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DYNAMICS OF AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES:
CLASSIFICATION, EXAMPLES AND OUTLOOK

SERGE CANTAT AND ROMAIN DUJARDIN

ABSTRACT. We first present an overview of our previous work on the dynamics of subgroups of
automorphism groups of compact complex surfaces, together with a selection of open problems
and new classification results. Then, we study two families of examples in depth: the first one
comes from folding plane pentagons, and the second one is a family of groups introduced by
Jérémy Blanc, which exhibits interesting new dynamical features.
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INTRODUCTION

This article is the sixth of a series dedicated to the dynamics of groups of automorphisms of
compact complex surfaces [18, 26} 24} 25 [23]]. Our purpose is to review our previous work and
to enrich it with new examples, applications, and open problems. Let us briefly summarize its
contents and new features.

In the first two sections, we offer a detailed presentation of our results, illustrated with a large
number of open questions.

A standing assumption in our previous papers is that the surfaces into consideration are pro-
jective. It is natural to question this assumption and to relate the classification of surfaces to the
dynamics of their groups of automorphisms. This is dealt with in the first part of the paper: in
§[3.3] we show that only projective surfaces can carry “non-elementary” automorphism groups
and we describe a few examples on Hopf surfaces in §[3.4]

Then, we explain how our theory applies to the following geometric examples:

(1) The first one comes from classical Euclidean geometry, and is given by folding plane
pentagons of given side length along their diagonals. Surprisingly enough, this gives rise to a
group action on a K3 surface, which is reminiscent of the Wehler family of examples, which
has been a thread in our work. These examples are studied in Part[2] Section [5] describes the
underlying algebraic geometry of the problem, which goes back to the work of Darboux [35]
on quadrilaterals and elliptic functions. The ergodic theory of random pentagon foldings is
analyzed in Section ] in the spirit of the work of Benoist and Hulin [[7, [§].

(2) In Part [3] (Sections [7] to [I0), we focus on groups of automorphisms introduced by Blanc
in [12]. Each of these examples is determined by the choice of a plane cubic curve C' = PZ, an
integer m > 3, and m points g1, . . ., g, on C. To each g;, one associates a Jonquiéres involution,
that fixes C' pointwise and preserves the pencil of lines through ¢;. The group generated by these
m involutions lifts to a group of automorphisms on a rational surface X which is obtained by
blowing-up 5m points of C'. A key property of these automorphism groups is that they preserve
a singular volume form with poles along the strict transform C'x of C' and whose total mass is
infinite. Using our previous results, we prove that, for an appropriate choice of the points g;,
the only ergodic stationary measures on X (R) are fixed points and are contained in Cx (R). In
particular, random orbits almost surely converge, on average, to the curve C'x (R). Thus, as we
shall explain, this behavior differs strongly from that of automorphisms of non-rational surfaces.

1. OVERVIEW AND OPEN PROBLEMS

In this section, we provide a detailed overview of our former results, with short introductions
to their proofs, as well as a description of our main new results and examples.

1.1. From orbit closures to stationary measures. Let X be a compact space and I' be an
infinite group of homeomorphisms of X. We make the standing assumption that I' is countable;
this will actually not be a restriction in the cases of interest to this paper. Our general aim is
to study the dynamics of such an action. In particular we wish to address the following usual
problems:
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(Pbl) describe the orbit closures I' - x, for x € X;
(Pb2) study the finite orbits of I'

(1.1) Per(T") = {x; I - x is finite} ;

by definition, points of Per(I") will be called I'-periodic points.

(Pb3) classify I'-invariant measures, that is, probability measures p on X such that f.u = p
forall f e

(Pb4) describe the asymptotic distribution of I'-orbits.

Observe that the last question is not properly formulated until a specific way of going to infinity
in I' (in other words, a notion of “time”) has been described. A common choice for this is to fix
a probability measure v on I" such that (Supp(v)) = I and to explore I" by walking at random
according to v. Then the notion of asymptotic distribution of the orbit of z € X may either refer
to the asymptotics of the orbital averages

(1.2) f5fn1-"fo(w)dy(f0) ~edv(fr-1),
or to the time averages along random trajectories
1 n
(1.3) ~ > B frfo(@)
k=1

for vN-almost every (f,)n=0. In both cases, understanding the limit points essentially boils
down to the following problem:

(Pb5) classify v-stationary probability measures.

Of course, (Pb5) subsumes (Pb3). To understand the meaning and relevance of (Pb5), let us first
recall that a probability measure 1 on X is v-stationary if

(1.4) ,uzy*,uzzjf*udy(f).

Since the measure in Equation (1.2)) is the n-th convolution v*" % d,, any limit point of this
sequence of measures is v-stationary. Breiman’s ergodic theorem shows that the same is true for
the random empirical measures in Equation (1.3)) (see [[L1} §3.2]). In particular, if K is a compact
I'-invariant subset of X, then starting from x € K one constructs v-stationary measures with
support in K; these may also be obtained by applying a fixed point theorem to the operator
it — v % p acting on probability measures on K. As a consequence, taking K = I - z, we see
that a solution to (Pb5) is also useful for (Pb1). This approach, using ergodic theoretic methods
to study orbit closures (that is, use (Pb5) and (Pb3) to study (Pb1)), is now commonplace in this
area of research.

n

So, the set of stationary measures on X is a non-empty, compact and convex subset of the
set of probability measures on X. It contains I'-invariant probability measures, but in many
situations invariant measures fail to exist. Thus, stationary measures can be viewed as the correct
analogues of invariant measures when studying (large) groups of transformations instead of
cyclic groups (i.e. the iterations of a single homeomorphism). In this respect, it may seem
hopeless at first sight to classify all stationary measures, but, in fact, they often satisfy rigidity
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properties which make such a classification feasible. Results in homogeneous dynamics, in
particular the work of Ratner [78, [77 58] and Benoist and Quint [9]], illustrate perfectly this
line of thought. Similar phenomenon also appear in non-homogeneous dynamics, notably in the
work of Eskin and Mirzhakani [51] and Brown and Rodriguez Hertz [[16]. Our work is strongly
influenced by these former results and the methods developed to reach them.

Remark 1.1. For v-stationary (resp. I'-invariant) measures, there is a notion of ergodicity: such
a measure is ergodic if it is an extremal point of the compact convex set of v-stationary (resp. I'-
invariant) measures. It is a non-trivial result that these two notions coincide, that is a v-stationary
measure 4 is ergodic if and only if every almost I-invariant subset A (i.e. u(f(A)AA) = 0 for
every f € I') has measure 0 or 1. Hence, in the classification problems (Pb5) and (Pb3), it is
enough to restrict to ergodic measures.

1.2. Non-elementary groups of automorphisms and the classification of surfaces. In this
paper, X will be a compact complex surface. We denote by Aut(X) its group of holomorphic
diffeomorphisms, which we call automorphisms, even when X is not algebraic. The group I"
will be contained in Aut(X).

It would also be natural to consider actions by automorphisms on quasi-projective or affine
surfaces, for instance by polynomial automorphisms of C?, or even by birational transforma-
tions. Extending our results to this more general setting or to higher dimensions is an important
challenge, which would undoubtedly lead to serious difficulties. References include [19, (79, 57]
(see also Example [I.6] Remark [I.17, Question[I.14] and Theorem 2.2 below).

Two related constraints will be imposed on I'. Firstly, I' must be sufficiently large to expect
some measure rigidity property. For instance, if ' is abelian, its stationary measures are auto-
matically invariant; and if I is generated by an automorphism with positive entropy, there are
uncountably many invariant ergodic measures, without any hope of classifying them. Secondly,
the action of I" on the cohomology of X must also be “sufficiently large”. To explain this, recall
that Aut(X) is a complex Lie group and, assuming X to be Kihler, a theorem of Fujiki and
Lieberman asserts that the connected component Aut(X)" of Aut(X) is a subgroup of finite
index in the kernel of the homomorphism

(1.5) Aut(X) s f — f* e GL(H*(X;Z))

that describes the action on the cohomology. Then, using the invariance of the intersection form
on H? (X;Z), the Hodge index theorem, and the Tits alternative, one obtains easily (see [21}26]])
the equivalence of the following properties for any subgroup I' = Aut(X)

(a) the image I'* of I'in GL(H?(X; Z)) is not virtually Abelian;

(b) the image I'* of " in GL(H?(X;Z)) contains a pair of linear maps (f*, g*) generating a
non-Abelian free group;

(c) T contains a pair of automorphisms (f, g) with positive topological entropy generating a
non-Abelian free group.

Moreover, the classification of compact Kéhler surfaces implies that if these properties are sat-
isfied for some I' = Aut(X), then either X is a torus or Aut(X)? is trivial. From this, one
deduces that, up to finite index, only two distinct regimes need to be studied:
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(1) the case where T is contained in Aut(X)°,
(2) the case where I satisfies the three equivalent properties (a), (b), (c).

The first case boils down to homogeneous dynamics, the main example being given by subgroups
of PGL3(C) acting by linear projective transformations on P2(C). Thus, we focus on the second
case that is, we shall impose that I" satisfies (a), (b), (c).

Even if our understanding of non-K#hler compact complex surfaces is less satisfactory, we
shall see in Section [3|that these properties are also relevant in this more general context. So, we
introduce the following

Definition 1.2. Let X be a compact complex surface. A subgroup I' of Aut(X) is non-
elementary if I'* contains a non-Abelian free group, otherwise, it is elementary.

A first important result, proven below in Section[3] says that the existence of a non-elementary
subgroup I' = Aut(X) forces X to be projective, hence, by the GAGA principle, it also forces I'
to act by regular algebraic transformations. Consequently, the study of non-elementary actions
belongs to algebraic dynamics.

Theorem 1.3. Let X be a compact complex surface such that there exists a non-elementary
subgroup T' = Aut(X). Then X is projective and it must be a blow-up of P2, a K3 surface, an
Enriques surface, or an Abelian surface

A consequence is that, unless X is a torus, Aut(X)" is trivial, hence Aut(X) is discrete, and
the countability assumption on I' is automatically satisfied. As suggested by this theorem, ex-
amples of non-elementary group actions are scarce and rely on algebro-geometric constructions.
Besides the following two classes of examples, several new ones will be discussed in this paper.

Example 1.4. The first examples are found on (certain) compact tori X = C2/A. Recall that
every automorphism of such a surface is induced by an affine transformation x € X — Ax + B,
where A € GLy(C) preserves A and B € C2. By Theorem if Aut(X) is non-elementary,
then X must be projective, that is, be an Abelian surface.

More generally, a Kummer group (X, I") is, by definition, a compact complex surface X
endowed with a subgroup I' of Aut(X), such that there exists a torus X’ = C2/A, a subgroup
I'" < Aut(X’), and a generically finite, dominant rational map ¢: X’ — X that semi-conjugates
IMtoT (i.e. poIV = T"oy). We refer to [24, §4] for details and a classification of such examples.
Kummer examples can be analyzed with tools from homogeneous dynamics, and as we will see,
they often stand out for their exceptional, distinctive properties, somewhat similar to those of
monomial, Tchebychev, and Lattés mappings in one-dimensional dynamics (see [20]).

Example 1.5. Consider the family of all K3 surfaces in P! x P! x P! (equivalently, smooth
surfaces of tri-degree (2,2,2)); they depend on 26 parameters. If X is such a surface, the
three natural projections onto P! x P! are dominant morphisms of degree 2, and each of them
determines a regular involution of X (which exchanges the two points in the fibers). Thus, X
comes with a group I' < Aut(X), generated by this involutions. For a general choice of X,
I' is non-elementary. We shall refer to these examples (X,I") as Wehler examples. These
were studied thoroughly in our work (see [26, 24, 23]]). The family of pentagon folding groups
introduced in Part[2)is in many ways reminiscent from the Wehler family.
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Example 1.6. Let us mention an example which is unfortunately excluded by our assumptions,
because the surface is not compact (when compactifying the surface, the automorphisms become
birational transformations). Consider the affine surface My — C? defined by

(1.6) 22 + % + 2% = 3ayz.

It is a cubic surface, endowed with three natural 2-to-1 ramified covers onto C2, obtained by
forgetting one of the variables, each of which defining a regular involution on Mj. The dynamics
of the group generated by these involutions was studied by Markov in his 1879 thesis, in relation
to the study of binary quadratic forms and Diophantine approximation, and My is now called
the Markov surface. It can be considered as a degenerate Wehler example. We refer to [[19, 40,
79, 157] and [80Q] in this volume for a dynamical viewpoint on these surfaces.

1.3. Further remarks: parabolic elements, fields of definition, irrational surfaces. From
now on we will assume that I' = Aut(X) is non-elementary and therefore that X is projective.
Our strongest results feature an additional hypothesis on I', namely the existence of parabolic
elements. The vocabulary is as follows. An automorphism f € Aut(X) is elliptic if f* is a
finite order element of GL(H?(X; Z)). It is loxodromic if the spectral radius Ay of f* is > 1;in
that case, Ay is the only eigenvalue of f* with modulus > 1, it is simple, and log(\y) is equal to
the topological entropy of f: X — X. Otherwise, f is parabolic; this means that some iterate
(f*)*, for some k > 1, is unipotent and distinct from the identity. In this case, there is a unique
genus 1 fibration 7: X — B which is f-invariant; this means that there is an automorphism fp
of the Riemann surface B such that w o f = fp o m; moreover, fp has finite order, except if
X is a torus C?/A. Hence, assuming X is not a torus and changing f into a positive iterate, f
preserves every fiber, each smooth fiber is a genus 1 curve, and f acts upon it as a translation;
such maps are referred to as Halphen twists. The analysis of these parabolic automorphisms
leads to rich structures and is connected to the field of discrete integrable systems (see [25) §3]
for an account, and [47] for a thorough treatment).

With this vocabulary, I' is non-elementary if and only if it contains a pair of loxodromic ele-
ments (f, g) that generates a non-Abelian free group. The hypothesis that I" contains a parabolic
element is of a different nature —it is analogous, in Ratner’s theory, to the existence of unipotent
elements. If I' contains two parabolic elements preserving distinct fibrations, then I' is non-
elementary; conversely, if I" contains a parabolic element and is non-elementary, then it contains
two parabolic elements with distinct invariant fibrations. We refer to [21} 26] for these results.

Our results may also depend on the field of definition. When X is projective, X and I' are
defined by polynomial equations and formulas with coefficients in a subfield of C. Some of our
results require that X and I" be defined over R, in which case one might restrict the dynamics to
the real part X (R) = X. Some require that X and T" are defined over Q.

Another thing that the reader should keep in mind comes from the classification of surfaces.
By Theorem surfaces for which Aut(X) is non-elementary fall into two types.

— If X is rational, then X is a blow-up of the plane P? at at least 10 points; as we shall see, a
non-elementary subgroup I' © Aut(X') may or may not preserve a continuous volume form.
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— If X is not rational, then X is a blow-up of a K3, Enriques, or Abelian surface X(; moreover,
by the uniqueness of the minimal model, the group Aut(X) is obtained by pulling back of a
subgroup of Aut(Xp). On X, there is a natural Aut(Xp)-invariant volume form, induced by
the triviality of the canonical bundle Kx, or its square K)%f This volume form lifts to X as
an Aut(X)-invariant form which vanishes only along the exceptional divisor of the birational
morphism X — Xj.

Some of our dynamical results do require the existence of such an invariant volume form, a
hypothesis that might fail only for rational surfaces. Note that if X is irrational and defined over
R, there is an Aut(Xg)-invariant volume form on X (R) as well.

1.4. Stiffness. Let us now come back to our five initial problems. As explained in the previous
sections, we only deal with non-elementary group actions on projective surfaces. We refer to [26,
§10.3] for elementary actions on compact Kihler surfaces and to § below for some remarks
on the non-Kihler case.

We say that a probability measure p on X is Zariski diffuse if it gives no mass to proper
Zariski closed subsets of X. Ergodic stationary or invariant measures which are not Zariski
diffuse are easily analyzed (see [26} Prop. 10.6]), so we focus on Zariski diffuse measures.

In certain situations, (Pb5) is actually equivalent to (Pb3); this happens whenever all v-
stationary measures are invariant: this is the stiffness (or v-stiffness) property of Fursten-
berg [56]. An obvious obstruction to stiffness is when there is no I'-invariant measure at all.
The overall philosophy of [260] is the converse: non-elementary group actions on compact com-
plex surfaces admitting a natural Zariski diffuse invariant measure tend to be stiff (in fact, this
“principle” also applies to elementary groups). In this respect, recall from §[I.3] that if X is not
rational, then, working on the minimal model X of X, there is a natural invariant volume form.

Let us be more specific. Let I' = Aut(X) be a non-elementary group of automorphisms of a
complex projective surface. Fix a probability measure v on I satisfying the generating condition

(S) Supp(v) generates T

and the moment condition
M) f <]Og HfHCI(X) + log Hf_lucl(X)> dl/(f) < +00.

Condition (S) is natural if we want the random dynamics to faithfully describe the group action
and necessary. Condition (M) is necessary to apply the tools of smooth ergodic theory; note
that by the Cauchy estimates, it automatically implies the same finiteness for the C* norm.
Pick an ergodic v-stationary measure ;. Then g admits two Lyapunov exponents A\~ < AT,
These exponents are defined by applying the Oseledets theorem fiberwise to the (non-invertible)
dynamical system associated to the random dynamics:

AxX — O x X
4 B wr) (0w fi()
where Q = Aut(X)N, w = (fy)n0. 0 is the shiftand f? = f,, _jo------ o fo (sothat f1 = fp).

If A= < 0 < A", one says that  is hyperbolic. Then, Oseledets theorem provides a measur-
able line field of stable directions E? (x) defined for v x p-almost every (w, x). We say that



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 8

FE? is non-random if it does not depend on w; more precisely, if for u-almost every x, there is
aline £*(z) T, X such that E*(x) = E*(x) for vN-almost every trajectory w. Our first key
result is the following (see [26, Thms C and 9.1]).

Theorem 1.7. Let I" = Aut(X) be a non-elementary group of automorphisms of a (necessarily
projective) compact complex surface. Let v be a probability measure on I satisfying Conditions
(S) and (M), and let i be a Zariski diffuse, ergodic, and hyperbolic v-stationary measure. If the
field of Oseledets stable directions is non-random, then p is I'-invariant.

When A > A\~ > 0, the invariance principle of Crauel [33]] (this terminology is due to
Avila-Viana [3]]) directly implies that x4 is invariant. Thus, if I" preserves a volume form, we
have AT + A\~ = 0, and for the stiffness problem we just have to consider hyperbolic measures.

Now, assume in addition that X and I" are defined over R, that X (R) is non-empty, and that I"
preserves an area form on X (R); more generally, we can consider a I'-invariant, smooth, totally
real surface 3 < X on which I preserves an area form. Then, we can apply the results of Brown
and Rodriguez Hertz [[16], which assert that for a volume preserving action on a 2-dimensional
real surface, the randomness of the stable line field E? (x) implies the invariance of p (see [16}
Thm 3.4]). From this and the previous considerations, we get:

Theorem 1.8. Let I' — Aut(X) be a non-elementary group of automorphisms of a compact
complex surface. Let v be a probability measure on U satisfying Conditions (S) and (M). Let
> < X be a T'-invariant, smooth, totally real surface that supports a I'-invariant area form.
Then, any Zariski diffuse v-stationary measure on 3. is I'-invariant.

We expect that similar techniques will provide the same result on the complex surface X,
without restricting to a real submanifold. Indeed, the following result ought to be true: under
the assumptions of Theorem[1.7} if T preserves a smooth volume form on X, then every Zariski
diffuse v-stationary measure is I'-invariant. In particular, this automatic invariance of Zariski
diffuse stationary measures should hold for K3 surfaces. At the time of writing these lines, new
results have been announced by Brown, Eskin, Filip and Rodriguez-Hertz [15]], which should
complete this story.

Notes on the proof.— The proof of Theorem occupies most of [26]. It relies on the fol-
lowing chain of ideas: if E° is non-random then either (1) p satisfies a strong form of zero
fiber entropy (see Section [2] for this notion) which makes it invariant or (2) the (global) stable
manifolds Wj(x), obtained from Pesin theory, are non-random as well. Now, almost every
stable manifold W (x) is biholomorphic to C and, to any non-constant entire curve C — X,
one can associate its so-called Ahlfors-Nevannlina currents (obtained as limits of integration on
large disks in C). Thus, to almost every point (w, ) is associated a set of closed positive cur-
rents. In this dynamical situation, we show that there is in fact a unique current 7'5 associated to
W3 () and that 75 depends only on w. Thus, if the stable manifolds are non-random, the 75 are
non-random as well, hence so are their cohomology classes [15] € H?(X,R). But these coho-
mology classes can be analyzed by looking at the action of I on H?(X; R). Using Furstenberg’s
theory of random products of matrices (applied to the action of (I'*,v) on H2(X,R)) and the
non-elementary assumption, we prove that these classes [7;35] should in fact depend non-trivially
on w. This contradiction rules out case (2), and the theorem follows.
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1.5. A new instance of stiffness. Theorem|[I.8|requires the existence of an invariant area form.
In Part |3] we study a family of examples on rational surfaces, first defined by Blanc in [12],
that do not preserve any smooth volume form. The following theorem summarizes the main
properties of our examples:

Theorem 1.9. Let C be a smooth, connected, real cubic curve in P2. Let k > 4 be an integer.
One can find a set of 5k points of C(C), consisting of 3k real points and k pairs of complex
conjugate points, such that, after blowing up the plane at these 5k points, one gets the following
objects:

(1) a rational surface X, in which the strict transform Cx of C'is a curve of genus 1;

(2) a non-elementary group T'  Aut(X) isomorphic to the free product *If Z/2Z;

(3) a rational 2-form Qx that does not vanish, has poles of order 1 along Cx, and is T'-
invariant;

(4) X, I, Cx, and Qx are defined over R, the total volume of Qx A Qy is infinite and,
after restriction to X (R), the total area of Q)x is also infinite.

The dynamics on X (C) satisfies:

(5) every orbit T - x = X(C) is infinite, except for x € Cx (C), in which case " - x = {x};
(6) (Qx A Qx)-almost every T-orbit is dense in X (C).

And for the real dynamics on X (R) we get:

(7) every infinite orbit in X (R) is dense in X (R);

(8) if v is a probability measure on T satisfying Conditions (S) and (M), then every ergodic
v-stationary measure on X (R) is a Dirac mass §, at some point x € Cx(R); such
stationary measures have zero Lyapunov exponents;

(9) the action of T on H' (X (R);R) has a positive Lyapunov exponent (in the sense of
Furstenberg’s theory).

The last property contains in particular the existence of automorphisms f € I' with an eigen-
value > 1 on H!(X (R); R): such automorphisms have positive entropy in the real locus X (R).
The proof occupies all of Part[3|and uses most of our previous results. In particular, the data (C
and the points that we blow up) must be defined over Q.

It is interesting to compare this family of examples with the following ones coming from
homogeneous dynamics.

Example 1.10. Consider the group SL2(R), acting by linear projective transformations on the
real projective line P!(R). The diagonal action on P*(R) x P!(R) preserves the form

dx A dy

(x —y)*

This meromorphic section of the canonical bundle Kp1,p1 does not vanish and has a double
pole along the diagonal; its total area is infinite. Now, consider I' = SL3(Z) < SLy(R) acting
diagonally on P! (R)) x P!(R). The closure of every I'-orbit is equal to P} (R) x P!(R) or to A.
If v is a probability measure on I' satisfying Condition (S), then there is a unique v-stationary
measure /1, on P1(R) x P! (R)), this measure is supported on A, and it is not invariant. Moreover,

(1.8)
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the action of I" on 71 (P (R) x P1(R)) ~ Z? is trivial, and the entropy of every f € I vanishes.
The standard action of SLy(Z) on R? < P?(R)) provides a similar example, for which the origin
is fixed and rational points have discrete orbits in R2.

Notes on the proof.— The mechanism for the stiffness property in Theorem is quite dif-
ferent from that of Theorem [I.8] This time, we use Theorem and [16]], together with the
existence of a singular invariant volume to prove by contradiction that all ergodic stationary
probability measure p have vanishing Lyapunov exponents. So by the invariance principle all
stationary measures are invariant, and the existence of parabolic elements in the group allows
for a complete classification (see Theorem[I.13]| below).

All the examples of non-elementary groups encountered so far admit an invariant probability
measure.

Question 1.11. Does there exist a non-elementary group action on a rational projective surface
without any invariant probability measure?

Such an example could be found only on a rational surface. A natural candidate would be
Lesieutre’s tri-Coble examples, briefly described in §[Zizf]below.

Another question, which is somehow dual to the previous one, is the following:

Question 1.12. If I' < Aut(X) is a non-elementary subgroup preserving a smooth volume
form, does I" admit a hyperbolic stationary measure on X (for some probability measure on I’
satisfying (S) and (M))?

If T possesses a parabolic element, then by [23] Thm 1.3], the invariant volume itself is hy-
perbolic. In the general case, if there is no hyperbolic measure, then by the invariance principle,
every stationary measure is invariant, so this is really a question about the classification of in-
variant measures (more precisely, about the second line of the table in Section [2). Note that
without the volume preserving assumption, Theorem [I.9 shows that the answer to this question
(on X (R)) is negative. Note also the connection with the following fundamental open problem
from conservative dynamics: if f is a volume-preserving loxodromic automorphism on a com-
pact complex surface X, does the invariant volume have positive measure theoretic entropy?

These questions, as well as the proof of Theorem [I.9] are a source of motivation for the
classification of invariant measures, which we discuss now.

1.6. Classification of invariant measures. Probability measures invariant under a non-elemen-
tary group are subject to so many constraints that it is reasonable to hope for a complete classi-
fication. Still, in its full generality, this problem remains out of reach for the momen

Theorem 1.13. Let I' < Aut(X) be a non-elementary group of automorphisms of a projec-
tive surface containing a parabolic element. Let |1 be an ergodic, Zariski diffuse, I'-invariant
measure. There exists a proper I'-invariant subvariety Z < X such that:

ITo illustrate the difficulty of this kind of question, it may be interesting to recall that Furstenberg’s famous
problem asking for a classification of measures on the circle invariant under x2 and x 3 is still open to date (this is
however quite different from our setting since it concerns an Abelian semigroup).
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— either  is a measure with a smooth positive density in X\ Z;
— or there exists a I'-invariant totally real surface embedded in X\Z such that u is a
measure with a smooth positive density on 3.

This result, obtained in [[18} [25]], shows that if I" is non-elementary and contains a parabolic
element, the classification problem for invariant measures is completely solved (see [25, Thm A]
for a precise statement). This classification comes with an almost complete description of orbit
closures (which is most satisfactory under additional assumptions, see § [I.9). A consequence of
this classification and of the results described in Section [1.7]is that if I" does not preserve any
curve, there are only finitely many ergodic I'-invariant measures, unless X is a torus.

Notes on the proof.— The first input to prove Theorem [1.13|is that if h € I' is a parabolic
automorphism preserving the fibers of a genus 1 fibration 7: X — B, then h acts as a uniquely
ergodic translation on most fibers of 7 (it also acts periodically on a dense, countable set of
fibers). Thus, any h-invariant measure can be described in terms of its disintegration along the
fibers of 7. From this it follows rather easily that any ergodic Zariski diffuse I'-invariant measure
satisfies a local homogeneity property (i.e. some local invariance under connected groups of
translations), which implies that it is either absolutely continuous with respect to the Lebesgue
measure on X, or to the Lebesgue measure on an immersed totally real surface 3. The delicate
issue is to show, in the latter situation, that 3 globalizes to an embedded submanifold outside
some algebraic subset Z.

When I' does not contain parabolic elements, the classification of invariant measures is still
at an early stage, and is arguably the main open problem in our program. It can be subdivided in
several sub-problems of independent interest; since the discussion at this point becomes rather
technical, we defer it to Section[2] Let us just mention one open question, which we formulate
in the easiest context of automorphisms of the affine plane.

Question 1.14. Can one construct two polynomial automorphisms f and g of C? such that

(i) f and g fix the origin o,
(ii) there is a germ of holomorphic diffeomorphism ¢: (C? 0) — (C?, 0) that conjugates
f and g simultaneously to two elements of SU2(C);
(iii) the group generated by f and g is a non-Abelian free group.

Our expectation is that such an example does not exist. If such an example were to be found,
it would have an invariant probability measure for each small sphere centered at the origin.

1.7. Finite orbits and arithmetic dynamics. For a non-elementary group I', the existence of a
finite orbit is an overdetermined property. Indeed, if f € Aut(X) is a loxodromic element, then
its periodic points of sufficiently large period form a countable subset of X, and any I'-periodic
point must be f-periodic for every f € I'. Since I is non-elementary, it contains two loxodromic
automorphisms f and g satisfying no algebraic relation (see §[I.2). In this case it is expected
that Per(f) n Per(g) is finite, or contained in a curve of { f, g)-periodic points

Example 1.15. To implement these ideas, a first approach is to work in families and prove
generic results. In the family of Wehler examples (see Example [1.5]), we proved in [24, Thm
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A] that a very general member has no periodic orbit. Such a result is still open for other natural
families (see Questions#.2]and [6.6below). In this paper, we develop new methods to get similar
results for pentagon foldings (see Part[2) and Blanc’s examples (see Part [3).

A deeper problem is to deal with specific, individual examples. Then the existence of infin-
itely many finite orbits for a non-elementary group falls into the setting of unlikely intersection
problems (see [87]]), and it will not be a surprise to the experts that methods from arithmetic
geometry arise here. For instance, the following result was established in [24, Thm B].

Theorem 1.16. Let X be a projective surface defined over Q. Let T' = Aut(X) be a non-
elementary group, defined over Q and containing a parabolic element. If Per(T') is Zariski
dense, then (X,T') is a Kummer example.

Thus, when X is not a Kummer surface, Per(I") is the union of a I'-invariant curve, together
with finitely many isolated pointﬂ

Notes on the proof.— Fix a probability measure v on I' with finite support generating I'. First,
we construct a height function h,, on X (Q) such that >’ sv(f)ho f = Ayhforsome A > 1.1t
follows that I'-periodic points have zero height. Assuming the existence of a Zariski dense set
of periodic orbits, and using Yuan’s equidistribution theorem for small points, we construct a
I'-invariant measure with special properties. To conclude, we use the classification of invariant
measures described in Theorem [I.13] and a rigidity result proved in [27]. The existence of
parabolic elements is used at several places in the proof, notably to apply Theorem[I.13|(see [24}
§6.3] for a discussion). Corvaja, Tsimerman and Zannier [31] recently proved a closely related
theorem which also requires parabolic elements. Their proof is based on different ideas (o-

minimal geometry, variation of the canonical height for families of elliptic curves, etc).

Remark 1.17. In [54], Wehler examples with a finite but large number of periodic points are
constructed. In the closely related case of Markov type surfaces

(1.9) 22 +y? + 2% = zyz 4 ax + by + ¢z + d,

where (a,b,c,d) € Clisa parameter, all possible finite orbits have been classified (see [[70]]).
The only parameter with infinitely many periodic orbits is (0, 0, 0, 4); the corresponding surface
is the quotient of the multiplicative group C* x C* by the involution (u,v) — (1/u,1/v), and
the group action on Mg o 4) lifts to the monomial action of GL2(Z); finite orbits correspond
to torsion points. Thus, the situation is perfectly similar to that of Kummer examples, but for a
multiplicative torus.

Surprisingly enough, Theorem [I.16] can be used to prove the same result when X and I" are
defined over C; in that case we must suppose (for technical reasons) that I" does not preserve
any curve, and the existence of infinitely many periodic orbits then implies that X is a torus
(see [24, Thm C]). Related, stronger, results were obtained for polynomial automorphisms of
C?2, and more generally affine surfaces [48, [1]]. This motivates the following question:

2Here, we use the following fact: if I" acts by automorphisms on a curve C' with a Zariski dense set of periodic
points, then the image of I in Aut(C)) is finite. Indeed, C' has only finitely many irreducible components, and if a
subgroup I'y acts on some irreducible component C; by fixing a subset F; such that the Euler characteristic of C;\ F;
is negative, then the restriction of I'y to Cj is finite.
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Question 1.18. Can we classify pairs of automorphisms ( f, g) of positive entropy on a compact
projective surface having a Zariski dense set of common periodic points? Or having the same
maximal entropy measure?

Note that in the second question the common maximal entropy measure would be a {f, g)-
invariant measure, so we are back to the theme of § If one can show that this measure is
smooth, then the main result of [27] implies that (X, {f, g)) is a Kummer example; the proof of
Theorem [I.T6l relies on this fact.

In one-dimensional algebraic dynamics, unlikely intersection problems are better understood.
For instance, one can produce uniform bounds on the number of common periodic points (instead
of orbits) for pairs of distinct quadratic maps z — 22 + ¢, z — 22 + ¢/: we refer to [38,[39] for
precise results. Here is a version of this problem for non-elementary groups of automorphisms:

Question 1.19. Is there a uniform bound for # Per(T") in the family of (smooth) Wehler exam-
ples?

Note that for a general parameter in the Wehler family there is no invariant curve, so Per(T")
is indeed finite (see [26 Prop. 3.6]). Examples of Wehler groups with # Per(I") > 288 were
constructed in [54] (see Remark . On the other hand, some singular Wehler examples are
Kummer hence give rise to a dense set of periodic orbits (see [20, Ex. 8.3]).

Let us conclude this section with a last question which may be considered as a variation on
a prediction of Kawaguchi and Silverman [[63]. Assume that X and I' are defined over Q and

that I is non-elementary. Fix a polarization H of X, denote by h: X (Q) — R, a Weil height
associated to H. For every f € Aut(X), let

(1.10) degy (f) = H - (f*H).
Fix a point x € X (Q) with a Zariski dense orbit, and set
(1.11) N(z;R) :==#{yel -x; h(y) < R}.

Kawaguchi and Silverman suggested that the Zariski density of I" - « should imply that h(f(x))
is of the same order of magnitude as deg( f). More precisely, introduce the counting function

(1.12) Naeg(R) := #{f € I'; deg(f) < R},

and ask:

Question 1.20. [fT' = Aut(X) is a non-elementary automorphism group defined over Q, and
x € X has a Zariski dense orbit, does N (x; R) grow like Ngeg(R)?

The group I acts on a hyperbolic space Hy = H1(X;R) (see Section, and log(deg (f))
is comparable to the distance in Hx between the cohomology class (H - H)~'/2[H] and its im-
age by f*. From this, we see that Nqe.(R) is a classical counting function for orbits of discrete
isometry groups in hyperbolic geometry. As a consequence, Nqeo (R) grows like R, where o
is the Hausdorff dimension of the limit set of the isometry group I'* < Isom(Hx ) (see [} 41]).
Question|1.20|was answered positively by Baragar in [S]] for some K3 examples; this problem is
also well understood for Markov surfaces (see [S7]] for an account). The interested reader should
also consult [52]].
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1.8. Equidistribution and uniform expansion. Up to now, we addressed Problems (Pb2),
(Pb3), (PbS), i.e. the study of stationary and invariant measures. We asserted in § that
classifying stationary measures is the key step to understand the asymptotic, stochastic distri-
bution of orbits, or more precisely the limiting behavior of the averages (1.2) and (I.3). This
assertion, while certainly correct, hides a final difficulty. Imagine an ideal situation where the
set of v-stationary measures is completely described, and its extremal points are given by some
smooth (or Zariski diffuse) measure py and a finite or countable set of finite orbits. If z € X is
a general point, the limit points of the averages (1.2) and (I.3]) are convex combinations of these
ergodic measures. The problem is to decide which combinations do arise; this is where uniform
expansion comes into play. Let v be a probability measure on Aut(X ), and set I' = (Supp(v)).
We say that v is uniformly expanding if there exists ¢ > 0 and an integer ng such that for every
x € X and every v € T, X \{0},

(1.13) Jlog 7HDIf(U)HdV("°)(f) > e,

el

where (™) denotes the n'" convolution power of v, and the norm is relative to some given
Riemannian metric on X. This notion was introduced in non-linear random dynamics in [73} 301,
notably to get equidistribution results analogous to those obtained in homogeneous dynamics
in [50} [10]. Now, suppose that v is uniformly expanding and satisfies

P
(M) there exists p > 1 such that J(log | flerx) + log Hf_chl(X)) dv(f) < +o0.

Let F' be a finite I'-orbit. Then, if z € X has an infinite orbit, any cluster value of the sequence
of measures in or gives zero mass to F (see [23] Thm 4.3]). Indeed, the uniform
expansion condition makes F’ repelling on average, an idea which is formalized by the notion of
Margulis function. So in the ideal situation described above, every infinite orbit equidistributes
towards the smooth stationary measure (y. Moreover, in the real volume-preserving setting,
where two natural Zariski diffuse ergodic measures exist, given respectively by an invariant
volume form on X and an invariant area form on X (R), we can also decide which orbits are
equidistributed with respect to the first or the second measure (see [23), §4.3]).

In homogeneous dynamics, establishing uniform expansion boils down to an expansion prop-
erty for a random product of matrices. In a non-linear context, the situation is more delicate;
fortunately, an abstract ergodic criterion for expansion was devised in [73} 130], which fits well
with our holomorphic setting. This leads to a neat necessary and sufficient condition for uniform
expansion on non-rational surfaces (see [23, Thm 1.5]):

Theorem 1.21. Let X be a compact complex surface which is not rational. Let T' < Aut(X)
be a non-elementary group containing parabolic elements. Let v be a probability measure on
Aut(X) satisfying Conditions (S) and (M). Then, v is uniformly expanding if and only if the
following two conditions hold:

(1) every finite I"-orbit is uniformly expanding;
(2) there is no I'-invariant algebraic curve.

Again, we assume that I' contains a parabolic element because the classification of invariant
measures is used in the proof.
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In many interesting situations, we have a family (X;I'y)\ea of non-elementary automor-
phism groups, parameterized by some quasi-projective manifold. Then, as in Example
we developed tools to exclude the existence of proper, Zariski closed invariant subsets for very
general parameters A € A. Hence, for these parameters, uniform expansion holds. In addition,
Condition is robust under C'! perturbations, so this dense subset of uniformly expanding
parameters is automatically promoted to an open and dense subset. In Part 2| we apply these
ideas to the dynamics of random pentagon foldings.

Another interesting consequence of uniform expansion is that a volume preserving uniformly
expanding action on a (connected, compact, real or complex) surface is automatically ergodic
with respect to the invariant volume. This follows from a Hopf-type argument (see [46,[30]). An
interesting question (which goes beyond complex dynamics) is whether such an ergodicity can
be made quantitative (for uniformly expanding actions). To formalize this question, denote by
dvol the invariant volume form. Then, consider the Markov operator

(1.14) PychHstOde(f)

acting on some Banach space of continuous functions. Then, the question is to determine the
speed of convergence of P} towards { ¢ dvol. Is it exponential? A positive answer seems beyond
reach for the moment, since it is open even in the homogeneous case, except for linear maps on
tori, for which the Fourier techniques of [[14] provide effective estimates.

1.9. Back to orbit closures. Putting together the results of §§ and we arrive
at a complete understanding of orbit closures, under rather strong assumptions (see [23, Thm.
10.1]).

Theorem 1.22. Let X be a compact complex surface which is not rational. Let T' < Aut(X) be
a non-elementary group containing parabolic elements, and satisfying conditions (1) and (2) of
Theorem[l.21] Then there exists a finite set F' and a real-analytic (possibly singular) totally real
surface X, both I'-invariant, such that

— ifx € F then T - x is finite;
— ifx € X\F, then T - x is a union of components of 3;
— otherwiseI' - x = X.

Under less stringent hypotheses, but still assuming that I" contains parabolic elements, weaker
results on orbit closures are obtained in [25, §8], which deserve further study.

Problem 1.23. Complete the classification of orbit closures when I is non-elementary and con-
tains a parabolic element.

Comments.— In [25, §8], we classified closed, I'-invariant subsets F' whose accumulation locus
Acc(F) is not contained in some explicit invariant algebraic subset STangp. Thus, when there
is no proper invariant algebraic subset, or more generally when uniform expansion holds, this
leads to a complete classification. In the general case we must understand the situation where
Acc(T - ) < STangp. It is easy to see that in this situation = must be g-periodic for each
parabolic g € T'. In this case one expects that x € Per(I"), but this result is not yet available
(see [31] for partial results). See Theorem [10.5]below for a worked out example.
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2. APPENDIX: CLASSIFICATION OF INVARIANT MEASURES

This section is a complement to § and may be skipped on a first reading. We discuss what
needs to be done to describe invariant probability measures for non-elementary groups that, a
priori, do not contain parabolic elements.

2.1. Reducing the number of cases. We fix a complex projective surface X and a non-elementary
subgroup I of Aut(X). Let u be a Zariski diffuse, ergodic, I'-invariant probability measure. It
is useful to introduce a probability measure v on I' satisfying Conditions (S) and (M) in or-
der to speak about the Lyapunov exponents of u; since they depend on v, we denote them by
A7 (v) < AT (v).

A preliminary observation is that the exponents cannot be simultaneously positive (resp. nega-
tive), because in such a case a classical Pesin-theoretic argument implies that © would be atomic.
So A" (v) <0< AT (v) and if A~ (v) = AT (v), then both exponents vanish. This gives three
distinct possibilities: either A\~ (v) < 0 < AT (v), or exactly one of the exponents vanish, or
both of them vanish. We shall also distinguish three possibilities, depending on the number of
invariant line fields: (1) no invariant line field, or pair of invariant line fields; (2) there exists a
measurable ['-invariant line field £ < T X; (3) there exists an invariant measurable pair of line
fields 1, F» < T X. This leads to the following table of 12 possibilities:

no invariant line field | 3£ < TX JE1, By < TX pair
or pair of line fields | invariant line field of invariant line fields
W, M) =A"(v) = Al A2 A3
Vo, AT(v) =A"(v) =0 B1 B2 B3
d, AT < AT &ATAT =0 Cl C2 C3
v, AT(v) <0< A (v) D1 D2 D3

Let us discuss this table and the relationship between its entries. Note that the third row of
this table does not appear in the volume preserving case.

2.1.1. The first column. The case when both exponents vanish (the first line) is analyzed in
Section 7 of [23]. In case Al, Theorems 7.2 and 7.3 of [23]] imply that the cocycle given by
the action of I' on the projectivization of the tangent space is measurably reducible to a compact
group. In particular Al implies B1.

The proof of Theorem 5.1 in [16] (see §13.2.4) shows that case C1 reduces to case D1.

2.1.2. The second column. When there is a measurable invariant line field x — FE(z), the
Lyapunov exponent in the direction of F, which is one of A~ (v) or A™(v), is given by the
explicit formula

2.1 Ap(v) = Jlog | Df| e | du(z)dv(f) = J/\E(f, p)dv(f),

where Ap(f, i) is the integrated Lyapunov exponent of 4 as an f-invariant measure (note that
1 is not necessarily f-ergodic). The second exponent admits also a simple expression, because



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 17
itis equal to A\~ (v) + A" (v) — Ag(v), and

22) A7)+ A () = [ log Pacs (@)] du(a)dv (),

where Jac is the Jacobian determinant with respect to any given smooth volume form on X.

Let us show that A2 reduces to B2, C2 or D2. There are two possibilities: either Ag(f, 1) = 0
for every f, or not. In the first case we are in situation B2. In the second, we can change v to put
more weight on an element with Ag(f, 1) # 0 to impose Ag(v) # 0; doing so, we fall in C2 or
D2 (moreover, in C2 the non-vanishing exponent is along the invariant line field).

2.1.3. The third column. There are two possibilities: either every f € I" preserves (resp. ex-
changes) the directions F; and E5 almost everywhere, or not. In the first case, there is an index
2 subgroup preserving both directions, and we are in a special case of column 2. Otherwise, the
directions are intertwined by the dynamics, and we claim that we are in case B3 (this argument
is a variation on [[16, Lem. 5.2]). Indeed, note that by definition there is a set of positive, hence
full, y-measure where E(z) # E2(x), and let

1
(23) Av) =5 J (log | Df| g, ()| +1og | Df|gy@)]) dpu(z)dr ().
By ergodicity, for (vN x u)-almost every (w, z) and every v € Ey(z) U Ea(x)\ {0},
1 n B
24 im = log [ Df5 ()] = A).

If AT (v) = A~ (v), then, by the preliminary remark, both exponents vanish. If A\~ (v) < AT (v),
then by Oseledets’ theorem, for p-a.e. x there is a line E*(x) such that if v ¢ E*(x), then
Llog|Dfr(z)| — AT. Thus E*(z) ¢ {F1(z), E2(z)} and A = A*. But now there is a set of
3 invariant directions, so the projective tangent action recurs to a compact set (see the proof of
Theorem 7.3 in [23]]) and we conclude that AT () = A~ (v) = 0, a contradiction.

2.1.4. Summary. After these reductions, the situation is summarized in the following table. Col-
ored cells do not need to be treated because they reduce to other ones.

no invariant line field | 3 <TX 1E1, By < TX pair
or pair of line fields invariant line field of invariant line fields

v, ATw)=A"(v)=0
P OESSOET B2
W, AT <A™ &A AT =0
v, AT(v) <0< A (v) DI1: 1 homogeneous? | D2: y not Z. diffuse?

2.2. Comments. Let us now analyze some of the remaining cases. We first note that we do not
know any example, nor even a possible model for the dynamics, for the cases B2, B3, and C2
(in C2 it would make sense to further distinguish the cases whether the Lyapunov exponent in
the invariant direction vanishes or not).

e B1: in that case, Thm. 7.3] shows that the cocycle describing the action of I" on the
projectivized tangent bundle of X is measurably reducible to a compact subgroup of GLy(C).
This suggests a Fatou-type behavior for the dynamics. Must an invariant measure of type Bl be
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contained in the Fatou set of the I'-action? As far as we know, there is no known example of a
Fatou domain for a non-elementary group action by automorphisms on a projective surface. See
Question for a related problem.

e D1: p is hyperbolic and there is no invariant line field. The techniques of [[16] show that in
this case p has some homogeneity properties along stable and unstable manifolds. This implies
in particular that i has positive fiber entropy (as a v-stationary measure). In a nutshell, recall
that the fiber entropy can be defined by

(2.5) h;L(Xa V) = huqu(F-‘r) —hy,~ (U)

and it quantifies the relative entropy of F;. in the fibers of the projection €2 x X — X (of course
this definition needs to be adapted when h,~ (o) = o0, see [26, §7.6] for a brief presentation).
In the volume preserving (rational) case, it should expected that, under assumption DI, y is
either absolutely continuous or absolutely continuous along some real analytic surface .. In the
general case, this has to be replaced by a SRB property. Partial results in this spirit include [16,
Thm 5.1] and [26, Thm 11.1] for the real case. In the general complex case, such a result seems
to be out of reach for the moment, even using [[15]]. The most delicate point would be to construct
. from an information on the stable and unstable conditionals of y only.

e D2: 4 is hyperbolic and there is an invariant line field. Since p is I'-invariant, the natural
extension of (Fy,vN x p)is (F,v% x u), where F is the skew product over the 2-sided shift
associated to the random dynamical system (X, v, 1) (see [26} §7.1]). For this invertible dynam-
ical system, the invariant line field corresponds to either £° or E“. Note that by the invariance
of u, F~! is the skew product map associated to the random dynamical system induced by the
reversed measure 7, defined by 7(f) = v(f~!). Therefore, if E = E*, E is the stable Oseledets
bundle associated to the random dynamical system (X, &, ;). From this discussion, we conclude
that in either case we may assume that ' = E?°, i.e. the field of Oseledets stable directions is
non-random. Theorem 9.1 in [26] then asserts that s, (X, v) = 0, and furthermore by [23| Thm.
B.1], h,(f) = 0 for every f € I'. In other words, j is a common zero entropy measure for all
group elements. We expect that such a situation does not happen, so the conclusion should be
that a Zariski diffuse invariant measure cannot satisfy D2.

2.3. A dual point of view and an example. Let us remark that another way of formulating this
problem is to start with a loxodromic automorphism f of X and some f-invariant measure p
and to ask for a description of the stabilizer of x in Aut(X) (cf. [16, Thm 5.1] and [26, Thm
11.1]). Here is one instance of this problem:

Question 2.1. Let f be a loxodromic automorphism of a complex projective surface X, and let
piy be its unique invariant measure of maximal entropy. Is the stabilizer of v in Aut(X) virtually
Abelian?

To conclude, we answer a similar question in the specific case of polynomial automorphisms
of the plane. One goal here is to illustrate some dynamical similarities between affine and
projective surfaces. Before stating our result, recall that the Jacobian determinant Jac(f) of
such an automorphism f is constant; when Jac(f) = =1, the Lebesgue measure Lebg: is
invariant and f is said to be conservative.
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Theorem 2.2. Let f be a polynomial automorphism of R?. Let ji be an ergodic f-invariant
measure with positive entropy supported on R2. If g € Aut(R?) satisfies g1 = i1, then:

(a) either f and g are conservative and |1 is the restriction of Lebgr2 to a Borel set of positive
measure invariant under f and g;

(b) or the group generated by f and g is solvable and virtually cyclic; in particular, there exists
(n,m) € Z>\{(0,0)} such that f* = g™.

Remark 2.3. With the techniques developed in [[19], the same result should apply to the dynam-
ics of Out(IFy) acting on the real part of the character surfaces of the once punctured torus.

Sketch of Proof. Since the proof is a direct adaptation of [26, Thm 11.1], we briefly explain the
argument and leave the details to the reader.

Set I' = (f, g). Since its entropy is positive, f is of Hénon type in the sense of [67]: it is
conjugate to a composition of generalized Hénon maps, as in [53, Thm. 2.6]. Thus, the support
of 1 is a compact subset of R?, because the basins of attraction of the line at infinity for f
and f~!, respectively, cover the complement of a compact subset of C2. In addition z must be
Zariski diffuse, because its entropy is positive.

Let w be an element of I and set o = w fw™!; then A is also of Hénon type. We follow the
proof of [26, Thm 11.1], which leads us to three cases.

Case 3 is treated exactly in the same way and implies that y is absolutely continuous. This
implies that f is conservative and, u being ergodic for f, it must be the restriction of Leby2 to
some I'-invariant subset.

In Cases 1 and 2, arguing as in [26, Thm 11.1] and keeping the same notation, we arrive at
W (h,x) = W*(f,x) or W"(f,z) on a set of positive measure. For a Hénon type automor-
phism of C?2, the closure of any stable manifold is equal to the forward Julia set J*, and J*
carries a unique positive closed current TF of mass 1 relative to the Fubini Study form in P?(C)
(see [85]]). So we infer that 7,7 = ij or T,j = Tf_ ; as a consequence, the Green functions of f
and h satisfy G}/ = G;{ or G,J{ = G]?, respectively.

The group Aut(C?) is the amalgamated product the affine and the elementary subgroups
along their intersection. Let T" be the associated Bass-Serre tree. Each u € Aut(C?) gives rise
to an isometry u, of 7" and, u is of Hénon type if and only if u. is loxodromic (its axis Geo(u)
is the unique u.-invariant geodesic, and u. acts as a translation along it). From [67, Thm. 5.4],
Gy = G implies Geo(hs) = Geo(fx); changing f into f~', G = G gives Geo(hs) =
Geo(f; 1) = Geo(fs) because Geo(f, 1) = Geo(fy). Since wy Geo(fs) = Geo(hs), we see
that I" preserves Geo( f4); so, all u € ' of Hénon type satisfy Geo(us) = Geo( f,). From [67,
Prop. 4.10], we conclude that I is solvable and virtually cyclic. O
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Part 1. Classification and first examples
3. SURFACES ADMITTING NON-ELEMENTARY GROUPS OF AUTOMORPHISMS

3.1. More Kibhler vovabulary. Let X be a compact Kihler surface. Recall from § |1.1|that a
subgroup I' © Aut(X) is non-elementary when its image I'* < GL(H*(X,Z)) contains a non-
Abelian free subgroup. By Hodge theory, T acts on H!(X, R) by preserving the intersection
form, which is of Minkowski type; thus I' acts by isometries on the associated hyperbolic space
H x, which is the component of the hyperboloid

(3.1) {ue H"(X,R); (uluy = 1}

containing the class of a Kihler form. Then I' is non-elementary in the sense of §[I.2]if, and only
if the induced subgroup of Isom(H ) is non-elementary in the sense of hyperbolic geometry
(this is the original definition from [26], §2]). The classification of automorphisms in the elliptic,
parabolic, and loxodromic types, as described in Section corresponds exactly to the three
possible types of isometries of hyperbolics spaces. By theorems of Gromov and Yomdin, f €
Aut(X) has positive entropy if and only if f is loxodromic: indeed, the translation length of f*
on Hx is equal to the topological entropy of f: X — X and to the logarithm of the spectral
radius A\(f) of f* on HY'(X;R) (see [21]]). By a ping pong argument (see Lemmabelow),
we can add the following characterization to the equivalent conditions (a)-(c) of §[I.2}

(d) T contains a non-Abelian free group all of whose elements (distinct from id x') have positive
entropy (i.e. are loxodromic).

3.2. Non-elementary groups of automorphisms on general surfaces. Let M be a compact
manifold. Exactly as in the complex case, let us say that a group I' of homeomorphisms of M is
non-elementary if its image I'* in GL(H*(M; Z)) contains a non-Abelian free subgroup.

Lemma 3.1. Let M be a compact manifold, and T be a non-elementary subgroup of Diff (M ).
Then T' contains a non-Abelian free group g such that the topological entropy of every f €
To\{id} is positive.

Proof. We split the proof in two steps. The first one concerns groups of matrices, the second
one is where topological entropy enters into place.

Step 1.- The image T'* of T in GL(H*(M; Z)) contains a free subgroup T'%, such that every
element of IT'7\{id} has spectral radius larger than 1.

The proof uses basic ideas involved in Tits’s alternative, here in the simple case of subgroups
of GL(Z). Let N be the rank of H}; (M; Z), where ¢.f. stands for “torsion free”. Fix a basis of
this free Z-module. Then I'* determines a subgroup of GLx(Z). Our assumption implies that
the derived subgroup of I'* contains a non-Abelian free group I'jj of rank 2.

If all (complex) eigenvalues of all elements of I'j; have modulus < 1, then by Kronecker’s
lemma all of them are roots of unity. This implies that I'j contains a finite index nilpotent
subgroup (see Proposition 2.2 and Corollary 2.4 of [6]), contradicting the existence of a non-
Abelian free subgroup. Thus, there is an element f* in I'j with a complex eigenvalue of modulus
« > 1. Let m be the number of eigenvalues of f* of modulus «, counted with multiplicities.
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Consider the linear representation of I'}; on A" H*(M; C); the action of f* on this space
has a unique dominant eigenvalue, of modulus o™; the corresponding eigenline determines an
attracting fixed point for f* in the projective space P(/A\™ H*(M; C)); the action of f* on the
topological space P(A\™ H*(M; C)) is proximal. Let

(3.2) {0} =Woc Wi c - © Wy, & Wiy = /\ H*(M;C)

be a Jordan-Holder sequence for the representation of I'*: the subspaces W; are invariant and the
induced representation of I'* on W, 1 /W is irreducible for all 0 < ¢ < k. Let V' be the quotient
space W;1/W; in which the eigenvalue of f* of modulus o™ appears. Since I'§ is contained
in the derived subgroup of I', the linear transformation of V' induced by f* has determinant 1;
thus, dim(V’) > 2. Now, we can apply Lemma 3.9 of [6] to (a finite index, Zariski connected
subgroup of) T'¢|y: changing f if necessary, both f*|y, and (f~!)*|y are proximal, and there
is an element ¢* in I'* that maps the attracting fixed points a;{ and a; € P(V) of f*|y and
(f*|v)~! to two distinct points (i.e. {a?, a;}n {g*(a}r),g*(a;)} = (). Then, by the ping-
pong lemma, large powers of f* and g*o f*o(g*)~! generate a non-Abelian free group I'f < T'*
such that each element h* € I'f\{id} has an attracting fixed point in P(V'). This implies that
every element of I'7\{id} has an eigenvalue of modulus > 1 in H*(M; C).

Step 2.- Since I'] is free, there is a free subgroup I'y < I' such that the homomorphism
I'y — I'f is an isomorphism. By Yomdin’s theorem [86]], all elements of I';\{id} have positive
entropy, and we are done. U

Theorem 3.2. Let M be a compact complex surface such that there exists a non-elementary
subgroup I' = Aut(M). Then M is Kdihler.

Proof. By Lemma[3.1] M admits an automorphism of positive topological entropy. It was shown
in [[17] that this property implies that M is Kihler. (]

3.3. Projectivity.

Theorem 3.3. Let X be a compact complex surface and I' be a non-elementary subgroup of
Aut(X). Then X is projective, and is birationally equivalent to a rational surface, an Abelian
surface, a K3 surface, or an Enriques surface.

The next sections will provide examples of non-elementary groups of automorphisms for each
of these four classes of surfaces.

It follows from this classification that when X is not rational, there is a canonical volume
form preserved by I'; moreover, such a form induces an invariant volume form on X (R) when
the action is by real automorphisms (see [25, Rmk 2.3]). This constraint has deep consequences
on the dynamics of I'.

Let us prove Theorem [3.3] If I is a non-elementary group of automorphisms on X, Theo-
rem [3.2] asserts that X must be Kéhler. Then the last assertion of the theorem readily follows
from the classification given in [21, Thm 10.1]. What remains to show is that a compact Kéhler
surface admitting a non-elementary automorphism group is projective. The proof follows closely
the arguments given in [21]] and [81]].
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Lemma 3.4 (see also [81]], Thm. 2.2). Let f be a loxodromic automorphism of a compact Kiihler
surface X. The following properties are equivalent:

(1) on H*Y(X; C), f* acts by multiplication by a root of unity;
(2) X is projective.

Remark 3.5. If X supports a loxodromic automorphism, then dim H>%(X,C) < 1. When
this dimension equals 1, that is when X is a torus or K3 surface, H>?(X; C) is generated by a
holomorphic 2-form 2 x that does not vanish and satisfies SX Qx A Qx = 1. It is unique up
to multiplication by a complex number of modulus 1. So for every f, we can write f*Qx =
J(f)Qx, and the Jacobian determinant

(3.3) feAut(X)— J(f) el

defines a unitary character on the group Aut(X). It follows that the first condition of Lemma
can be reformulated as:

(1°) either H*%(X; C) = 0 or J(f) is a root of unity.
Moreover, by Kodaira’s embedding theorem, X is projective when H?9(X; C) = 0.

Proof of Lemma[3.4) The characteristic polynomial y s of f*: Hff.(X 7)) — Hf.f.(X ;Z)is a
monic polynomial with integer coefficients. Since f is loxodromic, f* has a real eigenvalue
A(f) > 1. Besides A(f) and A(f)~!, all other roots of xs have modulus 1, so A(f) is a
reciprocal quadratic integer or a Salem number (see § 2.4.3 of [21] for more details). Thus, the
decomposition of ¢ into irreducible factors can be written as

(3.4) X(t) = Sp(t) x Ry(t) = Sg(t) x [ [ Cra(t)
=1

where S is a Salem polynomial or a reciprocal quadratic polynomial, and the C'y; are cyclo-
tomic polynomials. In particular if £ is an eigenvalue of f* and a root of unity, we see that £ is
aroot of Ry(t) but not of S¢(t).

The subspace H*°(C) < H?(X;C) is Aut(X)-invariant. By Hodge index theorem, the
hermitian form Q € H*°(C) — {, Q A Q is positive definite and Aut(X)-invariant. Thus,
all eigenvalues of f* on H 2’O(C) have modulus 1. Note, furthermore, that if an eigenvalue of
J*|20(x,c) is not a root of unity, then it is a root of S.

Assume that all eigenvalues of f* on H*%(X; C) are roots of unity. Then Ker(S¢(f*)) <
H?(X;R)isa f*-invariant subspace of H!(X; R). This subspace is defined over Q and is of
Minkowski type; in particular, it contains integral classes of positive self-intersection. Thus, by
the Kodaira embedding theorem, X is projective.

Conversely, assume that X is projective. The Néron-Severi group NS(X; Q) < H'(X;R)
is f*-invariant and contains vectors of positive self-intersection; so, by the description of the
linear action of I given in [26] Prop. 2.8], NS(X; R) contains all isotropic lines associated to
loxodromic automorphisms. Now, any f* invariant subspace defined over Q and containing
the eigenspace associated to A(f) contains Ker(S¢(f*)), hence Ker(S¢(f*)) < NS(X;Q). In
particular, Ker(S7(f*)) does not intersect H*Y(X; C), which is invariant, and we conclude that
all eigenvalues of f* on H>(X; C) are roots of unity. O
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Lemma 3.6. Let X be a compact Kdihler surface. If X is not projective, then Aut(X)* is
virtually Abelian and if it contains a loxodromic element it is virtually cyclic.

Proof. LetT'  Aut(X) be a free subgroup (possibly reduced to a cyclic group or to {id}) such
that every f € I'\ {id} is loxodromic. Since X is not projective, Lemma [3.4| and Remark
show that h*?(X) = 1 and that I acts faithfully by scalar multiplication on H%°(X; C). Indeed
otherwise the kernel of I' — GL(H?(X; C)) would contain loxodromic elements and X would
be projective. From this, we deduce that I" has rank at most 1, hence Aut(X) is elementary. To
conclude, we refer to Theorem 3.2 of [21]], which says that there are two possibilities: either
Aut(X)* contains a finite index, cyclic subgroup generated by a loxodromic automorphism;
or Aut(X)* contains a finite index, Abelian subgroup, all of whose non-trivial elements are
parabolic (permuting the fibers of a genus 1 fibration on X). U

We can now conclude the proof of Theorem 3.3} indeed we already know that X is Kihler by
Theorem and then it is projective by Lemma

3.4. Remarks on the non-Kéhler case. Consider the Hopf surface X, obtained by taking the
quotient of C2\ {(0,0)} by the group of homotheties (z,y) — (a™x,a™y), for some o € C*
with |a| < 1. Taking the quotient of C2\{(0,0)} by all homotheties, we get the projective line
P1(C): this yields a fibration n: X, — P'(C) with fibers isomorphic to the genus 1 curve
Eq = C*/{(a%).

Recall that a subgroup I'  SL,(C) is non-elementary if it contains a non-Abelian free group
and is not relatively compact; equivalently, I" induces a non-elementary group of isometries of
the hyperbolic space H?, whose boundary is S? ~ P!(C). By definition the limit set Lim(T") is
the closure of the set of fixed points of loxodromic elements of I'.

Let us fix such a non-elementary group I'. Let v be a probability measure on SLo(C), whose
support generates ' as a closed semigroup. It follows from Furstenberg’s theory of random
products of matrices that Lim(T") is the unique closed, minimal T'-invariant subset of P*(C),
and there is a unique v-stationary measure fip1(c) On PP!(C); moreover, the support of PPt (C)
coincides with Lim(T").

Now, consider the action of I" on X, induced by the natural action of I on C2. The fibration
n: Xq — PY(C) is I'-equivariant. Any f € T acts by scalar multiplication along the fibers of
C?\{(0,0)} — P!(C). Since the multiplication z — [z induces a translation on the elliptic
curve F,, the action of I" on X, is an isometric extension of the action on IP’l(C), SO we are
in the setting of [S9]]. From this we obtain: if I is Zariski dense in SLo(C), viewed as a real
Lie group, then X, supports a unique minimal invariant subset Ax and a unique v-stationary
measure [1x; this measure is not U-invariant; both A x and px are invariant under the action of
C* on X, by homotheties, and the marginal 0, pux of wx is equal to up1(c)@).

3With the notation of [59], the K AN decomposition of SL2(C) can be chosen in such a way that A = R is the
group of diagonal matrices with real positive coefficients, and its centralizer M in the maximal compact subgroup K
is S*, the group of diagonal matrices with eigenvalues of modulus 1. Then, the product M A is just C*, the group of
complex diagonal matrices in SL2(C). In particular, this group is connected (it corresponds to the group C' in [39]).
Thus, our assertions follows from the main theorems stated on the second page of [59].
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Now, take o € R and assume that I',, is a non-elementary subgroup of SL2(R) (in particular,
I', is not Zariski dense in the real Lie group SL2(C)). The limit set Lim(I") is contained in
P!(R); thus, the v-stationary measures on X, are supported in the preimage of P'(R) by the
fibration 7). There is, in that case, a one parameter family of such measures, parametrized by an
angle € R/Z. Indeed, the plane R? = C? is I'-invariant, and the projection of R?\{(0,0)}
in X, supports a unique v-stationary measure jiy(gr). Lhen, all the stationary measures are
obtained by “rotating” 11 x(r) by (z,y) — exp(2in0) - (z,y).

Remark 3.7. Let X be a Hopf or a Inoue surface. According to the description of Aut(X) by
Namba, Matumoto and Nakagawa (see [28] [75]]), either Aut(X) is virtually solvable, or X is a
Hopf surface obtained as a quotient of its universal cover C?\{(0, 0)} by a group of homotheties

3.5) (I)m,n(l'a y) = (amgnl,’ amgny)

where av € C* has modulus < 1, £ is a root of unity (of order ¢ for some ¢ > 1), and (m,n) €
Z x Z/qZ. Taking a finite cover brings us back to the case £ = 1, which we just described.

Remark 3.8. If X is a Kodaira fibration, then X comes with an Aut(X)-invariant fibration on
an elliptic curve with elliptic fibers. In this case every stationary measure is invariant. This
follows for instance from the fact that such actions are distal (see [56, Thm. 3.5]).

These remarks do not exhaust all possible non-Kéhler compact complex surfaces. Indeed,
there are other examples of surfaces in class VII. Moreover, the classification of VIl surfaces is
not complete yet (even, as far as we know, if we assume that Aut(X) is not virtually nilpotent) .

Question 3.9. Ler X be a non-Kihler compact complex surface. Suppose there is a probability
measure v on Aut(X) such that X supports a v-stationary measure which is not Ty,-invariant
and has a Zariski dense support. Then must X be a Hopf surface?

4. FROM ENRIQUES TO RATIONAL SURFACES

In this Section we start with by describing two families of surfaces with non-elementary au-
tomorphism groups, obtained by taking quotients of K3 surfaces by an involution. For Enriques
surfaces, the involution is fixed point free; this is not the case for Coble surfaces. We briefly
mention the examples of Blanc, whose detailed study is the purpose of Part[3] and conclude with
an example of Lesieutre of a non-elementary group on a rational surface without invariant curve.
Coble, Blanc, and Lesieutre surfaces are all rational, but their dynamical features happen to be
quite different: this stems from the existence or non-existence of a global invariant measure.

4.1. Enriques (see [32, 45]]). Recall that Enriques surfaces are quotients of K3 surfaces by
fixed point free involutions. According to Horikawa and Kondo ([60, |61} 166]), the moduli space
ME of complex Enriques surfaces is a rational quasi-projective variety of dimension 10. An
Enriques surface X is nodal if it contains a smooth rational curve; such rational curves have
self-intersection —2, and are called nodal-curves or (—2)-curves. Nodal Enriques surfaces form
a set of codimension 1 in Mg.
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For any Enriques surface X, the lattice (NS(X; Z), ¢x ) is isomorphic to the orthogonal direct
sum B9 = U & Eg(—1) (ﬂ) Let Wx < O(NS(X;Z)) be the subgroup generated by reflexions
about classes u such that u? = —2, and W (2) be the subgroup of W acting trivially on
NS(X;Z) modulo 2. Both Wx and Wx (2) have finite index in O(NS(X; Z)). The following
result is due independently to Nikulin and Barth and Peters (see [45] for details and references).

Theorem 4.1. If X is an Enriques surface which is not nodal,

(1) the homomorphism Aut(X) 3 f — f* e GL(H?*(X,Z)) is injective,
(2) its image satisfies Wx (2) < Aut(X)* c Wy.

In particular, Aut(X)* is a finite index subgroup in O(NS(X; Z)), thus Aut(X)* is a lattice in
the rank 1 Lie group O(NS(X; R)) ~ 01 9(R) and it acts irreducibly on NS(X; R).

This implies that Aut(X) is non-elementary, contains parabolic automorphisms, and does not
preserve any curve (because Aut(X) does not have a fixed point in H2(X;R)). From these
properties, and from [25]], we obtain a classification of Aut(X )-invariant probabilitity measures
on unnodal complex Enriques surfaces; from [24]], we know that Aut(X ) has only finitely many
finite orbits. On the other hand, we expect that generically all orbits are infinite:

Question 4.2. Is it true that if X € Mg is a general (resp. very general) Enriques surface, then
Aut(X) does not have any finite orbit?

If the answer is positive, then one could also apply the main results of [23]] to describe the
distribution of random orbits on (real, unnodal) Enriques surfaces.

4.2. Coble (see [22]). In this article, a Coble surface is, by definition, obtained by blowing up
the ten nodes of a general rational sextic curve Cy P2, The result is a rational surface X with
a large group of automorphisms. To be precise, consider the canonical class kx < NS(X;Z);
since Kp2 is Op2(—3) and since we blow up the nodes of Cj, one gets

10
(4.1) —2kx =[C] and kx = —3ey+ ). e(p;)

i=1
where C' is the strict transform of Cp in X, and (eg, e(p1), ..., e(p1o)) is the basis of NS(X)
given by the classes of the total transform of a line and the exceptional divisors E; obtained
by blowing up the ten double points p; of Cy. The orthogonal complement k:_%{ is a lattice
of dimension 10, isomorphic to Ejo, and we define Wx (2) exactly in the same way as for
Enriques surfaces. Then, Aut(X)* preserves the decomposition kx @ k:)L( As before we say
that X is unnodal when it does not contain any smooth rational curve of self-intersection —2.
If X is unnodal, the Aut(X)* contains Wx(2), in particular it is non-elementary (see [22],
Theorem 3.5).

Let us explain this result in a more explicit way (see [22]). Let Cy be a general rational

sextic as before. Choose one of the double points of Cy, say p;, and consider the cubic curve

4Here, U is the standard 2-dimensional Minkowski lattice, (ZQ, x1x2), and Eg is the root lattice given by the
corresponding Dynkin diagram; so Es(—1) is negative definite, and F1o has signature (1,9) (see [32, Chap. II)).
Also, in this paper NS(X; Z) denotes the torsion free part of the Néron-Severi group, which is sometimes denoted
by Num(X; Z) in the literature on Enriques surfaces.
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C; containing the remaining 9 points. Then, Cy and 2C’; generate a pencil of sextic curves, with
base points at the p;, 7 # <. Blowing up these 9 points, we obtain a surface X; with a genus 1
fibration 7;: X; — IP’lc; the sextic Cj lifts to a nodal fiber of 7; and 2C; gives a smooth multiple
fiber. The 9 exceptional divisors F;, j # i, determine 9 multisections of 7;, each of degree 2.
Each pair (j, k), j,k # 4, defines an automorphism g;;, of X, acting by translation along the
fibers of 7r;: the translation on the fiber X5, := 7, ! (b) is by the divisor of degree 0 defined by

4.2) Tik i= (Ey — Ej)x,, € Pic”(X;,).

For a general choice of Cj, the g, generate a free Abelian group A; of rank 8; its elements,
except the identity, are parabolic automorphisms of X; preserving the fibration 7; (hence also
the singular point p; of the strict transform of Cy in X;). Thus, blowing-up p;, the group A;
lifts to a subgroup of Aut(X). In this way we obtain 10 copies A; of Z® in Aut(X), acting
as parabolic groups with respect to distinct genus 1 fibrations. In particular, Aut(X') is non-
elementary. Note that the strict transform of Cj is Aut(X )-invariant and is contained in a fiber
of ; for each index 1.

Also, Coble surfaces are degenerations of Enriques surfaces; thus, Coble surfaces share many
features of Enriques surfaces, but there are also interesting differences. For instance, Aut(X)
preserves the class kx, and this class is non-trivial. Moreover, there is a holomorphic section
of —2K x vanishing exactly along the strict transform C' — X of the rational sextic curve Cj;
this means that there is a meromorphic section Qx = &(x,y)(dx A dy)? of 2K x that does not
vanish and has a simple pole along C'. Thus, the formula

4.3) volx(U) = JU |€(z,y)| dx A dy A dT A dy = JU |€(z,y)| (idx A dT) A (idy A dY)

determines a measure volxy = Q%Z A Qi? ”. The total mass of this measure is finite. Indeed, if
locally C' = {z = 0} then &(z, y) = n(z,y)/x where 1 is regular; thus, |£| = |n| |z| " is locally
integrable because r% is integrable with respect to rdrdf when o < 2. We may assume that it
is a probability after multiplying {2 x by some adequate constant, and this measure is Aut(X)-
invariant, because volx is uniquely determined by the complex structure (see also Remark
below). In particular the ergodic theory of Coble examples can be studied with the techniques

of [26]].

4.3. Blanc. Another family of examples was introduced by Blanc in [12]. Here we describe
them informally, a more detailed presentation will be given in Part[3]

Start with a smooth cubic curve C' < P2. If ¢ is a point of C, the Jonquiéres involution as-
sociated to (C, ) is the birational involution o, of IP? characterized by the following properties:
it fixes C' pointwise and it preserves the pencil of lines through ¢. The indeterminacy points of
og4 are ¢ and the four tangency points of C' with this pencil, which may be “infinitely near” g.
Thus, the indeterminacies of o, are resolved by blowing-up points of C, possibly several times.
After such a sequence of blow-ups o, becomes an automorphism of a rational surface that fixes
pointwise the strict transform of C. In particular, if we blow-up further points of this curve, o,
lifts to an automorphism of the new surface.
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Pick a finite number of points ¢; € Cp, @ = 1, ..., k, and resolve simultaneously the indeter-
minacies of the Jonquieres involutions o; := o0, determined by the ¢;. The result is a rational
surface X, together with a subgroup I' := (sq,..., sg) of Aut(X). Blanc proves in [12] [13]
that:

(1) there are no relations between these involutions, that is, I is a free product
k
(81y.ey Sy '*1 Z/2Z,
=

(2) the composition of two distinct involutions s; o s; is parabolic;
(3) the composition of three distinct involutions is loxodromic.

In addition, there is a meromorphic section {2x of K x with a simple pole along the strict
transform of C, however, contrary to Coble surfaces, the form voly := Qx A x is not
integrable (its total mass is infinite). This observation will play a crucial role in Part[3]

Remark 4.3. If I' ¢ Aut(X) is generated by involutions and there is a meromorphic form 2
such that f*Q = £(f)Q2 for every f € T, then £(f) = £1: this is the case for Blanc’s examples
or general Coble surfaces, since Wx (2) is also generated by involutions (see [45]]).

4.4. Lesieutre. In [69], Lesieutre constructs rational surfaces X with the following properties:
Aut(X) contains three involutions 7;, i = 1,2,3, such that the group I' := (11, T2,73) C
Aut(X) and f := 11 o T2 o T3 satisfy

(1) X and T’ are defined over Q;

(2) T is non-elementary, and isomorphic to (Z/27) x (Z/27) x (Z/2Z);
(3) T does not contain any parabolic element;

(4) f is loxodromic and does not preserve any curve.

In particular, Aut(X) does not preserve any rational section of Kx (moreover, —Kx is not
pseudo-effective).

Thus, the situation is quite different from Enriques, Coble and Blanc surfaces, since there is
neither parabolic automorphism nor invariant algebraic volume form. Our results are so far not
powerful enough to describe the finite orbits or stationary measures for such an example.
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Part 2. Pentagon folding and dynamics on K3 surfaces
5. THE SPACE OF PENTAGONS AND THE FOLDING GROUPS

The automorphism groups of Wehler surfaces were discussed at length in our previous papers.
Here we describe another family of K3 surfaces with a non-elementary group action, coming
from the geometry of pentagons in the euclidean plane.

Remark 5.1. The “folding” terminology is borrowed from [7, 18], which was a source of motiva-
tion for these results. There is a vast amount of literature on length-preserving transformations in
spaces of polygons, notably motivated by algorithmic questions: see for instance Section 5.3.2
in the monograph [37] where our folding transformations are referred to as “flips”.

5.1. Spaces of plane pentagons. Let / = ({o,...,¢s) € R2, be a 5-tuple of positive real
numbers such that there exists a pentagon with side lengths ¢;; this imposes a a condition on the
¢;, defined by explicit inequalities, and we say that ¢ is admissible if this condition is satisfied.
Here a pentagon is just an ordered set of points (a;);—o,... .4 in the Euclidean plane R?2, such that
dist(a;,a;+1) = ¢; fori = 0,...,4 (with a5 = ag by definition, in other words we consider
indices modulo 5); pentagons are not assumed to be convex, and two distincts sides [a;, ;11|
and [aj, a;41] may intersect at a point which is not one of the a;’s.

Let Pent(¢) be the set of pentagons with side lengths (¢;)7_,. Note that Pent(¢) is naturally
a real algebraic variety, defined by polynomial equations of the form dist(a;, a;+1)? = 622.

For every i, a; is one of the two intersection points {a;, a;} of the circles of respective centers
a;—1 and a;41 and radii ¢;_; and ¢;. The transformation exchanging these two points a; and a;,
while keeping the other vertices fixed, defines an involution of Pent(¢), that we denote by s;_1
(this choice for the index will be convenient later). Geometrically, it corresponds to folding (or
reflecting) the pentagon along the diagonal (a;—1a;+1). It commutes with the action of the group
SO2(R) x R? of positive isometries of the plane, hence, it induces an involution o;_1 on the
quotient space

(5.1) Pent®(¢) = Pent(¢)/(SO2(R) x R?).

Each element of Pent®(¢) admits a unique representative with ag = (0,0) and a; = ({o,0),
so as before Pent’ (/) is a real algebraic variety, which is easily seen to be of dimension 2 (see
[34, 84]]). We will see below that, when it is smooth, it is a real K3 surface. The five involutions
o act by algebraic diffeomorphisms on this surface, and for a general choice of lengths, the
group generated by these involutions is non-elementary.

Remark 5.2. If we consider quadrilateral instead of pentagons, the corresponding space
(5.2) Quad’ (¢y, £1, o, £3)

is a curve of genus 1 and the involutions typically generate an infinite dihedral group. The cor-
responding dynamical system, both on the space of quadrilaterals and the space of quadrilaterals



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 29

modulo isometries, was studied in depth in [49, [7, [8]]. With n-gons, n > 4, one would get
Calabi-Yau manifolds of dimension n — 3 (E])

5.2. Algebraic geometry of Pent’(£). To analyze the algebraic structure and geometry of
Pent®(¢), we view a plane pentagon with side lengths /g, ..., ¢, modulo translations as the
data of a 5-tuple of vectors (v;)i—o,... 4 in R? (identified with C) of respective length ¢; such that
> vi = 0. Write v; = ¢;t; with |t;| = 1. Then the action of SO2(R) can be identified to the
diagonal multiplicative action of U = {aw € C ; || = 1} on the ¢;:

(5.3) a- (to,...,t1) = (atp,...aty).

Now, following Darboux [35]], we consider the surface X in IP% defined by the equations

(5.4) bozg + €121 + lozg + 323 + 0424 =0
. fg/Zo—Ffl/zl+€2/22+€3/23+f4/24=O
where [zg : ... : z4] is some fixed choice of homogeneous coordinates, and the second equation

must be multiplied by zy21 222324 to obtain a homogeneous equation of degree 4.

Remark 5.3. This surface is isomorphic to the Hessian of a cubic surface (see [44, §9]). More
precisely, consider a cubic surface S © PZ, whose equation F' can be written in Sylvester’s
pentahedral form, that is, as a sum F' = Z?:o )\Z-Ff’ for some complex numbers \; and linear
forms F; with Z?:o F; = 0. By definition, its Hessian surface H is defined by det(0;0;F') = 0.
Then, using the linear forms F; to embed Hp in P‘é, we obtain the surface defined by the pair
of equations 2?:0 z; = 0 and 2?:0 /\ilz1- = 0. Thus, H is our surface X, for 512 = \;. We refer
to [43,136, 142, 82]] for an introduction to these surfaces and their birational transformations.

For completeness, let us directly prove some of its basic properties.

Lemma 5.4. Let { = ({y,...,l4) be an element of (C*)°. The surface X, < P& defined by
the system (3.4) has 10 singularities at the points q;; determined by the system of equations
Uizi + Ujzj = 0, 21, = 21 = 2z = Owithi < jand {i,j,k,l,m} = {0,1,2,3,4}. In the
complement of these ten isolated singularities, X, is smooth if and only if
4
(5.5) Dleili #0 Ve e {£1}.
i=0
Note that for positive ¢;’s, violation of condition (5.3) means that there exist a degenerate
pentagon with lengths /;.

Notation.— We shall use the notation X instead of Xy when the dependence on { is not crucial.

Proof. We first look for singularities in the complement of the hyperplanes z; = 0, and work

in the chart zy = 1. Then, if we substitute z4 = —(ly + £121 + laz2 + £324)/4 in the second
equation of (5.4)), we obtain an affine equation of X in the chart zy = 1, namely:

l 14 14 0
(5.6) L2 3 1 +0=0.

21 29 z3 bo + l121 + lozo + f323

SThis follows from computations which are similar to the ones used to prove Lemma and Lemmabelow,
the difference being that the singularities of X are not isolated when n > 6.
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The singularities are determined by the system of equations 22 = 23 = 23 = &IQ(&) + 0z +

(929 +323)%. So, by symmetry, at a singularity where none of the coordinates vanishes we must
have z; = £;z for some ¢; = +1 and a common factor z # 0; this is precisely Condition (5.5).

Looking for singularities with one coordinate equal to 0, say z; = 0 in the chart 25 = 1, we
obtain the system of equations

0= (foZng + U329 + ngg)(fo + loz9 + 632’3) + (f% - 82)2223
5.7 0= 51,23(50 + 20929 + 532’3)
0= €1Z2(€0 + lozg + 2€3Z3)

together with £y + lozo + l323 + €424 = 0 and 1222324 = O (in particular, 2o, z3 or z4 must
vanish). The solutions of this system are given by z; = 22 = 23 = 0, which gives the point

4 =104 :0:0:0: —l],orz =2z = 0and ¥y + ¢323 = 0, which corresponds to
go3 = [¢3:0:0: —¢p:0],or z; = z3 = 0 which gives goe, or z; = z4 = 0 but then either
z9 = 0 or z3 = 0 and we end up again with g2 and gp3. The result follows by symmetry. O

Lemma 5.5. [f { € (C*)? satisfies Condition (5.3)), then the ten singularities are simple nodes
(Morse singularities) and the surface X is a (singular) K3 surface: a minimal resolution X of
X is a K3 surface, which is obtained by blowing-up its ten nodes, thereby creating ten rational
(—2)-curves.

Proof. Working in the chart zp = 1 and replacing z4 by —({y + {121 + l2z9 + 323)/l4, the
quadratic term of the equation of X at the singularity (21, 22,23) = (0,0,0) is (—fo/l4)Q
where

(5.8) Q(z1, 22, 23) = 12223 + laz123 + U321 29

is a non-degenerate quadratic form (its determinant is 2¢1/2¢3 # 0). So locally X is holomor-
phically equivalent to the quadratic cone {Q = 0}, hence to a quotient singularity (C?,0)/n
with n(z,y) = (—x, —y). The minimal resolution of such a singularity is obtained by a simple
blow-up of the ambient space, the exceptional divisor being a (—2)-curve in the smooth sur-
face X. The adjunction formula shows that there is a holomorphic 2-form (2x on the regular
part of X; locally, Q lifts to an n-invariant form €y on C?\{0}, which by the Hartogs theorem
extends across the origin to a non-vanishing 2-form. To recover X, one can first blow- -up C?
at the origin and then take the quotient by (the lift of) 7: a simple calculation shows that 'y

determines a non-vanishing 2-form on X. After such a surgery is done at the ten nodes, Xisa
smooth surface with a non-vanishing section of Ky ; since it contains at least ten rational curves,
it cannot be an Abelian surface, so it must be a K3 surface. (]

Remark 5.6. Let L;; be the line defined by the equations z; = 0, z; = 0, {20 + - - - + {424 = 0;
each of these ten lines is contained in X, each of them contains 3 singularities of X (namely gy,
Qim» Qkm With obvious notations), and each singularity is contained in three of these lines. If one
projects them on a plane, the ten lines L;; form a Desargues configuration (see [42,43]).

5.3. The real part. All this works for any choice of complex numbers ¢; # 0. When the ¢; are
real, X is endowed with two real structures. First, one can consider the complex conjugation

(5.9) c: [zi] — [Z]



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 31

on P4(C) and restrict it to X: this gives a first antiholomorphic involution cx. Another one is
(5.10) sx: [zi] — [1/7].

To be more precise, consider first, the quartic birational involution J € Bir(P‘é) defined by
J([zi]) = [1/zi]; J preserves X, it determines a birational transformation Jx € Bir(X), and
on X it becomes an automorphism because every birational transformation of a K3 surface is
regular. Moreover, J commutes to c. Thus, sy = Jx ocx determines a second antiholomorphic
involution s ¢ of X. In what follows, we denote by (X, sx) this real structure (even if it would
be better to study it on X); its real part is the fixed point set of sy, i.e. the set of points in X (C)
with coordinates of modulus 1: the real part does not contain any of the singularities of X, this
is why we prefer to stay in X rather than lift everything to X. In conclusion, if (¢;) € (R%)5,
with the real structure defined by sx, the real part of X coincides with Pento(ﬂo, ooy ly).

Remark 5.7. When ¢; > 0 for every ¢, a complete description of the possible homeomorphism
types for the real locus (in the smooth and singular cases) is given in [34]: in the smooth case, it
is an orientable surface of genus g = 0, ... ,4 or the disjoint union of two tori; if one includes
singular surfaces, one gets a total of 19 topological types. In particular if Pento(é) is discon-
nected, it is the disjoint union of two tori. The space of possible side lengths can be tesselated
in cells corresponding to smooth surfaces Pent®(¢), with walls corresponding to singular sur-
faces. Cells are encoded by a 2 x 2 “code-matrix” in [34, Table 4]. With this viewpoint, the
disconnected surfaces correspond to exactly three cells (see Figure[I| below).

Remark 5.8. The involution J preserves X and the two real structures (X, cx) and (X, sx). It
lifts to a fixed point free involution Jx on X, and X / Jx is an Enriques surface. On pentagons,
J corresponds to the symmetry (,y) € R? — (z, —y) that reverses orientation. Thus we see
that the space of pentagons modulo affine isometries is an Enriques surface. When X acquires
an eleventh singularity which is fixed by Jx, then X / J}( becomes a Coble surface: see [42, §5]
for nice explicit examples. This happens for instance when all lengths are 1, except one which
is equal to 2 (this corresponds to ¢t = 1/4 in [42}, §5.2]).

5.4. Involution and the folding groups. Let us express the folding transformations in coordi-
nates. Given ¢ # j in {0, ..., 4} (consecutive or not) we define an involution (¢;,t;) — (¢}, t;)
preserving the vector £;t; + £;t; by taking the symmetric of ¢; and ¢; with respect to the line
directed by ¢;t; + £;t;. In coordinates, ¢} = u/t; for some u of modulus 1, and equating

Cit; + Ljtj = Lit; + {;t) one obtains
ity + fjtj

5.11 tt) = (““)  with u = 2 754
G0 (15, 15) it ity + 4t

J
Observe that these computations also make sense when the ¢; are complex numbers, or when we
replace the ¢; by the complex numbers z;. This defines a birational involution o;; : X --» X,
(5.12) oijlzo . za) =20 1. 1 2y
with 2 = 2 if k # 1,7, 2] = vz, and 27 = vz with v = (G2 + Lz)/(Gizg + Lz).
Again, since every birational self-map of a K3 surface is an automorphism, these involutions

o, are elements of Aut(X') that commute with the antiholomorphic involution s ; hence, they
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generate a subgroup of Aut(X ;5¢). Thus we have constructed a family of projective surfaces
X, depending on a parameter ¢ € P*(C), endowed with a group of automorphisms generated by
involutions.

For consecutive sides, i.e when 5 = ¢ + 1 modulo 5 (in the next few lines, all indices are
considered modulo 5) o; ;41 corresponds to the folding transformation described in § and
denoted by o; there. We define the folding group I (resp. the extended folding group I'***) to
be the group generated by the 5 folding involutions o; ;11 (resp. the group generated by all 10
involutions ;). Likewise, for given m € {0, ..., 4} we introduce the subgroup Iy, (resp. I'&x")
stabilizing the side m, that is the group generated by the 3 folding involutions o; ;1 such that
m ¢ {i,i + 1} (resp. by the 6 involutions o;; with m ¢ {7, j}).

Remark 5.9. Pick a singular point ¢;;, and project X from that point onto a plane, say the plane
{zi = 0} in the hyperplane P = {{yzp + - - - + {424 = 0}. One gets a 2-to-1 cover X — P%,
ramified along a sextic curve (this curve is the union of two cubics, see [82]). The involution o;;
permutes the points in the fibers of this 2 to 1 cover: if x is a point of X, the line joining ¢;; and
x intersects X in the third point o;;(z). The singularity ¢;; is an indeterminacy point, mapped
by o0 to the opposite line L;;.

Proposition 5.10. For a general parameter { € (C*):

(1) X is a K3 surface with ten nodes, which admits two real structures cx and sx when { €
]P)4(R),'

(2) if i, j, k are three distinct indices (modulo 5), then o;; o 0ji, is a parabolic transformation
on X its invariant fibration is induced by wp, - [20 : ... : 24] — [z : 2] where | and m
are the complementary indices (i.e. {1, j, k,l,m} = {0,1,2,3,4});

(3) ifi, j, k, and | are four distinct indices (modulo 5), then o;; commutes to oy,.

(4) the folding group T (resp. the extended folding group T'°*%) is a non-elementary subgroup of
Aut(X ; 8 ¢) that does not preserve any algebraic curve;

(5) likewise, the subgroup I'y, stabilizing the side m is non-elementary, and its invariant curves
in X are contained in the total transform of the lines L., for | # m (see Remark.)

Remark 5.11. In [42], Dolgachev computes the action of o;; on NS(X ) This contains a proof
of this proposition. He also describes, up to finite index, the Coxeter group generated by the ;.
The automorphism groups of X and of the Enriques surface X / Jx are described in [43] and
[83].

The next example shows that the folding groups can be elementary for certain parameters.

Example 5.12. Say that a pentagon is equilateral if {y = {1 = ly = {3 = {4. Let Xoq(R)
be the surface of all equilateral pentagons, modulo rotations, translations, and dilatations. It
is connected and of genus 4. On X, the group generated by the involutions is finite and
isomorphic to &5, because 05 ;(t;,t;) = (t;,t;) (see Equation[5.11)). So, this highly symmetric
case is also highly degenerate.

Proof of Proposition We already established Assertion (1) in the previous lemmas. For
Assertion (2), denote by [, m the indices for which {3, j, k,I,m} = {0,..., 4}, and consider the
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linear projection 7y, : P4(C) --» P!(C) defined by [20 : ... : 24] ~ [2; : 2m]. The fibers of
Tm are the hyperplanes containing the plane {z; = z,, = 0}, which intersects X on the line
Ljy,. This line is a common component of the pencil of curves cut out by the fibers of 7, on
X, and the mobile part of this pencil determines a fibration 7,,,|x : X — P! whose fibers are
the plane cubics

(5.13) (&zl—l—ﬁmzm)(ﬁmzl—i—Elzm)zizjzk = zlzm(&zjzk—i—éjzizk+£kzizj)(£izi+€jzj +€kzk),

with [2; : z,,] fixed. The general member of this fibration is a smooth cubic, hence a curve of
genus 1.

Then o;; and o), preserve 7,,|x, and along the general fiber of 7, |x each of them is
described by Remark for instance, o;;(z) is the third point of intersection of the cubic with
the line (gij, z). Thus, writing such a cubic as C/A(;,..,.], 0ij acts as 2z +— —z + by, for some
bij € C/A[;,.;,,) that depends on [z : zp,] and the parameter /; it has four fixed points on the
cubic curve, which are the points of intersection of the cubic with the hyperplanes z; = z;
and z; = —z;; equivalently, the line (g;;, ) is tangent to the cubic at these four points.

By Lemma [5.14] below, either 0;; o 0 is of order < 66 (in fact of order < 12 because it
preserves 7, | x fiber-wise), or it is parabolic. In other words, the locus in the parameter space
where ;5 00, is not parabolic is defined by the equation (o;;00) 12 = id. Since there do exist
pentagons for which o;; o 0, is of infinite order (indeed, this reduces to the corresponding fact
for quadrilaterals, see Examplebelow), we conclude that o;; 00, is parabolic for general /.

Assertion (3) follows directly from the fact that o;; changes the coordinates z; and z; but
keeps the other three fixed.

To prove Assertion (4), we see that for a general parameter ¢, I" contains two such parabolic
automorphisms associated to distinct fibrations 7, and 7,/ so it is non-elementary (this fol-
lows from Theorem 3.2 in [21]]). To show that I does not preserve any curve in X, assume by
way of contradiction that ¥ < X bea I"-periodic irreducible curve, and denote by F' its image
in IP"é under the projection X 5> X. IfFisa point, it is one of the singularities g;;. Note
that I" acts transitively on the singularities of X: given any pair of singularities (g, ¢’), there is
an element of I" which is well defined at ¢ and ¢’ and maps ¢ to ¢’. Thus, we can assume that
J =i+ 1, and changing F into its image under (the lift of) o;; € I' the curve I’ becomes the
line L;;. So, we may assume that F' is an irreducible curve. Now, the orbit of F' is periodic
under the action of the parabolic automorphisms g; = 0;j 0 ojx, with j =i+ land k =i + 2
modulo 5. Since the invariant curves of a parabolic automorphism are contained in the fibers of
its invariant fibration, we deduce that F' is contained in the fibers of each of the projections 7,
with m = [ + 1, which is impossible. So there is no invariant curve.

The corresponding statement for I'®** follows immediately.

The reasoning for (5) is similar. Without loss of generality, assume m = 0. Then again I',,
is non-elementary since it contains the parabolic elements 015 0 o293 and 023 © 034 (with distinct
associated fibrations my4 and mg;. Reasoning as above shows that if £ < X is any I'-periodic
irreducible curve projecting to a curve in X, then its image F' in X is contained in a fiber of
each of the projections 71, T2, mo3 and mo4. So we conclude that F' < {zp = 0}, but then the
equation of X forces another coordinate to vanish, and we conclude that F' is one of the Ly;. [
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Example 5.13. Let us give some geometric explanations for Assertion (2) of Proposition [5.10]
Choose (I,m) = (1,2), and normalize the pentagons so that ag = (0,0) and ty = 1, which
means that a; = ({p,0). In homogeneous coordinates, this corresponds to the normalization
[1: 21 : 22 : 23 : 2z4] with z; = ¢;. The pentagons contained in a fiber of 12| x have three
fixed vertices, namely ag, a; and as. The remaining free vertices as and a4 move along the
circles centered at as and ag, of respective radii £ and ¢4, with the constraint agas = ¢3. These
circles are two conics, the fiber is an elliptic curve which is a 2-to-1 cover of each of these
two conics, the involutions o953 and o34 preserve these fibers, and o3 o 034 is a translation on
the elliptic curve. Forgetting the vertex a;, we obtain a quadrilateral (ag, a9, a3, a4), and one
recovers the transformations described in [7]]. The side lengths of this quadrilateral are ¢, s,
¢4 and ||agas||, hence the translation vector (which only depend on these lengths) varies non-
trivially when deforming the pentagon, which corresponds to the twisting property of parabolic
transformations.

Lemma 5.14. Let X be a K3 or Enrigues surface, and m: X — B be a genus 1 fibration. If
g € Aut(X) maps some fiber F of m to a fiber of 7, then g preserves the fibration and either g is
parabolic or it is periodic of order < 66.

Proof. Since g maps F to some fiber F”, it maps the complete linear system | F'| to | F”|, but both
linear systems are made of the fibers of 7. So g preserves the fibration and is not loxodromic. If
g is not parabolic it is elliptic, and its action on cohomology has finite order since it preserves
H?(X, 7). On a K3 or Enriques surface every holomorphic vector field vanishes identically, so
Aut(X)? is trivial and the kernel of the homomorphism Aut(X) > f — f* is finite (see [21],
Theorem 2.6]); as a consequence, any elliptic automorphism has finite order. The upper bound
on the order of g was obtained in [64]]. O

6. RANDOM FOLDINGS AND ERGODIC THEORY

We have now gathered enough geometric information to draw some dynamical consequences
on the dynamics of pentagon folding.

6.1. Dynamics on Pent®(¢). Recall that the folding groups I', T®* and T',,, were defined in
§ Recall also that a parameter £ € R?2  is admissible when it corresponds to at least one
pentagon.

Recall from Remark [5.7|that X (R)) ~ Pent®(¢) can be disconnected, in which case it is the
disjoint union of two tori. This happens in 3 of the 19 possible configurations listed in [34]], the
shapes of which are sketched in Figure [I] Such a pentagon cannot be deformed continuously
to its reflection along the horizontal side, hence the configuration space is disconnected. On the
other hand,

(1) folding it along its longest diagonal maps it into the other component, so I' and I'*** act
transitively on the set of components of Pent?(¢);

(2) the involutions preserving the horizontal side preserve each component of Pent"(¢), so
I';, preserves each component of Pento(ﬁ) form = 0.
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FIGURE 1. Pentagons with disconnected configuration spaces (respectively corre-
sponding to the codes (1 1), ( g) and (E 3) in [34] Table 4])
In the next two statements, “general” means that the conclusions of Proposition [5.10] are
satisfied.

Proposition 6.1. For a general admissible parameter { € R, the action of T (resp. of T°**)
on Pent(¢) is ergodic with respect to its natural volume form. Likewise, for m € {0, ... ,4} the
action of Ty, is ergodic on each T'y,-orbit of connected components of Pent ().

Proof. Since I has no invariant curve and acts transitively on the set of components of Pent(¢),
the result follows from case (c) of [25, Thm A]. For I';,,, the same argument applies, upon adding
the observation that the T',,,-invariant curves do not intersect Pent(¢). U

Theorem 6.2. Let { € R‘ZO be a general admissible parameter. Fix a probability measure v on
I (resp. ) satisfying the moment condition (M), and whose support generates I' (resp. T®**).
Then all v-stationary measures on Pent({) are invariant, and the ergodic invariant measures
are given by:

— finitely many periodic orbits;

— VO|Pemo(e).

In particular, the set of v-stationary measures is a finite dimensional simplex.

Proof. This follows from Proposition the stiffness theorem of [26]], and the finiteness of the
set of finite orbits established in [24, Thm C]. O

Remark 6.3. The classification of stationary measures also holds for I';,, except that in this
case we cannot apply [24, Thm C] to infer the finiteness of the set of periodic orbits, because of
the existence of invariant curves.

The random ergodic theorem then implies that for volpento(e)—almost every pentagon x €
Pent(¢), the sequence of empirical measures % D10 fk(z) 1s almost surely equidistributed on

Pent®(¢). As explained in § to deduce the more precise result that this random equidistribu-
tion holds for every pentagon with infinite orbit we need some information about periodic orbits.
This is where it is useful to work with the extended folding group.
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Theorem 6.4. For a very general admissible parameter { € R2 , every orbit of T in Pento(é)
is infinite. Hence, for such a parameter, the only ergodic T°*-invariant probability measure on
Pent(¢) is the natural volume.

We thus obtain the following equidistribution result (the moment condition (M ) was defined
in §[L.8):

Corollary 6.5. Fix a probability measure v on T satisfying the moment condition (M) and
generating T, There is an open and dense subset of full measure in the set of admissible
parameters { such that for any x € Pent?(¢): either T . x is finite or for vN-almost every w,

1 &
— O sk — vol 0

E FE(x) Pent” (¢)
n k=1

asn — +0oo.

Proof. By [23, Thm 1.5], at a very general parameter the action of I'*** is uniformly expanding.
Since uniform expansion is an open property, it holds on a dense open set. Then the equidistri-
bution result follows from [23) Thm 10.4] O

Proof of Theorem[6.4) By Theorem [6.2] it suffices to prove the first assertion. If this assertion
were not correct, then, arguing exactly as in [24, Thm A], we would find a finite index subgroup
IV < I'™* such that the algebraic set

(6.1) Z={(t,z) e C° x Xy(C), z € X,(C),Vf e, f(x) = x}

has a Zariski dense projection to C°. Since I'*** does not preserve any curve in X, (for a general
¢), then so does I, and as a consequence, the natural projection 7: Z — C? is generically
finite. Then, there exists a Zariski dense open subset W < C5 such that above W, 7 is a finite
unramified cover and the surfaces X, ¢ are all smooth.

Since R2  is Zariski dense in C?, the intersection W~ (R) := W n R2; is the complement
of a proper Zariski closed subset of R5>0. Reducing this open set slightly (by cutting out addi-
tional hypersurfaces if necessary), we may assume that every connected component of W~ o(R))
is simply connected. If W; is such a connected component (for the euclidean topology), and
if (¢,z) is a point of Z with projection ¢ € W, then there is a unique continuous (algebraic)
section

(6.2) eW,— (l',2)e Z
of 7 defined on W; that maps £ to (¢, z). This will be refered to as the continuous continuation
of the I'""-fixed point z. Moreover, under our contradiction hypothesis, we may choose W, and
(¢, ) such that the section defined in (6.2) takes its values =’ in Pent®(#') (i.e. in the real part of
the complex surface X for the real structure defined in (5.10)). We fix such a pair (W, (¢, x)),
where z corresponds to a normalized pentagon (a;) (i.e. ag = (0,0), a; = (¢o,0)).

Recall that a planar polygon is said to be degenerate, or flat, if it is contained in a line (ie. its

vertices are collinear). Since we can choose ¢ as we wish in the open set W;, we may assume
that

(6.3) no line contains three of the vertices a;.
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In particular, x itself is not flat.

The triangle (agasa4) and the quadrilaterals agagasay (with side lengths (5 := |agaz|, ¢,
3, £y) and ajazazay (with side lengths ¢1, £, ¢3, and ¢ := ||ayaz||) are non-degenerate. These

quadrilaterals are periodic for the respective transformations oa3 o 034 and 013 © 093. Therefore,
by the Darboux alternative for quadrilaterals (see [35] (7, 162] and also Example [5.13)), their side
lengths satisfy a non-trivial relation. More precisely, given the lengths /1, ..., ¢4, there exists a
countable set D5 = D5({o, {3, ¢4) and Dg = Dg({1, {2, ¢3) such that

(6.4) U5 € D5(la,03,04) and Ll € Dg({1,02,03).

We now deform the pentagon by varying ¢y while keeping the other side lengths fixed; this
gives a variation ¢ = (€(,, {1, ..., ¢4) of £ in W}, and a continuation 2’ = (a}) € Z of = (with the
normalization af, = (0,0) and a} = (¢y,0)). Let us show that for ¢’ near ¢, the continuation z’
of x is geometrically determined, in a unique way, by the length conditions (6.4). Since H%T;H
varies continuously and must stay in Ds, it is constant, hence the triangle a(a} a’ has side lengths
£{, ¢1 and ¢5 which defines it uniquely up to isometry. Since the initial triangle agaas is not flat,
then the point af, is uniquely determined as a continuation of ag. Similarly, the triangle a(a)a)y
determines a. Finally, since the lengths /5 and /5 are fixed and the triangle asasay is not flat,
the continuation a4 is uniquely determined. In conclusion, the periodicity of ' under the action
of 0930034 and of 015 0 093 determines z’ as £ varies; thus, in what follows we can forget about
Z: the section (¢, 2') is, in fact, given by the geometric construction we have just described.

To reach the desired contradiction, we now argue that the periodicity of ' under the parabolic
automorphism 0130034 creates an additional rigidity that cannot be satisfied (we might use o150
o094 instead). Indeed, 0130034 acts on the vectors v1 = ajas, v3 = azas and v4 = azag, SO it can
be seen as a transformation of the “virtual” quadrilateral ayb;asas, where by is such that Clg—bl) =
aza;. Since z’ is a T*-periodic point of Pent®(¢) for all ¢, the quantity ||v; + v3 + vy] =
Hcﬁ H must be constant; more precisely, it does not vary with £, on a neighborhood of ¢. But
this function depends algebraically on the parameters, and any neighborhood of ¢ in W; is Zariski
dense in C, so we conclude that this function actually does not depend on ¢),. Thus, to reach
the desired contradiction, one just needs to contemplate Figure (]

Since we use transformations like 013 o 034 in the proof, it is necessary to work with I'®<t,
The analogous result for I' remains elusive ().

Question 6.6.

(1) Is it true that for a very general set of lengths { € P*(C), every orbit of " (resp. T') in
Pent®(¢) (resp. in X) is infinite?

(2) Is there a dense open set of parameters { € P*(R) for which every finite orbit is uni-
formly expanding ?

(3) Can we replace “very general” by “general” in Theorem|6.4|and in Question (1)?

Owe actually do not know any example of a “general” periodic pentagon, that is a pentagon x € Pent® (¢) with a
finite I"-orbit, for which ¢ satisfies the conditions of Proposition
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FIGURE 2. Proof of Theorem The corresponding circles have the same radius on
the two figures, and serve for the construction of as, as and a4 (for instance on both
pictures the red circle on the left is centered at ag and has radius /5 and the red circle
on the right is centered at a; with radius ¢5). When ¢, varies the distance agb; varies as
well. (Realized with GeoGebra and available at https://www.geogebra.org/
m/edydwafb).

Let us expand a little bit on this. As seen above, a positive answer to the first question implies
a positive answer to the second one. On the other hand, even without excluding the existence of
a persistent periodic orbit for T, it might still be possible to show that the action of I on Pent®(¢)
is uniformly expanding generically (this point of view is developed in [23| §9]). Indeed, by [23]],
it is enough to show that at such a persistent periodic orbit, for a general parameter ¢, we can find
parabolic elements in I' that exhibit a non-trivial twisting in different directions. Geometrically,
this would require to understand how the rotation numbers associated to sub-quadrilaterals vary
when deforming the pentagon (an explicit formula for this rotation number is given in [7, 62]]).

6.2. Dynamics on Pent!(¢). Recall that U denotes the unit circle in R? ~ C. To an element
u € U corresponds a unique rotation R, (centered at the origin); in complex coordinates, it just
corresponds to multiplication by u, and its inverse is R, ! = Ry.

For { = ({o,...,¢) € RY,,
(6.5) Pent!(¢) = Pent(¢)/R2.

let us introduce the space of pentagons modulo translations

With notation as in § every element & of Pent!(¢) admits a unique representative with
ap = (0,0). Then, apa; = {yto, for some unit vector ¢ty € U and if we apply the rotation Rg,
we get a normalized pentagon = (with ag = (0,0) and a; = (£g,0)). This shows that Pent (/)
is a trivial circle bundle over Pent(¢):

(6.6) Pent!(¢) ~ Pent®(¢) x U.

The reciprocal diffeomorphism is obtained as follows. Let (z, 1) be an element of Pent®(¢) x U.

— To x, one associates its normalized pentagon, that is, the unique pentagon (a;) in its
SO(2) x R? orbit corresponding to = such that ag = (0,0) and a; = (o, 0).


https://www.geogebra.org/m/edydwafb
https://www.geogebra.org/m/edydwafb
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— then one rotates it by R, to get an element of Pent! (¢).
As a real algebraic variety, Pent! (¢) is the real locus, with respect to the involution
(6.7) s: (zi) = (1/z),
of the variety defined in C® by the system of Equations (5.4).

The involutions o0;; and the groups I' and I';, are defined exactly as before, with the same
formulas; to avoid confusion with the action on Pent”, we may denote the involutions by 0ij
and the corresponding pentagons by Z). In the coordinates (z,u) € Pent®(¢) x U, gi; is given
by

68 {@j(x, u) = (03(x), ), if 0 ¢ {i, )

Goj (%, u) = (00;(2), hoj(2)u)
where x — hg;(x) takes values in U. To justify the second line, simply observe that o;; com-
mutes with the rotation R,, i.e. with (x,u) — (z,uv); thus, &¢;(x, u) = R,60;j(z, 1).

Instead of choosing ag as a base point (which is translated to the origin), we could choose any
of the five vertices a,,, m = 0,...,4. This provides five different identifications Pent! (/) ~
Pent® (¢) x U; for each of them, we denote by 1J,,,: Pent!(¢) — U the projection onto the second
factor (in other words, for a pentagon Z, ¥,,(Z) is the angle Z(@mam+1, (1,0))). Changing
from the basepoint a; to the basepoint a; yields a change of coordinates of the form (z,u) —
(2, Rayj(2)u)s Where a; () is the unit vector with angle Z(@;a;+1, @ja;+1). So,

(69) VOIPentl(f) = VOIPentO(f) X Leb]U
defines a I'-invariant volume.

Proposition 6.7. The action of " is ergodic on Pent!(¢) with respect to the natural volume
Vo'Pentl(f)'

Proof. The argument is borrowed from Chivet’s master’s thesis [29]. Let B be a Borel set of
positive volume such that for every v € T',

(6.10) VOlpeyyt (¢) (BAY ™ (B)) = 0.

Pick an index m € {0, ..., 4}, and note that I',,, preserves the fibers of ¥J,,,. Since B is almost
I',,-invariant and the I',,,-action on Pento(ﬁ) is ergodic, we get that B is 1J,,-saturated, which
means that every fiber of ¥,,, intersects B on a set of zero or full measure for voIPemo( 0

Let us fix a value of m, say m = 0 and work in the system of coordinates (z, u) associated to
this choice; in these coordinates, R, is of the form (x,u) — (z, uv). Set

(6.11) By = {u € U; volppo(q (B 0 95" (u) = 1}
If we push volp,1(y) onto U by ¢, one gets the Lebesgue measure, and By has a positive

Lebesgue measure; below, we shall consider Lebesgue density points ug of By.

Now fix another value of m, say m = 1. Let F' be any fiber of ¢J;. Since ¢¢|p : F' — U admits
a regular value, there exists 6 > 0 and an open set W < F' such that 9|y is a submersion onto
an interval of length 2¢. In addition, since any other fiber of ¥; is of the form R, (F’), we deduce
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that there exists an open set V' € Pento(ﬁ) such that, for any ug € U, there exists a neighborhood
N(ug) < U such that, for every u € N(ug) and every = € V, there exists W, € 97 (91 (z,u))
such that ¥o|yy, realizes a submersion W, —]u — d,u + J[.

Fix any density point uy of By, so that there exists A < By n N (ug) of positive Lebesgue
measure. For every u € A, B n (V x {u}) is of full volp, 0,y mass in V' x {u}. By Fubini’s
theorem, and the fact that the B is 1J;-saturated, there is a set of positive measure B’ ¢ A x V
such that for any (x,u) € B, the ¥;-fiber of (z,u) is contained in B (modulo a set of measure
zero). Projecting back by vy and using the fact that B is 9y-saturated, we conclude that Jug —
d,up + o[ By (modulo a set of measure zero). From this we easily conclude that By = U
(modulo a set of measure zero) and, applying the Fubini theorem again completes the proof. [

Theorem 6.8. Let { € R2 , be a general parameter. Fix a probability measure v on T satisfying
the moment condition (M) and whose support generates 1. Then, the ergodic, v-stationary
measures are

— atomic measures on I'-periodic orbits(ﬂ);
— measures of the form

Z 535 X LebU
zeF
where F is a finite orbit for the action of T' on Pent® (¢);
— the measure volpg1 ).

In particular, every v-stationary measure on Pentl(ﬁ) is invariant.
If v is a probability measure on T satisfying condition (M) and generating T°**, and if ¢ is
very general, then the only ergodic v-stationary measure on Pent! (¢) is VOlPentl( 0)-

In the latter case, we could also state an equidistribution result in the spirit of Corollary [6.5]
The core of the proof is the following stationary version of a celebrated argument due to Fursten-
berg [55], which we state here in a general form.

Lemma 6.9. Consider a random dynamical system (X, (f,,), v, u), where X is a compact metric
space, v is a Borel probability measure on Homeo(X), and j1 is an ergodic v-stationary measure
on X. Let G be a compact group, with Haar measure \. Consider a G-extension of this random
dynamical system, by transformations of X x G of the form

Fy i (2,9) = (fu(@), hu(2) - 9)

Then for this extension, |1 X A\ is v-stationary, and if it is ergodic, it is the unique stationary
measure projecting down to .

Proof. The stationarity of 1 x X is an easy exercise. Let fi be an ergodic, v-stationary probability
measure on X x GG with marginal (7x)4/i = u. By the random ergodic theorem, ji-almost every

Such periodic orbits are even rarer than periodic orbits on Pent®(¢) (we do not know any example). So we
strongly believe that there exists a dense, Zariski open subset W < R3  such that for £ € W, T" does not have any
finite orbit in Pent’ (£) (see Question.
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(z,g) is fi-generic: this means that for v™N-almost every w,
1 n—1
(6.12) - kzo Ort(ag) 2 -

Let Ry, : (z,9) — (x,g - h) denote the right translation induced by h € G. Note that F,
commutes with R, and p x A is Rp,-invariant. From this we infer that if (z, g) is u x A-generic,
then all points in the fiber {x} x G are p x A-generic. By Fubini’s theorem, it follows that
fi-almost every point is in fact ;4 x A-generic, hence i = p x A, as asserted. U

We shall also need the following well known lemma.

Lemma 6.10. Let I' be a group of rotations of the unit circle and v be a measure such that
(Supp(v)) =T

— If T is infinite, the Lebesgue measure is the only v-stationary measure.
— If T is finite, the ergodic stationary measures are supported by its finite orbits.

Proof. Let us prove the first assertion (the second one is obvious). Since I' is infinite, it is
a dense subgroup of SO(2). Since SO(2) is Abelian, by the Choquet-Deny theorem, every
stationary measure is invariant. Now, if g is I'-invariant, it its SO(2)-invariant too, by density
and dominated convergence. Thus, u is the Lebesgue measure. U

Proof of Theorem|[6.8] By Equation (6.8)), the dynamics on Pent! (¢) is a U-extension of the one
on Pent®(¢). Theorem|6.2|implies that if v generates T', any ergodic v-stationary measure /i on
Pent!(¢) either projects to a finite orbit or to VOlpgpi0(p)- In the latter case, Proposition 6.7 and
Lemmaimply that i = volpent1(é). Assume now that

. 1
(6.13) (Tpent0(0) ) = |7 Z Oz
zeF
for some finite orbit F. In this situation we can also use Lemma to classify stationary
measures. Restricting to a finite index subgroup, endowed with the induced measure (see [11}
Chap. 5]) reduces the problem to the case where F' = {z(}. Then the classification follows from

Lemma
The second statement of the theorem follows similarly, using Theorem [6.4]instead of[6.2] [

6.3. Dynamics on Pent(¢). We can finally derive some information about the dynamics of
random foldings on Pent(¢), which is a R?-extension of the dynamics on Pent!(¢). Indeed
Pent(¢) can be identified to Pent! (¢) x R? by choosing a preferred vertex, say ag, and translating
it to the origin. Doing so, we obtain a diffeomorphism

(6.14) Pent () 3 (a;) — (%, a0) = ((v;), ag) € Pent!(¢) x R?, where v; = Gai51.

We already introduced the involution s; in §@, which descends to 7; ;41 (indices modulo
5) on Pent! (¢) and to 7; ;11 on Pent®(¢). With the identification given by Equation (6.14), we
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obtain:

(6.15) {Si((ai)) = (6i,i+1(2),ap) fori # 4

s4((ai)) = (640(2), ao + Ga0(vs) — va))
By definition the group I is the group generated by the involutions s; (we are slightly abusing
notation here).

To find an involution descending to 7;; when j # ¢ + 1, different options can be chosen,
depending on the vertices that remain fixed under the involution. First, observe that if j # i + 1
we can always choose 7, j so that j = ¢ + 2 modulo 5 (so the vectors v; and v; 2 will change
while the others remain fixed). In analogy with the case of s;, we define 7; such that r;(a;) = a;
and [r;(P)] = 0i,i+2([P]). so that r; fixes a;, a;13 and a;+4 and moves a;41 and a;+2 (another
option would have been to leave a;;2 fixed). It can be expressed in coordinates in Pent(¢) as
in (6.13). We define I'*** acting on Pent(¢) by I'*** := (s;, r;, i = 0...5).

as

a2

FIGURE 3. The black pentagon on the left is folded to the blue pentagon on the right
by the lift r; of 7 3. The red segment is parallel to a3, a4] and the red dotted segment
gives the direction along which the vectors v, and vs are reflected.

In [7, i8], the authors study in detail how a quadrilateral drifts in the plane under successive
foldings. Fix a probability measure v on I'***, From a pentagon Py = (a;) with ag = (0,0)
and a sequence w = (f,) € (I*")N of folding instructions, we obtain the following random
sequence of pentagons P,, € Pent({):

(6.16) Po(w) = fa1--- fo(Po).
Note that the parameter space for the starting point is Pent! (¢).
Proposition 6.11.

(1) Let ¢ € R® be a general parameter. Assume that v satisfies the moment condition (M)
and generates I'. Then, for volpent1( Z)-almost every Py, the linear drift of the sequence
(Py,) vanishes, that is

o1
7}1_1)](()1() - dist(P,(w), (0,0)) =0

for vN-almost every w.
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(2) Assume now that € is very general, v satisfies the moment condition (M), and v gener-
ates T°**. Then the same conclusion holds for every Py € Pent! (/).

Proof. To study the drift it is enough to study the location of the point ag. For this we use
the coordinates given by the identification Pent(¢) ~ Pent!(¢) x R? and write P,(w) =
([Prn(w)], ao(Pr(w))). From Equation (6.13) and its analogue for the r;, we see that there exists
a function w : T* x Pent!(¢) — R?2 such that ag(f(P)) = ao(P) + w(f, [P]). This function
is continuous and is a cocycle: w(fg, [P]) = w(f, g[P]) + w(g, [P]). We then obtain

(6.17) Z (frs [Pr(w)]).
k=0

For Assertion (1), we apply the Birkhoff ergodic theorem to the skew product

(6.18) Fi(w,z) = (0(w), fu(@))

(where o is the shift on (T'*)N) and to the ergodic measure vV x volpemw). This shows that
for volp, ;1 (g)—almost every Py and vN-almost every w,

n—00

=

(6.19) - Z (fir [Pe(@)]) — | w(y, P) dv(y)dvolpgy 4 (P).
k=0

Now for every v € ['***, the invariance of volp, 1 (¢) under rotations implies that

(6.20) Jw(% P)dvolpentl(@ (P) =0,

and the result follows.

For Assertion (2), £ being very general, we can assume that volp,,,1(, is the unique stationary
measure on Pentl(ﬂ) (see Theorem . The argument will be the same as for Assertion (1),
except that we shall need a more sophisticated limit theorem that makes use of this unique
ergodicity. As already observed, w is a cocycle and, by unique ergodicity, it has a unique average
in the sense of [11} §3.3.2]. The analogue of formula (6.15)) for extended foldings implies that
there exists C'(¢) < 2 Y. ¢; such that that for any v € [

(6.21) wsup(7) := sup  Jlw(y, [P])] < C(¢) length(y),

[P]ePent! (¢)
where the length length(7y) is relative to the given generators of ', The moment condition
implies that

(6.22) J  Wsup(7)dv(y) < 0,
FQX
thus we can apply the Law of Large Cocycles [[11, Thm 3.9], which completes the proof. (]

It is natural to ask for a better understanding of the asymptotic behavior of dist( P, (w), (0,0)).
Intuitively, by Equation (6.17), the first vertex ag (P, (w)) should behave like a random walk in
the plane, the steps of which are random vectors distributed according to some explicit measure
supported by a bounded disk. Under appropriate non-degeneracy properties of this measure,
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such a random walk escapes with speed O(y/n) and, after rescaling, converges to a Brown-
ian motion (for some positive definite covariance form). Numerical experiments indicate that
dist(P,(w), (0,0)) indeed behaves like /7.

Question 6.12. Does ao (P, (w)) satisfy a central limit theorem? Does ﬁao(Pn (w)) converge

to a Brownian motion?

As far as we know, this question is already open for random foldings of quadrilaterals. An
even simpler variant is to take a triangle and reflect it randomly along one of its sides. This
last problem falls into the setting of random iteration of Euclidean isometries in which case the
result is known (see e.g. [2] and references therein). To establish such a result, it is likely that
some estimates would be needed for the speed of the ergodicity of the base dynamics in Pent®,
as discussed in § (cf. [11} Chap. 11 and 12]).



AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES 45

Part 3. Ergodic theory of Blanc’s examples
7. ACTION ON COHOMOLOGY IN THE COMPLEX SURFACE

7.1. Setting and volume form. Consider a smooth cubic curve C IED%3 and a point q € C.
Denote by o, : P4 --» P the birational involution defined by the following properties: it fixes
C pointwise and it preserves the pencil of lines through ¢. If L is a general line through ¢, the
restriction of o, to L is defined as follows: beside ¢, L intersects C' in two other points p and p';
identifying L\ {p, p'} to P!\ {0, o0}, with affine coordinate z, o, |, corresponds to z — —z. By
definition, o, is the Jonquieres involution associated to the pencil of lines through ¢ and fixing
C pointwise.

Now, fix a positive integer k, and k distinct points g; on C'. Each g; gives rise to a Jonquiéres
involution o; := oy,. It has five base points, namely g; and the four points p; ; € C such that the
line (¢;p; ;) is tangent to C' at p; ;. One of the p; ; may be infinitely near (above ¢;) if ¢; is an
inflexion point, but for simplicity we shall assume that:

(Hypl) none of the g; is an inflexion point of C;
(Hyp2) the points g; and p; ; for 1 <7 < kand 1 < j < 4 are pairwise distinct.

In fact, (Hyp2) implies (Hyp1) since otherwise one of the p; ; would coincide with g; (as a point
of the plane, i.e. p; ; would be infinitely near ¢;). We shall denote by X the rational surface
obtained by blowing up the 5k points g; and p; ; and by m: X — ]P’QC the natural projection.

We also consider the surface X; obtained by fixing ¢ and blowing up the base points g; and
pi; of o, creating five exceptional divisors £(g;), and E(p; ;) for 1 < j < 4. Doing so, we get
a birational morphism 7;: X; — IP%, and a distinguished basis for its Néron-Severi group:

— e will denote the class of the total transform of a line L < PZ,;
— e, the class of E(g;);
— and ey, ; the class of E(p; ;).

This basis is orthogonal for the intersection form, e3 = 1, and eq = e]%_j = —1. Abusing

slightly, the same notation will be used for the classes of (the total transform of) these curves in
the surface X.

The involution ¢; lifts to an involutive automorphism &; of X;, and then all the g; lift to
automorphisms of X, which we still denote by &;. Indeed, since &; fixes the strict transform of
C in X; pointwise, it preserves the exceptional divisors obtained by blowing up the g, and py ;
for ¢ # i. Acording to [12]], the subgroup I' = Aut(X) generated by the J; is a free product of
k copies of Z/27Z, i.e.

(7.1) T ~Z/2Z %+ Z/2Z,

acting faithfully on the Néron-Severi group NS(X). Since the canonical bundle of P%(C) is
O(—3) and we only blow-up points of C, we obtain the following properties.

(1) The strict transform C'y of C'in X is fixed pointwise by the group I'. Its self-intersection is
equal to

(7.2) C% =9—5k,
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so it is negative when k > 2. The strict transform C'x;, of C' in X has self-intersection Cg(i =4,

(2) Assume k > 2. The curve C'x is the unique member of the linear system |C'x|, and its
cohomology class is equal to the anticanonical class —kx. In particular, C'y is invariant under
the action of Aut(X). More precisely, C' being a cubic curve, there is a meromorphic 2-form €
on IED%3 that does not vanish and has a simple pole along C'. Now, since we only blow up smooth
points of C', an easy local computation shows that the pull back

(7.3) Qx = 71"
is a meromorphic 2-form that does not vanish and has a simple pole along C'x. We shall fix such

a form (2 x; it is almost unique: on X, any non-vanishing meromorphic 2-form is proportional
to Qx.

(3) The total volume of the singular volume form Qx A Qx is infinite:

(7.4) J Qx A Qx = 400.
X

We set

(7.5) vol¥ = Qx A Qy,

which we identify to a positive measure on X .

(4) Let Jacq : Aut(X) — C* denote the homomorphism such that

(7.6) VfeT, f*Q = Jaco(f)Q
(cf. Remark [4.3)). We have
(7.7) Jacq(T') = {1}.

To see this, consider the involution ¢ and the pencil of lines through ¢;. Let r be a point of C'
such that (¢17) intersects C' transversely; then, o1 determines a germ of diffeomorphism fixing
r. Since this germ has order 2 and fixes C pointwise, we can linearize it(ﬁ). Since C'is pointwise
fixed, there is a small euclidean neighborhood of r and holomorphic coordinates (z, y) on it, in
which r = (0,0), o1(z,y) = (z,—y) and C = {y = 0}. In these coordinates, the form Qx is
equal to

dx A dy

Pz, y)——
for some non-vanishing holomorphic function ¢. Then, Jacq(o1) = ¢(z, —y)/¢(z,y). Eval-
uating this ratio at v, we get Jacq(oy) = 1. Thus, Jacq(o;) = 1 for¢ = 1,...k, and

Jacq(T) = {1}.

(5) If C and the ¢; are defined over Q, then X and I are also defined over Q. Indeed, if K is
the number field over which C and the ¢; are defined then, for each ¢, the p; ; are defined over

some quartic extension of K; thus, X and I' are defined over some extension L of K of degree
[L: K| <4k.

7.2. Finer description of the involution o;.

8Indeed, its differential L at the origin in the system of coordinates mentioned just below is L(z,y) = (z, —y),
and ¢ o o1 = Lo, wherep = 2(id+L o oy)
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7.2.1. Invariant fibration. For each i = 1,..., k, the pencil of lines through ¢; gives rise to a
rational fibration

(7.8) Ny Xi — P&.

The singular fibers of 7, correspond to the total transform of the lines (g;p; ;) (each of them is
made of two rational curves). In X, we obtain k fibrations 7,,: X — Pg, each of them with
5k —1 =4+ 5(k — 1) singular fibers.

Let L; ; © X; be the strict transform of the line (g;p; ;). Since (g;p; ;) is tangent to C' at p; j,
the three curves Cx,, E(p; ;), and L; ; have a unique common point

(7.9 Pij = Cx, n E(pi;) = Lij n E(pi;)

in X;. The involution ; permutes F/ (pi,j) and L; ; and fixes this intersection point p; ;. This can
be seen as follows: if L is the strict transform of a general line though ¢, then 6} ([L]) = [L]. It
follows that 67 ([Li ;] + [E(pi,;)]) = [Li;] + [E(pi,;)]. Now, o; contracts m;(Li,;j) onto pj;, so
Gi(L; ;) = cE(p; ;) for some integer ¢ > 1; and we infer that ¢ = 1 because ;" is an involution.
Thus, 5’1(Lz,]) = E(pi,j) and 5_2(E(pz,j)) = Li,j

7.2.2. Action on E, ;. Let x be a point of E(p; ;). A first possibility is that 7;(z) belongs to
Exc(m;) (more precisely 7;(x) € E(g;) U E(p; ;)). This happens precisely when

- 5’1(33) = x, and in that case x = ﬁi,j = Li,j N E(Z%‘,j)?
— or 6;(x) is the intersection point of L; ; and E(g;), and in that case x is the intersection
of E(p; ;) with the conic D; (see below §[7.2.4).

Otherwise, ;(x) is a point of L; ; that does not belong to the exceptional set Exc(;).

7.2.3. Blow-ups of points of C. Now, let r € C be distinct from the base points of ¢;. The
line (qr) is o;-invariant, and o; acts as z — —z on it, by fixing 0 ~ r and o0 ~ 7/, where
' is the third point of intersection of (¢r) with C. Thus, when r is blown up, the action of
&; on the exceptional divisor E(r) is an involution with exactly two fixed points: a fixed point
corresponding to the tangent line 7,.C, and a fixed point corresponding to the line (¢r) (or more
precisely to T,.(qr)).

Remark 7.1. By (Hyp2), ¢; does not coincide with ¢; or a p; ; when | # i. Thus, the intersection
point between E(g;) and the strict transform of (¢;p; ;) is never fixed by &;: it is mapped to
another point of E(q;).

7.2.4. Action on Néron-Severi, and the conic D;. Acording to [[12], the action of 5; on the
Néron-Severi group of X is given, in the basis (eg, e, €p,, ..., €p,), by the matrix

3 2 1 1 1 1
-2 -1 -1 -1 -1 -1

-1 -1 -1 0 0 O
(7.10) -1 -1 0o -1 0 O
-1 -1 0 0 -1 o0

-1 -1 0 0 0 -1
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For instance, the second column means that the exceptional divisor F(g;) is mapped to the strict
transform D; of a plane conic D; which goes through the points ¢; and p; ; with multiplicity
1; its class in NS(X;; Z) is 2eg — e, — e, — ... — ep,. This conic intersects C' in 6 points,
counted with multiplicity, and DZ- intersects C'x, in exactly one point, which must be fixed under
the action of ¢;. On the other hand, since o; fixes C'x, pointwise, the point

(7.11) Gi = E(q;) n Cx;,

must be fixed under the action of &; (ﬂ) Since 7;(E(q;)) = D;, we conclude that D; nC' X, = Gis
thus D; is tangent to C' at ¢;. This argument also shows that the only points of E(g;) which are
mapped into the exceptional set of 7; (resp. m) are §; and the intersection points of E(g;) with
the L; j: the point E(g;) n L; ; is mapped to L; ; n E(p; ;), a point which corresponds to the
tangent direction of D; at p; j (cf. §[7.2.2).

We already stated without proof the fact that I" is isomorphic to the free product of the &;.
Blanc obtains this result by using and proving that the action of I on NS(X; Z) is faithful
and its image is such a free product Z/2Z « - - - = Z/2Z. Thus we get:

Lemma 7.2. When k > 3, the group T’ < Aut(X) is non-elementary.

7.3. Invariant curves (k > 3). With the matrix from Equation (7.10) at hand, we deduce that
all fixed points of 7;* acting on NS(X;) (resp. NS(X;; R)) are of the form
4
(7.12) u=deg — (d—2m)e,, —m > e,
j=1
for some pair of integers (d, m) (resp. pair of real numbers (d, m)). From now on we set

4
(7.13) Sii= > ep; € NS(X;;Z) (resp. € NS(X;Z)).
j=1

Lemma 7.3. If k > 3 and (Hypl) and (Hyp2) are satisfied, the only (reduced) effective curve
U < X which is invariant under the action of I is the curve Cx.

Proof. Let u € NS(X) be the class of an invariant curve U. Then by Equation (7.12) its expres-
sion in the basis (€0, €4, - -, €q,,€p; 15+, €p; 4 €pyys - - €p, ) is Of the form

(7.14) u=dey— (d—2mi)eq — - — (d —2my)eq, —miX; — - —myXy

for some integers d and m;. The strict transform of a general line through ¢;, whose class is

ey — ey, must intersect U non-negatively. This implies that m; > 0. Similarly, d > 0 because a
general line intersects U non-negatively.

The equality [Cx]| = 3eg —eq, — X1 — - -+ — eq, — X}, implies
(7.15) U-Cx =—(k—=3)d—2(m1 +---+ my).
Now, assuming that C'y is not an irreducible component of U, we obtain
(7.16) 0< —(k—=3)d—2(my + -+ my).

9We abuse notation for convenience and use similar notations (like L; ;, s, ;, ;) for objects defined in X and Xj.
For instance, §; also stands for ¢; := E(g;) n Cx.
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Since k > 3, we infer that £ = 3 and m; = 0 for all 4, therefore u = deg — d(eq, + -+ - + €4, ).
From this it follows that the intersection of U with the strict transform of a general line through
g; is O for all ¢. This means that U is the strict transform of a plane curve of degree d and is
mapped to a point by each of the fibrations 7, (see §7.2). This is a contradiction, so C'’x must be
a component of U; in particular, U\C'x is also invariant. Repeating this argument with U\C'x
finishes the proof. ]

7.4. Parabolic automorphisms. From now on, let us add the following hypothesis

(Hyp3) For any i # j, the line (g;q;) does not contain any of the points p;,, for 1 < ! < k,
l<m<4,norq,forl<n<kandn #1,J.

The strict transform M; ; of the line (g;g;) is invariant under I'; ; := {03, 0;). Furthermore this
line (¢;q;) intersects C' in a third point and (Hyp3) assures that this point is none of the points
that we blow-up.

Assume for a few lines that k = 2, so that X is obtained by blowing-up the points g, and p;. ;
forr = 1,2. Then [M; 2] = ey — €4, — €q, and My 5 - Cx = 1. The class u; 2 of Cx + M 2
satisfies

(717) U2 = 460 — 2eq1 — 2€q2 — El — 22;
it is invariant under I'y 2, i.e. under 1 * and o>, and it is isotropic.

Lemma 7.4. Assume k = 2 and the three hypotheses (Hypl-Hyp3) are satisfied.

(1) If v is the class of an R-divisor with non-negative self intersection and v is invariant
under 61* and 2™ then v is a multiple of u; 2.

(2) The composition g12 = o1 © 02 is a parabolic automorphism of X that preserves the
isotropic class uq 2.

(3) The invariant genus 1 pencil of g1 2 is given by the pencil of plane quartic curves going
through the p; ; with multiplicity 1 and through q; with multiplicity 2, for i = 1, 2.

Before proving this lemma, let us state the following immediate corollary.

Corollary 7.5. If k = 2 and the hypotheses (Hyp1-Hyp3) are satisfied, then

(1) each of the automorphisms g; ; = 0; © 0, © # j, is parabolic;

(2) the invariant genus 1 fibration of g; j corresponds to the linear system of plane quartics
going through q; and q; with multiplicity 2 and through the p; ; and p; ; with multiplicity
1(forl=1,...,4).

Proof of Lemma Every invariant class can be written as v = deg — (d —2mq)eq, —m1 X1 —
(d—2mg)ey, —maXs. These classes form a 3-dimensional subspace of NS(X'; R) on which the
intersection form is non-positive and degenerate: its kernel is generated by uq 2. So, if v? >0,
v is proportional to u1 2; more precisely, m1 = mo and v = myuq 2.

In the group (61, G2), g1,2 generates a cyclic, normal subgroup of index 2. Thus, the fixed
point set of g , in NS(X; R) is invariant under (51, 52). If g1 2 were elliptic, this set of fixed
points would intersect the set of classes v € Hy < NS(X;R) on a non-empty convex subset F’
of the hyperbolic space Hx. This convex set F' would be invariant under the action of 77, and
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the involution ¢} would have a fixed point in F; such a fixed point would also be fixed by &3
because o = 71 © g1,2; thus, it is fixed by (7}, 5 ), in contradiction with the first assertion. We
conclude that g1 » is not elliptic. Since it preserves the isotropic class u1 2, it is parabolic H

Let us now prove the third property. Set Mo = O(Cx + M) and L1 = O(Mi2)
(viewed as line bundles or as sheaves on X). Since X is rational we have x(Ox) = 1. Since
M, 2 is a smooth rational curve with M 1272 = —1, the Riemann-Roch theorem gives

(7.18) RO(X, L19) — hN(X, L12) + (X, L12) = 1.

We have hO(X ,L12) = 1 because M, o is irreducible and has negative self-intersection, and
h%(X,L12) = 0 by Serre duality; thus, h' (X, £12) = 0. Now, looking at the restriction of
M2 to Cx, we get the long exact sequence

(7.19) HY(X,L12) = HY (X, M13) = H°(Cx, My g0y ) = H' (X, L12) = -+
By what we know of the H*(X, L1 5) this gives
(7.20) C — H°(X, Mi3) » H°(Cx, M 9cy) — 0.

Let us identify Cx to C' via the projection X — P% and fix an inflexion point o of C;; the divisor
obtained by intersecting a line with C' is equivalent to 3o. In restriction to Cx ~ C, M3 is

given by the divisor 120 — 2¢; — 2¢g2 — p1,1 — - - - — p2,4, of degree 0. According to §{7.2.4} there
is a conic D tangent to C' at g1 and passing through the py ;; thus, 2¢1 +p11 + - +p14 = 60
on C; similarly, 2g2 + p21 + - - - + p24 = 60. Hence 120 — 2¢; — 2¢g2 —p1,1 — -+ —p2a = 0,

which means that M 5/c, is the trivial line bundle O(Cx ). Thus, h%(Cx, M 9c,) = 1 and
Equation gives h0(X, M1 2) = 2.

In other words, the linear system |C'x + M) 2| is a pencil of curves. The general member D
of this linear system is irreducible, because otherwise C'y or M 2 would be a fixed component,
then we could write D = Dy + Cx (resp. Do + M 2) for some movable curve Dy, but since
C’)Q( =M 12,2 = —1, this curve Dy would simultaneously satisfy Dg = —1, a contradiction. Now,
since the self-intersection of C'x + M 2 is 0, the elements of |C'x + M 2| are disjoint and form
a fibration. Finally, since they intersect trivially C'x and Cx = —kx, the genus formula shows
that they have genus 1. ([

8. FINITE ORBITS AND INVARIANT MEASURES

We keep notation as in the previous sections. In § we prove that when £ > 4, under
general assumptions on the the ¢;, every orbit of I" outside C'x is infinite. Then we discard the
possibility of I'-invariant measures in § [8.3] This relies heavily on the results of [24] 23].

8.1. Finite orbits outside C'x: a finiteness result. By a generalized Kummer surface, we
mean a desingularization of a quotient A/G where A is an Abelian surface, G is a subgroup of
Aut(A), and the set of points € A with a non-trivial stabilizer in G is a finite subset F; of A
(see [25, 27]]).

10Alternatively, one can compute the product of the matrices for 65 and &, and check that some power of it is
unipotent, but not the identity.
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Proposition 8.1. The surface X is not a generalized Kummer surface.

Proof. Assume, by contradiction, that X is a generalized Kummer surface. Then, there exists
a birational morphism : X — X onto a singular surface X, an Abelian surface A, and a
finite subgroup G of Aut(A) as above, such that X is isomorphic to A/G; the singularities of
Xo correspond to the finite set Fz < A (see [24, §4]). In particular, the singularities of X
are of quotient type, and the genus 1 curve C'x cannot be contracted by ¢; set Cx, = ¢(Cx)
and let C'4 be the preimage of Cy, in A under the quotient map n7: A — A/G = Xj,. As a
consequence, the meromorphic 2-form 2x induces a meromorphic 2-form {2x, on the regular
part of Xy, hence a meromorphic 2-form 1n*Qx, on A\Fg; this 2-form has poles along Cy
because the quotient map 7 is a local isomorphism on C' 4\ F¢;. Let 24 be a holomorphic 2-form
on A with S A Q4 A Q4 = 1. Then, there is a holomorphic function ¢: A\Fs — C such that
Q4 = pn*Qx,. By the Hartogs theorem, this function ¢ extends holomorphically to A; and
because it vanishes along Cly, it is identically zero. This contradiction shows that X is not a
Kummer surface. (]

Proposition 8.2. Suppose k > 3. If C and the q; are defined over Q, then T has at most finitely
many finite orbits in X (C)\Cx.

Proof. By Lemma the group I' contains parabolic elements. If the curve C' and the points
¢; are defined over Q, then X and the &; are all defined over some number field K. Since X is
not a Kummer surface, (X, T") is not a Kummer group and Theorem B of [24] implies that the
union Per(I") of all finite orbits of I is not Zariski dense. Let Per(I") be its Zariski closure: it
is made of a one-dimensional part Per! (I") that contains C'x, together with a sporadic finite set
Per’(T"). Since Per!(T) is T-invariant, Lemma shows that Per! (T") = C'y. This concludes
the proof. ([

8.2. Finite orbits outside C'x: non-existence. By (Hyp2), ¢; does not coincide with ¢; or a
p1; with [ # 4. Thus, the points of intersection between £/(q;) and the strict transform L; ; of
(qip1,;) is never fixed by &;: it is mapped to another point of E(q;) (see §. To get more
rigidity, let us add a stronger hypothesis

(Hyp4) For i # [, the involution &; acts on E(q;), by mapping the four points corresponding to
the directions (g;p; ;) to four other points (i.e. (6;)«Tq, (qup1,;) # T4 (qupr ;) for any 4,
l#i,and1 < 5,5 < 4).

To check that this condition is satisfied for a general choice of points, note that for fixed g;
and varying ¢;, ; acts upon E(q;) as an involution fixing a fixed point (corresponding to the line
T;,C) and a mobile one (corresponding to the line (¢;¢;)). Fix a coordinate on £(g;) in which
T,,C = co. Then the induced involution is of the form z — —z + 2¢(¢;), where ¢(g;) is the
coordinate of the mobile point. For fixed a and b in E(g;), taken among the points L; ; N E(q;),
the relation 6;(a) = breads a + b = 2¢(g;); such a relation is not satisfied for a general choice
of g;.

Proposition 8.3. Ler C' IP% be a smooth cubic curve, and let k = 4 be an integer. Consider

the set Hy, of k-tuples (q1, qa, - . ., qr) € C(Q) satisfying hypotheses (Hypl) to (Hyp4). Fix such
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a k-tuple (q1, G2, . .., qi); then, for q, € C(Q) outside a finite set, the pair (X,T") determined
by (¢1,42,---,qk—1,q;) does not have any finite orbit, except for the points of Cx, which are
fixed.

Lemma 8.4. Assume k > 2. If x does not belong to Cx, there exists an element f of I such
that w(f(x)) ¢ C.

Proof. Observe that if 7(I'(xz)) < C, then I'(z) < Exc(m)\Cx. If x ¢ Exc(w), we are done.
Otherwise x belongs to some E(p; ;), or to some E(g;).

In the first case, assume for concreteness that 2 € E(p; ;) and sety = &;(z). By § if
y € Exc(m), then y is the intersection point of the strict transform L, ; of the line (p1,141) either
with E(g;) or with E(p;1 1). The first possibility does not happen because L1 n E(q) is in
Cx and is fixed by 71 (see §. In the second possibility, by (Hyp4), 2(y) is not on one of
the strict transforms of the lines (g1p1 ). thus by §[7.2.2]again, 61(52(y)) ¢ Exc(m) and we are
done.

In the second case, assume for concreteness that € E(q) and, again, set y = &1(z). By
§ y belongs to Dy. If y € Exc(7), then either y € Dy N E(p1,j) for some j, and we are
back to the previous case, or y € Bl N E(q1) and then = = §¢; € Cx is fixed, contradicting our
assumptions. O

Proof of Proposition[8.3] Consider the subgroup I's of I" generated by 1, &2, and &3. By Propo-
sition I's has only finitely many finite orbits outside C'x. By the previous lemma, each of
these is the orbit I'(x;) of some x; ¢ Cx U Exc(m). Let F' be the union of these finite orbits
I'(z;), and set F' = F\(Cx v Exc(m)). For a general choice of g, € C, the lines (gyx) for
x € m(F") are pairwise distinct, and x does not belong to the lines (gxpy. ), for 1 < j < 4, nor
to the conic Dy, from §[7.2.4] (see Lemma|8.5|below). Thus, oy (w(F”)) n 7(F') = ¢, and the
orbit of & (z) under I's is infinite for any z in F’. This shows that I" does not have any finite
orbit, except for its fixed point set, which coincides with C'x. ([

Lemma 8.5. Fix x € P2\C. Then for general q € C, x does not belong to the conic D,.

Proof. Indeed, suppose that x is in D, for every ¢ in some Zariski dense open subset U of C'.
By continuity, the same holds for U = C. Choose ¢ € C' such that (xq) is tangent to C at ¢
and ¢ is not an inflexion point of C' (E]) By § D, is tangent to C, hence to (zq), at g, so
Dy n (zq) = {q}. This is a contradiction. O

1Such a point always exists. Otherwise, looking at the linear projection from C to P* ~ P(T,P?), which is a
ramified cover of degree 3, one sees that there would be three inflexion lines meeting in x. So, assume p, g, r are
inflexion points with T,C' n T,C' n T,C' = {z}. Put C in Weierstrass form x3x3 = 2% + brix3 + cx3, with
r=1[0:1:0],7.C = {z3 =0},and z = [1 : d : 0] for some d € C. The lines passing through = have equations
x2 = dx1 + exs. Such a line intersects C' when

x5 — d*zizs + b- 2de)z1zs + (¢ — e*)al = 0,

and it is an inflexion line when this cubic equation coincides with (x1 — 723)? for some triple root 7. This implies
that 37 = d?, 372 = b — 2de, and e = (d* — 3b)/6d, which means that e is determined by d; in other words, there
is at most one inflexion line of slope d (plus the line at infinity), and it is impossible, for a smooth cubic curve C, to
have three inflexion lines with a common point.
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8.3. Invariant measures.

Theorem 8.6. Fix a smooth cubic curve C' — P2 defined over Q. Assume that k > 4, and

consider a k-tuple of points (q1,q2, - ..,qr) € C(Q) satisfying hypotheses (Hypl) to (Hyp4).
Then, for qj, € C(Q) outside a proper real analytic curve, the pair (X,T) determined by
(q1,2; - - - Qr—1, q),) does not have any invariant probability measure except for the probability

measures supported on the fixed point set C'x.

Proof. We have to show that every ergodic, invariant probability measure is supported on C'x.
According to Lemma [7.3] there is no invariant curve except C'x. Thus, from Proposition [8.3] it
suffices to exclude the existence of invariant measures giving no mass to proper Zariski closed
subsets. Let i« be such a measure. By Theorem A of [23]], there are two possibilities:

(1) either w is supported on a totally real, real analytic subset > < X, and p is absolutely
continuous with respect to the 2-dimensional Lebesgue measure on 3, with a real ana-
lytic density along the smooth locus of 3;

(2) or the support of p is the whole surface X, and  is absolutely continuous with respect to
any smooth volume form, with a positive and real analytic density outside some invariant
algebraic subset Z.

Let us exclude the second case. We already know that C'x is the only invariant algebraic
subset, hence p1 = ¢ vol¥ for some real analytic function ¢: X\Cx — R.. The ergodicity
of p and the invariance of vol% imply that ¢ is constant. But then, by Property (3) of §
(X)) = oo, which is a contradiction.

To rule out the first case, we argue as follows. The real (singular) surface 3. is invariant under
the action of I'y_1 = {(61,09,...,0%_1), and supports an invariant probability measure with a
smooth density. According to Theorem C of [25], there are only finitely many surfaces of this
type. We denote by X;_; < X the union of these real analytic subsets: it is the maximal, 2-
dimensional, real analytic subset of X that supports a I'y_;-invariant probability measure with
full support. To conclude, it suffices to show that, after perturbation of ¢y, the surface ;1 is
not gj-invariant.

For this, denote by z a smooth point of ¥;_1 with w(z) ¢ C. As r varies along C, the point
or(m(z)) describes a complex algebraic curve. This curve cannot be contained in 7(3j_1),
because Y1 is totally real. Thus, the set By_1 = {r € C; 0,(z) € Xx_1} is a proper real

analytic subset of C'. Then, we choose a point ¢;, € C\Bj_; such that (¢1,...,q)) satisfies
(Hyp1) to (Hyp4) and the conclusion of Proposition and we are done. (]

Remark 8.7. Since the proof of the theorem goes by breaking down all possible invariant totally
real surfaces, the argument does not apply to the real case. Another argument will be given for
the real setting in Theorem below.

We believe that under the assumptions of Theorem 8.6 every stationary measure is invariant.
More precisely, every ergodic stationary measure should have both Lyapunov exponents zero,
therefore be invariant. In the next sections, we establish this result for some real examples.
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9. REAL CONSTRUCTION

In this section, we construct examples for which X and the o; are defined over the real num-
bers, X (R) is obtained by blowing-up 12 points of P?(R) (while X (C) is obtained by blowing
up 20 points), and the action of I' on the 1-dimensional homology of X (R) admits a positive
Lyapunov exponent.

9.1. Topology of real rational surfaces. Let Xr be a real projective surface obtained by
blowing up a points r; of P?(R), as well as b pairs of complex conjugate points {s;,5;} <
P2(C)\P2(R). We shall look at the first homology group of X (R) with integral or rational
coefficients. For simplicity, consider some homogeneous coordinate system [z : y : z]| on IP’QR,
and suppose that the points 7; are not contained in the line at infinity Lo, = {z = 0}: they are
contained in the affine plane A?(R) of points [« : y : 1] with (x,y) € R?. We endow this plane
R? with the usual, counterclockwise, orientation.

For each index ¢, we denote by U; a small disk centered at r;, and we orient its boundary C; :=
0U; in the clockwise direction. We suppose that the U; are pairwise disjoint. The exceptional
divisor E; obtained by blowing up 7; is a projective line. Then E;(R) is a circle, that we orient
in such a way that C; = 2E; modulo homotopy (see Figure[5). Let V' be the complement of the
U; in R, with the orientation induced by the orientation of R2. We orient L, in such a way
that 0V = 2Ly, + >, C;. Thenin H'(X(R), Z),

2 +2) e, =0
[

where e; = [E;(R)] is the homology class of E;(R) and /o, = [ L (R)] is the homology class
of Ly (R). Then, H*(X (R), Z) is isomorphic to Z*®Z/2Z, and H' (X (R), Q) is isomorphic
to Q®. More precisely, a basis of H'(X(R), Q) is provided by the classes (e, ..., eq).

If L is any line in P2 (R) which is not vertical, we orient L from left to right; in other words,
one can parametrize L by z € R +— [z : ax+ [ : 1] for some «, 5 in R, and this parametrization
is compatible with orientations. Letting U ; be the open half-plane above L, its boundary in
P2(R) is made of L and the line at infinity. In X (R), this gives

9.1) b +L+2 ) e+ > ej=0,
TiEUZr TJEL
(see Figure[6] for a local picture of a blow-up at a boundary of a domain) hence

r; strictly below L r; strictly above L

in H'(X(R); Q). This formula works even if some of the r; are contained in L.

9.2. Action of one Jonquitres involution. Consider a smooth real cubic curve C' = P% such
that C(R)) is connected. We assume that C'is in Weierstrass form y? = x3 + ux? + vr + w and
we orient C'(R) from bottom to top, i.e. from negative values of y to positive ones.

Let ¢ be a point of C'(R) which is not an inflexion point. Let o be the Jonquiéres involution
associated to (C, q), as in Sections and above. Besides g, the four remaining base points
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p; of o are made of two real points p;, po and two complex conjugate points {p3,ps = P3};
here, we shall assume that the position of g, p1, and p; are as on Figure @] below.

C(R)

P1

FIGURE 4.

Denote by X the surface obtained by blowing up the base points of o, by 7: X — P? the
natural morphism, and by & the automorphism 7~ o o o 7 of X. To describe the action of & on
H'(X(R); Q), we use the following facts:

— the involution & permutes E),, and the strict transform Ly, < X of the line (gp1) < P?(R).
More precisely, Lgp,, Ep,, and Cx have a unique common point p;. This point is fixed by &
and the differential D&, can be described with the help of Figure S| There is a basis of T3, X
given by vectors u and v which are respectively tangent to £, and L;,, and are compatible with
their orientations; moreover, after scaling v by some positive factor, we may assume that —u + v
is tangent to C'x (R) (and is compatible with its orientation). Then, the matrix of D¢, in this
basis is

- 0 -1
9.3) D&y, = < S ) .
Thus, 6(E1(R)) = —Lgp, (R), where the minus sign means that the orientation is reversed. In
homology, this gives
9.4 7 ep, = —lgp, = —€p,.

Here, for the second equality we used formula (9.2)) and the fact that the unique point outside
(gp1) is the point po which is below it. When we shall blow up more points, extra terms will be
added.

— the picture is different at po (because the concavity of C' is reversed), and we obtain

(9.5) 5 ep, = lgp, = —€p,.

— the “image” of ¢ by o is the conic D, that goes through ¢, p1, p2, and the points {p3, ps = P3}.
It is tangent to C' at g; its real part is an ellipse, which we orient in the clockwise direction. Now,
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FIGURE 5. This Mobius band is obtained from a blow-up of a small disk around p ;
its boundary is the preimage of the circle bounding this disk. On the right, the green
curve is the exceptional divisor E(p1 ); the blue line is the strict transform of (gp1 ); the
red curve is the strict transform of C'. The involution & fixes the point of intersection of
these three curves, permuting the green and blue curves. The orientations are the ones
defined previously.

D,(R) bounds a disk €2, more precisely, the boundary of Q2 is —D,(R) (i.e. Dy(R) but with the
anti-clockwise direction). Taking the preimage of 2 in X (R), this gives

(9.6) N =—-Dy(R)+ E, (R)+ Ep(R) + E4(R)
9.7) [Dy(R)] = e, +€p, +ep,

and then we obtain

9.8) ¥ eq =eq+ ey +ep,.

Altogether, in the basis (ey, e;,, €,,) of H(X(R); Q), the matrix for 5* is

1 0 0
(9.9) =1 0 -1
1 -1 0

9.3. Action of three Jonquieres involutions. We now move on to the case when three involu-
tions o; are considered, each of them attached to a point ¢; of C'(R)). We suppose that the relative
position of the points g; and p; ; are in the following order along C' (from bottom to top):

(9.10) D1,2, P22, P32, 43, 42, q1, P11, P2,1, P3,1;

to obtain such a configuration, start with ¢; as in Figure 4} then choose ¢ € C slightly below
q1 and g3 slightly below g2. Now, X is the blow up of the plane at the fifteen points g;, p; ;,
1 <i<3,1 <5 <4, and the lifts of the o; to X are denoted 5;.

To compute the action of &1 on H!(X (R)); Q), we remark that the relative positions of the ¢;
and p; ;, impose the following properties:
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— the points po 1 and p3 1 are above the line (q1p1,1), and the points p 2, p2,2, P3.2, g3, and ¢z are
below it. Thus,

% o
9.11) 01€p11 = —€p1y —€gy T €pyy —€pyy —€gy T €3, — €3y,
— similarly,

% .
(9'12) 01€p1o = —€p1 1 + € — ©py + €pso + €q3 — €p3 + €p3.o-

— the ellipse Dy, (R) bounds an open set V; that contains g2, g3, p2,2, and p3 o in its interior.
Thus, if we cut out small disks centered at those four points from V7, and take its boundary in
X (R), we obtain the equality

9.13) [Dgi (R)] = €q, + €y, + €p,, + 2€q, + 2€p,, + 2€q; + 2€p; 5.

—if r is a point from C'(R) that is not one of g1, p1 1, or p; 2, and if one blows up that point, the
curve E, is fixed by the lift 51. The line (¢17) and its strict transform L, , are also invariant.
Since r is not one of the py ;, (¢17) and C intersect transversely at r: along C, o is the identity,
and along (q17), o1 is conjugate to z — —z, fixing r and another point r' of C'. Thus, on the
blow up E,(R), we see that & reverses the orientation (see Figure @) This gives

FIGURE 6. The involution exchanges the hatched and the plain sides of C, so in the
blow-up it reverses the orientation of E,.(R)

(9.14) 5t (e,) = —e,

forr e {q27p2,17p2,2a Q37p3,17p3,2}-
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: - 1 .
Altogether, in the basis (€q;,€p; 1, €p; 55 €405€py 15 €0y, €45,€p515€py,) Of H' (X(R); Q),
we obtain the following matrices for 6§

1 0 0 O0O O 0o 0 0 O
1 0 -1 0 0 O O 0 O
1 -1 0 0 O O O O O
2 -1 1 -1 0 0 0O O O
9.15) gf=| 0 1 -1 0 -1 0 0O 0 O
2 -1 1 0 0 -1 0 0 O
2 -1 1 0 O 0 -1 0 O
o 1 -1 0 0O O O -1 0
2 -1 1 0 o0 0 0 0 -1
Similarly, we obtain
-1 0 0 2 1 -1 0 0 O
o -1 0 2 1 -1 0 O O
0 0 -1 0 -1 1 0 0 O
0 o o 1 0 0O O 0 O
9.16) G5 = 0 o o 1 0 -1 0 0 0 [,
0 o 0 1 -1 0 O 0 O
0 o 0 2 -1 1 -1 0 O
0 o 0 o0 1 -1 0 -1 0
0 o 0 2 -1 1 0 0 -1
-1 0 0o o0 0 0 2 1 -1
o -1 0 0 O 0 2 1 -1
0 o -1 0 0 0 0 -1 1
0 o 0 -1 0 0 2 1 -1
0.17) G5 = 0 o 0 o0 -1 0 2 1 -1
0 o 0o o0 0 -1 0 -1 1
0 o 0o o 0 o0 1 0 O
0 o 0 o o0 o0 1 0 -1
0 o 0o o 0 o0 1 -1 0

9.4. Positive Lyapunov exponent. Let I'* be the image of I' = (01, 02, 03) in GL(H'(X; Z)).
This group preserves a three dimensional subspace, on which it acts by multiplication by +1.
The quotient is given by the linear map

(9.18) (z1, 22, T3, T4, T5, T, T7, T, Tg) — (L1, T2 — T3, T4, T5 — Te, Ty, Ty — T9).

On the quotient space, which we denote by V, the involutions act by the following matrices.
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1 0 0 0 0 0
0 1 0 0 0 0
2 -1 -1 0 0 0
©.19) A= 5 9 0 0 0
2 -1 0 0 -1 0
2 2 0 0 0 -1
-1 0 2 1 0 0
0 -1 2 2 0 0
0O 0 1 0 0 0
(9:20) Az = 0O 0 0 1 0 0
0 0 2 -1 -1 0
0 0 -2 2 0 -1
-1 0 0 0 21
0 -1 0 0 2 2
0 0 -1 0 21
©:21) Az = 0O 0 0 -1 2 2
O 0 0 0 1 0
O 0 0 0 01

We shall denote by T the subgroup of SLg(Z) generated by these involutions, and by G the
Zariski closure of T in SLg.

Lemma 9.1. The following properties are satisfied:

(1) The group T contains a non-Abelian free group.

(2) The group G is semi-simple.

(3) The action of T"onVQ®Cis strongly irreducible.

(4) If v is a probability measure on 1 that satisfies Conditions (S) and (M), then v has a
positive Lyapunov exponent on H*(X (R); R).

From this lemma and the calculation of the spectral radius
Proof. We shall need the following facts (computations of characteristic polynomials and Galois
groups were done with sagemath):
(a) The element f = A; Ay A3 has characteristic polynomial
(9.22) Pp(t) =10 —4t® —3t* — 263 + 512 + 2t + 1

whose factorization in Q[t] is P(t) = (t — 1) x (t> — 3t* — 6t3 — 8t> — 3t — 1). In particular,
f has six distinct eigenvalues, and only one of them is rational, namely 1. The only other real
eigenvalue is Ay ~ 4.679, then there are two complex conjugate eigenvalues of modulus strictly
between 1 and A7, and two of modulus < 1. Moreover, for every k > 1, f* has also 6 distinct
eigenvalues (see below an argument for the similar case of g).
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(b) The element g = A; As A3 As A1 A3 A1 A3 A1 A A3 As Al As Ag has characteristic polynomial
(9.23) P,(t) = % — 24> — 83t — 122¢3 — 35¢% + 22t + 1

which is irreducible in Q[¢]. In particular, g has six distinct eigenvalues. Four of them are
real, with a single one of maximal absolute value A\, > 1, and there are two complex conjugate
eigenvalues of modulus > 1. Moreover, for every k > 1, g* has also 6 distinct eigenvalues.

To prove this last point, it suffices to show that )\’; is an algebraic number of degree 6 for every
k = 1. For this, one computes the Galois group of the splitting field F' of Fy: it is isomorphic to
the symmetric group S, so [F : Q] = 6!. The degree 6 extension Q(\,) of Q is the subfield
of F' fixed by a subgroup H — Gg of index 6. Note that )\’g“ can not be rational for any k£ > 1,
because since ), is a unit, )\’; would be equal to 1, in contradiction with A\, > 1. Thus, if )\’; had
degree < 6, there would be an intermediate extension X < Q(\,) of degree d = 2 or 3. This
extension would be the fixed field of a group G = &g of index d. For d = 3 such a group does
not exist. For d = 2 we get G = 2 and g would contain H as a subgroup of index 3; this is a
contradiction, since the largest maximal subgroup of 2(¢ has index 6.

(c) The eigenvector of f corresponding to the eigenvalue 1 is defined over Q. Thus, it is in
general position with respect to the eigenvectors of g (i.e. it is not contained in any proper g-
invariant subspace of V', because such a subspace would be rational, thereby producing a rational
factor of P)

To show that T contains a non-Abelian free group, note that the eigenvector of f for the
leading eigenvalue A\ (f) ~ 4.679 is not mapped to another eigenvector of f by A;. Thus by
the ping-pong lemma, if we set h = Ay o f o Afl = Ay A3A;, then the group generated by
f and h contains a non-Abelian free subgroup of GL(V') all of whose elements # Id have an
eigenvalue > 1 (see Lemma[3.1). So, at this stage we know that I is non-elementary.

Consider the connected component of the identity G° < G. The intersection f; =T n
G°(C) is a finite index subgroup of '™ and is a Zariski dense subgroup of G°. Since T is
contained in SL,,,(Z), the linear algebraic groups G and G are both defined over Q. Let R be
the solvable radical of G° and let U be its unipotent radical (see [74], Chap. 6.h, page 135); they
are defined over Q and are characteristic subgroups of G; in particular, they are normal in G.
Let F' < V be the fixed point set of U. This vector subspace is defined over Q, its dimension is
positive, and it is g-invariant. Since the characteristic polynomial of g is irreducible over Q, we
infer that /' = V and U = {idy }. This implies that R is a torus; over C, R is diagonalizable
and R(C) isomorphic to (C*)" for some r < 5. The group G acts by conjugacy on R; since the
automorphism group of R is discrete (isomorphic to GL,(Z)) and G° is connected, we deduce
that R is central in G°. In particular, R commutes with f* and with g* if k is chosen to insure
that f* and g* are in G°. Thus, R being connected, each of the sixth complex eigenlines of f*
is R-invariant, and the same holds for the eigenlines of ¢*. By Property (c) above, this implies
that R is made of homotheties, and since R — SLg we deduce that R is trivial. Thus G° is
semi-simple, and so is G.

By the first property, G°(R) is not bounded, so at least one of its semisimple factors is a
(non-Abelian) non-compact almost simple real Lie group.
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Now, V' ® C is a direct sum of irreducible representations V; of G°. Choose k£ > 1 such
that f¥ € G°. One of the V;, say V;, must contain the eigenline of f* corresponding to the
eigenvalue 1; thus, V7 contains an element of V' (Q), and since fg is Zariski dense in G° and is
defined over Z, we deduce that, in fact, V7 is defined over Q. By Property (b), V1 = V, and G°
acts irreducibly on V. Thus, fS acts strongly irreducibly on V', and so does r

Finally, since the action of T onVis strongly irreducible and unbounded, Theorem 3.31
of [T1]] shows the positivity of the first Lyapunov exponent in V, hence in H'(X (R); R), and
the proof is complete. O

Putting together all the results in this section, we have established the following result.

Theorem 9.2. Let C' be a smooth, real, plane cubic whose real part C(R) is connected. There
exists a non-empty open subset U — C(R)? such that if (q1,q2, q3) belongs to U, and v is a
probability measure on the corresponding group I' = (51, &2, 73, generating I' and with a finite
first moment, then the top Lyapunov exponent of the action of T on H' (X (R), R) is positive.

We now extend this theorem to the case of 4 points instead of 3. So, we blow-up one more
point ¢4 € C'(R), with g4 between ¢; and g3, and we still denote by X the surface and by I the
group generated by the 4 involutions. The cohomology group H' (X (R); Q) of the new surface
X (R) has dimension 12, with coordinates (z1,...,x12); the subspace defined by

(9.24) To9 = T3,T5 = Tg, T8 = T9,T11 = £12,T1 = T4 = T7 = X109 = 0

is invariant, and the restriction of I' to this subspace factors through a finite group. Let W be the
quotient space, which is of dimension 8.

Choose an index j € {1,2,3,4} and consider the subgroup I'; of I" generated by the &; with
i # j. Then, there is a finite index subgroup I'? of I'; whose action on W ® C is reducible: there
is an invariant subspace T); of dimension 2 (on which I'; acts diagonally with eigenvalues equal
to £1), and the quotient space W /T} is a strongly irreducible representation V;, defined over Q,
and of dimension 6 (it is isomorphic to the representation V studied in Lemma . Pick g; in
I'7 satistying Property (b) of the proof of Lemma Then g; preserves a unique subspace W;
of W of dimension 6, defined over Q, which projects surjectively onto V.

Now, take a finite index subgroup IV of I" and let K’ < W be a I''-invariant subspace. Chang-
ing the I'? into finite index subgroups, we may assume that they preserve K. Projecting K to
Vi, Lemma implies that either K is contained in T (and then dim(K) < 2), or that K is
mapped onto V; (and then dim(K) > 6). If K is contained in one of the T}, one checks that
its projection onto some other V; is non-trivial, which gives a contradiction. It follows that the
projection of K onto each Vj is surjective. Since K is gj-invariant, it contains W, and finally
we obtain that K = W. Thus, the action of I' on W is strongly irreducible, and we get:

Theorem 9.3. Let C be a smooth, real, plane cubic whose real part C(R) is connected. There
exists a non-empty open subset U — C(R)* such that if (q1, g2, q3, q1) belongs to U, and v is
a probability measure on the corresponding group I = (&1, 09, 03,54 ), generating I and with
a finite first moment, then the top Lyapunov exponent of the action of T on H'(X(R),R) is
positive.
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10. DYNAMICS ON THE REAL SURFACE
In this section we complete the proof of Theorem|(1.9

10.1. Preliminaries from ergodic theory.

Proposition 10.1. Let X be a complex projective surface (resp. a real projective surface). Let T’
be a non-elementary subgroup of Aut(X) (resp. of Aut(XRr)) containing a parabolic element.
Then the action of T is ergodic with respect to the Lebesgue measure on X (resp. on X (R)).

Proof. This result is contained in [[18}, 25] but it was not explicitly stated there, so we provide
details in the case of complex surfaces. We only deal with the case where X is not Abelian,
in which case I' is automatically countable. We closely follow [25, §4] and freely use the
vocabulary from that paper. Let A = X be a measurable subset such that vol y (AAy~1A) = 0,
where volx is the probability measure associated to some Kihler form on X. Replacing A
by ﬂ'yel" 7~ A, we may assume that A is I-invariant. Assuming that volx(A) > 0, we have
to show that volx (A) = 1. As in [25 §4.3.1], I' contains a “special” subgroup {g, h), freely
generated by two independent Halphen twists. Denote by 7y, m, : X — P! the associated
invariant fibrations. Recall that for almost every w € P!, the action of g (resp. h) on 7T;1<’U})
(resp. 7r,:1 (w)) is uniquely ergodic, and the unique invariant measure is the Haar measure. Since
A'is g-invariant, there is a subset B, € P! of positive measure such that vol x (AAm, L(B,)) = 0.
Consequently A intersects any 7p,-fiber on a set of positive Haar measure, and then using the h-
invariance, A = X up to a set of volume 0. ([

Proposition 10.2. Ler X be a compact Kdihler surface. Let v be a probability measure on
Aut(X) that satisfies the moment condition (M) and let 11 be an ergodic v-stationary measure.
Let n be a non-trivial meromorphic 2-form on X such that

(@) [ 10g" | Jacy () @) dua)do( ) <+
(ii) w gives zero mass to the set of zeroes and poles of .

Then the Lyapunov exponents of i satisfy:

A AT = Jlog(]Jaen F@)P)du(@)dv(f).
In particular, if n is invariant, \= + AT = 0.

Before starting the proof, let us recall some notation from § we denote Q = Aut(X)N
and F; the skew-product transformation of {2 x X associated to the random dynamics, acting
as the one-sided shift on 2 and by automorphisms on X. The measure v x y is F, invariant.
One may also consider the 2-sided shift 9: Aut(X)% — Aut(X)Z and the corresponding skew-
product F on Aut(X )% x X, defined by F'(§,x) = (9€, fo(x)), where € = (f;)icz. The natural
extension of N x p will be denoted by m: it is invariant and ergodic and its projection on
Aut(X)Z is vZ. Beware that m differs from v% x v unless y is invariant.

Proof. Fix a Kéhler metric kg on X. Fix a trivialization of the tangent bundle T'X, given by a
measurable family of linear isomorphisms L(x): T, X — C?2 such that (a) det(L(z)) = 1 and
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(b) 1/c < |L(z)| + |L(x) ™| < ¢, for some constant ¢ > 1; here, the determinant is relative to
a volume form vol y on X and the standard volume form on C2, and the norm is with respect to
(ko)z on T, X and the standard euclidean metric on C2,

For (¢, ) € Aut(X)% x X and n > 0, the differential D, f¢' is expressed in this trivialization
as a matrix

(10.1) AM (¢, z) = L(f(x)) 0 Dy f o L(z) .

Denote by x;; (£,z) < x;(£,x) the singular values of A" (£, z). Then m-almost surely,
Llog xF (€, z) converges towards A* as n goes to +.

The form 1 A 7 can be written n A 7 = @(x)volx for some function p: X — [0, +00].
Locally, one can write 7 = h(x)dz1 A dze where (z1,z2) are local holomorphic coordinates
and h is a meromorphic function; then ¢(z)volx = |h(z)|* dzy A dxy A dZT A dT3. The jacobian
Jac,, satisfies

102 gacy(N@) = 2HED s f)(0)
for every f € Aut(X) and x € X. Using det(L(z)) = 1, we get
(10.3) det(A™ (€, 2)) = Jacyo (f&)(2),
and then

(104) g (6,2) + - log (&) =~ log|Jacy f2(2)| ~  loa(p(f2(2) /().

By the Oseledets theorem, the left hand side of (10.4) converges almost surely to A~ + ™. Since
the Jacobian Jac,, is multiplicative along orbits, i.e. Jac, fi'(z) = 1728 Jac, fore(fEx), the
integrability condition and the ergodic theorem imply that, almost surely,

(10.5) nli_r&%log |Jacy, fg(:r)’ = Jlog |Jac, fg(x)’ dm(§, x)
= Jlog |Jac, f$($)| dmy (w, z)

= flog |Jac, f(x)|du(x)dv(f).

Let div(n) be the set of zeroes and poles of 7. Since y is ergodic and does not charge div(n), we
deduce that for m-almost every (, ), there is a sequence (n;) such that fg 7 () stays at positive
distance from div(n); along such a sequence, log |¢( fg I(x))/p(x)| stays bounded, and the right
hand side of tends to 2 {log |Jac,, f(x)|du(z)dv(f). This concludes the proof. O

10.2. Stiffness.

Theorem 10.3. Let C' be a smooth, real, plane cubic which is defined over Q and whose real
part C'(R) is connected. One can find four points q1, qo, g3, q4 in C(R) such that the following
properties hold. Let X be the Blanc surface constructed in § E]and letT' = {(G1,09,03,04) C
Aut(XR) be the group generated by the four Jonquiéres involutions.
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Let v be any probability measure on 1" which satisfies Conditions (S) and (M). Then, any
ergodic v-stationary measure on X (R) is the Dirac mass 6, at some point x € Cx(R). Such
measures have vanishing Lyapunov exponents.

In fact, the g; can be chosen in some explicit open subset of C(R n Q)*.

Proof. We first choose the points (g1, .. .,q4) in C(R n Q) such that the properties (Hyp1-4)
hold and such that (q1, ¢2, ¢3) satisfies the assumption of Theorem Then we move g4 to ¢
as in Proposition [8.3]to make sure that the conclusions of this proposition are satisfied.

Step 1.— Here we show that every invariant ergodic probability measure is a Dirac mass d,
for some z € Cx(R). The argument is similar to that of Theorem First, the invariant
meromorphic 2-form is real and induces a volume form vol% (R)> which is not locally integrable
along C'x (R). By Lemma and Proposition every proper Zariski closed invariant subset
is contained in C'x (hence fixed pointwise). Thus, by [25]], if 4 is any ergodic invariant measure
on X (R) then either y is a Dirac mass on Cx(R) or p = ¢ volgo((R), for some real analytic
function ¢ on X (R)\Cx(R). To exclude this second possibility, note that C'(R) is connected
and has a unique point at infinity, so P?(R)\C(R.) is connected, and so is X (R)\Cx (R). Then,
the ergodicity of y and the invariance of volgg(R) imply that ¢ is constant p-almost everywhere;
since ¢ is analytic, it must be locally constant, and since X (R)\Cx(R) is connected, ¢ is
constant; but then p (X (R)) = oo, which is absurd.

Step 2.— Now, pick a probability measure v on I satisfying (S) and (M). Let p be an ergodic,
v-stationary measure on X (R).

Lemma 10.4. The measure | cannot be absolutely continuous with respect to the Lebesgue
measure on X (R).

Proof. Equivalently, let us show that p is not absolutely continuous with respect to the invariant
infinite volume vo|§(R . For notational ease, in this proof we write X for X (R) (actually the
result holds for both the complex and the real variety). Reasoning by contradiction, we assume
that there is a function £ : X — R such that ¢ € L*(X,vol%) and p1 = £ vol%. The stationarity
of p and the invariance of vol% under the action of T" give

(10.6) £ = LSO fidv(f)
vol§-almost everywhere. For M > 0, we set 3y = min(¢, M) and obtain
(10.7) &> | cuo )
because the minimum of two harmonic functions is subharmonic. Then
(10.8) f EprdvolR > f f Ear o fldvolRdu(f)

X rJx
(10.9) = JX Eprdvol

because vol¥ is invariant and &)y is integrable. This shows that the Inequality (T0.7)) is in fact
an equality vol%-almost everywhere. Thus, £ and &, are both v-harmonic.
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By Markov’s inequality, there exists M > 0 such that
(10.10) 0 <vol§{({& > M}) < +oo.

Given such an M, the real number
(10.11) = J (& — M)dvol§ = j (& — &pp)dvol¥
{€>M} {€>M}

satisfies 0 < a < 1 because p is a probability measure. If o < 1, p could be decomposed as a
convex combination y = i}, + (1 — a)puy,, with

(10.12) pi = a e —&uy)volR and py; = (1 —a) vl %.

Such a decomposition must be trivial, because the harmonicity of {57 and of £ imply that 1, and
uj\j{ are stationary measures, while p is assumed to be ergodic. Thus, a = 1, for any such M.
This shows that there is measurable subset A — X such that

(a) vol¥(A) €]0, 0;
(b) € = volZ(A)~ 114, where 14 is the characteristic function of A.

The stationarity relation for £ implies that A is Supp(v)-almost invariant, hence I'-invariant, up
to a subset of zero volume. Proposition then implies that A = X (R) up to a subset of zero
volume. This is a contradiction because p is a probability measure and vol% (X) = +oco. U

Step 3.— Let 1 be an ergodic v-stationary measure as in Step 2. Assume by way of contradiction
that 4 is not invariant.

A first observation is that u(Cx(R) = 0, so p is Zariski diffuse. By Proposition
AT + A7 = 0. Therefore, Crauel’s invariance principle implies that ; must be hyperbolic. Thus,
by Theorem and [16, Thm. 3.4], i is a fiberwise SRB measure. Specifically, this means
that working in Aut(X (R))% x X(R), and considering a measurable partition 7% subordinate
to the family of local Pesin unstable manifolds, then for m-almost every (£, x), the conditional
M ) = m(:|P*(&, x)) is absolutely continuous with respect to the Lebesgue measure on
W(g, ) (see [16] and [26, §7] for details on these concepts, and the paragraph following
Proposition for the notation).

The same construction can be done with a local stable partition P® to get stable conditional
measures m(sf,a:)' These conditional measures admit a pointwise Hausdorff dimension at (£, x)
which is defined almost everywhere and is constant by ergodicity. We denote these dimensions
by dim( ! %). In this context, the analogue of the Ledrappier-Young formula hold and asserts
that for m-almost every (, x),

(10.13) hu(X,v) = AT dim"(p) = |A~| dim® (),
where h,,(X,v) is the fiber entropy (see Section [2| for a brief account on this notion). Since
dim"(u) = 1 and A™ = |A7|, we conclude that dim®(u) = 1 as well. As in deterministic

2The first equality in formula (T0.13) is proven in [76]. For random dynamical systems there is a dissymmetry
between the future and the past, because F~* is not the skew product map associated to a independent, identically
distributed, random dynamical system. So we can not just consider F~* to get the second inequality. Fortunately,
only minor adaptations are required for this: they are described in the paragraphs following Theorem 2.1 in [72] (see
also [63] for a unified discussion, with additional pointers to the literature
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dynamics, this implies that p° is absolutely continuous with respect to the Lebesgue measure
along stable manifoldﬂ Thus, m has absolutely continuous conditionals along both stable and
unstable manifolds.

The next important property is the absolute continuity of the local stable and unstable lami-
nations, which follows the lines of the classical deterministic case. A detailed treatment for the
stable lamination is given in [71, Chap. III], and a unified treatment for the stable and unstable
laminations (with less details) is in [65, Thm 2.2.12].

At this stage we can directly adapt Theorems 5.1 and 5.5 of [68], which implies that the
conditionals of m along the fibers {¢} x X (R) are almost surely absolutely continuous with
respect to the Lebesgue measure, and we conclude that p itself is absolutely continuous. But
Lemma [T0.4] asserts that this is impossible. This contradiction shows that p is invariant. Thus,
applying Step 2, we conclude that every ergodic stationary measure is a Dirac mass J, at some
point x € Cx(R).

Step 4.— It remains to show that the point masses on C'x, viewed as stationary measures, have
zero Lyapunov exponents. This is elementary: let x € X (R) (possibly among the ¢;) and let
(v1,v2) be a basis of T, X such that v; is tangent to C'x. Then (5;).(v1) = v; so the matrix of
(64)+ in the basis (v1, v2) is upper triangular, and the other eigenvalue of this upper-triangular
matrix is —1 (cf. the proof of Formula (7.7)). So any product of such matrices is of the form
(§ ) and the result follows. O

10.3. Orbit closures.

Theorem 10.5. Let C, q1, . . ., q4, X and T be as in Theorem Then every x € X (R)\Cx(R)
has a dense orbit in X (R).

Proof. In [25], we defined an invariant algebraic subset STangr, which is the union of the
maximal invariant curve and a finite set, and we proved that for every x € X (C), either I' - x is
dense in X (C), or Acc(I" - x)\STangy is locally equal to some I'-invariant real surface. In our
situation, STang = Cx, because Cx is the maximal invariant curve and every orbit outside
Cx is infinite. For z € X(R)\Cx(R), we deduce that if Acc (I'- ) \Cx(R) is non-empty,
then it is open (and closed) in X (R)\Cx (R), so by connectedness I - z is dense in X (R). To
sum up, all we need to show is that Acc (I' - ) \Cx (R) # ¢ forevery x € X(R)\Cx(R). For
this, we use the structure of the invariant fibrations of parabolic elements in I".

Step 1.— Geometry of the invariant fibration of g;;.

Fix two distinct indices, say ¢ = 1 and ¢/ = 2. In this step we study the geometry of the
invariant fibration 72 of g1o = &1 o 62 near Cx.

Let us first work over C. Recall from § that the fibration comes from the pencil of
quadrics going through ¢; and g2 with multiplicity 2 and through the p; ; with multiplicity 1
for i = 1,2. In the surface X5 obtained by blowing up these 10 points (as in Lemma [7.4),
it corresponds to the linear system |C'x,, + Mja|, where M;s is the strict transform of the line
(q1g2). We denote by m12: X109 — P! this fibration, and fix an affine coordinate z on P! such
that 7T12(CX12 ] Mlg) = (0 and 7T12(X12(R)) c P! (R)

3 This is proven for the unstable direction in [71]], and the adaptation to the stable direction is explained in [4].
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(q192)

Mol

FIGURE 7. Schematic view of a real fiber of 715 (in red) close to the singular fiber on
P2 (left), on X5 (middle) and on X (right). All components (including the red fiber,
except on the left) are topological circles.

Let 7 be the third intersection point of C' and (q1¢2); we also denote by r its incarnation in
X2 or X (because r is not blown up). It is the only intersection point of C'x,, and M;s.

Now, M7 is a smooth rational curve with self-intersection —1, so it can be blown down to
get a new, smooth projective surface Y. The fibration 715 gives a genus 1 fibration 7y : Y — P!
and C'y,, is a smooth fiber C'y of 7y . In a small tubular neighborhood of Cy, the fibration 7y is
a submersion (otherwise, C'y would be a multiple fiber, and C'x would have multiplicity > 1 in
Cx,, +Mi2). The curve M3 is contracted to a point ry € Y, and M5 is the exceptional divisor
of the blow-up of Y at ry. Thus, the geometry of m12: X135 — P! near M, is the geometry of
a smooth foliation after a blow-up, and:

(1) m2 has a Morse singularity at the point r € X2; there are local coordinates such that
mio(x,y) = zy, with the two coordinate axes corresponding to C'x and M2, respec-
tively;

(2) if b is close to 0, the fiber Wf21 (b) is close to Cx,, U Mja; it is the pull-back of a smooth
fiber of 7y close to Cy-; as b approaches 0, 7r1_21(b) converges towards C'x,, u M2 in
the Hausdorff topology, and in the C'! topology in the complement of r;

(3) in the real surface, C'x,, (R) is a topological circle with a Mdbius band as tubular neigh-
borhood, and so is M12(R); the smooth fibers of 712 in X (R) near Cx,,(R) u Mi2(R)
are topological circles, turning once around C'x,, (R) and around M;2(R)).

If we blow-up the remaining points to construct X (R), C'x,,(R) u M12(R) is replaced by its
total transform: we add 6 topological circles corresponding to the exceptional divisors obtained
by blowin up g3, q4, p3,1, - - - P4,2, and the picture near each of these circles is similar to the one
near M (see Figure[7)for a visual illustration).

Step 2.— Dynamics of gi2 on smooth fibers.
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If we fix an affine coordinate z on (gig2) such that r = o, g2 = 0 and ¢; = 1, then
09(z) = —zand 01(z) = 2 — z. So 01 0 02(2) = z + 2, that is, on M2 g2 acts as a parabolic
transformation with fixed point at r.

For b € P'(R) near 0, denote by Y;(R) the real part of 7! (b); thus, Yp(R.) is the smooth
fiber Cy (R). The complex curve Y;(C) is smooth of genus 1; it is a quotient C/L;, where
Ly, = Z + Z7(b) is a lattice in C and Y},(R) corresponds to R/Z (because Cy (R) and the
fibers near it are connected). Thus, in a neighborhood N of 0, we get a real analytic map 7
with values in the upper half plane, and, a map ¢,: t € R/Z — ¢3(t) € Y(R) parametrizing
Y;,(R), depending analytically on (b,t) € N x R/Z. Pulling back ¢} by the natural birational
map wiz: X2 — Y (resp. X — Y), we get a family of parametrizations ¢, of the fibers X2
(resp. Xp) of w2, for b € N\ {0}. Since g12 acts by translation along the curves Y; (resp. Xp,
b # 0), and g2 is the identity on C'x, we see that ¢, conjugates g;|y, to a rotation of the circle
with angle a(b) converging towards 0 as b goes to 0.

Step 3.— Conclusion.

Pick z € X(R)\Cx (R) such that I - z accumulates C'x (R); fix a sequence (x;) of distinct
points of I'- = converging to C'x (R), and set b; = 712(x;). Step 1 shows that X; (R converges
in the Hausdorff topology to Cx v M2 U Egy U -+ - U E}, »; this convergence holds in the Ct
topology away from the singular points. Take an arbitrary point yo € M12(R)\ {r} and consider
the segment [yo, g12(yo)] in M12(R). By the description of g;2 in the first paragraph of Step 2,
[v0, 912(y0)] is disjoint from 7. If I is a small interval containing yo and transverse to the
fibration 712, then the intervals I and J := g12([) intersect each fiber X} near Mo transversely
into two points y, and g12(ys); as b goes to 0, the segment [yp, g12(ys)] = Xp(R) converges
towards the segment [yo, g12(y0)] = Mi2.

The following lemma is elementary and left to the reader.

Lemma 10.6. Let R : R/Z — R/Z be a rotation of angle —1/2 < « < 1/2. Fixt € R/Z and
let K be the shortest closed segment joining t to R(t). Then for any s € R/Z, the R-orbit of s
intersects K.

This lemma shows that the orbit of x; under g12 must intersect [ys., g12(ys, )], hence so does
I' - z. Taking j — o0, this implies that I" - z accumulates [y, g12(y0)], which is contained in
Mi2(R)\Cx(R). As explained before Step 1, this completes the proof of the theorem. O

10.4. Conclusion of the proof of Theorem [1.9f We pick C' and the ¢; as in Theorem [10.3]
Assertion (1) follows from the smoothness of C' and the genus formula, and Assertion (2) is a
theorem of Blanc. Assertions (3) and (4) on §2x are described in Section[3] Property (5) follows
from Proposition[8.3] Assertion (6) on the generic density of orbits is an elementary consequence
of Proposition indeed for any non-empty open set U, the set of x € X such that (I" - ) N
U = (I has zero Lebesgue measure. The statement (7) on orbit closures is Theorem [I0.5] The
stiffness property (8) is established in Theorem[I0.3] and finally, Assertion (9) is Theorem 0.3

O
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We conclude the paper with an open question. By Breiman’s ergodic theorem, for every
r € X(R)\C(R) and v"V-almost every w, any cluster value of the sequence of empirical mea-
sures % P fk(z) 18 a probability measure on C, a priori depending on «x, w and a choice of
subsequence. The question is about the complexity of the set of limiting measures:

Question 10.7. Which probability measures do arise in this way? Do the sequences of empirical
measures typically converge or, on the contrary, does “historic behavior” occur?
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