 instead). Indeed, σ13˝σ34 acts on the vectors v1 “
ÝÝÑa1a2, v3 “

ÝÝÑa3a4 and v4 “
ÝÝÑa4a0, so it can

be seen as a transformation of the “virtual” quadrilateral a0b1a3a4, where b1 is such that
ÝÝÑ
a3b1 “

ÝÝÑa2a1. Since x1 is a Γext-periodic point of Pent0p`1q for all `1, the quantity }v1 ` v3 ` v4} “
›

›

ÝÝÑ
a0b1

›

› must be constant; more precisely, it does not vary with `10 on a neighborhood of `. But
this function depends algebraically on the parameters, and any neighborhood of ` inWi is Zariski
dense in C5, so we conclude that this function actually does not depend on `10. Thus, to reach
the desired contradiction, one just needs to contemplate Figure 2. �

Since we use transformations like σ13 ˝ σ34 in the proof, it is necessary to work with Γext.
The analogous result for Γ remains elusive (6).

Question 6.6.

(1) Is it true that for a very general set of lengths ` P P4pCq, every orbit of Γ (resp. Γm) in
Pent0p`q (resp. in X`) is infinite?

(2) Is there a dense open set of parameters ` P P4pRq for which every finite orbit is uni-
formly expanding?

(3) Can we replace “very general” by “general” in Theorem 6.4 and in Question (1)?

6We actually do not know any example of a “general” periodic pentagon, that is a pentagon x P Pent0p`q with a
finite Γ-orbit, for which ` satisfies the conditions of Proposition 5.10.
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aa00 aa11

aa44

aa22

aa33

bb11

a0b1 = 2.6

a0a1 = 5

aa00 aa11

aa44

aa22
aa33

bb11

a0b1 = 4

a0a1 = 6.9

FIGURE 2. Proof of Theorem 6.4. The corresponding circles have the same radius on
the two figures, and serve for the construction of a2, a3 and a4 (for instance on both
pictures the red circle on the left is centered at a0 and has radius `5 and the red circle
on the right is centered at a1 with radius `2). When `0 varies the distance a0b1 varies as
well. (Realized with GeoGebra and available at https://www.geogebra.org/
m/edydwafb).

Let us expand a little bit on this. As seen above, a positive answer to the first question implies
a positive answer to the second one. On the other hand, even without excluding the existence of
a persistent periodic orbit for Γ, it might still be possible to show that the action of Γ on Pent0p`q

is uniformly expanding generically (this point of view is developed in [23, §9]). Indeed, by [23],
it is enough to show that at such a persistent periodic orbit, for a general parameter `, we can find
parabolic elements in Γ that exhibit a non-trivial twisting in different directions. Geometrically,
this would require to understand how the rotation numbers associated to sub-quadrilaterals vary
when deforming the pentagon (an explicit formula for this rotation number is given in [7, 62]).

6.2. Dynamics on Pent1p`q. Recall that U denotes the unit circle in R2 » C. To an element
u P U corresponds a unique rotation Ru (centered at the origin); in complex coordinates, it just
corresponds to multiplication by u, and its inverse is R´1

u “ Ru.
For ` “ p`0, . . . , `4q P R5

ą0, let us introduce the space of pentagons modulo translations

(6.5) Pent1p`q “ Pentp`q{R2.

With notation as in § 5.1, every element x̃ of Pent1p`q admits a unique representative with
a0 “ p0, 0q. Then, ÝÝÑa0a1 “ `0t0, for some unit vector t0 P U and if we apply the rotation Rt0 ,
we get a normalized pentagon x (with a0 “ p0, 0q and a1 “ p`0, 0q). This shows that Pent1p`q

is a trivial circle bundle over Pent0p`q:

(6.6) Pent1p`q » Pent0p`q ˆ U.

The reciprocal diffeomorphism is obtained as follows. Let px, uq be an element of Pent0p`qˆU.

– To x, one associates its normalized pentagon, that is, the unique pentagon paiq in its
SOp2q ˙R2 orbit corresponding to x such that a0 “ p0, 0q and a1 “ p`0, 0q.

https://www.geogebra.org/m/edydwafb
https://www.geogebra.org/m/edydwafb
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– then one rotates it by Ru to get an element of Pent1p`q.

As a real algebraic variety, Pent1p`q is the real locus, with respect to the involution

(6.7) s : pziq ÞÑ p1{ziq,

of the variety defined in C5 by the system of Equations (5.4).
The involutions σij and the groups Γ and Γm are defined exactly as before, with the same

formulas; to avoid confusion with the action on Pent0, we may denote the involutions by σ̃ij
and the corresponding pentagons by x̃). In the coordinates px, uq P Pent0p`q ˆ U, σ̃ij is given
by

(6.8)

#

σ̃ijpx, uq “ pσijpxq, uq, if 0 R ti, ju

σ̃0jpx, uq “ pσ0jpxq, h0jpxquq

where x ÞÑ h0jpxq takes values in U. To justify the second line, simply observe that σij com-
mutes with the rotation Rv, i.e. with px, uq ÞÑ px, uvq; thus, σ̃0jpx, uq “ Ruσ̃0jpx, 1q.

Instead of choosing a0 as a base point (which is translated to the origin), we could choose any
of the five vertices am, m “ 0, . . . , 4. This provides five different identifications Pent1p`q »

Pent0p`qˆU; for each of them, we denote by ϑm : Pent1p`q Ñ U the projection onto the second
factor (in other words, for a pentagon x̃, ϑmpx̃q is the angle =pÝÝÝÝÝÑamam`1, p1, 0qq). Changing
from the basepoint ai to the basepoint aj yields a change of coordinates of the form px, uq ÞÑ

px,Rαijpxquq, where αi,jpxq is the unit vector with angle =pÝÝÝÝÑaiai`1,ÝÝÝÝÑajaj`1q. So,

(6.9) volPent1p`q :“ volPent0p`q ˆ LebU

defines a Γ-invariant volume.

Proposition 6.7. The action of Γ is ergodic on Pent1p`q with respect to the natural volume
volPent1p`q.

Proof. The argument is borrowed from Chivet’s master’s thesis [29]. Let B be a Borel set of
positive volume such that for every γ P Γ,

(6.10) volPent1p`qpB∆γ´1pBqq “ 0.

Pick an index m P t0, . . . , 4u, and note that Γm preserves the fibers of ϑm. Since B is almost
Γm-invariant and the Γm-action on Pent0p`q is ergodic, we get that B is ϑm-saturated, which
means that every fiber of ϑm intersects B on a set of zero or full measure for volPent0p`q.

Let us fix a value of m, say m “ 0 and work in the system of coordinates px, uq associated to
this choice; in these coordinates, Rv is of the form px, uq ÞÑ px, uvq. Set

(6.11) B0 “

!

u P U; volPent0p`qpB X ϑ
´1
0 puqq “ 1

)

.

If we push volPent1p`q onto U by ϑ0, one gets the Lebesgue measure, and B0 has a positive
Lebesgue measure; below, we shall consider Lebesgue density points u0 of B0.

Now fix another value ofm, saym “ 1. Let F be any fiber of ϑ1. Since ϑ0|F : F Ñ U admits
a regular value, there exists δ ą 0 and an open set W Ă F such that ϑ0|W is a submersion onto
an interval of length 2δ. In addition, since any other fiber of ϑ1 is of the form RvpF q, we deduce
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that there exists an open set V P Pent0p`q such that, for any u0 P U, there exists a neighborhood
Npu0q Ă U such that, for every u P Npu0q and every x P V , there exists Wx P ϑ

´1
1 pϑ1px, uqq

such that ϑ0|Wx realizes a submersion Wx Ñsu´ δ, u` δr.
Fix any density point u0 of B0, so that there exists A Ă B0 X Npu0q of positive Lebesgue

measure. For every u P A, B X pV ˆ tuuq is of full volPent0p`q mass in V ˆ tuu. By Fubini’s
theorem, and the fact that the B is ϑ1-saturated, there is a set of positive measure B1 Ă A ˆ V

such that for any px, uq P B1, the ϑ1-fiber of px, uq is contained in B (modulo a set of measure
zero). Projecting back by ϑ0 and using the fact that B is ϑ0-saturated, we conclude that su0 ´

δ, u0 ` δrĂ B0 (modulo a set of measure zero). From this we easily conclude that B0 “ U
(modulo a set of measure zero) and, applying the Fubini theorem again completes the proof. �

Theorem 6.8. Let ` P R5
ą0 be a general parameter. Fix a probability measure ν on Γ satisfying

the moment condition (M) and whose support generates Γ. Then, the ergodic, ν-stationary
measures are

– atomic measures on Γ-periodic orbits(7);
– measures of the form

˜

ÿ

xPF

δx

¸

ˆ LebU

where F is a finite orbit for the action of Γ on Pent0p`q;
– the measure volPent1p`q.

In particular, every ν-stationary measure on Pent1p`q is invariant.
If ν is a probability measure on Γext satisfying condition (M) and generating Γext, and if ` is

very general, then the only ergodic ν-stationary measure on Pent1p`q is volPent1p`q.

In the latter case, we could also state an equidistribution result in the spirit of Corollary 6.5.
The core of the proof is the following stationary version of a celebrated argument due to Fursten-
berg [55], which we state here in a general form.

Lemma 6.9. Consider a random dynamical system pX, pfωq, ν, µq, whereX is a compact metric
space, ν is a Borel probability measure on HomeopXq, and µ is an ergodic ν-stationary measure
on X . Let G be a compact group, with Haar measure λ. Consider a G-extension of this random
dynamical system, by transformations of X ˆG of the form

Fω : px, gq ÞÑ pfωpxq, hωpxq ¨ gq

Then for this extension, µ ˆ λ is ν-stationary, and if it is ergodic, it is the unique stationary
measure projecting down to µ.

Proof. The stationarity of µˆλ is an easy exercise. Let µ̃ be an ergodic, ν-stationary probability
measure onXˆG with marginal pπXq˚µ̃ “ µ. By the random ergodic theorem, µ̃-almost every

7Such periodic orbits are even rarer than periodic orbits on Pent0p`q (we do not know any example). So we
strongly believe that there exists a dense, Zariski open subset W Ă R5

ą0 such that for ` P W , Γ does not have any
finite orbit in Pent1p`q (see Question 6.6).
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px, gq is µ̃-generic: this means that for νN-almost every ω,

(6.12)
1

n

n´1
ÿ

k“0

δFkω px,gq ÝÑnÑ8
µ̃.

Let Rh : px, gq ÞÑ px, g ¨ hq denote the right translation induced by h P G. Note that Fω
commutes with Rh and µˆ λ is Rh-invariant. From this we infer that if px, gq is µˆ λ-generic,
then all points in the fiber txu ˆ G are µ ˆ λ-generic. By Fubini’s theorem, it follows that
µ̃-almost every point is in fact µˆ λ-generic, hence µ̃ “ µˆ λ, as asserted. �

We shall also need the following well known lemma.

Lemma 6.10. Let Γ be a group of rotations of the unit circle and ν be a measure such that
xSupppνqy “ Γ.

– If Γ is infinite, the Lebesgue measure is the only ν-stationary measure.
– If Γ is finite, the ergodic stationary measures are supported by its finite orbits.

Proof. Let us prove the first assertion (the second one is obvious). Since Γ is infinite, it is
a dense subgroup of SOp2q. Since SOp2q is Abelian, by the Choquet-Deny theorem, every
stationary measure is invariant. Now, if µ is Γ-invariant, it its SOp2q-invariant too, by density
and dominated convergence. Thus, µ is the Lebesgue measure. �

Proof of Theorem 6.8. By Equation (6.8), the dynamics on Pent1p`q is a U-extension of the one
on Pent0p`q. Theorem 6.2 implies that if ν generates Γ, any ergodic ν-stationary measure µ̃ on
Pent1p`q either projects to a finite orbit or to volPent0p`q. In the latter case, Proposition 6.7 and
Lemma 6.9 imply that µ̃ “ volPent1p`q. Assume now that

(6.13) pπPent0p`qq˚µ̃ “
1

|F |

ÿ

xPF

δx

for some finite orbit F . In this situation we can also use Lemma 6.9 to classify stationary
measures. Restricting to a finite index subgroup, endowed with the induced measure (see [11,
Chap. 5]) reduces the problem to the case where F “ tx0u. Then the classification follows from
Lemma 6.10.

The second statement of the theorem follows similarly, using Theorem 6.4 instead of 6.2. �

6.3. Dynamics on Pentp`q. We can finally derive some information about the dynamics of
random foldings on Pentp`q, which is a R2-extension of the dynamics on Pent1p`q. Indeed
Pentp`q can be identified to Pent1p`qˆR2 by choosing a preferred vertex, say a0, and translating
it to the origin. Doing so, we obtain a diffeomorphism

(6.14) Pentp`q Q paiq ÞÝÑ px̃, a0q “ ppviq, a0q P Pent1p`q ˆR2, where vi “ ÝÝÝÝÑaiai`1.

We already introduced the involution si in § 5.1, which descends to σ̃i,i`1 (indices modulo
5) on Pent1p`q and to σi,i`1 on Pent0p`q. With the identification given by Equation (6.14), we
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obtain:

(6.15)

#

sippaiqq “ pσ̃i,i`1px̃q, a0q for i ‰ 4

s4ppaiqq “ pσ̃40px̃q, a0 ` σ̃40pv4q ´ v4qq

By definition the group Γ is the group generated by the involutions si (we are slightly abusing
notation here).

To find an involution descending to σ̃ij when j ‰ i ` 1, different options can be chosen,
depending on the vertices that remain fixed under the involution. First, observe that if j ‰ i` 1

we can always choose i, j so that j “ i ` 2 modulo 5 (so the vectors vi and vi`2 will change
while the others remain fixed). In analogy with the case of si, we define ri such that ripaiq “ ai
and rripP qs “ σi,i`2prP sq, so that ri fixes ai, ai`3 and ai`4 and moves ai`1 and ai`2 (another
option would have been to leave ai`2 fixed). It can be expressed in coordinates in Pentp`q as
in (6.15). We define Γext acting on Pentp`q by Γext :“ xsi, ri, i “ 0 . . . 5y.

a0 a1

a2

a3

a4

FIGURE 3. The black pentagon on the left is folded to the blue pentagon on the right
by the lift r1 of σ1,3. The red segment is parallel to ra3, a4s and the red dotted segment
gives the direction along which the vectors v1 and v3 are reflected.

In [7, 8], the authors study in detail how a quadrilateral drifts in the plane under successive
foldings. Fix a probability measure ν on Γext. From a pentagon P0 “ paiq with a0 “ p0, 0q

and a sequence ω “ pfnq P pΓ
extqN of folding instructions, we obtain the following random

sequence of pentagons Pn P Pentp`q:

(6.16) Pnpωq “ fn´1 ¨ ¨ ¨ f0pP0q.

Note that the parameter space for the starting point is Pent1p`q.

Proposition 6.11.

(1) Let ` P R5 be a general parameter. Assume that ν satisfies the moment condition (M)
and generates Γ. Then, for volPent1p`q-almost every P0, the linear drift of the sequence
pPnq vanishes, that is

lim
nÑ8

1

n
distpPnpωq, p0, 0qq “ 0

for νN-almost every ω.
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(2) Assume now that ` is very general, ν satisfies the moment condition (M`), and ν gener-
ates Γext. Then the same conclusion holds for every P0 P Pent1p`q.

Proof. To study the drift it is enough to study the location of the point a0. For this we use
the coordinates given by the identification Pentp`q » Pent1p`q ˆ R2 and write Pnpωq “
prPnpωqs, a0pPnpωqqq. From Equation (6.15) and its analogue for the ri, we see that there exists
a function w : Γext ˆ Pent1p`q Ñ R2 such that a0pfpP qq “ a0pP q `wpf, rP sq. This function
is continuous and is a cocycle: wpfg, rP sq “ wpf, grP sq ` wpg, rP sq. We then obtain

(6.17) a0pPnpωqq “
n´1
ÿ

k“0

wpfk, rPkpωqsq.

For Assertion (1), we apply the Birkhoff ergodic theorem to the skew product

(6.18) F : pω, xq ÞÑ pσpωq, fωpxqq

(where σ is the shift on pΓextqN) and to the ergodic measure νN ˆ volPent1p`q. This shows that
for volPent1p`q-almost every P0 and νN-almost every ω,

(6.19)
1

n

n´1
ÿ

k“0

wpfk, rPkpωqsq ÝÑ
nÑ8

ż

wpγ, P q dνpγqdvolPent1p`qpP q.

Now for every γ P Γext, the invariance of volPent1p`q under rotations implies that

(6.20)
ż

wpγ, P qdvolPent1p`qpP q “ 0,

and the result follows.
For Assertion (2), ` being very general, we can assume that volPent1p`q is the unique stationary

measure on Pent1p`q (see Theorem 6.8). The argument will be the same as for Assertion (1),
except that we shall need a more sophisticated limit theorem that makes use of this unique
ergodicity. As already observed, w is a cocycle and, by unique ergodicity, it has a unique average
in the sense of [11, §3.3.2]. The analogue of formula (6.15) for extended foldings implies that
there exists Cp`q ď 2

ř

`i such that that for any γ P Γext

(6.21) wsuppγq :“ sup
rP sPPent1p`q

}wpγ, rP sq} ď Cp`q lengthpγq,

where the length lengthpγq is relative to the given generators of Γext. The moment condition
implies that

(6.22)
ż

Γext

wsuppγqdνpγq ă 8,

thus we can apply the Law of Large Cocycles [11, Thm 3.9], which completes the proof. �

It is natural to ask for a better understanding of the asymptotic behavior of distpPnpωq, p0, 0qq.
Intuitively, by Equation (6.17), the first vertex a0pPnpωqq should behave like a random walk in
the plane, the steps of which are random vectors distributed according to some explicit measure
supported by a bounded disk. Under appropriate non-degeneracy properties of this measure,
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such a random walk escapes with speed Op
?
nq and, after rescaling, converges to a Brown-

ian motion (for some positive definite covariance form). Numerical experiments indicate that
distpPnpωq, p0, 0qq indeed behaves like

?
n.

Question 6.12. Does a0pPnpωqq satisfy a central limit theorem? Does 1?
n
a0pPnpωqq converge

to a Brownian motion?

As far as we know, this question is already open for random foldings of quadrilaterals. An
even simpler variant is to take a triangle and reflect it randomly along one of its sides. This
last problem falls into the setting of random iteration of Euclidean isometries in which case the
result is known (see e.g. [2] and references therein). To establish such a result, it is likely that
some estimates would be needed for the speed of the ergodicity of the base dynamics in Pent0,
as discussed in § 1.8 (cf. [11, Chap. 11 and 12]).
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Part 3. Ergodic theory of Blanc’s examples

7. ACTION ON COHOMOLOGY IN THE COMPLEX SURFACE

7.1. Setting and volume form. Consider a smooth cubic curve C Ă P2
C and a point q P C.

Denote by σq : P2
C 99K P2

C the birational involution defined by the following properties: it fixes
C pointwise and it preserves the pencil of lines through q. If L is a general line through q, the
restriction of σq to L is defined as follows: beside q, L intersects C in two other points p and p1;
identifying Lz tp, p1u to P1z t0,8u, with affine coordinate z, σq |L corresponds to z ÞÑ ´z. By
definition, σq is the Jonquières involution associated to the pencil of lines through q and fixing
C pointwise.

Now, fix a positive integer k, and k distinct points qi on C. Each qi gives rise to a Jonquières
involution σi :“ σqi . It has five base points, namely qi and the four points pi,j P C such that the
line pqipi,jq is tangent to C at pi,j . One of the pi,j may be infinitely near (above qi) if qi is an
inflexion point, but for simplicity we shall assume that:

(Hyp1) none of the qi is an inflexion point of C;
(Hyp2) the points qi and pi,j for 1 ď i ď k and 1 ď j ď 4 are pairwise distinct.

In fact, (Hyp2) implies (Hyp1) since otherwise one of the pi,j would coincide with qi (as a point
of the plane, i.e. pi,j would be infinitely near qi). We shall denote by X the rational surface
obtained by blowing up the 5k points qi and pi,j and by π : X Ñ P2

C the natural projection.
We also consider the surface Xi obtained by fixing i and blowing up the base points qi and

pi,j of σi, creating five exceptional divisors Epqiq, and Eppi,jq for 1 ď j ď 4. Doing so, we get
a birational morphism πi : Xi Ñ P2

C, and a distinguished basis for its Néron-Severi group:

– e0 will denote the class of the total transform of a line L Ă P2
C;

– eqi the class of Epqiq;
– and epi,j the class of Eppi,jq.

This basis is orthogonal for the intersection form, e2
0 “ 1, and e2

qi “ e2
pi,j “ ´1. Abusing

slightly, the same notation will be used for the classes of (the total transform of) these curves in
the surface X .

The involution σi lifts to an involutive automorphism σ̃i of Xi, and then all the σ̃i lift to
automorphisms of X , which we still denote by σ̃i. Indeed, since σ̃i fixes the strict transform of
C in Xi pointwise, it preserves the exceptional divisors obtained by blowing up the q` and p`,j
for ` ‰ i. Acording to [12], the subgroup Γ Ă AutpXq generated by the σ̃i is a free product of
k copies of Z{2Z, i.e.

(7.1) Γ » Z{2Z ˚ ¨ ¨ ¨ ˚ Z{2Z,

acting faithfully on the Néron-Severi group NSpXq. Since the canonical bundle of P2pCq is
Op´3q and we only blow-up points of C, we obtain the following properties.

(1) The strict transform CX of C in X is fixed pointwise by the group Γ. Its self-intersection is
equal to

(7.2) C2
X “ 9´ 5k ,
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so it is negative when k ě 2. The strict transform CXi of C in Xi has self-intersection C2
Xi
“ 4.

(2) Assume k ě 2. The curve CX is the unique member of the linear system |CX |, and its
cohomology class is equal to the anticanonical class ´kX . In particular, CX is invariant under
the action of AutpXq. More precisely, C being a cubic curve, there is a meromorphic 2-form Ω0

on P2
C that does not vanish and has a simple pole along C. Now, since we only blow up smooth

points of C, an easy local computation shows that the pull back

(7.3) ΩX :“ π˚Ω0

is a meromorphic 2-form that does not vanish and has a simple pole along CX . We shall fix such
a form ΩX ; it is almost unique: on X , any non-vanishing meromorphic 2-form is proportional
to ΩX .

(3) The total volume of the singular volume form ΩX ^ ΩX is infinite:

(7.4)
ż

X
ΩX ^ ΩX “ `8.

We set

(7.5) vol8X “ ΩX ^ ΩX ,

which we identify to a positive measure on X .

(4) Let JacΩ : AutpXq Ñ C˚ denote the homomorphism such that

(7.6) @f P Γ, f˚Ω “ JacΩpfqΩ

(cf. Remark 4.3). We have

(7.7) JacΩpΓq “ t1u .

To see this, consider the involution σ1 and the pencil of lines through q1. Let r be a point of C
such that pq1rq intersects C transversely; then, σ1 determines a germ of diffeomorphism fixing
r. Since this germ has order 2 and fixes C pointwise, we can linearize it(8). Since C is pointwise
fixed, there is a small euclidean neighborhood of r and holomorphic coordinates px, yq on it, in
which r “ p0, 0q, σ1px, yq “ px,´yq and C “ ty “ 0u. In these coordinates, the form ΩX is
equal to

ϕpx, yq
dx^ dy

y
for some non-vanishing holomorphic function ϕ. Then, JacΩpσ1q “ ϕpx,´yq{ϕpx, yq. Eval-
uating this ratio at r, we get JacΩpσ1q “ 1. Thus, JacΩpσiq “ 1 for i “ 1, . . . k, and
JacΩpΓq “ t1u.

(5) If C and the qi are defined over Q, then X and Γ are also defined over Q. Indeed, if K is
the number field over which C and the qi are defined then, for each i, the pi,j are defined over
some quartic extension of K; thus, X and Γ are defined over some extension L of K of degree
rL : Ks ď 4k.

7.2. Finer description of the involution σi.

8Indeed, its differential L at the origin in the system of coordinates mentioned just below is Lpx, yq “ px,´yq,
and ψ ˝ σ1 “ L ˝ ψ, where ψ “ 1

2
pid`L ˝ σ1q
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7.2.1. Invariant fibration. For each i “ 1, . . . , k, the pencil of lines through qi gives rise to a
rational fibration

(7.8) ηqi : Xi Ñ P1
C.

The singular fibers of ηqi correspond to the total transform of the lines pqipi,jq (each of them is
made of two rational curves). In X , we obtain k fibrations ηqi : X Ñ P1

C, each of them with
5k ´ 1 “ 4` 5pk ´ 1q singular fibers.

Let Li,j Ă Xi be the strict transform of the line pqipi,jq. Since pqipi,jq is tangent to C at pi,j ,
the three curves CXi , Eppi,jq, and Li,j have a unique common point

(7.9) p̃i,j :“ CXi X Eppi,jq “ Li,j X Eppi,jq

inXi. The involution σ̃i permutesEppi,jq and Li,j and fixes this intersection point p̃i,j . This can
be seen as follows: if L is the strict transform of a general line though q, then σ̃˚i prLsq “ rLs. It
follows that σ̃˚i prLi,js` rEppi,jqsq “ rLi,js` rEppi,jqs. Now, σi contracts πipLi,jq onto pi,j , so
σ̃ipLi,jq “ cEppi,jq for some integer c ě 1; and we infer that c “ 1 because σ̃˚i is an involution.
Thus, σ̃ipLi,jq “ Eppi,jq and σ̃ipEppi,jqq “ Li,j

7.2.2. Action on Epi,j . Let x be a point of Eppi,jq. A first possibility is that σ̃ipxq belongs to
Excpπiq (more precisely σ̃ipxq P Epqiq Y Eppi,jq). This happens precisely when

– σ̃ipxq “ x, and in that case x “ p̃i,j “ Li,j X Eppi,jq;
– or σ̃ipxq is the intersection point of Li,j and Epqiq, and in that case x is the intersection

of Eppi,jq with the conic Di (see below § 7.2.4).

Otherwise, σ̃ipxq is a point of Li,j that does not belong to the exceptional set Excpπiq.

7.2.3. Blow-ups of points of C. Now, let r P C be distinct from the base points of σi. The
line pqrq is σi-invariant, and σi acts as z ÞÑ ´z on it, by fixing 0 » r and 8 » r1, where
r1 is the third point of intersection of pqrq with C. Thus, when r is blown up, the action of
σ̃i on the exceptional divisor Eprq is an involution with exactly two fixed points: a fixed point
corresponding to the tangent line TrC, and a fixed point corresponding to the line pqrq (or more
precisely to Trpqrq).

Remark 7.1. By (Hyp2), qi does not coı̈ncide with ql or a pl,j when l ‰ i. Thus, the intersection
point between Epqlq and the strict transform of pqlpl,jq is never fixed by σ̃i: it is mapped to
another point of Epqlq.

7.2.4. Action on Néron-Severi, and the conic Di. Acording to [12], the action of σ̃i on the
Néron-Severi group of Xi is given, in the basis pe0, eq, ep1 , . . . , ep4q, by the matrix

(7.10)

¨

˚

˚

˚

˚

˚

˚

˝

3 2 1 1 1 1
´2 ´1 ´1 ´1 ´1 ´1
´1 ´1 ´1 0 0 0
´1 ´1 0 ´1 0 0
´1 ´1 0 0 ´1 0
´1 ´1 0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

.
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For instance, the second column means that the exceptional divisor Epqiq is mapped to the strict
transform D̃i of a plane conic Di which goes through the points qi and pi,j with multiplicity
1; its class in NSpXi;Zq is 2e0 ´ eq ´ ep1 ´ . . . ´ ep4 . This conic intersects C in 6 points,
counted with multiplicity, and D̃i intersects CXi in exactly one point, which must be fixed under
the action of σ̃i. On the other hand, since σ̃i fixes CXi pointwise, the point

(7.11) q̃i :“ Epqiq X CXi

must be fixed under the action of σ̃i (9). Since σ̃ipEpqiqq “ D̃i, we conclude that D̃iXCXi “ q̃i,
thus Di is tangent to C at qi. This argument also shows that the only points of Epqiq which are
mapped into the exceptional set of πi (resp. π) are q̃i and the intersection points of Epqiq with
the Li,j : the point Epqiq X Li,j is mapped to Li,j X Eppi,jq, a point which corresponds to the
tangent direction of Di at pi,j (cf. § 7.2.2).

We already stated without proof the fact that Γ is isomorphic to the free product of the σ̃i.
Blanc obtains this result by using (7.10) and proving that the action of Γ on NSpX;Zq is faithful
and its image is such a free product Z{2Z ˚ ¨ ¨ ¨ ˚ Z{2Z. Thus we get:

Lemma 7.2. When k ě 3, the group Γ Ă AutpXq is non-elementary.

7.3. Invariant curves (k ě 3). With the matrix from Equation (7.10) at hand, we deduce that
all fixed points of σ̃i˚ acting on NSpXiq (resp. NSpXi;Rq) are of the form

(7.12) u “ de0 ´ pd´ 2mqeqi ´m
4
ÿ

j“1

epi,j

for some pair of integers pd,mq (resp. pair of real numbers pd,mq). From now on we set

(7.13) Σi :“
4
ÿ

j“1

epi,j P NSpXi;Zq presp. P NSpX;Zqq.

Lemma 7.3. If k ě 3 and (Hyp1) and (Hyp2) are satisfied, the only (reduced) effective curve
U Ă X which is invariant under the action of Γ is the curve CX .

Proof. Let u P NSpXq be the class of an invariant curve U . Then by Equation (7.12) its expres-
sion in the basis pe0, eq1 , . . . , eqk , ep1,1 , . . . , ep1,4 , ep2,1 , . . . epk,4q is of the form

(7.14) u “ de0 ´ pd´ 2m1qeq1 ´ ¨ ¨ ¨ ´ pd´ 2mkqeqk ´m1Σ1 ´ ¨ ¨ ¨ ´mkΣk

for some integers d and mi. The strict transform of a general line through qi, whose class is
e0´ eqi , must intersect U non-negatively. This implies that mi ě 0. Similarly, d ě 0 because a
general line intersects U non-negatively.

The equality rCXs “ 3e0 ´ eq1 ´ Σ1 ´ ¨ ¨ ¨ ´ eqk ´ Σk implies

(7.15) U ¨ CX “ ´pk ´ 3qd´ 2pm1 ` ¨ ¨ ¨ `mkq.

Now, assuming that CX is not an irreducible component of U , we obtain

(7.16) 0 ď ´pk ´ 3qd´ 2pm1 ` ¨ ¨ ¨ `mkq.

9We abuse notation for convenience and use similar notations (like Li,j , p̃i,j , q̃i) for objects defined inX andXi.
For instance, q̃i also stands for q̃i :“ Epqiq X CX .
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Since k ě 3, we infer that k “ 3 and mi “ 0 for all i, therefore u “ de0 ´ dpeq1 ` ¨ ¨ ¨ ` eqkq.
From this it follows that the intersection of U with the strict transform of a general line through
qi is 0 for all i. This means that U is the strict transform of a plane curve of degree d and is
mapped to a point by each of the fibrations ηqi (see §7.2). This is a contradiction, so CX must be
a component of U ; in particular, UzCX is also invariant. Repeating this argument with UzCX
finishes the proof. �

7.4. Parabolic automorphisms. From now on, let us add the following hypothesis

(Hyp3) For any i ‰ j, the line pqiqjq does not contain any of the points pl,m for 1 ď l ď k,
1 ď m ď 4, nor qn for 1 ď n ď k and n ‰ i, j.

The strict transform Mi,j of the line pqiqjq is invariant under Γi,j :“ xσi, σjy. Furthermore this
line pqiqjq intersects C in a third point and (Hyp3) assures that this point is none of the points
that we blow-up.

Assume for a few lines that k “ 2, so that X is obtained by blowing-up the points qr and pr,j
for r “ 1, 2. Then rM1,2s “ e0 ´ eq1 ´ eq2 and M1,2 ¨ CX “ 1. The class u1,2 of CX `M1,2

satisfies

(7.17) u1,2 “ 4e0 ´ 2eq1 ´ 2eq2 ´ Σ1 ´ Σ2;

it is invariant under Γ1,2, i.e. under σ̃1
˚ and σ̃2

˚, and it is isotropic.

Lemma 7.4. Assume k “ 2 and the three hypotheses (Hyp1-Hyp3) are satisfied.

(1) If v is the class of an R-divisor with non-negative self intersection and v is invariant
under σ̃1

˚ and σ̃2
˚ then v is a multiple of u1,2.

(2) The composition g1,2 “ σ1 ˝ σ2 is a parabolic automorphism of X that preserves the
isotropic class u1,2.

(3) The invariant genus 1 pencil of g1,2 is given by the pencil of plane quartic curves going
through the pi,j with multiplicity 1 and through qi with multiplicity 2, for i “ 1, 2.

Before proving this lemma, let us state the following immediate corollary.

Corollary 7.5. If k ě 2 and the hypotheses (Hyp1-Hyp3) are satisfied, then

(1) each of the automorphisms gi,j “ σ̃i ˝ σ̃j , i ‰ j, is parabolic;
(2) the invariant genus 1 fibration of gi,j corresponds to the linear system of plane quartics

going through qi and qj with multiplicity 2 and through the pi,l and pj,l with multiplicity
1 (for l “ 1, . . . , 4q.

Proof of Lemma 7.4. Every invariant class can be written as v “ de0´pd´2m1qeq1´m1Σ1´

pd´2m2qeq2´m2Σ2. These classes form a 3-dimensional subspace of NSpX;Rq on which the
intersection form is non-positive and degenerate: its kernel is generated by u1,2. So, if v2 ě 0,
v is proportional to u1,2; more precisely, m1 “ m2 and v “ m1u1,2.

In the group xσ̃1, σ̃2y, g1,2 generates a cyclic, normal subgroup of index 2. Thus, the fixed
point set of g˚1,2 in NSpX;Rq is invariant under xσ̃1, σ̃2y. If g1,2 were elliptic, this set of fixed
points would intersect the set of classes v P HX Ă NSpX;Rq on a non-empty convex subset F
of the hyperbolic space HX . This convex set F would be invariant under the action of σ̃˚1 , and
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the involution σ̃˚1 would have a fixed point in F ; such a fixed point would also be fixed by σ̃˚2
because σ̃2 “ σ̃1 ˝ g1,2; thus, it is fixed by xσ̃˚1 , σ̃

˚
2 y, in contradiction with the first assertion. We

conclude that g1,2 is not elliptic. Since it preserves the isotropic class u1,2, it is parabolic 10.
Let us now prove the third property. Set M1,2 “ OpCX ` M1,2q and L1,2 “ OpM1,2q

(viewed as line bundles or as sheaves on X). Since X is rational we have χpOXq “ 1. Since
M1,2 is a smooth rational curve with M2

1,2 “ ´1, the Riemann-Roch theorem gives

(7.18) h0pX,L1,2q ´ h
1pX,L1,2q ` h

2pX,L1,2q “ 1.

We have h0pX,L1,2q “ 1 because M1,2 is irreducible and has negative self-intersection, and
h2pX,L1,2q “ 0 by Serre duality; thus, h1pX,L1,2q “ 0. Now, looking at the restriction of
M1,2 to CX , we get the long exact sequence

(7.19) H0pX,L1,2q Ñ H0pX,M1,2q Ñ H0pCX ,M1,2|CX q Ñ H1pX,L1,2q Ñ ¨ ¨ ¨

By what we know of the H ipX,L1,2q this gives

(7.20) CÑ H0pX,M1,2q Ñ H0pCX ,M1,2|CX q Ñ 0.

Let us identify CX to C via the projectionX Ñ P2
C and fix an inflexion point o of C; the divisor

obtained by intersecting a line with C is equivalent to 3o. In restriction to CX » C, M1,2 is
given by the divisor 12o´ 2q1´ 2q2´ p1,1´¨ ¨ ¨´ p2,4, of degree 0. According to § 7.2.4, there
is a conic D1 tangent to C at q1 and passing through the p1,j ; thus, 2q1 ` p1,1 ` ¨ ¨ ¨ ` p1,4 “ 6o

on C; similarly, 2q2 ` p2,1 ` ¨ ¨ ¨ ` p2,4 “ 6o. Hence 12o´ 2q1 ´ 2q2 ´ p1,1 ´ ¨ ¨ ¨ ´ p2,4 “ 0,
which means that M1,2|CX is the trivial line bundle OpCXq. Thus, h0pCX ,M1,2|CX q “ 1 and
Equation (7.20) gives h0pX,M1,2q “ 2.

In other words, the linear system |CX `M1,2| is a pencil of curves. The general member D
of this linear system is irreducible, because otherwise CX or M1,2 would be a fixed component,
then we could write D “ D0 ` CX (resp. D0 `M1,2) for some movable curve D0, but since
C2
X “M2

1,2 “ ´1, this curveD0 would simultaneously satisfyD2
0 “ ´1, a contradiction. Now,

since the self-intersection of CX `M1,2 is 0, the elements of |CX `M1,2| are disjoint and form
a fibration. Finally, since they intersect trivially CX and CX “ ´kX , the genus formula shows
that they have genus 1. �

8. FINITE ORBITS AND INVARIANT MEASURES

We keep notation as in the previous sections. In § 8.2, we prove that when k ě 4, under
general assumptions on the the qi, every orbit of Γ outside CX is infinite. Then we discard the
possibility of Γ-invariant measures in § 8.3. This relies heavily on the results of [24, 25].

8.1. Finite orbits outside CX : a finiteness result. By a generalized Kummer surface, we
mean a desingularization of a quotient A{G where A is an Abelian surface, G is a subgroup of
AutpAq, and the set of points x P A with a non-trivial stabilizer in G is a finite subset FG of A
(see [25, 27]).

10Alternatively, one can compute the product of the matrices for σ̃˚1 and σ̃˚2 , and check that some power of it is
unipotent, but not the identity.



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 51

Proposition 8.1. The surface X is not a generalized Kummer surface.

Proof. Assume, by contradiction, that X is a generalized Kummer surface. Then, there exists
a birational morphism ε : X Ñ X0 onto a singular surface X0, an Abelian surface A, and a
finite subgroup G of AutpAq as above, such that X0 is isomorphic to A{G; the singularities of
X0 correspond to the finite set FG Ă A (see [24, §4]). In particular, the singularities of X0

are of quotient type, and the genus 1 curve CX cannot be contracted by ε; set CX0 “ εpCXq

and let CA be the preimage of CX0 in A under the quotient map η : A Ñ A{G “ X0. As a
consequence, the meromorphic 2-form ΩX induces a meromorphic 2-form ΩX0 on the regular
part of X0, hence a meromorphic 2-form η˚ΩX0 on AzFG; this 2-form has poles along CA
because the quotient map η is a local isomorphism on CAzFG. Let ΩA be a holomorphic 2-form
on A with

ş

A ΩA ^ ΩA “ 1. Then, there is a holomorphic function ϕ : AzFG Ñ C such that
ΩA “ ϕη˚ΩX0 . By the Hartogs theorem, this function ϕ extends holomorphically to A; and
because it vanishes along CA, it is identically zero. This contradiction shows that X is not a
Kummer surface. �

Proposition 8.2. Suppose k ě 3. If C and the qi are defined over Q, then Γ has at most finitely
many finite orbits in XpCqzCX .

Proof. By Lemma 7.4, the group Γ contains parabolic elements. If the curve C and the points
qi are defined over Q, then X and the σ̃i are all defined over some number field K. Since X is
not a Kummer surface, pX,Γq is not a Kummer group and Theorem B of [24] implies that the
union PerpΓq of all finite orbits of Γ is not Zariski dense. Let PerpΓq be its Zariski closure: it
is made of a one-dimensional part Per1pΓq that contains CX , together with a sporadic finite set
Per0pΓq. Since Per1pΓq is Γ-invariant, Lemma 7.3 shows that Per1pΓq “ CX . This concludes
the proof. �

8.2. Finite orbits outside CX : non-existence. By (Hyp2), qi does not coincide with ql or a
pl,j with l ‰ i. Thus, the points of intersection between Epqlq and the strict transform Ll,j of
pqlpl,jq is never fixed by σ̃i: it is mapped to another point of Epqlq (see § 7.2.3). To get more
rigidity, let us add a stronger hypothesis

(Hyp4) For i ‰ l, the involution σ̃i acts on Epqlq, by mapping the four points corresponding to
the directions pqlpl,jq to four other points (i.e. pσ̃iq˚Tqlpqlpl,jq ‰ Tqlpqlpl,j1q for any i,
l ‰ i, and 1 ď j, j1 ď 4).

To check that this condition is satisfied for a general choice of points, note that for fixed ql
and varying qi, σ̃i acts uponEpqlq as an involution fixing a fixed point (corresponding to the line
TqlC) and a mobile one (corresponding to the line pqlqiq). Fix a coordinate on Epqlq in which
TqlC “ 8. Then the induced involution is of the form z ÞÑ ´z ` 2cpqiq, where cpqiq is the
coordinate of the mobile point. For fixed a and b in Epqlq, taken among the points Ll,j XEpqlq,
the relation σ̃ipaq “ b reads a ` b “ 2cpqiq; such a relation is not satisfied for a general choice
of qi.

Proposition 8.3. Let C Ă P2
Q

be a smooth cubic curve, and let k ě 4 be an integer. Consider

the set Hk of k-tuples pq1, q2, . . . , qkq P CpQq satisfying hypotheses (Hyp1) to (Hyp4). Fix such
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a k-tuple pq1, q2, . . . , qkq; then, for q1k P CpQq outside a finite set, the pair pX,Γq determined
by pq1, q2, . . . , qk´1, q

1
kq does not have any finite orbit, except for the points of CX , which are

fixed.

Lemma 8.4. Assume k ě 2. If x does not belong to CX , there exists an element f of Γ such
that πpfpxqq R C.

Proof. Observe that if πpΓpxqq Ă C, then Γpxq Ă ExcpπqzCX . If x R Excpπq, we are done.
Otherwise x belongs to some Eppi,jq, or to some Epqiq.

In the first case, assume for concreteness that x P Epp1,1q and set y “ σ̃1pxq. By § 7.2.2, if
y P Excpπq, then y is the intersection point of the strict transform L1,1 of the line pp1,1q1q either
with Epq1q or with Epp1,1q. The first possibility does not happen because L1,1 X Epq1q is in
CX and is fixed by σ̃1 (see § 7.2.1). In the second possibility, by (Hyp4), σ̃2pyq is not on one of
the strict transforms of the lines pq1p1,lq, thus by § 7.2.2 again, σ̃1pσ̃2pyqq R Excpπq and we are
done.

In the second case, assume for concreteness that x P Epq1q and, again, set y “ σ̃1pxq. By
§ 7.2.4, y belongs to D̃1. If y P Excpπq, then either y P D̃1 X Epp1,jq for some j, and we are
back to the previous case, or y P D̃1 X Epq1q and then x “ q̃1 P CX is fixed, contradicting our
assumptions. �

Proof of Proposition 8.3. Consider the subgroup Γ3 of Γ generated by σ̃1, σ̃2, and σ̃3. By Propo-
sition 8.2, Γ3 has only finitely many finite orbits outside CX . By the previous lemma, each of
these is the orbit Γpxjq of some xj R CX Y Excpπq. Let F be the union of these finite orbits
Γpxjq, and set F 1 “ F zpCX Y Excpπqq. For a general choice of qk P C, the lines pqkxq for
x P πpF 1q are pairwise distinct, and x does not belong to the lines pqkpk,jq, for 1 ď j ď 4, nor
to the conic Dqk from § 7.2.4 (see Lemma 8.5 below). Thus, σkpπpF 1qq X πpF 1q “ H, and the
orbit of σ̃kpzq under Γ3 is infinite for any z in F 1. This shows that Γ does not have any finite
orbit, except for its fixed point set, which coincides with CX . �

Lemma 8.5. Fix x P P2zC. Then for general q P C, x does not belong to the conic Dq.

Proof. Indeed, suppose that x is in Dq for every q in some Zariski dense open subset U of C.
By continuity, the same holds for U “ C. Choose q P C such that pxqq is tangent to C at q
and q is not an inflexion point of C (11). By § 7.2.4, Dq is tangent to C, hence to pxqq, at q, so
Dq X pxqq “ tqu. This is a contradiction. �

11Such a point always exists. Otherwise, looking at the linear projection from C to P1
» PpTxP2

q, which is a
ramified cover of degree 3, one sees that there would be three inflexion lines meeting in x. So, assume p, q, r are
inflexion points with TpC X TqC X TrC “ txu. Put C in Weierstrass form x22x3 “ x31 ` bx1x

2
3 ` cx33, with

r “ r0 : 1 : 0s, TrC “ tx3 “ 0u, and x “ r1 : d : 0s for some d P C. The lines passing through x have equations
x2 “ dx1 ` ex3. Such a line intersects C when

x31 ´ d
2x21x3 ` pb´ 2deqx1x

2
3 ` pc´ e

2
qx33 “ 0,

and it is an inflexion line when this cubic equation coincides with px1 ´ τx3q
3 for some triple root τ . This implies

that 3τ “ d2, 3τ2 “ b´ 2de, and e “ pd4 ´ 3bq{6d, which means that e is determined by d; in other words, there
is at most one inflexion line of slope d (plus the line at infinity), and it is impossible, for a smooth cubic curve C, to
have three inflexion lines with a common point.
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8.3. Invariant measures.

Theorem 8.6. Fix a smooth cubic curve C Ă P2 defined over Q. Assume that k ě 4, and
consider a k-tuple of points pq1, q2, . . . , qkq P CpQq satisfying hypotheses (Hyp1) to (Hyp4).
Then, for q1k P CpQq outside a proper real analytic curve, the pair pX,Γq determined by
pq1, q2, . . . , qk´1, q

1
kq does not have any invariant probability measure except for the probability

measures supported on the fixed point set CX .

Proof. We have to show that every ergodic, invariant probability measure is supported on CX .
According to Lemma 7.3, there is no invariant curve except CX . Thus, from Proposition 8.3, it
suffices to exclude the existence of invariant measures giving no mass to proper Zariski closed
subsets. Let µ be such a measure. By Theorem A of [25], there are two possibilities:

(1) either µ is supported on a totally real, real analytic subset Σ Ă X , and µ is absolutely
continuous with respect to the 2-dimensional Lebesgue measure on Σ, with a real ana-
lytic density along the smooth locus of Σ;

(2) or the support of µ is the whole surfaceX , and µ is absolutely continuous with respect to
any smooth volume form, with a positive and real analytic density outside some invariant
algebraic subset Z.

Let us exclude the second case. We already know that CX is the only invariant algebraic
subset, hence µ “ ϕ vol8X for some real analytic function ϕ : XzCX Ñ R`. The ergodicity
of µ and the invariance of vol8X imply that ϕ is constant. But then, by Property (3) of § 7.1,
µpXq “ 8, which is a contradiction.

To rule out the first case, we argue as follows. The real (singular) surface Σ is invariant under
the action of Γk´1 “ xσ̃1, σ̃2, . . . , σ̃k´1y, and supports an invariant probability measure with a
smooth density. According to Theorem C of [25], there are only finitely many surfaces of this
type. We denote by Σk´1 Ă X the union of these real analytic subsets: it is the maximal, 2-
dimensional, real analytic subset of X that supports a Γk´1-invariant probability measure with
full support. To conclude, it suffices to show that, after perturbation of qk, the surface Σk´1 is
not σ̃k-invariant.

For this, denote by z a smooth point of Σk´1 with πpzq R C. As r varies along C, the point
σrpπpzqq describes a complex algebraic curve. This curve cannot be contained in πpΣk´1q,
because Σk´1 is totally real. Thus, the set Bk´1 “ tr P C; σrpzq P Σk´1u is a proper real
analytic subset of C. Then, we choose a point q1k P CzBk´1 such that pq1, . . . , q

1
kq satisfies

(Hyp1) to (Hyp4) and the conclusion of Proposition 8.3, and we are done. �

Remark 8.7. Since the proof of the theorem goes by breaking down all possible invariant totally
real surfaces, the argument does not apply to the real case. Another argument will be given for
the real setting in Theorem 10.3 below.

We believe that under the assumptions of Theorem 8.6, every stationary measure is invariant.
More precisely, every ergodic stationary measure should have both Lyapunov exponents zero,
therefore be invariant. In the next sections, we establish this result for some real examples.
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9. REAL CONSTRUCTION

In this section, we construct examples for which X and the σi are defined over the real num-
bers, XpRq is obtained by blowing-up 12 points of P2pRq (while XpCq is obtained by blowing
up 20 points), and the action of Γ on the 1-dimensional homology of XpRq admits a positive
Lyapunov exponent.

9.1. Topology of real rational surfaces. Let XR be a real projective surface obtained by
blowing up a points ri of P2pRq, as well as b pairs of complex conjugate points tsj , sju Ă
P2pCqzP2pRq. We shall look at the first homology group of XpRq with integral or rational
coefficients. For simplicity, consider some homogeneous coordinate system rx : y : zs on P2

R,
and suppose that the points ri are not contained in the line at infinity L8 “ tz “ 0u: they are
contained in the affine plane A2pRq of points rx : y : 1s with px, yq P R2. We endow this plane
R2 with the usual, counterclockwise, orientation.

For each index i, we denote byUi a small disk centered at ri, and we orient its boundaryCi :“

BUi in the clockwise direction. We suppose that the Ui are pairwise disjoint. The exceptional
divisor Ei obtained by blowing up ri is a projective line. Then EipRq is a circle, that we orient
in such a way that Ci “ 2Ei modulo homotopy (see Figure 5). Let V be the complement of the
Ui in R2, with the orientation induced by the orientation of R2. We orient L8 in such a way
that BV “ 2L8 `

ř

iCi. Then in H1pXpRq,Zq,

2`8 ` 2
ÿ

i

ei “ 0

where ei “ rEipRqs is the homology class of EipRq and `8 “ rL8pRqs is the homology class
of L8pRq. Then, H1pXpRq,Zq is isomorphic to Za‘Z{2Z, and H1pXpRq,Qq is isomorphic
to Qa. More precisely, a basis of H1pXpRq,Qq is provided by the classes pe1, . . . , eaq.

If L is any line in P2pRq which is not vertical, we orient L from left to right; in other words,
one can parametrize L by x P R ÞÑ rx : αx`β : 1s for some α, β in R, and this parametrization
is compatible with orientations. Letting U`L be the open half-plane above L, its boundary in
P2pRq is made of L and the line at infinity. In XpRq, this gives

(9.1) `8 ` `` 2
ÿ

riPU
`
L

ei `
ÿ

rjPL

ej “ 0,

(see Figure 6 for a local picture of a blow-up at a boundary of a domain) hence

(9.2) ` “
ÿ

ri strictly below L

ei ´
ÿ

ri strictly above L

ei

in H1pXpRq;Qq. This formula works even if some of the ri are contained in L.

9.2. Action of one Jonquières involution. Consider a smooth real cubic curve C Ă P2
R such

that CpRq is connected. We assume that C is in Weierstrass form y2 “ x3` ux2` vx`w and
we orient CpRq from bottom to top, i.e. from negative values of y to positive ones.

Let q be a point of CpRq which is not an inflexion point. Let σ be the Jonquières involution
associated to pC, qq, as in Sections 7.1 and 7.2 above. Besides q, the four remaining base points
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pj of σ are made of two real points p1, p2 and two complex conjugate points tp3, p4 “ p3u;
here, we shall assume that the position of q, p1, and p2 are as on Figure 4 below.

p2

q

p1

C(R)

FIGURE 4.

Denote by X the surface obtained by blowing up the base points of σ, by π : X Ñ P2 the
natural morphism, and by σ̃ the automorphism π´1 ˝ σ ˝ π of X . To describe the action of σ̃ on
H1pXpRq;Qq, we use the following facts:

— the involution σ̃ permutes Ep1 and the strict transform Lqp1 Ă X of the line pqp1q Ă P2pRq.
More precisely, Lqp1 , Ep1 , and CX have a unique common point p̃1. This point is fixed by σ̃
and the differential Dσ̃p̃1 can be described with the help of Figure 5. There is a basis of Tp̃1X
given by vectors u and v which are respectively tangent toEp1 and Lqp1 and are compatible with
their orientations; moreover, after scaling v by some positive factor, we may assume that´u`v
is tangent to CXpRq (and is compatible with its orientation). Then, the matrix of Dσ̃p̃1 in this
basis is

(9.3) Dσ̃p̃1 “

ˆ

0 ´1
´1 0

˙

.

Thus, σ̃pE1pRqq “ ´Lqp1pRq, where the minus sign means that the orientation is reversed. In
homology, this gives

(9.4) σ̃˚ep1 “ ´`qp1 “ ´ep2 .

Here, for the second equality we used formula (9.2) and the fact that the unique point outside
pqp1q is the point p2 which is below it. When we shall blow up more points, extra terms will be
added.
— the picture is different at p2 (because the concavity of C is reversed), and we obtain

(9.5) σ̃˚ep2 “ `qp2 “ ´ep1 .

— the “image” of q by σ is the conicDq that goes through q, p1, p2, and the points tp3, p4 “ p3u.
It is tangent to C at q; its real part is an ellipse, which we orient in the clockwise direction. Now,
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p1α
β

γ
δ

Lqp1

C(R)
α β

γ

δ

E(p1)

p̃1

FIGURE 5. This Möbius band is obtained from a blow-up of a small disk around p1;
its boundary is the preimage of the circle bounding this disk. On the right, the green
curve is the exceptional divisor Epp1q; the blue line is the strict transform of pqp1q; the
red curve is the strict transform of C. The involution σ̃ fixes the point of intersection of
these three curves, permuting the green and blue curves. The orientations are the ones
defined previously.

DqpRq bounds a disk Ω, more precisely, the boundary of Ω is´DqpRq (i.e. DqpRq but with the
anti-clockwise direction). Taking the preimage of Ω in XpRq, this gives

BΩ “ ´DqpRq ` Ep1pRq ` Ep2pRq ` EqpRq(9.6)

rDqpRqs “ eq ` ep1 ` ep2(9.7)

and then we obtain

(9.8) σ̃˚eq “ eq ` ep1 ` ep2 .

Altogether, in the basis peq, ep1 , ep2q of H1pXpRq;Qq, the matrix for σ̃˚ is

(9.9) σ̃˚ “

¨

˝

1 0 0
1 0 ´1
1 ´1 0

˛

‚.

9.3. Action of three Jonquières involutions. We now move on to the case when three involu-
tions σi are considered, each of them attached to a point qi ofCpRq. We suppose that the relative
position of the points qi and pi,j are in the following order along C (from bottom to top):

(9.10) p1,2, p2,2, p3,2, q3, q2, q1, p1,1, p2,1, p3,1;

to obtain such a configuration, start with q1 as in Figure 4, then choose q2 P C slightly below
q1 and q3 slightly below q2. Now, X is the blow up of the plane at the fifteen points qi, pi,j ,
1 ď i ď 3, 1 ď j ď 4, and the lifts of the σi to X are denoted σ̃i.

To compute the action of σ̃1 on H1pXpRq;Qq, we remark that the relative positions of the qi
and pi,j , impose the following properties:
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– the points p2,1 and p3,1 are above the line pq1p1,1q, and the points p1,2, p2,2, p3,2, q3, and q2 are
below it. Thus,

(9.11) σ̃˚1ep1,1 “ ´ep1,2 ´ eq2 ` ep2,1 ´ ep2,2 ´ eq3 ` ep3,1 ´ ep3,2 .

– similarly,

(9.12) σ̃˚1ep1,2 “ ´ep1,1 ` eq2 ´ ep2,1 ` ep2,2 ` eq3 ´ ep3,1 ` ep3,2 .

— the ellipse Dq1pRq bounds an open set V1 that contains q2, q3, p2,2, and p3,2 in its interior.
Thus, if we cut out small disks centered at those four points from V1, and take its boundary in
XpRq, we obtain the equality

(9.13) rDq1pRqs “ eq1 ` ep1,1 ` ep1,2 ` 2eq2 ` 2ep2,2 ` 2eq3 ` 2ep3,2 .

– if r is a point from CpRq that is not one of q1, p1,1, or p1,2, and if one blows up that point, the
curve Er is fixed by the lift σ̃1. The line pq1rq and its strict transform Lq1,r are also invariant.
Since r is not one of the p1,j , pq1rq and C intersect transversely at r: along C, σ1 is the identity,
and along pq1rq, σ1 is conjugate to z ÞÑ ´z, fixing r and another point r1 of C. Thus, on the
blow up ErpRq, we see that σ̃1 reverses the orientation (see Figure 6). This gives

α
β

Lq1r

C(R)

r

γ

δ

α β

γ

δ

Er(R)

FIGURE 6. The involution exchanges the hatched and the plain sides of C, so in the
blow-up it reverses the orientation of ErpRq

(9.14) σ̃˚1 perq “ ´er

for r P tq2, p2,1, p2,2, q3, p3,1, p3,2u.
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Altogether, in the basis peq1 , ep1,1 , ep1,2 , eq2 , ep2,1 , ep2,2 , eq3 , ep3,1 , ep3,2q of H1pXpRq;Qq,
we obtain the following matrices for σ̃˚1

(9.15) σ̃˚1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0 0
1 0 ´1 0 0 0 0 0 0
1 ´1 0 0 0 0 0 0 0
2 ´1 1 ´1 0 0 0 0 0
0 1 ´1 0 ´1 0 0 0 0
2 ´1 1 0 0 ´1 0 0 0
2 ´1 1 0 0 0 ´1 0 0
0 1 ´1 0 0 0 0 ´1 0
2 ´1 1 0 0 0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Similarly, we obtain

(9.16) σ̃˚2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 2 1 ´1 0 0 0
0 ´1 0 2 1 ´1 0 0 0
0 0 ´1 0 ´1 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 ´1 0 0 0
0 0 0 1 ´1 0 0 0 0
0 0 0 2 ´1 1 ´1 0 0
0 0 0 0 1 ´1 0 ´1 0
0 0 0 2 ´1 1 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

(9.17) σ̃˚3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0 0 0 2 1 ´1
0 ´1 0 0 0 0 2 1 ´1
0 0 ´1 0 0 0 0 ´1 1
0 0 0 ´1 0 0 2 1 ´1
0 0 0 0 ´1 0 2 1 ´1
0 0 0 0 0 ´1 0 ´1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 ´1
0 0 0 0 0 0 1 ´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

9.4. Positive Lyapunov exponent. Let Γ˚ be the image of Γ “ xσ1, σ2, σ3y in GLpH1pX;Zqq.
This group preserves a three dimensional subspace, on which it acts by multiplication by ˘1.
The quotient is given by the linear map

(9.18) px1, x2, x3, x4, x5, x6, x7, x8, x9q ÞÑ px1, x2 ´ x3, x4, x5 ´ x6, x7, x8 ´ x9q.

On the quotient space, which we denote by V , the involutions act by the following matrices.
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(9.19) A1 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0
0 1 0 0 0 0
2 ´1 ´1 0 0 0
´2 2 ´1 0 0 0
2 ´1 0 0 ´1 0
´2 2 0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

.

(9.20) A2 “

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 2 1 0 0
0 ´1 2 2 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 2 ´1 ´1 0
0 0 ´2 2 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

.

(9.21) A3 “

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0 2 1
0 ´1 0 0 2 2
0 0 ´1 0 2 1
0 0 0 ´1 2 2
0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

We shall denote by Γ
˚ the subgroup of SL6pZq generated by these involutions, and by G the

Zariski closure of Γ
˚ in SL6.

Lemma 9.1. The following properties are satisfied:

(1) The group Γ
˚ contains a non-Abelian free group.

(2) The group G is semi-simple.
(3) The action of Γ

˚ on V bC is strongly irreducible.
(4) If ν is a probability measure on Γ that satisfies Conditions (S) and (M), then ν has a

positive Lyapunov exponent on H1pXpRq;Rq.

From this lemma and the calculation of the spectral radius

Proof. We shall need the following facts (computations of characteristic polynomials and Galois
groups were done with sagemath):

(a) The element f “ A1A2A3 has characteristic polynomial

(9.22) Pf ptq “ t6 ´ 4t5 ´ 3t4 ´ 2t3 ` 5t2 ` 2t` 1

whose factorization in Qrts is P ptq “ pt´ 1q ˆ pt5 ´ 3t4 ´ 6t3 ´ 8t2 ´ 3t´ 1q. In particular,
f has six distinct eigenvalues, and only one of them is rational, namely 1. The only other real
eigenvalue is λf » 4.679, then there are two complex conjugate eigenvalues of modulus strictly
between 1 and λf , and two of modulus ă 1. Moreover, for every k ě 1, fk has also 6 distinct
eigenvalues (see below an argument for the similar case of g).
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(b) The element g “ A1A2A3A2A1A3A1A3A1A2A3A2A1A2A3 has characteristic polynomial

(9.23) Pgptq “ t6 ´ 24t5 ´ 83t4 ´ 122t3 ´ 35t2 ` 22t` 1

which is irreducible in Qrts. In particular, g has six distinct eigenvalues. Four of them are
real, with a single one of maximal absolute value λg ą 1, and there are two complex conjugate
eigenvalues of modulus ą 1. Moreover, for every k ě 1, gk has also 6 distinct eigenvalues.

To prove this last point, it suffices to show that λkg is an algebraic number of degree 6 for every
k ě 1. For this, one computes the Galois group of the splitting field F of Pg: it is isomorphic to
the symmetric group S6, so rF : Qs “ 6!. The degree 6 extension Qpλgq of Q is the subfield
of F fixed by a subgroup H Ă S6 of index 6. Note that λkg can not be rational for any k ě 1,
because since λg is a unit, λkg would be equal to 1, in contradiction with λg ą 1. Thus, if λkg had
degree ă 6, there would be an intermediate extension K Ă Qpλgq of degree d “ 2 or 3. This
extension would be the fixed field of a group G Ă S6 of index d. For d “ 3 such a group does
not exist. For d “ 2 we get G “ A6 and A6 would contain H as a subgroup of index 3; this is a
contradiction, since the largest maximal subgroup of A6 has index 6.

(c) The eigenvector of f corresponding to the eigenvalue 1 is defined over Q. Thus, it is in
general position with respect to the eigenvectors of g (i.e. it is not contained in any proper g-
invariant subspace of V , because such a subspace would be rational, thereby producing a rational
factor of Pg)

To show that Γ
˚ contains a non-Abelian free group, note that the eigenvector of f for the

leading eigenvalue λ`pfq » 4.679 is not mapped to another eigenvector of f by A1. Thus by
the ping-pong lemma, if we set h “ A1 ˝ f ˝ A

´1
1 “ A2A3A1, then the group generated by

f and h contains a non-Abelian free subgroup of GLpV q all of whose elements ‰ Id have an
eigenvalue ą 1 (see Lemma 3.1). So, at this stage we know that Γ is non-elementary.

Consider the connected component of the identity Go Ă G. The intersection Γ
˚

0 :“ Γ
˚
X

GopCq is a finite index subgroup of Γ
˚ and is a Zariski dense subgroup of Go. Since Γ

˚ is
contained in SLmpZq, the linear algebraic groups G and Go are both defined over Q. Let R be
the solvable radical of Go and let U be its unipotent radical (see [74], Chap. 6.h, page 135); they
are defined over Q and are characteristic subgroups of Go; in particular, they are normal in G.
Let F Ă V be the fixed point set of U . This vector subspace is defined over Q, its dimension is
positive, and it is g-invariant. Since the characteristic polynomial of g is irreducible over Q, we
infer that F “ V and U “ tidV u. This implies that R is a torus; over C, R is diagonalizable
and RpCq isomorphic to pCˆqr for some r ď 5. The group G acts by conjugacy on R; since the
automorphism group of R is discrete (isomorphic to GLrpZq) and Go is connected, we deduce
that R is central in Go. In particular, R commutes with fk and with gk if k is chosen to insure
that fk and gk are in Go. Thus, R being connected, each of the sixth complex eigenlines of fk

is R-invariant, and the same holds for the eigenlines of gk. By Property (c) above, this implies
that R is made of homotheties, and since R Ă SL6 we deduce that R is trivial. Thus Go is
semi-simple, and so is G.

By the first property, GopRq is not bounded, so at least one of its semisimple factors is a
(non-Abelian) non-compact almost simple real Lie group.
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Now, V b C is a direct sum of irreducible representations Vi of Go. Choose k ě 1 such
that fk P Go. One of the Vi, say V1, must contain the eigenline of fk corresponding to the
eigenvalue 1; thus, V1 contains an element of V pQq, and since Γ

˚

0 is Zariski dense in Go and is
defined over Z, we deduce that, in fact, V1 is defined over Q. By Property (b), V1 “ V , and Go

acts irreducibly on V . Thus, Γ
˚

0 acts strongly irreducibly on V , and so does Γ
˚.

Finally, since the action of Γ
˚ on V is strongly irreducible and unbounded, Theorem 3.31

of [11] shows the positivity of the first Lyapunov exponent in V , hence in H1pXpRq;Rq, and
the proof is complete. �

Putting together all the results in this section, we have established the following result.

Theorem 9.2. Let C be a smooth, real, plane cubic whose real part CpRq is connected. There
exists a non-empty open subset U Ă CpRq3 such that if pq1, q2, q3q belongs to U , and ν is a
probability measure on the corresponding group Γ “ xσ̃1, σ̃2, σ̃3y, generating Γ and with a finite
first moment, then the top Lyapunov exponent of the action of Γ on H1pXpRq,Rq is positive.

We now extend this theorem to the case of 4 points instead of 3. So, we blow-up one more
point q4 P CpRq, with q4 between q1 and q3, and we still denote by X the surface and by Γ the
group generated by the 4 involutions. The cohomology group H1pXpRq;Qq of the new surface
XpRq has dimension 12, with coordinates px1, . . . , x12q; the subspace defined by

(9.24) x2 “ x3, x5 “ x6, x8 “ x9, x11 “ x12, x1 “ x4 “ x7 “ x10 “ 0

is invariant, and the restriction of Γ to this subspace factors through a finite group. Let W be the
quotient space, which is of dimension 8.

Choose an index j P t1, 2, 3, 4u and consider the subgroup Γj of Γ generated by the σ̃i with
i ‰ j. Then, there is a finite index subgroup Γoj of Γj whose action onW bC is reducible: there
is an invariant subspace Tj of dimension 2 (on which Γj acts diagonally with eigenvalues equal
to˘1), and the quotient space W {Tj is a strongly irreducible representation Vj , defined over Q,
and of dimension 6 (it is isomorphic to the representation V studied in Lemma 9.1). Pick gj in
Γoj satisfying Property (b) of the proof of Lemma 9.1. Then gj preserves a unique subspace Wj

of W of dimension 6, defined over Q, which projects surjectively onto Vj .
Now, take a finite index subgroup Γ1 of Γ and let K ĂW be a Γ1-invariant subspace. Chang-

ing the Γoj into finite index subgroups, we may assume that they preserve K. Projecting K to
Vj , Lemma 9.1 implies that either K is contained in Tj (and then dimpKq ď 2), or that K is
mapped onto Vj (and then dimpKq ě 6). If K is contained in one of the Tj , one checks that
its projection onto some other Vi is non-trivial, which gives a contradiction. It follows that the
projection of K onto each Vj is surjective. Since K is gj-invariant, it contains Wj , and finally
we obtain that K “W . Thus, the action of Γ on W is strongly irreducible, and we get:

Theorem 9.3. Let C be a smooth, real, plane cubic whose real part CpRq is connected. There
exists a non-empty open subset U Ă CpRq4 such that if pq1, q2, q3, q4q belongs to U , and ν is
a probability measure on the corresponding group Γ “ xσ̃1, σ̃2, σ̃3, σ̃4y, generating Γ and with
a finite first moment, then the top Lyapunov exponent of the action of Γ on H1pXpRq,Rq is
positive.
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10. DYNAMICS ON THE REAL SURFACE

In this section we complete the proof of Theorem 1.9.

10.1. Preliminaries from ergodic theory.

Proposition 10.1. LetX be a complex projective surface (resp. a real projective surface). Let Γ

be a non-elementary subgroup of AutpXq (resp. of AutpXRq) containing a parabolic element.
Then the action of Γ is ergodic with respect to the Lebesgue measure on X (resp. on XpRq).

Proof. This result is contained in [18, 25] but it was not explicitly stated there, so we provide
details in the case of complex surfaces. We only deal with the case where X is not Abelian,
in which case Γ is automatically countable. We closely follow [25, §4] and freely use the
vocabulary from that paper. Let A Ă X be a measurable subset such that volXpA∆γ´1Aq “ 0,
where volX is the probability measure associated to some Kähler form on X . Replacing A
by

Ş

γPΓ γ
´1A, we may assume that A is Γ-invariant. Assuming that volXpAq ą 0, we have

to show that volXpAq “ 1. As in [25, §4.3.1], Γ contains a “special” subgroup xg, hy, freely
generated by two independent Halphen twists. Denote by πg, πh : X Ñ P1 the associated
invariant fibrations. Recall that for almost every w P P1, the action of g (resp. h) on π´1

g pwq

(resp. π´1
h pwq) is uniquely ergodic, and the unique invariant measure is the Haar measure. Since

A is g-invariant, there is a subsetBg P P1 of positive measure such that volXpA∆π´1
g pBgqq “ 0.

Consequently A intersects any πh-fiber on a set of positive Haar measure, and then using the h-
invariance, A “ X up to a set of volume 0. �

Proposition 10.2. Let X be a compact Kähler surface. Let ν be a probability measure on
AutpXq that satisfies the moment condition (M) and let µ be an ergodic ν-stationary measure.
Let η be a non-trivial meromorphic 2-form on X such that

(i)
ż

log` | Jacηpfqpxq|dµpxqdνpfq ă `8;

(ii) µ gives zero mass to the set of zeroes and poles of η.

Then the Lyapunov exponents of µ satisfy:

λ´ ` λ` “

ż

logp|Jacη fpxq|
2
qdµpxqdνpfq.

In particular, if η is invariant, λ´ ` λ` “ 0.

Before starting the proof, let us recall some notation from § 1.4: we denote Ω “ AutpXqN

and F` the skew-product transformation of Ω ˆ X associated to the random dynamics, acting
as the one-sided shift on Ω and by automorphisms on X . The measure νN ˆ µ is F` invariant.
One may also consider the 2-sided shift ϑ : AutpXqZ Ñ AutpXqZ and the corresponding skew-
product F on AutpXqZˆX , defined by F pξ, xq “ pϑξ, f0pxqq, where ξ “ pfiqiPZ. The natural
extension of νN ˆ µ will be denoted by m: it is invariant and ergodic and its projection on
AutpXqZ is νZ. Beware that m differs from νZ ˆ ν unless µ is invariant.

Proof. Fix a Kähler metric κ0 on X . Fix a trivialization of the tangent bundle TX , given by a
measurable family of linear isomorphisms Lpxq : TxX Ñ C2 such that (a) detpLpxqq “ 1 and
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(b) 1{c ď }Lpxq} `
›

›Lpxq´1
›

› ď c, for some constant c ą 1; here, the determinant is relative to
a volume form volX on X and the standard volume form on C2, and the norm is with respect to
pκ0qx on TxX and the standard euclidean metric on C2.

For pξ, xq P AutpXqZˆX and n ě 0, the differential Dxf
n
ξ is expressed in this trivialization

as a matrix

(10.1) Apnqpξ, xq “ Lpfnξ pxqq ˝Dxf
n
ξ ˝ Lpxq

´1.

Denote by χ´n pξ, xq ď χ`n pξ, xq the singular values of Apnqpξ, xq. Then m-almost surely,
1
n logχ˘n pξ, xq converges towards λ˘ as n goes to `8.

The form η ^ η can be written η ^ η “ ϕpxqvolX for some function ϕ : X Ñ r0,`8s.
Locally, one can write η “ hpxqdx1 ^ dx2 where px1, x2q are local holomorphic coordinates
and h is a meromorphic function; then ϕpxqvolX “ |hpxq|

2 dx1^dx2^dx1^dx2. The jacobian
Jacη satisfies

(10.2) | Jacηpfqpxq|
2 “

ϕpfpxqq

ϕpxq
Jacvolpfqpxq

for every f P AutpXq and x P X . Using detpLpxqq “ 1, we get

(10.3) detpApnqpξ, xqq “ Jacvolpf
n
ξ qpxq,

and then

(10.4)
1

n
logχ´n pξ, xq `

1

n
logχ`n pξ, xq “

2

n
log

ˇ

ˇJacη f
n
ξ pxq

ˇ

ˇ´
1

n
logpϕpfnξ pxqq{ϕpxqq.

By the Oseledets theorem, the left hand side of (10.4) converges almost surely to λ´`λ`. Since
the Jacobian Jacη is multiplicative along orbits, i.e. Jacη f

n
ξ pxq “

śn´1
k“0 Jacη fϑkξpf

k
ξ xq, the

integrability condition and the ergodic theorem imply that, almost surely,

lim
nÑ8

1

n
log

ˇ

ˇJacη f
n
ξ pxq

ˇ

ˇ “

ż

log
ˇ

ˇJacη f
1
ξ pxq

ˇ

ˇ dmpξ, xq(10.5)

“

ż

log
ˇ

ˇJacη f
1
ωpxq

ˇ

ˇ dm`pω, xq

“

ż

log |Jacη fpxq|dµpxqdνpfq.

Let divpηq be the set of zeroes and poles of η. Since µ is ergodic and does not charge divpηq, we
deduce that for m-almost every pξ, xq, there is a sequence pnjq such that fnjξ pxq stays at positive
distance from divpηq; along such a sequence, log |ϕpf

nj
ξ pxqq{ϕpxq| stays bounded, and the right

hand side of (10.4) tends to 2
ş

log |Jacη fpxq|dµpxqdνpfq. This concludes the proof. �

10.2. Stiffness.

Theorem 10.3. Let C be a smooth, real, plane cubic which is defined over Q and whose real
part CpRq is connected. One can find four points q1, q2, q3, q4 in CpRq such that the following
properties hold. Let X be the Blanc surface constructed in § 7 and let Γ “ xσ̃1, σ̃2, σ̃3, σ̃4y Ă

AutpXRq be the group generated by the four Jonquières involutions.



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 64

Let ν be any probability measure on Γ which satisfies Conditions (S) and (M). Then, any
ergodic ν-stationary measure on XpRq is the Dirac mass δx at some point x P CXpRq. Such
measures have vanishing Lyapunov exponents.

In fact, the qi can be chosen in some explicit open subset of CpRXQq4.

Proof. We first choose the points pq1, . . . , q4q in CpR XQq such that the properties (Hyp1-4)
hold and such that pq1, q2, q3q satisfies the assumption of Theorem 9.2. Then we move q4 to q14
as in Proposition 8.3 to make sure that the conclusions of this proposition are satisfied.
Step 1.– Here we show that every invariant ergodic probability measure is a Dirac mass δx
for some x P CXpRq. The argument is similar to that of Theorem 8.6. First, the invariant
meromorphic 2-form is real and induces a volume form vol8XpRq, which is not locally integrable
along CXpRq. By Lemma 7.3 and Proposition 8.3 every proper Zariski closed invariant subset
is contained in CX (hence fixed pointwise). Thus, by [25], if µ is any ergodic invariant measure
on XpRq then either µ is a Dirac mass on CXpRq or µ “ ϕ vol8XpRq, for some real analytic
function ϕ on XpRqzCXpRq. To exclude this second possibility, note that CpRq is connected
and has a unique point at infinity, so P2pRqzCpRq is connected, and so isXpRqzCXpRq. Then,
the ergodicity of µ and the invariance of vol8XpRq imply that ϕ is constant µ-almost everywhere;
since ϕ is analytic, it must be locally constant, and since XpRqzCXpRq is connected, ϕ is
constant; but then µpXpRqq “ 8, which is absurd.
Step 2.– Now, pick a probability measure ν on Γ satisfying (S) and (M). Let µ be an ergodic,
ν-stationary measure on XpRq.

Lemma 10.4. The measure µ cannot be absolutely continuous with respect to the Lebesgue
measure on XpRq.

Proof. Equivalently, let us show that µ is not absolutely continuous with respect to the invariant
infinite volume vol8XpRq. For notational ease, in this proof we write X for XpRq (actually the
result holds for both the complex and the real variety). Reasoning by contradiction, we assume
that there is a function ξ : X Ñ R` such that ξ P L1pX, vol8Xq and µ “ ξ vol8X . The stationarity
of µ and the invariance of vol8X under the action of Γ give

ξ “

ż

Γ
ξ ˝ f´1dνpfq(10.6)

vol8X -almost everywhere. For M ě 0, we set ξM “ minpξ,Mq and obtain

ξM ě

ż

Γ
ξM ˝ f

´1dνpfq(10.7)

because the minimum of two harmonic functions is subharmonic. Then
ż

X
ξMdvol8X ě

ż

Γ

ż

X
ξM ˝ f

´1dvol8Xdνpfq(10.8)

“

ż

X
ξMdvol8X(10.9)

because vol8X is invariant and ξM is integrable. This shows that the Inequality (10.7) is in fact
an equality vol8X -almost everywhere. Thus, ξ and ξM are both ν-harmonic.
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By Markov’s inequality, there exists M ą 0 such that

(10.10) 0 ă vol8Xptξ ąMuq ă `8.

Given such an M , the real number

(10.11) α :“

ż

tξąMu
pξ ´Mqdvol8X “

ż

tξąMu
pξ ´ ξM qdvol8X

satisfies 0 ă α ď 1 because µ is a probability measure. If α ă 1, µ could be decomposed as a
convex combination µ “ αµ`M ` p1´ αqµ

´
M , with

µ`M “ α´1pξ ´ ξM qvol8X and µ´M “ p1´ αq´1ξMvol8X .(10.12)

Such a decomposition must be trivial, because the harmonicity of ξM and of ξ imply that µ´M and
µ`M are stationary measures, while µ is assumed to be ergodic. Thus, α “ 1, for any such M .
This shows that there is measurable subset A Ă X such that

(a) vol8XpAq P s0,8r;
(b) ξ “ vol8XpAq

´11A, where 1A is the characteristic function of A.

The stationarity relation for ξ implies that A is Supppνq-almost invariant, hence Γ-invariant, up
to a subset of zero volume. Proposition 10.1 then implies that A “ XpRq up to a subset of zero
volume. This is a contradiction because µ is a probability measure and vol8XpXq “ `8. �

Step 3.– Let µ be an ergodic ν-stationary measure as in Step 2. Assume by way of contradiction
that µ is not invariant.

A first observation is that µpCXpRq “ 0, so µ is Zariski diffuse. By Proposition 10.2,
λ``λ´ “ 0. Therefore, Crauel’s invariance principle implies that µ must be hyperbolic. Thus,
by Theorem 1.7 and [16, Thm. 3.4], µ is a fiberwise SRB measure. Specifically, this means
that working in AutpXpRqqZ ˆXpRq, and considering a measurable partition Pu subordinate
to the family of local Pesin unstable manifolds, then for m-almost every pξ, xq, the conditional
mu
pξ,xq :“ mp¨|Pupξ, xqq is absolutely continuous with respect to the Lebesgue measure on

W upξ, xq (see [16] and [26, §7] for details on these concepts, and the paragraph following
Proposition 10.2 for the notation).

The same construction can be done with a local stable partition Ps to get stable conditional
measures ms

pξ,xq. These conditional measures admit a pointwise Hausdorff dimension at pξ, xq
which is defined almost everywhere and is constant by ergodicity. We denote these dimensions
by dimpµu{sq. In this context, the analogue of the Ledrappier-Young formula holds12 and asserts
that for m-almost every pξ, xq,

(10.13) hµpX, νq “ λ` dimupµq “
ˇ

ˇλ´
ˇ

ˇ dimspµq,

where hµpX, νq is the fiber entropy (see Section 2 for a brief account on this notion). Since
dimupµq “ 1 and λ` “ |λ´|, we conclude that dimspµq “ 1 as well. As in deterministic

12The first equality in formula (10.13) is proven in [76]. For random dynamical systems there is a dissymmetry
between the future and the past, because F´1 is not the skew product map associated to a independent, identically
distributed, random dynamical system. So we can not just consider F´1 to get the second inequality. Fortunately,
only minor adaptations are required for this: they are described in the paragraphs following Theorem 2.1 in [72] (see
also [65] for a unified discussion, with additional pointers to the literature
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dynamics, this implies that µs is absolutely continuous with respect to the Lebesgue measure
along stable manifolds13. Thus, m has absolutely continuous conditionals along both stable and
unstable manifolds.

The next important property is the absolute continuity of the local stable and unstable lami-
nations, which follows the lines of the classical deterministic case. A detailed treatment for the
stable lamination is given in [71, Chap. III], and a unified treatment for the stable and unstable
laminations (with less details) is in [65, Thm 2.2.12].

At this stage we can directly adapt Theorems 5.1 and 5.5 of [68], which implies that the
conditionals of m along the fibers tξu ˆ XpRq are almost surely absolutely continuous with
respect to the Lebesgue measure, and we conclude that µ itself is absolutely continuous. But
Lemma 10.4 asserts that this is impossible. This contradiction shows that µ is invariant. Thus,
applying Step 2, we conclude that every ergodic stationary measure is a Dirac mass δx at some
point x P CXpRq.
Step 4.– It remains to show that the point masses on CX , viewed as stationary measures, have
zero Lyapunov exponents. This is elementary: let x P XpRq (possibly among the q̃i) and let
pv1, v2q be a basis of TxX such that v1 is tangent to CX . Then pσ̃iq›pv1q “ v1 so the matrix of
pσ̃iq› in the basis pv1, v2q is upper triangular, and the other eigenvalue of this upper-triangular
matrix is ´1 (cf. the proof of Formula (7.7)). So any product of such matrices is of the form
`

1 ˚
0 ˘1

˘

and the result follows. �

10.3. Orbit closures.

Theorem 10.5. LetC, q1, . . . , q4,X and Γ be as in Theorem 10.3. Then every x P XpRqzCXpRq
has a dense orbit in XpRq.

Proof. In [25], we defined an invariant algebraic subset STangΓ, which is the union of the
maximal invariant curve and a finite set, and we proved that for every x P XpCq, either Γ ¨ x is
dense in XpCq, or AccpΓ ¨ xqzSTangΓ is locally equal to some Γ-invariant real surface. In our
situation, STangΓ “ CX , because CX is the maximal invariant curve and every orbit outside
CX is infinite. For x P XpRqzCXpRq, we deduce that if Acc pΓ ¨ xq zCXpRq is non-empty,
then it is open (and closed) in XpRqzCXpRq, so by connectedness Γ ¨ x is dense in XpRq. To
sum up, all we need to show is that Acc pΓ ¨ xq zCXpRq ‰ H for every x P XpRqzCXpRq. For
this, we use the structure of the invariant fibrations of parabolic elements in Γ.
Step 1.– Geometry of the invariant fibration of gii1 .

Fix two distinct indices, say i “ 1 and i1 “ 2. In this step we study the geometry of the
invariant fibration π12 of g12 “ σ̃1 ˝ σ̃2 near CX .

Let us first work over C. Recall from § 7.4 that the fibration comes from the pencil of
quadrics going through q1 and q2 with multiplicity 2 and through the pi,j with multiplicity 1
for i “ 1, 2. In the surface X12 obtained by blowing up these 10 points (as in Lemma 7.4),
it corresponds to the linear system |CX12 `M12|, where M12 is the strict transform of the line
pq1q2q. We denote by π12 : X12 Ñ P1 this fibration, and fix an affine coordinate z on P1 such
that π12pCX12 YM12q “ 0 and π12pX12pRqq Ă P1pRq.

13This is proven for the unstable direction in [71], and the adaptation to the stable direction is explained in [4].
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FIGURE 7. Schematic view of a real fiber of π12 (in red) close to the singular fiber on
P2 (left), on X12 (middle) and on X (right). All components (including the red fiber,
except on the left) are topological circles.

Let r be the third intersection point of C and pq1q2q; we also denote by r its incarnation in
X12 or X (because r is not blown up). It is the only intersection point of CX12 and M12.

Now, M12 is a smooth rational curve with self-intersection ´1, so it can be blown down to
get a new, smooth projective surface Y . The fibration π12 gives a genus 1 fibration πY : Y Ñ P1

and CX12 is a smooth fiber CY of πY . In a small tubular neighborhood of CY , the fibration πY is
a submersion (otherwise, CY would be a multiple fiber, and CX would have multiplicity ą 1 in
CX12`M12). The curveM12 is contracted to a point rY P Y , andM12 is the exceptional divisor
of the blow-up of Y at rY . Thus, the geometry of π12 : X12 Ñ P1 near M12 is the geometry of
a smooth foliation after a blow-up, and:

(1) π12 has a Morse singularity at the point r P X12; there are local coordinates such that
π12px, yq “ xy, with the two coordinate axes corresponding to CX and M12, respec-
tively;

(2) if b is close to 0, the fiber π´1
12 pbq is close to CX12 YM12; it is the pull-back of a smooth

fiber of πY close to CY ; as b approaches 0, π´1
12 pbq converges towards CX12 YM12 in

the Hausdorff topology, and in the C1 topology in the complement of r;
(3) in the real surface, CX12pRq is a topological circle with a Möbius band as tubular neigh-

borhood, and so isM12pRq; the smooth fibers of π12 inXpRq near CX12pRqYM12pRq

are topological circles, turning once around CX12pRq and around M12pRq.

If we blow-up the remaining points to constructXpRq, CX12pRqYM12pRq is replaced by its
total transform: we add 6 topological circles corresponding to the exceptional divisors obtained
by blowin up q3, q4, p3,1, . . . p4,2, and the picture near each of these circles is similar to the one
near M12 (see Figure 7 for a visual illustration).
Step 2.– Dynamics of g12 on smooth fibers.
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If we fix an affine coordinate z on pq1q2q such that r “ 8, q2 “ 0 and q1 “ 1, then
σ2pzq “ ´z and σ1pzq “ 2´ z. So σ1 ˝ σ2pzq “ z ` 2, that is, on M12 g12 acts as a parabolic
transformation with fixed point at r.

For b P P1pRq near 0, denote by YbpRq the real part of π´1
Y pbq; thus, Y0pRq is the smooth

fiber CY pRq. The complex curve YbpCq is smooth of genus 1; it is a quotient C{Lb, where
Lb “ Z ` Zτpbq is a lattice in C and YbpRq corresponds to R{Z (because CY pRq and the
fibers near it are connected). Thus, in a neighborhood N of 0, we get a real analytic map τ
with values in the upper half plane, and, a map ϕb : t P R{Z Ñ ϕbptq P Y pRq parametrizing
YbpRq, depending analytically on pb, tq P N ˆR{Z. Pulling back ϕb by the natural birational
map $12 : X12 Ñ Y (resp. X Ñ Y ), we get a family of parametrizations ϕ̃b of the fibers X12,b

(resp. Xb) of π12, for b P Nz t0u. Since g12 acts by translation along the curves Yb (resp. Xb,
b ‰ 0), and g12 is the identity on CX , we see that ϕb conjugates g12|Yb to a rotation of the circle
with angle αpbq converging towards 0 as b goes to 0.
Step 3.– Conclusion.

Pick x P XpRqzCXpRq such that Γ ¨ x accumulates CXpRq; fix a sequence pxjq of distinct
points of Γ ¨x converging to CXpRq, and set bj “ π12pxjq. Step 1 shows thatXbj pRq converges
in the Hausdorff topology to CX YM12 Y Eq3 Y ¨ ¨ ¨ Y Ep4,2 ; this convergence holds in the C1

topology away from the singular points. Take an arbitrary point y0 PM12pRqz tru and consider
the segment ry0, g12py0qs in M12pRq. By the description of g12 in the first paragraph of Step 2,
ry0, g12py0qs is disjoint from r. If I is a small interval containing y0 and transverse to the
fibration π12, then the intervals I and J :“ g12pIq intersect each fiber Xb near M12 transversely
into two points yb and g12pybq; as b goes to 0, the segment ryb, g12pybqs Ă XbpRq converges
towards the segment ry0, g12py0qs ĂM12.

The following lemma is elementary and left to the reader.

Lemma 10.6. Let R : R{ZÑ R{Z be a rotation of angle ´1{2 ă α ă 1{2. Fix t P R{Z and
let K be the shortest closed segment joining t to Rptq. Then for any s P R{Z, the R-orbit of s
intersects K.

This lemma shows that the orbit of xj under g12 must intersect rybj , g12pybj qs, hence so does
Γ ¨ x. Taking j Ñ 8, this implies that Γ ¨ x accumulates ry0, g12py0qs, which is contained in
M12pRqzCXpRq. As explained before Step 1, this completes the proof of the theorem. �

10.4. Conclusion of the proof of Theorem 1.9. We pick C and the qi as in Theorem 10.3.
Assertion (1) follows from the smoothness of C and the genus formula, and Assertion (2) is a
theorem of Blanc. Assertions (3) and (4) on ΩX are described in Section 3. Property (5) follows
from Proposition 8.3. Assertion (6) on the generic density of orbits is an elementary consequence
of Proposition 10.1: indeed for any non-empty open set U , the set of x P X such that pΓ ¨ xq X
U “ H has zero Lebesgue measure. The statement (7) on orbit closures is Theorem 10.5. The
stiffness property (8) is established in Theorem 10.3, and finally, Assertion (9) is Theorem 9.3.

�
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We conclude the paper with an open question. By Breiman’s ergodic theorem, for every
x P XpRqzCpRq and νN -almost every ω, any cluster value of the sequence of empirical mea-
sures 1

n

řn
k“1 δfkωpxq is a probability measure on C, a priori depending on x, ω and a choice of

subsequence. The question is about the complexity of the set of limiting measures:

Question 10.7. Which probability measures do arise in this way? Do the sequences of empirical
measures typically converge or, on the contrary, does “historic behavior” occur?
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[29] Clément Chivet. Itération aléatoire de pliages de quadrilatères. Master’s thesis, Sorbonne Université, 2022.
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Email address: serge.cantat@univ-rennes1.fr

ROMAIN DUJARDIN, SORBONNE UNIVERSITÉ, CNRS, LABORATOIRE DE PROBABILITÉS, STATISTIQUE ET
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