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DYNAMICS OF AUTOMORPHISM GROUPS OF PROJECTIVE SURFACES: CLASSIFICATION, EXAMPLES AND OUTLOOK

We first present an overview of our previous work on the dynamics of subgroups of automorphism groups of compact complex surfaces, together with a selection of open problems and new classification results. Then, we study two families of examples in depth: the first one comes from folding plane pentagons, and the second one is a family of groups introduced by Jérémy Blanc, which exhibits interesting new dynamical features.

This article is the sixth of a series dedicated to the dynamics of groups of automorphisms of compact complex surfaces [START_REF] Cantat | Sur la dynamique du groupe d'automorphismes des surfaces K3[END_REF][START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF][START_REF] Cantat | Finite orbits for large groups of automorphisms of projective surfaces[END_REF][START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF][START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]. Our purpose is to review our previous work and to enrich it with new examples, applications, and open problems. Let us briefly summarize its contents and new features.

In the first two sections, we offer a detailed presentation of our results, illustrated with a large number of open questions.

A standing assumption in our previous papers is that the surfaces into consideration are projective. It is natural to question this assumption and to relate the classification of surfaces to the dynamics of their groups of automorphisms. This is dealt with in the first part of the paper: in § 3.3, we show that only projective surfaces can carry "non-elementary" automorphism groups and we describe a few examples on Hopf surfaces in § 3. [START_REF] Bahnmüller | Characterization of measures satisfying the Pesin entropy formula for random dynamical systems[END_REF].

Then, we explain how our theory applies to the following geometric examples:

(1) The first one comes from classical Euclidean geometry, and is given by folding plane pentagons of given side length along their diagonals. Surprisingly enough, this gives rise to a group action on a K3 surface, which is reminiscent of the Wehler family of examples, which has been a thread in our work. These examples are studied in Part 2. Section 5 describes the underlying algebraic geometry of the problem, which goes back to the work of Darboux [START_REF] Darboux | De l'emploi des fonctions elliptiques dans la théorie du quadrilatère plan[END_REF] on quadrilaterals and elliptic functions. The ergodic theory of random pentagon foldings is analyzed in Section 6, in the spirit of the work of Benoist and Hulin [START_REF] Benoist | Itération de pliages de quadrilatères[END_REF][START_REF] Benoist | Itération de pliages de quadrilatères[END_REF].

(2) In Part 3 (Sections 7 to 10), we focus on groups of automorphisms introduced by Blanc in [START_REF] Blanc | On the inertia group of elliptic curves in the Cremona group of the plane[END_REF]. Each of these examples is determined by the choice of a plane cubic curve C Ă P 2 C , an integer m ě 3, and m points q 1 , . . ., q m on C. To each q j , one associates a Jonquières involution, that fixes C pointwise and preserves the pencil of lines through q j . The group generated by these m involutions lifts to a group of automorphisms on a rational surface X which is obtained by blowing-up 5m points of C. A key property of these automorphism groups is that they preserve a singular volume form with poles along the strict transform C X of C and whose total mass is infinite. Using our previous results, we prove that, for an appropriate choice of the points q i , the only ergodic stationary measures on XpRq are fixed points and are contained in C X pRq. In particular, random orbits almost surely converge, on average, to the curve C X pRq. Thus, as we shall explain, this behavior differs strongly from that of automorphisms of non-rational surfaces.

OVERVIEW AND OPEN PROBLEMS

In this section, we provide a detailed overview of our former results, with short introductions to their proofs, as well as a description of our main new results and examples.

1.1. From orbit closures to stationary measures. Let X be a compact space and Γ be an infinite group of homeomorphisms of X. We make the standing assumption that Γ is countable; this will actually not be a restriction in the cases of interest to this paper. Our general aim is to study the dynamics of such an action. In particular we wish to address the following usual problems:

(Pb1) describe the orbit closures Γ ¨x, for x P X; (Pb2) study the finite orbits of Γ (1.1)

PerpΓq " tx; Γ ¨x is finiteu ; by definition, points of PerpΓq will be called Γ-periodic points. (Pb3) classify Γ-invariant measures, that is, probability measures µ on X such that f ˚µ " µ for all f P Γ; (Pb4) describe the asymptotic distribution of Γ-orbits.

Observe that the last question is not properly formulated until a specific way of going to infinity in Γ (in other words, a notion of "time") has been described. A common choice for this is to fix a probability measure ν on Γ such that xSupppνqy " Γ and to explore Γ by walking at random according to ν. Then the notion of asymptotic distribution of the orbit of x P X may either refer to the asymptotics of the orbital averages (1.2) ż δ f n´1 ¨¨¨f 0 pxq dνpf 0 q ¨¨¨dνpf n´1 q, or to the time averages along random trajectories

(1.3) 1 n n ÿ k"1 δ f n´1 ¨¨¨f 0 pxq
for ν N -almost every pf n q ně0 . In both cases, understanding the limit points essentially boils down to the following problem:

(Pb5) classify ν-stationary probability measures.

Of course, (Pb5) subsumes (Pb3). To understand the meaning and relevance of (Pb5), let us first recall that a probability measure µ on X is ν-stationary if (1.4) µ " ν ˚µ :"

ż f › µ dνpf q.
Since the measure in Equation (1.2) is the n-th convolution ν ˚n ˚δx , any limit point of this sequence of measures is ν-stationary. Breiman's ergodic theorem shows that the same is true for the random empirical measures in Equation (1.3) (see [11, §3.2]). In particular, if K is a compact Γ-invariant subset of X, then starting from x P K one constructs ν-stationary measures with support in K; these may also be obtained by applying a fixed point theorem to the operator µ Þ Ñ ν ˚µ acting on probability measures on K. As a consequence, taking K " Γ ¨x, we see that a solution to (Pb5) is also useful for (Pb1). This approach, using ergodic theoretic methods to study orbit closures (that is, use (Pb5) and (Pb3) to study (Pb1)), is now commonplace in this area of research. So, the set of stationary measures on X is a non-empty, compact and convex subset of the set of probability measures on X. It contains Γ-invariant probability measures, but in many situations invariant measures fail to exist. Thus, stationary measures can be viewed as the correct analogues of invariant measures when studying (large) groups of transformations instead of cyclic groups (i.e. the iterations of a single homeomorphism). In this respect, it may seem hopeless at first sight to classify all stationary measures, but, in fact, they often satisfy rigidity properties which make such a classification feasible. Results in homogeneous dynamics, in particular the work of Ratner [START_REF] Ratner | Raghunathan's topological conjecture and distributions of unipotent flows[END_REF][START_REF] Ratner | On Raghunathan's measure conjecture[END_REF][START_REF] Ghys | Dynamique des flots unipotents sur les espaces homogènes[END_REF] and Benoist and Quint [START_REF] Benoist | Mesures stationnaires et fermés invariants des espaces homogènes[END_REF], illustrate perfectly this line of thought. Similar phenomenon also appear in non-homogeneous dynamics, notably in the work of Eskin and Mirzhakani [START_REF] Eskin | Invariant and stationary measures for the SLp2, Rq action on moduli space[END_REF] and Brown and Rodriguez Hertz [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]. Our work is strongly influenced by these former results and the methods developed to reach them.

Remark 1.1. For ν-stationary (resp. Γ-invariant) measures, there is a notion of ergodicity: such a measure is ergodic if it is an extremal point of the compact convex set of ν-stationary (resp. Γinvariant) measures. It is a non-trivial result that these two notions coincide, that is a ν-stationary measure µ is ergodic if and only if every almost Γ-invariant subset A (i.e. µpf pAq∆Aq " 0 for every f P Γ) has measure 0 or 1. Hence, in the classification problems (Pb5) and (Pb3), it is enough to restrict to ergodic measures.

1.2. Non-elementary groups of automorphisms and the classification of surfaces. In this paper, X will be a compact complex surface. We denote by AutpXq its group of holomorphic diffeomorphisms, which we call automorphisms, even when X is not algebraic. The group Γ will be contained in AutpXq.

It would also be natural to consider actions by automorphisms on quasi-projective or affine surfaces, for instance by polynomial automorphisms of C 2 , or even by birational transformations. Extending our results to this more general setting or to higher dimensions is an important challenge, which would undoubtedly lead to serious difficulties. References include [START_REF] Cantat | Painlevé and Schrödinger[END_REF][START_REF] Rebelo | Dynamics of groups of birational automorphisms of cubic surfaces and Fatou/Julia decomposition for Painlevé[END_REF][START_REF] Gamburd | Arithmetics and dynamics on varieties of Markoff type[END_REF] (see also Example 1.6, Remark 1.17, Question 1.14, and Theorem 2.2 below).

Two related constraints will be imposed on Γ. Firstly, Γ must be sufficiently large to expect some measure rigidity property. For instance, if Γ is abelian, its stationary measures are automatically invariant; and if Γ is generated by an automorphism with positive entropy, there are uncountably many invariant ergodic measures, without any hope of classifying them. Secondly, the action of Γ on the cohomology of X must also be "sufficiently large". To explain this, recall that AutpXq is a complex Lie group and, assuming X to be Kähler, a theorem of Fujiki and Lieberman asserts that the connected component AutpXq 0 of AutpXq is a subgroup of finite index in the kernel of the homomorphism (1.5) AutpXq Q f Þ Ñ f ˚P GLpH 2 pX; Zqq that describes the action on the cohomology. Then, using the invariance of the intersection form on H 2 pX; Zq, the Hodge index theorem, and the Tits alternative, one obtains easily (see [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF][START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]) the equivalence of the following properties for any subgroup Γ Ă AutpXq (a) the image Γ ˚of Γ in GLpH 2 pX; Zqq is not virtually Abelian; (b) the image Γ ˚of Γ in GLpH 2 pX; Zqq contains a pair of linear maps pf ˚, g ˚q generating a non-Abelian free group; (c) Γ contains a pair of automorphisms pf, gq with positive topological entropy generating a non-Abelian free group.

Moreover, the classification of compact Kähler surfaces implies that if these properties are satisfied for some Γ Ă AutpXq, then either X is a torus or AutpXq 0 is trivial. From this, one deduces that, up to finite index, only two distinct regimes need to be studied:

(1) the case where Γ is contained in AutpXq 0 , (2) the case where Γ satisfies the three equivalent properties (a), (b), (c).

The first case boils down to homogeneous dynamics, the main example being given by subgroups of PGL 3 pCq acting by linear projective transformations on P 2 pCq. Thus, we focus on the second case that is, we shall impose that Γ satisfies (a), (b), (c). Even if our understanding of non-Kähler compact complex surfaces is less satisfactory, we shall see in Section 3 that these properties are also relevant in this more general context. So, we introduce the following Definition 1.2. Let X be a compact complex surface. A subgroup Γ of AutpXq is nonelementary if Γ ˚contains a non-Abelian free group, otherwise, it is elementary.

A first important result, proven below in Section 3, says that the existence of a non-elementary subgroup Γ Ă AutpXq forces X to be projective, hence, by the GAGA principle, it also forces Γ to act by regular algebraic transformations. Consequently, the study of non-elementary actions belongs to algebraic dynamics.

Theorem 1.3. Let X be a compact complex surface such that there exists a non-elementary subgroup Γ Ă AutpXq. Then X is projective and it must be a blow-up of P 2 , a K3 surface, an Enriques surface, or an Abelian surface A consequence is that, unless X is a torus, AutpXq 0 is trivial, hence AutpXq is discrete, and the countability assumption on Γ is automatically satisfied. As suggested by this theorem, examples of non-elementary group actions are scarce and rely on algebro-geometric constructions. Besides the following two classes of examples, several new ones will be discussed in this paper.

Example 1.4. The first examples are found on (certain) compact tori X " C 2 {Λ. Recall that every automorphism of such a surface is induced by an affine transformation x P X Þ Ñ Ax `B, where A P GL 2 pCq preserves Λ and B P C 2 . By Theorem 1.3, if AutpXq is non-elementary, then X must be projective, that is, be an Abelian surface.

More generally, a Kummer group pX, Γq is, by definition, a compact complex surface X endowed with a subgroup Γ of AutpXq, such that there exists a torus X 1 " C 2 {Λ, a subgroup Γ 1 Ă AutpX 1 q, and a generically finite, dominant rational map ϕ : X 1 Ñ X that semi-conjugates Γ 1 to Γ (i.e. ϕ˝Γ 1 " Γ˝ϕ). We refer to [24, §4] for details and a classification of such examples. Kummer examples can be analyzed with tools from homogeneous dynamics, and as we will see, they often stand out for their exceptional, distinctive properties, somewhat similar to those of monomial, Tchebychev, and Lattès mappings in one-dimensional dynamics (see [START_REF] Cantat | Quelques aspects des systèmes dynamiques polynomiaux: existence, exemples, rigidité[END_REF]).

Example 1.5. Consider the family of all K3 surfaces in P 1 ˆP1 ˆP1 (equivalently, smooth surfaces of tri-degree p2, 2, 2q); they depend on 26 parameters. If X is such a surface, the three natural projections onto P 1 ˆP1 are dominant morphisms of degree 2, and each of them determines a regular involution of X (which exchanges the two points in the fibers). Thus, X comes with a group Γ Ă AutpXq, generated by this involutions. For a general choice of X, Γ is non-elementary. We shall refer to these examples pX, Γq as Wehler examples. These were studied thoroughly in our work (see [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF][START_REF] Cantat | Finite orbits for large groups of automorphisms of projective surfaces[END_REF][START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]). The family of pentagon folding groups introduced in Part 2 is in many ways reminiscent from the Wehler family.

Example 1.6. Let us mention an example which is unfortunately excluded by our assumptions, because the surface is not compact (when compactifying the surface, the automorphisms become birational transformations). Consider the affine surface M 0 Ă C 3 defined by (1.6) x 2 `y2 `x2 " 3xyz.

It is a cubic surface, endowed with three natural 2-to-1 ramified covers onto C 2 , obtained by forgetting one of the variables, each of which defining a regular involution on M 0 . The dynamics of the group generated by these involutions was studied by Markov in his 1879 thesis, in relation to the study of binary quadratic forms and Diophantine approximation, and M 0 is now called the Markov surface. It can be considered as a degenerate Wehler example. We refer to [START_REF] Cantat | Painlevé and Schrödinger[END_REF][START_REF] Deroin | Random walks, Kleinian groups, and bifurcation currents[END_REF][START_REF] Rebelo | Dynamics of groups of birational automorphisms of cubic surfaces and Fatou/Julia decomposition for Painlevé[END_REF][START_REF] Gamburd | Arithmetics and dynamics on varieties of Markoff type[END_REF] and [START_REF] Rebelo | Questions about the dynamics on a natural family of affine cubic surfaces[END_REF] in this volume for a dynamical viewpoint on these surfaces.

1.3. Further remarks: parabolic elements, fields of definition, irrational surfaces. From now on we will assume that Γ Ă AutpXq is non-elementary and therefore that X is projective.

Our strongest results feature an additional hypothesis on Γ, namely the existence of parabolic elements. The vocabulary is as follows. An automorphism f P AutpXq is elliptic if f ˚is a finite order element of GLpH 2 pX; Zqq. It is loxodromic if the spectral radius λ f of f ˚is ą 1; in that case, λ f is the only eigenvalue of f ˚with modulus ą 1, it is simple, and logpλ f q is equal to the topological entropy of f : X Ñ X. Otherwise, f is parabolic; this means that some iterate pf ˚qk , for some k ě 1, is unipotent and distinct from the identity. In this case, there is a unique genus 1 fibration π : X Ñ B which is f -invariant; this means that there is an automorphism f B of the Riemann surface B such that π ˝f " f B ˝π; moreover, f B has finite order, except if X is a torus C 2 {Λ. Hence, assuming X is not a torus and changing f into a positive iterate, f preserves every fiber, each smooth fiber is a genus 1 curve, and f acts upon it as a translation; such maps are referred to as Halphen twists. The analysis of these parabolic automorphisms leads to rich structures and is connected to the field of discrete integrable systems (see [25, §3] for an account, and [START_REF] Duistermaat | Discrete integrable systems[END_REF] for a thorough treatment). With this vocabulary, Γ is non-elementary if and only if it contains a pair of loxodromic elements pf, gq that generates a non-Abelian free group. The hypothesis that Γ contains a parabolic element is of a different nature -it is analogous, in Ratner's theory, to the existence of unipotent elements. If Γ contains two parabolic elements preserving distinct fibrations, then Γ is nonelementary; conversely, if Γ contains a parabolic element and is non-elementary, then it contains two parabolic elements with distinct invariant fibrations. We refer to [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF][START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF] for these results.

Our results may also depend on the field of definition. When X is projective, X and Γ are defined by polynomial equations and formulas with coefficients in a subfield of C. Some of our results require that X and Γ be defined over R, in which case one might restrict the dynamics to the real part XpRq Ă X. Some require that X and Γ are defined over Q.

Another thing that the reader should keep in mind comes from the classification of surfaces. By Theorem 1.3, surfaces for which AutpXq is non-elementary fall into two types.

-If X is rational, then X is a blow-up of the plane P 2 at at least 10 points; as we shall see, a non-elementary subgroup Γ Ă AutpXq may or may not preserve a continuous volume form.

-If X is not rational, then X is a blow-up of a K3, Enriques, or Abelian surface X 0 ; moreover, by the uniqueness of the minimal model, the group AutpXq is obtained by pulling back of a subgroup of AutpX 0 q. On X 0 , there is a natural AutpX 0 q-invariant volume form, induced by the triviality of the canonical bundle K X 0 or its square K b2 X 0 . This volume form lifts to X as an AutpXq-invariant form which vanishes only along the exceptional divisor of the birational morphism X Ñ X 0 . Some of our dynamical results do require the existence of such an invariant volume form, a hypothesis that might fail only for rational surfaces. Note that if X is irrational and defined over R, there is an AutpX R q-invariant volume form on XpRq as well.

1.4. Stiffness. Let us now come back to our five initial problems. As explained in the previous sections, we only deal with non-elementary group actions on projective surfaces. We refer to [26, §10.3] for elementary actions on compact Kähler surfaces and to § 3.4 below for some remarks on the non-Kähler case.

We say that a probability measure µ on X is Zariski diffuse if it gives no mass to proper Zariski closed subsets of X. Ergodic stationary or invariant measures which are not Zariski diffuse are easily analyzed (see [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]Prop. 10.6]), so we focus on Zariski diffuse measures.

In certain situations, (Pb5) is actually equivalent to (Pb3); this happens whenever all νstationary measures are invariant: this is the stiffness (or ν-stiffness) property of Furstenberg [START_REF] Furstenberg | Stiffness of group actions[END_REF]. An obvious obstruction to stiffness is when there is no Γ-invariant measure at all. The overall philosophy of [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF] is the converse: non-elementary group actions on compact complex surfaces admitting a natural Zariski diffuse invariant measure tend to be stiff (in fact, this "principle" also applies to elementary groups). In this respect, recall from § 1.3, that if X is not rational, then, working on the minimal model X 0 of X, there is a natural invariant volume form.

Let us be more specific. Let Γ Ă AutpXq be a non-elementary group of automorphisms of a complex projective surface. Fix a probability measure ν on Γ satisfying the generating condition

(S)

Supppνq generates Γ and the moment condition

(M) ż ´log }f } C 1 pXq `log › › f ´1› › C 1 pXq ¯dνpf q ă `8.
Condition (S) is natural if we want the random dynamics to faithfully describe the group action and necessary. Condition (M) is necessary to apply the tools of smooth ergodic theory; note that by the Cauchy estimates, it automatically implies the same finiteness for the C k norm. Pick an ergodic ν-stationary measure µ. Then µ admits two Lyapunov exponents λ ´ď λ `.

These exponents are defined by applying the Oseledets theorem fiberwise to the (non-invertible) dynamical system associated to the random dynamics:

(1.7)

F `: Ω ˆX ÝÑ Ω ˆX pω, xq Þ ÝÑ pσω, f 1
ω pxqq where Ω " AutpXq N , ω " pf n q ně0 , σ is the shift and f n ω " f n´1 ˝¨¨¨¨¨¨˝f 0 (so that f 1 ω " f 0 ). If λ ´ă 0 ă λ `, one says that µ is hyperbolic. Then, Oseledets theorem provides a measurable line field of stable directions E s ω pxq defined for ν N ˆµ-almost every pω, xq. We say that E s is non-random if it does not depend on ω; more precisely, if for µ-almost every x, there is a line E s pxq Ă T x X such that E s ω pxq " E s pxq for ν N -almost every trajectory ω. Our first key result is the following (see [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]Thms C and 9.1]).

Theorem 1.7. Let Γ Ă AutpXq be a non-elementary group of automorphisms of a (necessarily projective) compact complex surface. Let ν be a probability measure on Γ satisfying Conditions (S) and (M), and let µ be a Zariski diffuse, ergodic, and hyperbolic ν-stationary measure. If the field of Oseledets stable directions is non-random, then µ is Γ-invariant.

When λ `ě λ ´ě 0, the invariance principle of Crauel [START_REF] Crauel | Non-Markovian invariant measures are hyperbolic[END_REF] (this terminology is due to Avila-Viana [START_REF] Avila | Extremal Lyapunov exponents: an invariance principle and applications[END_REF]) directly implies that µ is invariant. Thus, if Γ preserves a volume form, we have λ ``λ ´" 0, and for the stiffness problem we just have to consider hyperbolic measures. Now, assume in addition that X and Γ are defined over R, that XpRq is non-empty, and that Γ preserves an area form on XpRq; more generally, we can consider a Γ-invariant, smooth, totally real surface Σ Ă X on which Γ preserves an area form. Then, we can apply the results of Brown and Rodriguez Hertz [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF], which assert that for a volume preserving action on a 2-dimensional real surface, the randomness of the stable line field E s ω pxq implies the invariance of µ (see [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]Thm 3.4]). From this and the previous considerations, we get: Theorem 1.8. Let Γ Ă AutpXq be a non-elementary group of automorphisms of a compact complex surface. Let ν be a probability measure on Γ satisfying Conditions (S) and (M). Let Σ Ă X be a Γ-invariant, smooth, totally real surface that supports a Γ-invariant area form. Then, any Zariski diffuse ν-stationary measure on Σ is Γ-invariant.

We expect that similar techniques will provide the same result on the complex surface X, without restricting to a real submanifold. Indeed, the following result ought to be true: under the assumptions of Theorem 1.7, if Γ preserves a smooth volume form on X, then every Zariski diffuse ν-stationary measure is Γ-invariant. In particular, this automatic invariance of Zariski diffuse stationary measures should hold for K3 surfaces. At the time of writing these lines, new results have been announced by Brown, Eskin, Filip and Rodriguez-Hertz [15], which should complete this story. Notes on the proof.-The proof of Theorem 1.7 occupies most of [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]. It relies on the following chain of ideas: if E s is non-random then either (1) µ satisfies a strong form of zero fiber entropy (see Section 2 for this notion) which makes it invariant or (2) the (global) stable manifolds W s ω pxq, obtained from Pesin theory, are non-random as well. Now, almost every stable manifold W s ω pxq is biholomorphic to C and, to any non-constant entire curve C Ñ X, one can associate its so-called Ahlfors-Nevannlina currents (obtained as limits of integration on large disks in C). Thus, to almost every point pω, xq is associated a set of closed positive currents. In this dynamical situation, we show that there is in fact a unique current T s ω associated to W s ω pxq and that T s ω depends only on ω. Thus, if the stable manifolds are non-random, the T s ω are non-random as well, hence so are their cohomology classes rT s ω s P H 2 pX, Rq. But these cohomology classes can be analyzed by looking at the action of Γ on H 2 pX; Rq. Using Furstenberg's theory of random products of matrices (applied to the action of pΓ ˚, νq on H 2 pX, Rq) and the non-elementary assumption, we prove that these classes rT s ω s should in fact depend non-trivially on ω. This contradiction rules out case (2), and the theorem follows.

1.5. A new instance of stiffness. Theorem 1.8 requires the existence of an invariant area form. In Part 3, we study a family of examples on rational surfaces, first defined by Blanc in [START_REF] Blanc | On the inertia group of elliptic curves in the Cremona group of the plane[END_REF], that do not preserve any smooth volume form. The following theorem summarizes the main properties of our examples: Theorem 1.9. Let C be a smooth, connected, real cubic curve in P 2 . Let k ě 4 be an integer. One can find a set of 5k points of CpCq, consisting of 3k real points and k pairs of complex conjugate points, such that, after blowing up the plane at these 5k points, one gets the following objects:

(1) a rational surface X, in which the strict transform C X of C is a curve of genus 1;

(2) a non-elementary group Γ Ă AutpXq isomorphic to the free product ˚k 1 Z{2Z;

(3) a rational 2-form Ω X that does not vanish, has poles of order 1 along C X , and is Γinvariant; (4) X, Γ, C X , and Ω X are defined over R; the total volume of Ω X ^ΩX is infinite and, after restriction to XpRq, the total area of Ω X is also infinite.

The dynamics on XpCq satisfies:

(5) every orbit Γ ¨x Ă XpCq is infinite, except for x P C X pCq, in which case Γ ¨x " txu; (6) pΩ X ^ΩX q-almost every Γ-orbit is dense in XpCq.

And for the real dynamics on XpRq we get:

(7) every infinite orbit in XpRq is dense in XpRq;

(8) if ν is a probability measure on Γ satisfying Conditions (S) and (M), then every ergodic ν-stationary measure on XpRq is a Dirac mass δ x at some point x P C X pRq; such stationary measures have zero Lyapunov exponents; (9) the action of Γ on H 1 pXpRq; Rq has a positive Lyapunov exponent (in the sense of Furstenberg's theory).

The last property contains in particular the existence of automorphisms f P Γ with an eigenvalue ą 1 on H 1 pXpRq; Rq: such automorphisms have positive entropy in the real locus XpRq.

The proof occupies all of Part 3 and uses most of our previous results. In particular, the data (C and the points that we blow up) must be defined over Q.

It is interesting to compare this family of examples with the following ones coming from homogeneous dynamics.

Example 1.10. Consider the group SL 2 pRq, acting by linear projective transformations on the real projective line P 1 pRq. The diagonal action on P 1 pRq ˆP1 pRq preserves the form (1.8) dx ^dy px ´yq 2 . This meromorphic section of the canonical bundle K P 1 ˆP1 does not vanish and has a double pole along the diagonal; its total area is infinite. Now, consider Γ " SL 2 pZq Ă SL 2 pRq acting diagonally on P1 pRq ˆP1 pRq. The closure of every Γ-orbit is equal to P 1 pRq ˆP1 pRq or to ∆. If ν is a probability measure on Γ satisfying Condition (S), then there is a unique ν-stationary measure µ ν on P 1 pRqˆP 1 pRq, this measure is supported on ∆, and it is not invariant. Moreover, the action of Γ on π 1 pP 1 pRq ˆP1 pRqq » Z 2 is trivial, and the entropy of every f P Γ vanishes. The standard action of SL 2 pZq on R 2 Ă P 2 pRq provides a similar example, for which the origin is fixed and rational points have discrete orbits in R 2 .

Notes on the proof.-The mechanism for the stiffness property in Theorem 1.9 is quite different from that of Theorem 1.8. This time, we use Theorem 1.7 and [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF], together with the existence of a singular invariant volume to prove by contradiction that all ergodic stationary probability measure µ have vanishing Lyapunov exponents. So by the invariance principle all stationary measures are invariant, and the existence of parabolic elements in the group allows for a complete classification (see Theorem 1.13 below).

All the examples of non-elementary groups encountered so far admit an invariant probability measure.

Question 1.11. Does there exist a non-elementary group action on a rational projective surface without any invariant probability measure?

Such an example could be found only on a rational surface. A natural candidate would be Lesieutre's tri-Coble examples, briefly described in § 4.4 below.

Another question, which is somehow dual to the previous one, is the following:

Question 1.12. If Γ Ă AutpXq is a non-elementary subgroup preserving a smooth volume form, does Γ admit a hyperbolic stationary measure on X (for some probability measure on Γ satisfying (S) and (M))?

If Γ possesses a parabolic element, then by [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]Thm 1.3], the invariant volume itself is hyperbolic. In the general case, if there is no hyperbolic measure, then by the invariance principle, every stationary measure is invariant, so this is really a question about the classification of invariant measures (more precisely, about the second line of the table in Section 2). Note that without the volume preserving assumption, Theorem 1.9 shows that the answer to this question (on XpRq) is negative. Note also the connection with the following fundamental open problem from conservative dynamics: if f is a volume-preserving loxodromic automorphism on a compact complex surface X, does the invariant volume have positive measure theoretic entropy?

These questions, as well as the proof of Theorem 1.9 are a source of motivation for the classification of invariant measures, which we discuss now. 1.6. Classification of invariant measures. Probability measures invariant under a non-elementary group are subject to so many constraints that it is reasonable to hope for a complete classification. Still, in its full generality, this problem remains out of reach for the moment 1 . Theorem 1.13. Let Γ Ă AutpXq be a non-elementary group of automorphisms of a projective surface containing a parabolic element. Let µ be an ergodic, Zariski diffuse, Γ-invariant measure. There exists a proper Γ-invariant subvariety Z Ă X such that:

either µ is a measure with a smooth positive density in XzZ; -or there exists a Γ-invariant totally real surface embedded in XzZ such that µ is a measure with a smooth positive density on Σ.

This result, obtained in [START_REF] Cantat | Sur la dynamique du groupe d'automorphismes des surfaces K3[END_REF][START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF], shows that if Γ is non-elementary and contains a parabolic element, the classification problem for invariant measures is completely solved (see [25, Thm A] for a precise statement). This classification comes with an almost complete description of orbit closures (which is most satisfactory under additional assumptions, see § 1.9). A consequence of this classification and of the results described in Section 1.7 is that if Γ does not preserve any curve, there are only finitely many ergodic Γ-invariant measures, unless X is a torus. Notes on the proof.-The first input to prove Theorem 1.13 is that if h P Γ is a parabolic automorphism preserving the fibers of a genus 1 fibration π : X Ñ B, then h acts as a uniquely ergodic translation on most fibers of π (it also acts periodically on a dense, countable set of fibers). Thus, any h-invariant measure can be described in terms of its disintegration along the fibers of π. From this it follows rather easily that any ergodic Zariski diffuse Γ-invariant measure satisfies a local homogeneity property (i.e. some local invariance under connected groups of translations), which implies that it is either absolutely continuous with respect to the Lebesgue measure on X, or to the Lebesgue measure on an immersed totally real surface Σ. The delicate issue is to show, in the latter situation, that Σ globalizes to an embedded submanifold outside some algebraic subset Z.

When Γ does not contain parabolic elements, the classification of invariant measures is still at an early stage, and is arguably the main open problem in our program. It can be subdivided in several sub-problems of independent interest; since the discussion at this point becomes rather technical, we defer it to Section 2. Let us just mention one open question, which we formulate in the easiest context of automorphisms of the affine plane.

Question 1.14. Can one construct two polynomial automorphisms f and g of C 2 such that (i) f and g fix the origin o; (ii) there is a germ of holomorphic diffeomorphism ϕ : pC 2 , oq Ñ pC 2 , oq that conjugates f and g simultaneously to two elements of SU 2 pCq; (iii) the group generated by f and g is a non-Abelian free group.

Our expectation is that such an example does not exist. If such an example were to be found, it would have an invariant probability measure for each small sphere centered at the origin. 1.7. Finite orbits and arithmetic dynamics. For a non-elementary group Γ, the existence of a finite orbit is an overdetermined property. Indeed, if f P AutpXq is a loxodromic element, then its periodic points of sufficiently large period form a countable subset of X, and any Γ-periodic point must be f -periodic for every f P Γ. Since Γ is non-elementary, it contains two loxodromic automorphisms f and g satisfying no algebraic relation (see § 1.2). In this case it is expected that Perpf q X Perpgq is finite, or contained in a curve of xf, gy-periodic points Example 1.15. To implement these ideas, a first approach is to work in families and prove generic results. In the family of Wehler examples (see Example 1.5), we proved in [24, Thm A] that a very general member has no periodic orbit. Such a result is still open for other natural families (see Questions 4.2 and 6.6 below). In this paper, we develop new methods to get similar results for pentagon foldings (see Part 2) and Blanc's examples (see Part 3).

A deeper problem is to deal with specific, individual examples. Then the existence of infinitely many finite orbits for a non-elementary group falls into the setting of unlikely intersection problems (see [START_REF] Zannier | Some Problems of Unlikely Intersections in Arithmetic Geometry[END_REF]), and it will not be a surprise to the experts that methods from arithmetic geometry arise here. For instance, the following result was established in [START_REF] Cantat | Finite orbits for large groups of automorphisms of projective surfaces[END_REF]Thm B].

Theorem 1.16. Let X be a projective surface defined over Q. Let Γ Ă AutpXq be a nonelementary group, defined over Q and containing a parabolic element. If PerpΓq is Zariski dense, then pX, Γq is a Kummer example.

Thus, when X is not a Kummer surface, PerpΓq is the union of a Γ-invariant curve, together with finitely many isolated points 2 . Notes on the proof.-Fix a probability measure ν on Γ with finite support generating Γ. First, we construct a height function h ν on XpQq such that ř f νpf qh ˝f " λ ν h for some λ ą 1. It follows that Γ-periodic points have zero height. Assuming the existence of a Zariski dense set of periodic orbits, and using Yuan's equidistribution theorem for small points, we construct a Γ-invariant measure with special properties. To conclude, we use the classification of invariant measures described in Theorem 1.13, and a rigidity result proved in [START_REF] Cantat | Automorphisms of surfaces: Kummer rigidity and measure of maximal entropy[END_REF]. The existence of parabolic elements is used at several places in the proof, notably to apply Theorem 1.13 (see [24, §6.3] for a discussion). Corvaja, Tsimerman and Zannier [START_REF] Corvaja | Finite orbits in surfaces with a double elliptic fibration and torsion values of sections[END_REF] recently proved a closely related theorem which also requires parabolic elements. Their proof is based on different ideas (ominimal geometry, variation of the canonical height for families of elliptic curves, etc).

Remark 1.17. In [START_REF] Fuchs | Orbits on K3 surfaces of Markoff type[END_REF], Wehler examples with a finite but large number of periodic points are constructed. In the closely related case of Markov type surfaces (1.9)

x 2 `y2 `z2 " xyz `ax `by `cz `d, where pa, b, c, dq P C 4 is a parameter, all possible finite orbits have been classified (see [START_REF] Lisovyy | Algebraic solutions of the sixth Painlevé equation[END_REF]).

The only parameter with infinitely many periodic orbits is p0, 0, 0, 4q; the corresponding surface is the quotient of the multiplicative group C ˆˆC ˆby the involution pu, vq Þ Ñ p1{u, 1{vq, and the group action on M p0,0,0,4q lifts to the monomial action of GL 2 pZq; finite orbits correspond to torsion points. Thus, the situation is perfectly similar to that of Kummer examples, but for a multiplicative torus.

Surprisingly enough, Theorem 1.16 can be used to prove the same result when X and Γ are defined over C; in that case we must suppose (for technical reasons) that Γ does not preserve any curve, and the existence of infinitely many periodic orbits then implies that X is a torus (see [24, Thm C]). Related, stronger, results were obtained for polynomial automorphisms of C 2 , and more generally affine surfaces [START_REF] Dujardin | The dynamical Manin-Mumford problem for plane polynomial automorphisms[END_REF][START_REF] Abboud | Sur la dynamique des endomorphismes des surfaces affines[END_REF]. This motivates the following question: 2 Here, we use the following fact: if Γ acts by automorphisms on a curve C with a Zariski dense set of periodic points, then the image of Γ in AutpCq is finite. Indeed, C has only finitely many irreducible components, and if a subgroup Γ0 acts on some irreducible component Ci by fixing a subset Fi such that the Euler characteristic of CizFi is negative, then the restriction of Γ0 to Ci is finite.

Question 1.18. Can we classify pairs of automorphisms pf, gq of positive entropy on a compact projective surface having a Zariski dense set of common periodic points? Or having the same maximal entropy measure?

Note that in the second question the common maximal entropy measure would be a xf, gyinvariant measure, so we are back to the theme of § 1.6. If one can show that this measure is smooth, then the main result of [START_REF] Cantat | Automorphisms of surfaces: Kummer rigidity and measure of maximal entropy[END_REF] implies that pX, xf, gyq is a Kummer example; the proof of Theorem 1.16 relies on this fact.

In one-dimensional algebraic dynamics, unlikely intersection problems are better understood. For instance, one can produce uniform bounds on the number of common periodic points (instead of orbits) for pairs of distinct quadratic maps z Þ Ñ z 2 `c, z Þ Ñ z 2 `c1 : we refer to [START_REF] Demarco | Uniform Manin-Mumford for a family of genus 2 curves[END_REF][START_REF] Demarco | Common preperiodic points for quadratic polynomials[END_REF] for precise results. Here is a version of this problem for non-elementary groups of automorphisms: Question 1. [START_REF] Cantat | Painlevé and Schrödinger[END_REF]. Is there a uniform bound for # PerpΓq in the family of (smooth) Wehler examples?

Note that for a general parameter in the Wehler family there is no invariant curve, so PerpΓq is indeed finite (see [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]Prop. 3.6]). Examples of Wehler groups with # PerpΓq ě 288 were constructed in [START_REF] Fuchs | Orbits on K3 surfaces of Markoff type[END_REF] (see Remark 1.17). On the other hand, some singular Wehler examples are Kummer hence give rise to a dense set of periodic orbits (see [START_REF] Cantat | Quelques aspects des systèmes dynamiques polynomiaux: existence, exemples, rigidité[END_REF]Ex. 8.3]).

Let us conclude this section with a last question which may be considered as a variation on a prediction of Kawaguchi and Silverman [START_REF] Kawaguchi | On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties[END_REF]. Assume that X and Γ are defined over Q and that Γ is non-elementary. Fix a polarization H of X, denote by h : XpQq Ñ R `a Weil height associated to H. For every f P AutpXq, let (1.10) deg H pf q " H ¨pf ˚H q.

Fix a point x P XpQq with a Zariski dense orbit, and set (1.11) N px; Rq :" # ty P Γ ¨x ; hpyq ď Ru .

Kawaguchi and Silverman suggested that the Zariski density of Γ ¨x should imply that hpf pxqq is of the same order of magnitude as degpf q. More precisely, introduce the counting function (1.12) N deg pRq :" # tf P Γ ; degpf q ď Ru , and ask:

Question 1.20. If Γ Ă AutpXq is a non-elementary automorphism group defined over Q, and x P X has a Zariski dense orbit, does N px; Rq grow like N deg pRq?

The group Γ acts on a hyperbolic space H X Ă H 1,1 pX; Rq (see Section 3), and logpdeg H pf qq is comparable to the distance in H X between the cohomology class pH ¨Hq ´1{2 rHs and its image by f ˚. From this, we see that N deg pRq is a classical counting function for orbits of discrete isometry groups in hyperbolic geometry. As a consequence, N deg pRq grows like R α , where α is the Hausdorff dimension of the limit set of the isometry group Γ ˚Ă IsompH X q (see [START_REF] Baragar | Orbits of points on certain K3 surfaces[END_REF][START_REF] Dolgachev | Orbital counting of curves on algebraic surfaces and sphere packings[END_REF]). Question 1.20 was answered positively by Baragar in [START_REF] Baragar | Orbits of points on certain K3 surfaces[END_REF] for some K3 examples; this problem is also well understood for Markov surfaces (see [START_REF] Gamburd | Arithmetics and dynamics on varieties of Markoff type[END_REF] for an account). The interested reader should also consult [START_REF] Filip | Canonical currents and heights for K3 surfaces[END_REF].

1.8. Equidistribution and uniform expansion. Up to now, we addressed Problems (Pb2), (Pb3), (Pb5), i.e. the study of stationary and invariant measures. We asserted in § 1.1 that classifying stationary measures is the key step to understand the asymptotic, stochastic distribution of orbits, or more precisely the limiting behavior of the averages (1.2) and (1.3). This assertion, while certainly correct, hides a final difficulty. Imagine an ideal situation where the set of ν-stationary measures is completely described, and its extremal points are given by some smooth (or Zariski diffuse) measure µ 0 and a finite or countable set of finite orbits. If x P X is a general point, the limit points of the averages (1.2) and (1.3) are convex combinations of these ergodic measures. The problem is to decide which combinations do arise; this is where uniform expansion comes into play. Let ν be a probability measure on AutpXq, and set Γ " xSupppνqy. We say that ν is uniformly expanding if there exists c ą 0 and an integer n 0 such that for every x P X and every v P T x Xzt0u, (1.13)

ż log }D x f pvq} }v} dν pn 0 q pf q ě c,
where ν pnq denotes the n th convolution power of ν, and the norm is relative to some given Riemannian metric on X. This notion was introduced in non-linear random dynamics in [START_REF] Liu | Lyapunov Exponents Approximation, Symplectic Cocycle Deformation and a Large Deviation Theorem[END_REF][START_REF] Ngai | Stationary measures and orbit closures of uniformly expanding random dynamical systems on surfaces[END_REF], notably to get equidistribution results analogous to those obtained in homogeneous dynamics in [START_REF] Eskin | Recurrence properties of random walks on finite volume homogeneous manifolds[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (III)[END_REF]. Now, suppose that ν is uniformly expanding and satisfies (M `) there exists p ą 1 such that

ż ´log }f } C 1 pXq `log › › f ´1› › C 1 pXq ¯p dνpf q ă `8.
Let F be a finite Γ-orbit. Then, if x P X has an infinite orbit, any cluster value of the sequence of measures in (1.2) or (1.3) gives zero mass to F (see [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]Thm 4.3]). Indeed, the uniform expansion condition makes F repelling on average, an idea which is formalized by the notion of Margulis function. So in the ideal situation described above, every infinite orbit equidistributes towards the smooth stationary measure µ 0 . Moreover, in the real volume-preserving setting, where two natural Zariski diffuse ergodic measures exist, given respectively by an invariant volume form on X and an invariant area form on XpRq, we can also decide which orbits are equidistributed with respect to the first or the second measure (see [23, §4.3]).

In homogeneous dynamics, establishing uniform expansion boils down to an expansion property for a random product of matrices. In a non-linear context, the situation is more delicate; fortunately, an abstract ergodic criterion for expansion was devised in [START_REF] Liu | Lyapunov Exponents Approximation, Symplectic Cocycle Deformation and a Large Deviation Theorem[END_REF][START_REF] Ngai | Stationary measures and orbit closures of uniformly expanding random dynamical systems on surfaces[END_REF], which fits well with our holomorphic setting. This leads to a neat necessary and sufficient condition for uniform expansion on non-rational surfaces (see [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]Thm 1.5]): Theorem 1.21. Let X be a compact complex surface which is not rational. Let Γ Ă AutpXq be a non-elementary group containing parabolic elements. Let ν be a probability measure on AutpXq satisfying Conditions (S) and (M). Then, ν is uniformly expanding if and only if the following two conditions hold:

(1) every finite Γ-orbit is uniformly expanding;

(2) there is no Γ-invariant algebraic curve.

Again, we assume that Γ contains a parabolic element because the classification of invariant measures is used in the proof.

In many interesting situations, we have a family pX λ ; Γ λ q λPΛ of non-elementary automorphism groups, parameterized by some quasi-projective manifold. Then, as in Example 1.15, we developed tools to exclude the existence of proper, Zariski closed invariant subsets for very general parameters λ P Λ. Hence, for these parameters, uniform expansion holds. In addition, Condition 1.13 is robust under C 1 perturbations, so this dense subset of uniformly expanding parameters is automatically promoted to an open and dense subset. In Part 2, we apply these ideas to the dynamics of random pentagon foldings.

Another interesting consequence of uniform expansion is that a volume preserving uniformly expanding action on a (connected, compact, real or complex) surface is automatically ergodic with respect to the invariant volume. This follows from a Hopf-type argument (see [START_REF] Dolgopyat | On simultaneous linearization of diffeomorphisms of the sphere[END_REF][START_REF] Ngai | Stationary measures and orbit closures of uniformly expanding random dynamical systems on surfaces[END_REF]). An interesting question (which goes beyond complex dynamics) is whether such an ergodicity can be made quantitative (for uniformly expanding actions). To formalize this question, denote by dvol the invariant volume form. Then, consider the Markov operator (1.14)

P ν : ϕ Þ Ñ ż ϕ ˝f dνpf q
acting on some Banach space of continuous functions. Then, the question is to determine the speed of convergence of P n ν towards ş ϕ dvol. Is it exponential? A positive answer seems beyond reach for the moment, since it is open even in the homogeneous case, except for linear maps on tori, for which the Fourier techniques of [START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF] provide effective estimates.

1.9. Back to orbit closures. Putting together the results of § § 1.4, 1.6, 1.7 and 1.8, we arrive at a complete understanding of orbit closures, under rather strong assumptions (see [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]Thm. 10.1]).

Theorem 1.22. Let X be a compact complex surface which is not rational. Let Γ Ă AutpXq be a non-elementary group containing parabolic elements, and satisfying conditions (1) and (2) of Theorem 1.21. Then there exists a finite set F and a real-analytic (possibly singular) totally real surface Σ, both Γ-invariant, such that

-if x P F then Γ ¨x is finite; -if x P ΣzF , then Γ ¨x is a union of components of Σ; -otherwise Γ ¨x " X.
Under less stringent hypotheses, but still assuming that Γ contains parabolic elements, weaker results on orbit closures are obtained in [25, §8], which deserve further study.

Problem 1.23. Complete the classification of orbit closures when Γ is non-elementary and contains a parabolic element.

Comments.-In [25, §8], we classified closed, Γ-invariant subsets F whose accumulation locus AccpFq is not contained in some explicit invariant algebraic subset STang Γ . Thus, when there is no proper invariant algebraic subset, or more generally when uniform expansion holds, this leads to a complete classification. In the general case we must understand the situation where AccpΓ ¨xq Ă STang Γ . It is easy to see that in this situation x must be g-periodic for each parabolic g P Γ. In this case one expects that x P PerpΓq, but this result is not yet available (see [START_REF] Corvaja | Finite orbits in surfaces with a double elliptic fibration and torsion values of sections[END_REF] for partial results). See Theorem 10.5 below for a worked out example.

APPENDIX: CLASSIFICATION OF INVARIANT MEASURES

This section is a complement to § 1.6 and may be skipped on a first reading. We discuss what needs to be done to describe invariant probability measures for non-elementary groups that, a priori, do not contain parabolic elements.

2.1. Reducing the number of cases. We fix a complex projective surface X and a non-elementary subgroup Γ of AutpXq. Let µ be a Zariski diffuse, ergodic, Γ-invariant probability measure. It is useful to introduce a probability measure ν on Γ satisfying Conditions (S) and (M) in order to speak about the Lyapunov exponents of µ; since they depend on ν, we denote them by λ ´pνq ď λ `pνq.

A preliminary observation is that the exponents cannot be simultaneously positive (resp. negative), because in such a case a classical Pesin-theoretic argument implies that µ would be atomic. So λ ´pνq ď 0 ď λ `pνq and if λ ´pνq " λ `pνq, then both exponents vanish. This gives three distinct possibilities: either λ ´pνq ă 0 ă λ `pνq, or exactly one of the exponents vanish, or both of them vanish. We shall also distinguish three possibilities, depending on the number of invariant line fields: (1) no invariant line field, or pair of invariant line fields; (2) there exists a measurable Γ-invariant line field E Ă T X; (3) there exists an invariant measurable pair of line fields E 1 , E 2 Ă T X. This leads to the following table of 12 possibilities: no invariant line field or pair of line fields

DE ď T X invariant line field DE 1 , E 2 ď T X pair of invariant line fields Dν, λ `pνq " λ ´pνq " 0 A1 A2 A3 @ν, λ `pνq " λ ´pνq " 0 B1 B2 B3 Dν, λ ´ă λ `& λ ´λ`" 0 C1 C2 C3 Dν, λ `pνq ă 0 ă λ ´pνq D1 D2 D3
Let us discuss this table and the relationship between its entries. Note that the third row of this table does not appear in the volume preserving case.

2.1.1. The first column. The case when both exponents vanish (the first line) is analyzed in Section 7 of [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]. In case A1, Theorems 7.2 and 7.3 of [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF] imply that the cocycle given by the action of Γ on the projectivization of the tangent space is measurably reducible to a compact group. In particular A1 implies B1.

The proof of Theorem 5.1 in [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF] (see §13.2.4) shows that case C1 reduces to case D1.

2.1.2. The second column. When there is a measurable invariant line field x Þ Ñ Epxq, the Lyapunov exponent in the direction of E, which is one of λ ´pνq or λ `pνq, is given by the explicit formula

(2.1) λ E pνq " ż log › › Df | Epxq › › dµpxqdνpf q " ż λ E pf, µqdνpf q,
where λ E pf, µq is the integrated Lyapunov exponent of µ as an f -invariant measure (note that µ is not necessarily f -ergodic). The second exponent admits also a simple expression, because it is equal to λ ´pνq `λ`p νq ´λE pνq, and

(2.2) λ ´pνq `λ`p νq " ż log |Jacf pxq| dµpxqdνpf q,
where Jac is the Jacobian determinant with respect to any given smooth volume form on X.

Let us show that A2 reduces to B2, C2 or D2. There are two possibilities: either λ E pf, µq " 0 for every f , or not. In the first case we are in situation B2. In the second, we can change ν to put more weight on an element with λ E pf, µq ‰ 0 to impose λ E pνq ‰ 0; doing so, we fall in C2 or D2 (moreover, in C2 the non-vanishing exponent is along the invariant line field).

The third column.

There are two possibilities: either every f P Γ preserves (resp. exchanges) the directions E 1 and E 2 almost everywhere, or not. In the first case, there is an index 2 subgroup preserving both directions, and we are in a special case of column 2. Otherwise, the directions are intertwined by the dynamics, and we claim that we are in case B3 (this argument is a variation on [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]Lem. 5.2]). Indeed, note that by definition there is a set of positive, hence full, µ-measure where E 1 pxq ‰ E 2 pxq, and let

(2.3) Λpνq " 1 2 ż `log › › Df | E 1 pxq › › `log › › Df | E 2 pxq › › ˘dµpxqdνpf q.
By ergodicity, for pν N ˆµq-almost every pω, xq and every

v P E 1 pxq Y E 2 pxqz t0u, (2.4 
)

lim nÑ`8 1 n log }Df n ω pxq} " Λpνq.
If λ `pνq " λ ´pνq, then, by the preliminary remark, both exponents vanish. If λ ´pνq ă λ `pνq, then by Oseledets' theorem, for µ-a.e. x there is a line

E s pxq such that if v R E s pxq, then 1 n log }Df n ω pxq} Ñ λ `. Thus E s pxq R tE 1 pxq, E 2 pxqu and Λ " λ `.
But now there is a set of 3 invariant directions, so the projective tangent action recurs to a compact set (see the proof of Theorem 7.3 in [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]) and we conclude that λ `pνq " λ ´pνq " 0, a contradiction.

2.1.4. Summary. After these reductions, the situation is summarized in the following table. Colored cells do not need to be treated because they reduce to other ones.

no invariant line field or pair of line fields

DE ď T X invariant line field DE 1 , E 2 ď T X pair of invariant line fields Dν, λ `pνq " λ ´pνq " 0 @ν, λ `pνq " λ ´pνq " 0 B1: Fatou behavior? B2 B3 Dν, λ `ă λ ´& λ ´λ`" 0 C2 Dν, λ `pνq ă 0 ă λ ´pνq D1: µ homogeneous? D2: µ not Z. diffuse? 2.2.
Comments. Let us now analyze some of the remaining cases. We first note that we do not know any example, nor even a possible model for the dynamics, for the cases B2, B3, and C2 (in C2 it would make sense to further distinguish the cases whether the Lyapunov exponent in the invariant direction vanishes or not).

' B1: in that case, [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF]Thm. 7.3] shows that the cocycle describing the action of Γ on the projectivized tangent bundle of X is measurably reducible to a compact subgroup of GL 2 pCq. This suggests a Fatou-type behavior for the dynamics. Must an invariant measure of type B1 be contained in the Fatou set of the Γ-action? As far as we know, there is no known example of a Fatou domain for a non-elementary group action by automorphisms on a projective surface. See Question 1.14 for a related problem.

' D1: µ is hyperbolic and there is no invariant line field. The techniques of [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF] show that in this case µ has some homogeneity properties along stable and unstable manifolds. This implies in particular that µ has positive fiber entropy (as a ν-stationary measure). In a nutshell, recall that the fiber entropy can be defined by (2.5) h µ pX, νq " h ν N ˆµpF `q ´hν N pσq and it quantifies the relative entropy of F `in the fibers of the projection Ω ˆX Ñ X (of course this definition needs to be adapted when h ν N pσq " 8, see [26, §7.6] for a brief presentation).

In the volume preserving (rational) case, it should expected that, under assumption D1, µ is either absolutely continuous or absolutely continuous along some real analytic surface Σ. In the general case, this has to be replaced by a SRB property. Partial results in this spirit include [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]Thm 5.1] and [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]Thm 11.1] for the real case. In the general complex case, such a result seems to be out of reach for the moment, even using [15]. The most delicate point would be to construct Σ from an information on the stable and unstable conditionals of µ only.

' D2: µ is hyperbolic and there is an invariant line field. Since µ is Γ-invariant, the natural extension of pF `, ν N ˆµq is pF, ν Z ˆµq, where F is the skew product over the 2-sided shift associated to the random dynamical system pX, ν, µq (see [26, §7.1]). For this invertible dynamical system, the invariant line field corresponds to either E s or E u . Note that by the invariance of µ, F ´1 is the skew product map associated to the random dynamical system induced by the reversed measure ν, defined by νpf q " νpf ´1q. Therefore, if E " E u , E is the stable Oseledets bundle associated to the random dynamical system pX, ν, µq. From this discussion, we conclude that in either case we may assume that E " E s , i.e. the field of Oseledets stable directions is non-random. Theorem 9.1 in [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF] then asserts that h µ pX, νq " 0, and furthermore by [23, Thm. B.1], h µ pf q " 0 for every f P Γ. In other words, µ is a common zero entropy measure for all group elements. We expect that such a situation does not happen, so the conclusion should be that a Zariski diffuse invariant measure cannot satisfy D2.

2.3.

A dual point of view and an example. Let us remark that another way of formulating this problem is to start with a loxodromic automorphism f of X and some f -invariant measure µ and to ask for a description of the stabilizer of µ in AutpXq (cf. [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]Thm 5.1] and [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]Thm 11.1]). Here is one instance of this problem: Question 2.1. Let f be a loxodromic automorphism of a complex projective surface X, and let µ f be its unique invariant measure of maximal entropy. Is the stabilizer of µ in AutpXq virtually Abelian?

To conclude, we answer a similar question in the specific case of polynomial automorphisms of the plane. One goal here is to illustrate some dynamical similarities between affine and projective surfaces. Before stating our result, recall that the Jacobian determinant Jacpf q of such an automorphism f is constant; when Jacpf q " ˘1, the Lebesgue measure Leb R 2 is invariant and f is said to be conservative. Theorem 2.2. Let f be a polynomial automorphism of R 2 . Let µ be an ergodic f -invariant measure with positive entropy supported on R 2 . If g P AutpR 2 q satisfies g › µ " µ, then:

(a) either f and g are conservative and µ is the restriction of Leb R 2 to a Borel set of positive measure invariant under f and g; (b) or the group generated by f and g is solvable and virtually cyclic; in particular, there exists pn, mq P Z 2 ztp0, 0qu such that f n " g m .

Remark 2.3. With the techniques developed in [START_REF] Cantat | Painlevé and Schrödinger[END_REF], the same result should apply to the dynamics of OutpF 2 q acting on the real part of the character surfaces of the once punctured torus.

Sketch of Proof.

Since the proof is a direct adaptation of [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]Thm 11.1], we briefly explain the argument and leave the details to the reader. Set Γ " xf, gy. Since its entropy is positive, f is of Hénon type in the sense of [START_REF] Lamy | L'alternative de Tits pour AutrC 2 s[END_REF]: it is conjugate to a composition of generalized Hénon maps, as in [START_REF] Friedland | Dynamical properties of plane polynomial automorphisms[END_REF]Thm. 2.6]. Thus, the support of µ is a compact subset of R 2 , because the basins of attraction of the line at infinity for f and f ´1, respectively, cover the complement of a compact subset of C 2 . In addition µ must be Zariski diffuse, because its entropy is positive.

Let w be an element of Γ and set h " wf w ´1; then h is also of Hénon type. We follow the proof of [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]Thm 11.1], which leads us to three cases.

Case 3 is treated exactly in the same way and implies that µ is absolutely continuous. This implies that f is conservative and, µ being ergodic for f , it must be the restriction of Leb R 2 to some Γ-invariant subset.

In Cases 1 and 2, arguing as in [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]Thm 11.1] and keeping the same notation, we arrive at W s ph, xq " W s pf, xq or W u pf, xq on a set of positive measure. For a Hénon type automorphism of C 2 , the closure of any stable manifold is equal to the forward Julia set J `, and J carries a unique positive closed current T `of mass 1 relative to the Fubini Study form in P 2 pCq (see [START_REF] Sibony | Dynamique des applications rationnelles de P k . In Dynamique et géométrie complexes[END_REF]). So we infer that T h " T f or T h " T f ; as a consequence, the Green functions of f and h satisfy G h " G f or G h " G f , respectively.

The group AutpC 2 q is the amalgamated product the affine and the elementary subgroups along their intersection. Let T be the associated Bass-Serre tree. Each u P AutpC 2 q gives rise to an isometry u ˚of T and, u is of Hénon type if and only if u ˚is loxodromic (its axis Geopu ˚q is the unique u ˚-invariant geodesic, and u ˚acts as a translation along it). From [START_REF] Lamy | L'alternative de Tits pour AutrC 2 s[END_REF]Thm. 5.4],

G h " G f implies Geoph ˚q " Geopf ˚q; changing f into f ´1, G h " G f gives Geoph ˚q " Geopf ´1
˚q " Geopf ˚q because Geopf ´1 ˚q " Geopf ˚q. Since w ˚Geopf ˚q " Geoph ˚q, we see that Γ preserves Geopf ˚q; so, all u P Γ of Hénon type satisfy Geopu ˚q " Geopf ˚q. From [67, Prop. 4.10], we conclude that Γ is solvable and virtually cyclic.

Part 1. Classification and first examples

SURFACES ADMITTING NON-ELEMENTARY GROUPS OF AUTOMORPHISMS

3.1. More Kähler vovabulary. Let X be a compact Kähler surface. Recall from § 1.1 that a subgroup Γ Ă AutpXq is non-elementary when its image Γ ˚Ă GLpH ˚pX, Zqq contains a non-Abelian free subgroup. By Hodge theory, Γ acts on H 1,1 pX, Rq by preserving the intersection form, which is of Minkowski type; thus Γ acts by isometries on the associated hyperbolic space H X , which is the component of the hyperboloid

(3.1) u P H 1,1 pX, Rq; xu|uy " 1 (
containing the class of a Kähler form. Then Γ is non-elementary in the sense of § 1.2 if, and only if the induced subgroup of IsompH X q is non-elementary in the sense of hyperbolic geometry (this is the original definition from [26, §2]). The classification of automorphisms in the elliptic, parabolic, and loxodromic types, as described in Section 1.3, corresponds exactly to the three possible types of isometries of hyperbolics spaces. By theorems of Gromov and Yomdin, f P AutpXq has positive entropy if and only if f is loxodromic: indeed, the translation length of f on H X is equal to the topological entropy of f : X Ñ X and to the logarithm of the spectral radius λpf q of f ˚on H 1,1 pX; Rq (see [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF]). By a ping pong argument (see Lemma 3.1 below), we can add the following characterization to the equivalent conditions (a)-(c) of § 1.2.

(d) Γ contains a non-Abelian free group all of whose elements (distinct from id X ) have positive entropy (i.e. are loxodromic).

3.2.

Non-elementary groups of automorphisms on general surfaces. Let M be a compact manifold. Exactly as in the complex case, let us say that a group Γ of homeomorphisms of M is non-elementary if its image Γ ˚in GLpH ˚pM ; Zqq contains a non-Abelian free subgroup.

Lemma 3.1. Let M be a compact manifold, and Γ be a non-elementary subgroup of Diff 8 pM q.

Then Γ contains a non-Abelian free group Γ 0 such that the topological entropy of every f P Γ 0 ztidu is positive.

Proof. We split the proof in two steps. The first one concerns groups of matrices, the second one is where topological entropy enters into place.

Step 1.-The image Γ ˚of Γ in GLpH ˚pM ; Zqq contains a free subgroup Γ 1 , such that every element of Γ 1 ztidu has spectral radius larger than 1.

The proof uses basic ideas involved in Tits's alternative, here in the simple case of subgroups of GL n pZq. Let N be the rank of H t.f. pM ; Zq, where t.f. stands for "torsion free". Fix a basis of this free Z-module. Then Γ ˚determines a subgroup of GL N pZq. Our assumption implies that the derived subgroup of Γ ˚contains a non-Abelian free group Γ 0 of rank 2.

If all (complex) eigenvalues of all elements of Γ 0 have modulus ď 1, then by Kronecker's lemma all of them are roots of unity. This implies that Γ 0 contains a finite index nilpotent subgroup (see Proposition 2.2 and Corollary 2.4 of [START_REF] Benoist | Sous-groupes discrets des groupes de Lie[END_REF]), contradicting the existence of a non-Abelian free subgroup. Thus, there is an element f ˚in Γ 0 with a complex eigenvalue of modulus α ą 1. Let m be the number of eigenvalues of f ˚of modulus α, counted with multiplicities.

Consider the linear representation of Γ 0 on Ź m H ˚pM ; Cq; the action of f ˚on this space has a unique dominant eigenvalue, of modulus α m ; the corresponding eigenline determines an attracting fixed point for f ˚in the projective space Pp Ź m H ˚pM ; Cqq; the action of f ˚on the topological space Pp

Ź m H ˚pM ; Cqq is proximal. Let (3.2) t0u " W 0 Ă W 1 Ă ¨¨¨Ă W k Ă W k`1 " m ľ
H ˚pM ; Cq be a Jordan-Hölder sequence for the representation of Γ ˚: the subspaces W i are invariant and the induced representation of Γ ˚on W i`1 {W i is irreducible for all 0 ď i ď k. Let V be the quotient space W i`1 {W i in which the eigenvalue of f ˚of modulus α m appears. Since Γ 0 is contained in the derived subgroup of Γ, the linear transformation of V induced by f ˚has determinant 1; thus, dimpV q ě 2. Now, we can apply Lemma 3.9 of [START_REF] Benoist | Sous-groupes discrets des groupes de Lie[END_REF] to (a finite index, Zariski connected subgroup of) Γ 0 | V : changing f if necessary, both f ˚|V and pf ´1q ˚|V are proximal, and there is an element g ˚in Γ ˚that maps the attracting fixed points a f and a f P PpV q of f ˚|V and pf ˚|V q ´1 to two distinct points (i.e. ta f , a f u X tg ˚pa f q, g ˚pa f qu " H). Then, by the pingpong lemma, large powers of f ˚and g ˚˝f ˚˝pg ˚q´1 generate a non-Abelian free group Γ 1 Ă Γ such that each element h ˚P Γ 1 ztidu has an attracting fixed point in PpV q. This implies that every element of Γ 1 ztidu has an eigenvalue of modulus ą 1 in H ˚pM ; Cq.

Step 2.-Since Γ 1 is free, there is a free subgroup Γ 1 Ă Γ such that the homomorphism Γ 1 Ñ Γ 1 is an isomorphism. By Yomdin's theorem [START_REF] Yomdin | Volume growth and entropy[END_REF], all elements of Γ 1 ztidu have positive entropy, and we are done. Theorem 3.2. Let M be a compact complex surface such that there exists a non-elementary subgroup Γ Ă AutpM q. Then M is Kähler. Proof. By Lemma 3.1, M admits an automorphism of positive topological entropy. It was shown in [START_REF] Cantat | Dynamique des automorphismes des surfaces projectives complexes[END_REF] that this property implies that M is Kähler.

Projectivity.

Theorem 3.3. Let X be a compact complex surface and Γ be a non-elementary subgroup of AutpXq. Then X is projective, and is birationally equivalent to a rational surface, an Abelian surface, a K3 surface, or an Enriques surface.

The next sections will provide examples of non-elementary groups of automorphisms for each of these four classes of surfaces.

It follows from this classification that when X is not rational, there is a canonical volume form preserved by Γ; moreover, such a form induces an invariant volume form on XpRq when the action is by real automorphisms (see [START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF]Rmk 2.3]). This constraint has deep consequences on the dynamics of Γ.

Let us prove Theorem 3.3. If Γ is a non-elementary group of automorphisms on X, Theorem 3.2 asserts that X must be Kähler. Then the last assertion of the theorem readily follows from the classification given in [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF]Thm 10.1]. What remains to show is that a compact Kähler surface admitting a non-elementary automorphism group is projective. The proof follows closely the arguments given in [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF] and [START_REF] Reschke | Salem numbers and automorphisms of abelian surfaces[END_REF]. Lemma 3.4 (see also [START_REF] Reschke | Salem numbers and automorphisms of abelian surfaces[END_REF], Thm. 2.2). Let f be a loxodromic automorphism of a compact Kähler surface X. The following properties are equivalent:

(1) on H 2,0 pX; Cq, f ˚acts by multiplication by a root of unity;

(2) X is projective. Remark 3.5. If X supports a loxodromic automorphism, then dim H 2,0 pX, Cq ď 1. When this dimension equals 1, that is when X is a torus or K3 surface, H 2,0 pX; Cq is generated by a holomorphic 2-form Ω X that does not vanish and satisfies ş X Ω X ^ΩX " 1. It is unique up to multiplication by a complex number of modulus 1. So for every f , we can write f ˚ΩX " Jpf qΩ X , and the Jacobian determinant

(3.3) f P AutpXq Þ Ñ Jpf q P U 1
defines a unitary character on the group AutpXq. It follows that the first condition of Lemma 3.4 can be reformulated as:

(1') either H 2,0 pX; Cq " 0 or Jpf q is a root of unity.

Moreover, by Kodaira's embedding theorem, X is projective when H 2,0 pX; Cq " 0.

Proof of Lemma 3.4. The characteristic polynomial χ f of f ˚: H 2 t.f. pX; Zq Ñ H 2 t.f. pX; Zq is a monic polynomial with integer coefficients. Since f is loxodromic, f ˚has a real eigenvalue λpf q ą 1. Besides λpf q and λpf q ´1, all other roots of χ f have modulus 1, so λpf q is a reciprocal quadratic integer or a Salem number (see § 2.4.3 of [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF] for more details). Thus, the decomposition of χ f into irreducible factors can be written as

(3.4) χ f ptq " S f ptq ˆRf ptq " S f ptq ˆm ź i"1 C f,i ptq
where S f is a Salem polynomial or a reciprocal quadratic polynomial, and the C f,i are cyclotomic polynomials. In particular if ξ is an eigenvalue of f ˚and a root of unity, we see that ξ is a root of R f ptq but not of S f ptq.

The subspace H 2,0 pCq Ă H 2 pX; Cq is AutpXq-invariant. By Hodge index theorem, the hermitian form Ω P H 2,0 pCq Þ Ñ ş X Ω ^Ω is positive definite and AutpXq-invariant. Thus, all eigenvalues of f ˚on H 2,0 pCq have modulus 1. Note, furthermore, that if an eigenvalue of f ˚|H 2,0 pX;Cq is not a root of unity, then it is a root of S f . Assume that all eigenvalues of f ˚on H 2,0 pX; Cq are roots of unity. Then KerpS f pf ˚qq Ă H 2 pX; Rq is a f ˚-invariant subspace of H 1,1 pX; Rq. This subspace is defined over Q and is of Minkowski type; in particular, it contains integral classes of positive self-intersection. Thus, by the Kodaira embedding theorem, X is projective.

Conversely, assume that X is projective. The Néron-Severi group NSpX; Qq Ă H 1,1 pX; Rq is f ˚-invariant and contains vectors of positive self-intersection; so, by the description of the linear action of Γ given in [26, Prop. 2.8], NSpX; Rq contains all isotropic lines associated to loxodromic automorphisms. Now, any f ˚invariant subspace defined over Q and containing the eigenspace associated to λpf q contains KerpS f pf ˚qq, hence KerpS f pf ˚qq Ă NSpX; Qq. In particular, KerpS f pf ˚qq does not intersect H 2,0 pX; Cq, which is invariant, and we conclude that all eigenvalues of f ˚on H 2,0 pX; Cq are roots of unity. Lemma 3.6. Let X be a compact Kähler surface. If X is not projective, then AutpXq ˚is virtually Abelian and if it contains a loxodromic element it is virtually cyclic.

Proof. Let Γ Ă AutpXq be a free subgroup (possibly reduced to a cyclic group or to tidu) such that every f P Γz tidu is loxodromic. Since X is not projective, Lemma 3.4 and Remark 3.5 show that h 2,0 pXq " 1 and that Γ acts faithfully by scalar multiplication on H 2,0 pX; Cq. Indeed otherwise the kernel of Γ Ñ GLpH 2,0 pX; Cqq would contain loxodromic elements and X would be projective. From this, we deduce that Γ has rank at most 1, hence AutpXq is elementary. To conclude, we refer to Theorem 3.2 of [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF], which says that there are two possibilities: either AutpXq ˚contains a finite index, cyclic subgroup generated by a loxodromic automorphism; or AutpXq ˚contains a finite index, Abelian subgroup, all of whose non-trivial elements are parabolic (permuting the fibers of a genus 1 fibration on X).

We can now conclude the proof of Theorem 3.3: indeed we already know that X is Kähler by Theorem 3.2, and then it is projective by Lemma 3.6.

3.4.

Remarks on the non-Kähler case. Consider the Hopf surface X α obtained by taking the quotient of C 2 z tp0, 0qu by the group of homotheties px, yq Þ Ñ pα m x, α m yq, for some α P C ŵith |α| ă 1. Taking the quotient of C 2 ztp0, 0qu by all homotheties, we get the projective line P 1 pCq: this yields a fibration η : X α Ñ P 1 pCq with fibers isomorphic to the genus

1 curve E α " C ˆ{ @ α Z D . Recall that a subgroup Γ Ă SL 2 pCq is non-elementary if it
contains a non-Abelian free group and is not relatively compact; equivalently, Γ induces a non-elementary group of isometries of the hyperbolic space H3 , whose boundary is S 2 » P 1 pCq. By definition the limit set LimpΓq is the closure of the set of fixed points of loxodromic elements of Γ.

Let us fix such a non-elementary group Γ. Let ν be a probability measure on SL 2 pCq, whose support generates Γ as a closed semigroup. It follows from Furstenberg's theory of random products of matrices that LimpΓq is the unique closed, minimal Γ-invariant subset of P 1 pCq, and there is a unique ν-stationary measure µ P 1 pCq on P 1 pCq; moreover, the support of µ P 1 pCq coincides with LimpΓq. Now, consider the action of Γ on X α induced by the natural action of Γ on C 2 . The fibration η : X α Ñ P 1 pCq is Γ-equivariant. Any f P Γ acts by scalar multiplication along the fibers of C 2 ztp0, 0qu Ñ P 1 pCq. Since the multiplication z Þ Ñ βz induces a translation on the elliptic curve E α , the action of Γ on X α is an isometric extension of the action on P 1 pCq, so we are in the setting of [START_REF] Guivarc | Actions of large semigroups and random walks on isometric extensions of boundaries[END_REF]. From this we obtain: if Γ is Zariski dense in SL 2 pCq, viewed as a real Lie group, then X α supports a unique minimal invariant subset Λ X and a unique ν-stationary measure µ X ; this measure is not Γ-invariant; both Λ X and µ X are invariant under the action of C ˆon X α by homotheties; and the marginal η ˚µX of µ X is equal to µ P 1 pCq ( 3 ). Now, take α P R ˆand assume that Γ ν is a non-elementary subgroup of SL 2 pRq (in particular, Γ ν is not Zariski dense in the real Lie group SL 2 pCq). The limit set LimpΓq is contained in P 1 pRq; thus, the ν-stationary measures on X α are supported in the preimage of P 1 pRq by the fibration η. There is, in that case, a one parameter family of such measures, parametrized by an angle θ P R{Z. Indeed, the plane R 2 Ă C 2 is Γ-invariant, and the projection of R 2 ztp0, 0qu in X α supports a unique ν-stationary measure µ XpRq . Then, all the stationary measures are obtained by "rotating" µ XpRq by px, yq Þ Ñ expp2iπθq ¨px, yq. Remark 3.7. Let X be a Hopf or a Inoue surface. According to the description of AutpXq by Namba, Matumoto and Nakagawa (see [START_REF] Cantat | Free actions of large groups on complex threefolds[END_REF][START_REF] Namba | Automorphism groups of Hopf surfaces[END_REF]), either AutpXq is virtually solvable, or X is a Hopf surface obtained as a quotient of its universal cover C 2 ztp0, 0qu by a group of homotheties

(3.5) Φ m,n px, yq " pα m ξ n x, α m ξ n yq
where α P C ˆhas modulus ă 1, ξ is a root of unity (of order q for some q ě 1), and pm, nq P Z ˆZ{qZ. Taking a finite cover brings us back to the case ξ " 1, which we just described.

Remark 3.8. If X is a Kodaira fibration, then X comes with an AutpXq-invariant fibration on an elliptic curve with elliptic fibers. In this case every stationary measure is invariant. This follows for instance from the fact that such actions are distal (see [START_REF] Furstenberg | Stiffness of group actions[END_REF]Thm. 3.5]).

These remarks do not exhaust all possible non-Kähler compact complex surfaces. Indeed, there are other examples of surfaces in class VII. Moreover, the classification of VII 0 surfaces is not complete yet (even, as far as we know, if we assume that AutpXq is not virtually nilpotent) . Question 3.9. Let X be a non-Kähler compact complex surface. Suppose there is a probability measure ν on AutpXq such that X supports a ν-stationary measure which is not Γ ν -invariant and has a Zariski dense support. Then must X be a Hopf surface?

FROM ENRIQUES TO RATIONAL SURFACES

In this Section we start with by describing two families of surfaces with non-elementary automorphism groups, obtained by taking quotients of K3 surfaces by an involution. For Enriques surfaces, the involution is fixed point free; this is not the case for Coble surfaces. We briefly mention the examples of Blanc, whose detailed study is the purpose of Part 3, and conclude with an example of Lesieutre of a non-elementary group on a rational surface without invariant curve. Coble, Blanc, and Lesieutre surfaces are all rational, but their dynamical features happen to be quite different: this stems from the existence or non-existence of a global invariant measure. 4.1. Enriques (see [START_REF] Franc | Enriques surfaces. I[END_REF][START_REF] Dolgachev | A brief introduction to Enriques surfaces[END_REF]). Recall that Enriques surfaces are quotients of K3 surfaces by fixed point free involutions. According to Horikawa and Kondō ([60,[START_REF] Horikawa | On the periods of Enriques surfaces[END_REF][START_REF] Kondō | The rationality of the moduli space of Enriques surfaces[END_REF]), the moduli space M E of complex Enriques surfaces is a rational quasi-projective variety of dimension 10. An Enriques surface X is nodal if it contains a smooth rational curve; such rational curves have self-intersection ´2, and are called nodal-curves or p´2q-curves. Nodal Enriques surfaces form a set of codimension 1 in M E .

For any Enriques surface X, the lattice pNSpX; Zq, q X q is isomorphic to the orthogonal direct sum E 10 " U k E 8 p´1q ( 4 ). Let W X Ă OpNSpX; Zqq be the subgroup generated by reflexions about classes u such that u 2 " ´2, and W X p2q be the subgroup of W X acting trivially on NSpX; Zq modulo 2. Both W X and W X p2q have finite index in OpNSpX; Zqq. The following result is due independently to Nikulin and Barth and Peters (see [START_REF] Dolgachev | A brief introduction to Enriques surfaces[END_REF] for details and references).

Theorem 4.1. If X is an Enriques surface which is not nodal, (1) the homomorphism AutpXq Q f Þ Ñ f ˚P GLpH 2 pX, Zqq is injective, (2) its image satisfies W X p2q Ă AutpXq ˚Ă W X .
In particular, AutpXq ˚is a finite index subgroup in OpNSpX; Zqq, thus AutpXq ˚is a lattice in the rank 1 Lie group OpNSpX; Rqq » O 1,9 pRq and it acts irreducibly on NSpX; Rq.

This implies that AutpXq is non-elementary, contains parabolic automorphisms, and does not preserve any curve (because AutpXq does not have a fixed point in H 2 pX; Rq). From these properties, and from [START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF], we obtain a classification of AutpXq-invariant probabilitity measures on unnodal complex Enriques surfaces; from [START_REF] Cantat | Finite orbits for large groups of automorphisms of projective surfaces[END_REF], we know that AutpXq has only finitely many finite orbits. On the other hand, we expect that generically all orbits are infinite: Question 4.2. Is it true that if X P M E is a general (resp. very general) Enriques surface, then AutpXq does not have any finite orbit?

If the answer is positive, then one could also apply the main results of [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF] to describe the distribution of random orbits on (real, unnodal) Enriques surfaces. [START_REF] Cantat | Rational surfaces with a large group of automorphisms[END_REF]). In this article, a Coble surface is, by definition, obtained by blowing up the ten nodes of a general rational sextic curve C 0 Ă P 2 . The result is a rational surface X with a large group of automorphisms. To be precise, consider the canonical class k X Ă NSpX; Zq; since K P 2 is O P 2 p´3q and since we blow up the nodes of C 0 , one gets (4.1) ´2k X " rCs and k X " ´3e 0 `10 ÿ i"1

Coble (see

epp i q
where C is the strict transform of C 0 in X, and pe 0 , epp 1 q, . . . , epp 10 qq is the basis of NSpXq given by the classes of the total transform of a line and the exceptional divisors E i obtained by blowing up the ten double points p i of C 0 . The orthogonal complement k K X is a lattice of dimension 10, isomorphic to E 10 , and we define W X p2q exactly in the same way as for Enriques surfaces. Then, AutpXq ˚preserves the decomposition k X ' k K X . As before we say that X is unnodal when it does not contain any smooth rational curve of self-intersection ´2. If X is unnodal, the AutpXq ˚contains W X p2q, in particular it is non-elementary (see [START_REF] Cantat | Rational surfaces with a large group of automorphisms[END_REF], Theorem 3.5).

Let us explain this result in a more explicit way (see [START_REF] Cantat | Rational surfaces with a large group of automorphisms[END_REF]). Let C 0 be a general rational sextic as before. Choose one of the double points of C 0 , say p i , and consider the cubic curve 4 Here, U is the standard 2-dimensional Minkowski lattice, pZ 2 , x1x2q, and E8 is the root lattice given by the corresponding Dynkin diagram; so E8p´1q is negative definite, and E10 has signature p1, 9q (see [START_REF] Franc | Enriques surfaces. I[END_REF]Chap. II]). Also, in this paper NSpX; Zq denotes the torsion free part of the Néron-Severi group, which is sometimes denoted by NumpX; Zq in the literature on Enriques surfaces.

C i containing the remaining 9 points. Then, C 0 and 2C i generate a pencil of sextic curves, with base points at the p j , j ‰ i. Blowing up these 9 points, we obtain a surface X i with a genus 1 fibration π i : X i Ñ P 1 C ; the sextic C 0 lifts to a nodal fiber of π i and 2C i gives a smooth multiple fiber. The 9 exceptional divisors E j , j ‰ i, determine 9 multisections of π i , each of degree 2. Each pair pj, kq, j, k ‰ i, defines an automorphism g jk of X i , acting by translation along the fibers of π i : the translation on the fiber X i,b :" π ´1 i pbq is by the divisor of degree 0 defined by (4.2)

τ jk :" pE k ´Ej q X i,b P Pic 0 pX i,b q.
For a general choice of C 0 , the g jk generate a free Abelian group A i of rank 8; its elements, except the identity, are parabolic automorphisms of X i preserving the fibration π i (hence also the singular point p i of the strict transform of C 0 in X i ). Thus, blowing-up p i , the group A i lifts to a subgroup of AutpXq. In this way we obtain 10 copies A i of Z 8 in AutpXq, acting as parabolic groups with respect to distinct genus 1 fibrations. In particular, AutpXq is nonelementary. Note that the strict transform of C 0 is AutpXq-invariant and is contained in a fiber of π i for each index i. Also, Coble surfaces are degenerations of Enriques surfaces; thus, Coble surfaces share many features of Enriques surfaces, but there are also interesting differences. For instance, AutpXq preserves the class k X , and this class is non-trivial. Moreover, there is a holomorphic section of ´2K X vanishing exactly along the strict transform C Ă X of the rational sextic curve C 0 ; this means that there is a meromorphic section Ω X " ξpx, yqpdx ^dyq 2 of 2K X that does not vanish and has a simple pole along C. Thus, the formula 

^Ω1{2

X ". The total mass of this measure is finite. Indeed, if locally C " tx " 0u then ξpx, yq " ηpx, yq{x where η is regular; thus, |ξ| " |η| |x| ´1 is locally integrable because 1 r α is integrable with respect to rdrdθ when α ă 2. We may assume that it is a probability after multiplying Ω X by some adequate constant, and this measure is AutpXqinvariant, because vol X is uniquely determined by the complex structure (see also Remark 4.3 below). In particular the ergodic theory of Coble examples can be studied with the techniques of [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF]. [START_REF] Blanc | On the inertia group of elliptic curves in the Cremona group of the plane[END_REF]. Here we describe them informally, a more detailed presentation will be given in Part 3.

Blanc. Another family of examples was introduced by Blanc in

Start with a smooth cubic curve C Ă P 2 . If q is a point of C, the Jonquières involution associated to pC, qq is the birational involution σ q of P 2 characterized by the following properties: it fixes C pointwise and it preserves the pencil of lines through q. The indeterminacy points of σ q are q and the four tangency points of C with this pencil, which may be "infinitely near" q. Thus, the indeterminacies of σ q are resolved by blowing-up points of C, possibly several times. After such a sequence of blow-ups σ q becomes an automorphism of a rational surface that fixes pointwise the strict transform of C. In particular, if we blow-up further points of this curve, σ q lifts to an automorphism of the new surface.

Pick a finite number of points q i P C 0 , i " 1, . . . , k, and resolve simultaneously the indeterminacies of the Jonquières involutions σ i :" σ q i determined by the q i . The result is a rational surface X, together with a subgroup Γ :" xs 1 , . . . , s k y of AutpXq. Blanc proves in [START_REF] Blanc | On the inertia group of elliptic curves in the Cremona group of the plane[END_REF][START_REF] Blanc | Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces[END_REF] that:

(1) there are no relations between these involutions, that is, Γ is a free product

xs 1 , . . . , s k y » k i "1
Z{2Z;

(2) the composition of two distinct involutions s i ˝sj is parabolic;

(3) the composition of three distinct involutions is loxodromic.

In addition, there is a meromorphic section Ω X of K X with a simple pole along the strict transform of C 0 , however, contrary to Coble surfaces, the form vol X :" Ω X ^ΩX is not integrable (its total mass is infinite). This observation will play a crucial role in Part 3.

Remark 4.3. If Γ Ă AutpXq is generated by involutions and there is a meromorphic form Ω such that f ˚Ω " ξpf qΩ for every f P Γ, then ξpf q " ˘1: this is the case for Blanc's examples or general Coble surfaces, since W X p2q is also generated by involutions (see [START_REF] Dolgachev | A brief introduction to Enriques surfaces[END_REF]). 4.4. Lesieutre. In [START_REF] Lesieutre | Tri-Coble surfaces and their automorphisms[END_REF], Lesieutre constructs rational surfaces X with the following properties: AutpXq contains three involutions τ i , i " 1, 2, 3, such that the group Γ :" xτ 1 , τ 2 , τ 3 y Ă AutpXq and f :" τ 1 ˝τ2 ˝τ3 satisfy (1) X and Γ are defined over Q;

(2) Γ is non-elementary, and isomorphic to pZ{2Zq ‹ pZ{2Zq ‹ pZ{2Zq;

(3) Γ does not contain any parabolic element; (4) f is loxodromic and does not preserve any curve.

In particular, AutpXq does not preserve any rational section of K X (moreover, ´KX is not pseudo-effective).

Thus, the situation is quite different from Enriques, Coble and Blanc surfaces, since there is neither parabolic automorphism nor invariant algebraic volume form. Our results are so far not powerful enough to describe the finite orbits or stationary measures for such an example.

Part 2. Pentagon folding and dynamics on K3 surfaces

THE SPACE OF PENTAGONS AND THE FOLDING GROUPS

The automorphism groups of Wehler surfaces were discussed at length in our previous papers.

Here we describe another family of K3 surfaces with a non-elementary group action, coming from the geometry of pentagons in the euclidean plane.

Remark 5.1. The "folding" terminology is borrowed from [START_REF] Benoist | Itération de pliages de quadrilatères[END_REF][START_REF] Benoist | Itération de pliages de quadrilatères[END_REF], which was a source of motivation for these results. There is a vast amount of literature on length-preserving transformations in spaces of polygons, notably motivated by algorithmic questions: see for instance Section 5.3.2 in the monograph [START_REF] Demaine | Geometric folding algorithms[END_REF] where our folding transformations are referred to as "flips". 5.1. Spaces of plane pentagons. Let " p 0 , . . . , 4 q P R 5 ą0 be a 5-tuple of positive real numbers such that there exists a pentagon with side lengths i ; this imposes a a condition on the i , defined by explicit inequalities, and we say that is admissible if this condition is satisfied. Here a pentagon is just an ordered set of points pa i q i"0,...,4 in the Euclidean plane R 2 , such that distpa i , a i`1 q " i for i " 0, . . . , 4 (with a 5 " a 0 by definition, in other words we consider indices modulo 5); pentagons are not assumed to be convex, and two distincts sides ra i , a i`1 s and ra j , a j`1 s may intersect at a point which is not one of the a i 's.

Let Pentp q be the set of pentagons with side lengths p i q 4 i"0 . Note that Pentp q is naturally a real algebraic variety, defined by polynomial equations of the form distpa i , a i`1 q 2 " 2 i . For every i, a i is one of the two intersection points ta i , a 1 i u of the circles of respective centers a i´1 and a i`1 and radii i´1 and i . The transformation exchanging these two points a i and a 1 i , while keeping the other vertices fixed, defines an involution of Pentp q, that we denote by s i´1 (this choice for the index will be convenient later). Geometrically, it corresponds to folding (or reflecting) the pentagon along the diagonal pa i´1 a i`1 q. It commutes with the action of the group SO 2 pRq ˙R2 of positive isometries of the plane, hence, it induces an involution σ i´1 on the quotient space (5.1)

Pent 0 p q " Pentp q{pSO 2 pRq ˙R2 q.

Each element of Pent 0 p q admits a unique representative with a 0 " p0, 0q and a 1 " p 0 , 0q, so as before Pent 0 p q is a real algebraic variety, which is easily seen to be of dimension 2 (see [START_REF] Curtis | Configuration spaces of planar pentagons[END_REF][START_REF] Shimamoto | Spaces of polygons in the plane and Morse theory[END_REF]). We will see below that, when it is smooth, it is a real K3 surface. The five involutions σ i act by algebraic diffeomorphisms on this surface, and for a general choice of lengths, the group generated by these involutions is non-elementary.

Remark 5.2. If we consider quadrilateral instead of pentagons, the corresponding space (5.2) Quad 0 p 0 , 1 , 2 , 3 q is a curve of genus 1 and the involutions typically generate an infinite dihedral group. The corresponding dynamical system, both on the space of quadrilaterals and the space of quadrilaterals modulo isometries, was studied in depth in [START_REF] Esch | The screensaver map: dynamics on elliptic curves arising from polygonal folding[END_REF][START_REF] Benoist | Itération de pliages de quadrilatères[END_REF][START_REF] Benoist | Itération de pliages de quadrilatères[END_REF]. With n-gons, n ě 4, one would get Calabi-Yau manifolds of dimension n ´3 ( 5 ).

5.2.

Algebraic geometry of Pent 0 p q. To analyze the algebraic structure and geometry of Pent 0 p q, we view a plane pentagon with side lengths 0 , . . . , 4 modulo translations as the data of a 5-tuple of vectors pv i q i"0,...,4 in R2 (identified with C) of respective length i such that

ř i v i " 0. Write v i " i t i with |t i | " 1.
Then the action of SO 2 pRq can be identified to the diagonal multiplicative action of U " tα P C ; |α| " 1u on the t i :

(5.3) α ¨pt 0 , . . . , t 4 q " pαt 0 , . . . αt 4 q.

Now, following Darboux [START_REF] Darboux | De l'emploi des fonctions elliptiques dans la théorie du quadrilatère plan[END_REF], we consider the surface X in P 4 C defined by the equations (5.4)

# 0 z 0 ` 1 z 1 ` 2 z 2 ` 3 z 3 ` 4 z 4 " 0 0 {z 0 ` 1 {z 1 ` 2 {z 2 ` 3 {z 3 ` 4 {z 4
" 0 where rz 0 : . . . : z 4 s is some fixed choice of homogeneous coordinates, and the second equation must be multiplied by z 0 z 1 z 2 z 3 z 4 to obtain a homogeneous equation of degree 4.

Remark 5.3. This surface is isomorphic to the Hessian of a cubic surface (see [44, §9]). More precisely, consider a cubic surface S Ă P3 

C whose equation F can be written in Sylvester's pentahedral form, that is, as a sum F " ř 4 i"0 λ i F 3 i for some complex numbers λ i and linear forms F i with ř 4 i"0 F i " 0. By definition, its Hessian surface H F is defined by detpB i B j F q " 0. Then, using the linear forms F i to embed H F in P 4 C , we obtain the surface defined by the pair of equations ř 4 i"0 z i " 0 and

ř 4 i"0 1 λ i z i " 0.
Thus, H F is our surface X, for 2 i " λ i . We refer to [START_REF] Dolgachev | Birational automorphisms of quartic Hessian surfaces[END_REF][START_REF] Dardanelli | Hessians and the moduli space of cubic surfaces[END_REF][START_REF] Dolgachev | Salem numbers and Enriques surfaces[END_REF][START_REF] Rosenberg | Hessian quartic surfaces that are Kummer surfaces[END_REF] for an introduction to these surfaces and their birational transformations.

For completeness, let us directly prove some of its basic properties.

Lemma 5.4. Let " p 0 , . . . , 4 q be an element of pC ˚q5 . The surface X Ă P 4

C defined by the system (5.4) has 10 singularities at the points q ij determined by the system of equations i z i ` j z j " 0, z k " z l " z m " 0 with i ă j and ti, j, k, l, mu " t0, 1, 2, 3, 4u. In the complement of these ten isolated singularities, X is smooth if and only if (5.5)

4 ÿ i"0 ε i i ‰ 0 @ε i P t˘1u .
Note that for positive i 's, violation of condition (5.5) means that there exist a degenerate pentagon with lengths i . Notation.-We shall use the notation X instead of X when the dependence on is not crucial.

Proof. We first look for singularities in the complement of the hyperplanes z i " 0, and work in the chart z 0 " 1. Then, if we substitute z 4 " ´p 0 ` 1 z 1 ` 2 z 2 ` 3 z 4 q{ 4 in the second equation of (5.4), we obtain an affine equation of X in the chart z 0 " 1, namely:

(5.6)

1 z 1 ` 2 z 2 ` 3 z 3 ´
The singularities are determined by the system of equations z 2 1 " z 2 2 " z 2 3 " ´2 4 p 0 ` 1 z 1 ` 2 z 2 ` 3 z 3 q 2 . So, by symmetry, at a singularity where none of the coordinates vanishes we must have z i " ε i z for some ε i " ˘1 and a common factor z ‰ 0; this is precisely Condition (5.5).

Looking for singularities with one coordinate equal to 0, say z 1 " 0 in the chart z 0 " 1, we obtain the system of equations (5.7)

$ ' & ' % 0 " p 0 z 2 z 3 ` 3 z 2 ` 2 z 3 qp 0 ` 2 z 2 ` 3 z 3 q `p 2 1 ´ 2 4 qz 2 z 3 0 " 1 z 3 p 0 `2 2 z 2 ` 3 z 3 q 0 " 1 z 2 p 0 ` 2 z 2 `2 3 z 3 q
together with 0 ` 2 z 2 ` 3 z 3 ` 4 z 4 " 0 and 1 z 2 z 3 z 4 " 0 (in particular, z 2 , z 3 or z 4 must vanish). The solutions of this system are given by z 1 " z 2 " z 3 " 0, which gives the point q 04 " r 4 : 0 : 0 : 0 : ´ 0 s, or z 1 " z 2 " 0 and 0 ` 3 z 3 " 0, which corresponds to q 03 " r 3 : 0 : 0 : ´ 0 : 0s, or z 1 " z 3 " 0 which gives q 02 , or z 1 " z 4 " 0 but then either z 2 " 0 or z 3 " 0 and we end up again with q 02 and q 03 . The result follows by symmetry.

Lemma 5.5. If P pC ˚q5 satisfies Condition (5.5), then the ten singularities are simple nodes (Morse singularities) and the surface X is a (singular) K3 surface: a minimal resolution X of X is a K3 surface, which is obtained by blowing-up its ten nodes, thereby creating ten rational p´2q-curves.

Proof. Working in the chart z 0 " 1 and replacing z 4 by ´p 0 ` 1 z 1 ` 2 z 2 ` 3 z 3 q{ 4 , the quadratic term of the equation of X at the singularity pz 1 , z 2 , z 3 q " p0, 0, 0q is p´ 0 { 4 qQ, where

(5.8) Qpz 1 , z 2 , z 3 q " 1 z 2 z 3 ` 2 z 1 z 3 ` 3 z 1 z 2
is a non-degenerate quadratic form (its determinant is 2 1 2 3 ‰ 0). So locally X is holomorphically equivalent to the quadratic cone tQ " 0u, hence to a quotient singularity pC 2 , 0q{η with ηpx, yq " p´x, ´yq. The minimal resolution of such a singularity is obtained by a simple blow-up of the ambient space, the exceptional divisor being a p´2q-curve in the smooth surface X. The adjunction formula shows that there is a holomorphic 2-form Ω X on the regular part of X; locally, Ω X lifts to an η-invariant form Ω 1 X on C 2 zt0u, which by the Hartogs theorem extends across the origin to a non-vanishing 2-form. To recover X, one can first blow-up C 2 at the origin and then take the quotient by (the lift of) η: a simple calculation shows that Ω 1 X determines a non-vanishing 2-form on X. After such a surgery is done at the ten nodes, X is a smooth surface with a non-vanishing section of K X ; since it contains at least ten rational curves, it cannot be an Abelian surface, so it must be a K3 surface.

Remark 5.6. Let L ij be the line defined by the equations z i " 0, z j " 0, 0 z 0 `¨¨¨` 4 z 4 " 0; each of these ten lines is contained in X, each of them contains 3 singularities of X (namely q kl , q lm , q km with obvious notations), and each singularity is contained in three of these lines. If one projects them on a plane, the ten lines L ij form a Desargues configuration (see [START_REF] Dolgachev | Salem numbers and Enriques surfaces[END_REF][START_REF] Dolgachev | Birational automorphisms of quartic Hessian surfaces[END_REF]). 5.3. The real part. All this works for any choice of complex numbers i ‰ 0. When the i are real, X is endowed with two real structures. First, one can consider the complex conjugation (5.9) c : rz i s Þ Ñ rz i s on P 4 pCq and restrict it to X: this gives a first antiholomorphic involution c X . Another one is (5.10) s X : rz i s Þ Ñ r1{z i s.

To be more precise, consider first, the quartic birational involution J P BirpP 4 C q defined by Jprz i sq " r1{z i s; J preserves X, it determines a birational transformation J X P BirpXq, and on X it becomes an automorphism because every birational transformation of a K3 surface is regular. Moreover, J commutes to c. Thus, s X " J X ˝cX determines a second antiholomorphic involution s X of X. In what follows, we denote by pX, s X q this real structure (even if it would be better to study it on X); its real part is the fixed point set of s X , i.e. the set of points in XpCq with coordinates of modulus 1: the real part does not contain any of the singularities of X, this is why we prefer to stay in X rather than lift everything to X. In conclusion, if p i q P pR ˚q5 , with the real structure defined by s X , the real part of X coincides with Pent 0 p 0 , . . . , 4 q.

Remark 5.7. When i ą 0 for every i, a complete description of the possible homeomorphism types for the real locus (in the smooth and singular cases) is given in [START_REF] Curtis | Configuration spaces of planar pentagons[END_REF]: in the smooth case, it is an orientable surface of genus g " 0, . . . , 4 or the disjoint union of two tori; if one includes singular surfaces, one gets a total of 19 topological types. In particular if Pent 0 p q is disconnected, it is the disjoint union of two tori. The space of possible side lengths can be tesselated in cells corresponding to smooth surfaces Pent 0 p q, with walls corresponding to singular surfaces. Cells are encoded by a 2 ˆ2 "code-matrix" in [START_REF] Curtis | Configuration spaces of planar pentagons[END_REF]Table 4]. With this viewpoint, the disconnected surfaces correspond to exactly three cells (see Figure 1 

below).

Remark 5.8. The involution J preserves X and the two real structures pX, c X q and pX, s X q. It lifts to a fixed point free involution ĴX on X, and X{ ĴX is an Enriques surface. On pentagons, J corresponds to the symmetry px, yq P R 2 Þ Ñ px, ´yq that reverses orientation. Thus we see that the space of pentagons modulo affine isometries is an Enriques surface. When X acquires an eleventh singularity which is fixed by J X , then X{ ĴX becomes a Coble surface: see [42, §5] for nice explicit examples. This happens for instance when all lengths are 1, except one which is equal to 2 (this corresponds to t " 1{4 in [42, §5.2]). 5.4. Involution and the folding groups. Let us express the folding transformations in coordinates. Given i ‰ j in t0, . . . , 4u (consecutive or not) we define an involution pt i , t j q Þ Ñ pt 1 i , t 1 j q preserving the vector i t i ` j t j by taking the symmetric of t i and t j with respect to the line directed by i t i ` j t j . In coordinates, t 1 k " u{t k for some u of modulus 1, and equating i t i ` j t j " i t 1 i ` j t 1 j one obtains (5.11)

pt 1 i , t 1 j q " ˆu t i , u t j ˙, with u " i t i ` j t j i t ´1 i ` j t ´1 j .
Observe that these computations also make sense when the i are complex numbers, or when we replace the t i by the complex numbers z i . This defines a birational involution σ ij : X X,

(5.12) σ ij rz 0 : . . . : z 4 s " rz 1 0 : . . . : z 1 4 s with z 1 k " z k if k ‰ i, j, z 1 i " vz j , and z 1 j " vz i with v " p i z i ` j z j q{p i z j ` j z i q. Again, since every birational self-map of a K3 surface is an automorphism, these involutions σ ij are elements of Autp Xq that commute with the antiholomorphic involution s X ; hence, they generate a subgroup of Autp X; s X q. Thus we have constructed a family of projective surfaces X, depending on a parameter P P 4 pCq, endowed with a group of automorphisms generated by involutions.

For consecutive sides, i.e when j " i `1 modulo 5 (in the next few lines, all indices are considered modulo 5) σ i,i`1 corresponds to the folding transformation described in § 5.1 and denoted by σ i there. We define the folding group Γ (resp. the extended folding group Γ ext ) to be the group generated by the 5 folding involutions σ i,i`1 (resp. the group generated by all 10 involutions σ ij ). Likewise, for given m P t0, . . . , 4u we introduce the subgroup Γ m (resp. Γ ext m ) stabilizing the side m, that is the group generated by the 3 folding involutions σ i,i`1 such that m R ti, i `1u (resp. by the 6 involutions σ ij with m R ti, ju). Remark 5.9. Pick a singular point q ij , and project X from that point onto a plane, say the plane tz i " 0u in the hyperplane P " t 0 z 0 `¨¨¨` 4 z 4 " 0u. One gets a 2-to-1 cover X Ñ P 2 C , ramified along a sextic curve (this curve is the union of two cubics, see [START_REF] Rosenberg | Hessian quartic surfaces that are Kummer surfaces[END_REF]). The involution σ ij permutes the points in the fibers of this 2 to 1 cover: if x is a point of X, the line joining q ij and x intersects X in the third point σ ij pxq. The singularity q ij is an indeterminacy point, mapped by σ ij to the opposite line L ij . Proposition 5.10. For a general parameter P pC ˚q5 :

(1) X is a K3 surface with ten nodes, which admits two real structures c X and s X when P P 4 pRq; (2) if i, j, k are three distinct indices (modulo 5), then σ ij ˝σjk is a parabolic transformation on X; its invariant fibration is induced by π lm : rz 0 : . . . : z 4 s Þ Ñ rz l : z m s where l and m are the complementary indices (i.e. ti, j, k, l, mu " t0, 1, 2, 3, 4u); (3) if i, j, k, and l are four distinct indices (modulo 5), then σ ij commutes to σ kl . (4) the folding group Γ (resp. the extended folding group Γ ext ) is a non-elementary subgroup of Autp X; s X q that does not preserve any algebraic curve; (5) likewise, the subgroup Γ m stabilizing the side m is non-elementary, and its invariant curves in X are contained in the total transform of the lines L ml for l ‰ m (see Remark 5.6).

Remark 5.11. In [START_REF] Dolgachev | Salem numbers and Enriques surfaces[END_REF], Dolgachev computes the action of σ ij on NSp Xq. This contains a proof of this proposition. He also describes, up to finite index, the Coxeter group generated by the σ ij . The automorphism groups of X and of the Enriques surface X{ ĴX are described in [START_REF] Dolgachev | Birational automorphisms of quartic Hessian surfaces[END_REF] and [START_REF] Shimada | On an Enriques surface associated with a quartic Hessian surface[END_REF].

The next example shows that the folding groups can be elementary for certain parameters.

Example 5.12. Say that a pentagon is equilateral if 0 " 1 " 2 " 3 " 4 . Let X eq pRq be the surface of all equilateral pentagons, modulo rotations, translations, and dilatations. It is connected and of genus 4. On X eq , the group generated by the involutions is finite and isomorphic to S 5 , because σ i,j pt i , t j q " pt j , t i q (see Equation 5.11). So, this highly symmetric case is also highly degenerate.

Proof of Proposition 5.10. We already established Assertion (1) in the previous lemmas. For Assertion (2), denote by l, m the indices for which ti, j, k, l, mu " t0, . . . , 4u, and consider the linear projection π lm : P 4 pCq P 1 pCq defined by rz 0 : . . . : z 4 s Þ Ñ rz l : z m s. The fibers of π lm are the hyperplanes containing the plane tz l " z m " 0u, which intersects X on the line L lm . This line is a common component of the pencil of curves cut out by the fibers of π lm on X, and the mobile part of this pencil determines a fibration π lm | X : X Ñ P 1 whose fibers are the plane cubics (5.13) 

p l z l ` m z m qp m z l ` l z m qz i z j z k " z l z m p i z j z k ` j z i z k ` k z i z j qp i z i ` j z j ` k z k q,
with rz l : z m s fixed. The general member of this fibration is a smooth cubic, hence a curve of genus 1.

Then σ ij and σ jk preserve π lm | X , and along the general fiber of π lm | X each of them is described by Remark 5.9; for instance, σ ij pxq is the third point of intersection of the cubic with the line pq ij , xq. Thus, writing such a cubic as C{Λ rz l :zms , σ ij acts as z Þ Ñ ´z `bij , for some b ij P C{Λ rz l :zms that depends on rz l : z m s and the parameter ; it has four fixed points on the cubic curve, which are the points of intersection of the cubic (5.13) with the hyperplanes z i " z j and z i " ´zj ; equivalently, the line pq ij , xq is tangent to the cubic at these four points.

By Lemma 5.14 below, either σ ij ˝σjk is of order ď 66 (in fact of order ď 12 because it preserves π lm | X fiber-wise), or it is parabolic. In other words, the locus in the parameter space where σ ij ˝σjk is not parabolic is defined by the equation pσ ij ˝σjk q 12 " id. Since there do exist pentagons for which σ ij ˝σjk is of infinite order (indeed, this reduces to the corresponding fact for quadrilaterals, see Example 5.13 below), we conclude that σ ij ˝σjk is parabolic for general .

Assertion (3) follows directly from the fact that σ ij changes the coordinates z i and z j but keeps the other three fixed.

To prove Assertion (4), we see that for a general parameter , Γ contains two such parabolic automorphisms associated to distinct fibrations π lm and π l 1 m 1 so it is non-elementary (this follows from Theorem 3.2 in [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF]). To show that Γ does not preserve any curve in X, assume by way of contradiction that E Ă X be a Γ-periodic irreducible curve, and denote by F its image in P 4 C under the projection X Ñ X. If F is a point, it is one of the singularities q ij . Note that Γ acts transitively on the singularities of X: given any pair of singularities pq, q 1 q, there is an element of Γ which is well defined at q and q 1 and maps q to q 1 . Thus, we can assume that j " i `1, and changing E into its image under (the lift of) σ ij P Γ the curve F becomes the line L ij . So, we may assume that F is an irreducible curve. Now, the orbit of F is periodic under the action of the parabolic automorphisms g i " σ ij ˝σjk , with j " i `1 and k " i `2 modulo 5. Since the invariant curves of a parabolic automorphism are contained in the fibers of its invariant fibration, we deduce that F is contained in the fibers of each of the projections π lm with m " l `1, which is impossible. So there is no invariant curve.

The corresponding statement for Γ ext follows immediately. The reasoning for (5) is similar. Without loss of generality, assume m " 0. Then again Γ m is non-elementary since it contains the parabolic elements σ 12 ˝σ23 and σ 23 ˝σ34 (with distinct associated fibrations π 04 and π 01 . Reasoning as above shows that if E Ă X is any Γ-periodic irreducible curve projecting to a curve in X, then its image F in X is contained in a fiber of each of the projections π 01 , π 02 , π 03 and π 04 . So we conclude that F Ă tz 0 " 0u, but then the equation of X forces another coordinate to vanish, and we conclude that F is one of the L 0l .

Example 5.13. Let us give some geometric explanations for Assertion (2) of Proposition 5.10. Choose pl, mq " p1, 2q, and normalize the pentagons so that a 0 " p0, 0q and t 0 " 1, which means that a 1 " p 0 , 0q. In homogeneous coordinates, this corresponds to the normalization r1 : z 1 : z 2 : z 3 : z 4 s with z i " t i . The pentagons contained in a fiber of π 12 | X have three fixed vertices, namely a 0 , a 1 and a 2 . The remaining free vertices a 3 and a 4 move along the circles centered at a 2 and a 0 , of respective radii 2 and 4 , with the constraint a 3 a 4 " 3 . These circles are two conics, the fiber is an elliptic curve which is a 2-to-1 cover of each of these two conics, the involutions σ 23 and σ 34 preserve these fibers, and σ 23 ˝σ34 is a translation on the elliptic curve. Forgetting the vertex a 1 , we obtain a quadrilateral pa 0 , a 2 , a 3 , a 4 q, and one recovers the transformations described in [START_REF] Benoist | Itération de pliages de quadrilatères[END_REF]. The side lengths of this quadrilateral are 2 , 3 , 4 and } Ý Ý Ñ a 0 a 2 }, hence the translation vector (which only depend on these lengths) varies nontrivially when deforming the pentagon, which corresponds to the twisting property of parabolic transformations.

Lemma 5.14. Let X be a K3 or Enriques surface, and π : X Ñ B be a genus 1 fibration. If g P AutpXq maps some fiber F of π to a fiber of π, then g preserves the fibration and either g is parabolic or it is periodic of order ď 66.

Proof. Since g maps F to some fiber F 1 , it maps the complete linear system |F | to |F 1 |, but both linear systems are made of the fibers of π. So g preserves the fibration and is not loxodromic. If g is not parabolic it is elliptic, and its action on cohomology has finite order since it preserves H 2 pX, Zq. On a K3 or Enriques surface every holomorphic vector field vanishes identically, so AutpXq 0 is trivial and the kernel of the homomorphism AutpXq Q f Þ Ñ f ˚is finite (see [START_REF] Cantat | Dynamics of automorphisms of compact complex surfaces[END_REF]Theorem 2.6]); as a consequence, any elliptic automorphism has finite order. The upper bound on the order of g was obtained in [START_REF] Keum | Orders of automorphisms of K3 surfaces[END_REF].

RANDOM FOLDINGS AND ERGODIC THEORY

We have now gathered enough geometric information to draw some dynamical consequences on the dynamics of pentagon folding.

6.1. Dynamics on Pent 0 p q. Recall that the folding groups Γ, Γ ext and Γ m were defined in § 5.4. Recall also that a parameter P R 5 ą0 is admissible when it corresponds to at least one pentagon.

Recall from Remark 5.7 that XpRq » Pent 0 p q can be disconnected, in which case it is the disjoint union of two tori. This happens in 3 of the 19 possible configurations listed in [START_REF] Curtis | Configuration spaces of planar pentagons[END_REF], the shapes of which are sketched in Figure 1. Such a pentagon cannot be deformed continuously to its reflection along the horizontal side, hence the configuration space is disconnected. On the other hand,

(1) folding it along its longest diagonal maps it into the other component, so Γ and Γ ext act transitively on the set of components of Pent 0 p q; (2) the involutions preserving the horizontal side preserve each component of Pent 0 p q, so Γ m preserves each component of Pent 0 p q for m " 0.

FIGURE 1.

Pentagons with disconnected configuration spaces (respectively corre-

sponding to the codes `X X X X ˘, `Ă H Ă H ˘and `Ă Ą Ă Ą ˘in [34, Table 4])
In the next two statements, "general" means that the conclusions of Proposition 5.10 are satisfied. Proposition 6.1. For a general admissible parameter P R 5 ą0 , the action of Γ (resp. of Γ ext ) on Pent 0 p q is ergodic with respect to its natural volume form. Likewise, for m P t0, . . . , 4u the action of Γ m is ergodic on each Γ m -orbit of connected components of Pent 0 p q.

Proof. Since Γ has no invariant curve and acts transitively on the set of components of Pent 0 p q, the result follows from case (c) of [25, Thm A]. For Γ m , the same argument applies, upon adding the observation that the Γ m -invariant curves do not intersect Pent 0 p q. Theorem 6.2. Let P R 5 ą0 be a general admissible parameter. Fix a probability measure ν on Γ (resp. Γ ext ) satisfying the moment condition (M), and whose support generates Γ (resp. Γ ext ). Then all ν-stationary measures on Pent 0 p q are invariant, and the ergodic invariant measures are given by:

finitely many periodic orbits; -vol Pent 0 p q .

In particular, the set of ν-stationary measures is a finite dimensional simplex.

Proof. This follows from Proposition 6.1, the stiffness theorem of [START_REF] Cantat | Random dynamics on real and complex projective surfaces[END_REF], and the finiteness of the set of finite orbits established in [24, Thm C]. Remark 6.3. The classification of stationary measures also holds for Γ m , except that in this case we cannot apply [24, Thm C] to infer the finiteness of the set of periodic orbits, because of the existence of invariant curves.

The random ergodic theorem then implies that for vol Pent 0 p q -almost every pentagon x P Pent 0 p q, the sequence of empirical measures 1 n ř n k"1 δ f k ω pxq is almost surely equidistributed on Pent 0 p q. As explained in § 1.8, to deduce the more precise result that this random equidistribution holds for every pentagon with infinite orbit we need some information about periodic orbits. This is where it is useful to work with the extended folding group. Theorem 6.4. For a very general admissible parameter P R 5 ą0 , every orbit of Γ ext in Pent 0 p q is infinite. Hence, for such a parameter, the only ergodic Γ ext -invariant probability measure on Pent 0 p q is the natural volume.

We thus obtain the following equidistribution result (the moment condition (M `) was defined in § 1.8): Corollary 6.5. Fix a probability measure ν on Γ ext satisfying the moment condition (M `) and generating Γ ext . There is an open and dense subset of full measure in the set of admissible parameters such that for any x P Pent 0 p q: either Γ ext ¨x is finite or for ν N -almost every ω,

1 n n ÿ k"1 δ f k ω pxq Ñ vol Pent 0 p q
as n Ñ `8. Proof of Theorem 6.4. By Theorem 6.2, it suffices to prove the first assertion. If this assertion were not correct, then, arguing exactly as in [24, Thm A], we would find a finite index subgroup Γ 1 Ă Γ ext such that the algebraic set (6.1) Z " p , xq P C 5 ˆX pCq, x P X pCq, @f P Γ 1 , f pxq " x ( has a Zariski dense projection to C 5 . Since Γ ext does not preserve any curve in X (for a general ), then so does Γ 1 , and as a consequence, the natural projection π : Z Ñ C 5 is generically finite. Then, there exists a Zariski dense open subset W Ă C 5 such that above W , π is a finite unramified cover and the surfaces X are all smooth.

Since R 5 ą0 is Zariski dense in C 5 , the intersection W ą0 pRq :" W X R 5 ą0 is the complement of a proper Zariski closed subset of R 5 ą0 . Reducing this open set slightly (by cutting out additional hypersurfaces if necessary), we may assume that every connected component of W ą0 pRq is simply connected. If W i is such a connected component (for the euclidean topology), and if p , xq is a point of Z with projection P W i , then there is a unique continuous (algebraic) section (6.2)

1 P W i Þ Ñ p 1 , x 1 q P Z of π defined on W i that maps to p , xq. This will be refered to as the continuous continuation of the Γ 1 -fixed point x. Moreover, under our contradiction hypothesis, we may choose W i and p , xq such that the section defined in (6.2) takes its values x 1 in Pent 0 p 1 q (i.e. in the real part of the complex surface X 1 for the real structure defined in (5.10)). We fix such a pair pW i , p , xqq, where x corresponds to a normalized pentagon pa i q (i.e. a 0 " p0, 0q, a 1 " p 0 , 0q).

Recall that a planar polygon is said to be degenerate, or flat, if it is contained in a line (ie. its vertices are collinear). Since we can choose as we wish in the open set W i , we may assume that (6.3) no line contains three of the vertices a i .

In particular, x itself is not flat. The triangle pa 2 a 3 a 4 q and the quadrilaterals a 0 a 2 a 3 a 4 (with side lengths 5 :" } Ý Ý Ñ a 0 a 2 }, 2 , 3 , 4 ) and a 1 a 2 a 3 a 4 (with side lengths 1 , 2 , 3 , and 6 :" } Ý Ý Ñ a 1 a 4 }) are non-degenerate. These quadrilaterals are periodic for the respective transformations σ 23 ˝σ34 and σ 12 ˝σ23 . Therefore, by the Darboux alternative for quadrilaterals (see [START_REF] Darboux | De l'emploi des fonctions elliptiques dans la théorie du quadrilatère plan[END_REF][START_REF] Benoist | Itération de pliages de quadrilatères[END_REF][START_REF] Izmestiev | Deformation of quadrilaterals and addition on elliptic curves[END_REF] and also Example 5.13), their side lengths satisfy a non-trivial relation. More precisely, given the lengths 1 , . . . , 4 , there exists a countable set D 5 " D 5 p 2 , 3 , 4 q and D 6 " D 6 p 1 , 2 , 3 q such that (6.4)

5 P D 5 p 2 , 3 , 4 q and 6 P D 6 p 1 , 2 , 3 q.

We now deform the pentagon by varying 0 while keeping the other side lengths fixed; this gives a variation 1 " p 1 0 , 1 , . . . , 4 q of in W i , and a continuation x 1 " pa 1 i q P Z of x (with the normalization a 1 0 " p0, 0q and a 1 1 " p 0 , 0q). Let us show that for 1 near , the continuation x 1 of x is geometrically determined, in a unique way, by the length conditions (6.4). Since › › Ý Ý Ñ a 1 0 a 1 2 › › varies continuously and must stay in D 5 , it is constant, hence the triangle a 1 0 a 1 1 a 1 2 has side lengths 1 0 , 1 and 5 which defines it uniquely up to isometry. Since the initial triangle a 0 a 1 a 2 is not flat, then the point a 1 2 is uniquely determined as a continuation of a 2 . Similarly, the triangle a 1 0 a 1 1 a 1 4 determines a 1 4 . Finally, since the lengths 2 and 3 are fixed and the triangle a 2 a 3 a 4 is not flat, the continuation a 1 3 is uniquely determined. In conclusion, the periodicity of x 1 under the action of σ 23 ˝σ34 and of σ 12 ˝σ23 determines x 1 as 0 varies; thus, in what follows we can forget about Z: the section p 1 , x 1 q is, in fact, given by the geometric construction we have just described.

To reach the desired contradiction, we now argue that the periodicity of x 1 under the parabolic automorphism σ 13 ˝σ34 creates an additional rigidity that cannot be satisfied (we might use σ 12 σ24 instead). Indeed, σ 13 ˝σ34 acts on the vectors v 1 " Ý Ý Ñ a 1 a 2 , v 3 " Ý Ý Ñ a 3 a 4 and v 4 " Ý Ý Ñ a 4 a 0 , so it can be seen as a transformation of the "virtual" quadrilateral a 0 b 1 a 3 a 4 , where b 1 is such that Ý Ý Ñ a 3 b 1 " Ý Ý Ñ a 2 a 1 . Since x 1 is a Γ ext -periodic point of Pent 0 p 1 q for all 1 , the quantity }v 1 `v3 `v4 } " › › Ý Ý Ñ a 0 b 1 › › must be constant; more precisely, it does not vary with 1 0 on a neighborhood of . But this function depends algebraically on the parameters, and any neighborhood of in W i is Zariski dense in C 5 , so we conclude that this function actually does not depend on 1 0 . Thus, to reach the desired contradiction, one just needs to contemplate Figure 2.

Since we use transformations like σ 13 ˝σ34 in the proof, it is necessary to work with Γ ext . The analogous result for Γ remains elusive (6 ). Question 6.6.

(1) Is it true that for a very general set of lengths P P 4 pCq, every orbit of Γ (resp. Γ m ) in Pent 0 p q (resp. in X ) is infinite? (2) Is there a dense open set of parameters P P 4 pRq for which every finite orbit is uniformly expanding? (3) Can we replace "very general" by "general" in Theorem 6. a 0 a 1 = 6.9 FIGURE 2. Proof of Theorem 6.4. The corresponding circles have the same radius on the two figures, and serve for the construction of a 2 , a 3 and a 4 (for instance on both pictures the red circle on the left is centered at a 0 and has radius 5 and the red circle on the right is centered at a 1 with radius 2 ). When 0 varies the distance a 0 b 1 varies as well. (Realized with GeoGebra and available at https://www.geogebra.org/ m/edydwafb).

Let us expand a little bit on this. As seen above, a positive answer to the first question implies a positive answer to the second one. On the other hand, even without excluding the existence of a persistent periodic orbit for Γ, it might still be possible to show that the action of Γ on Pent 0 p q is uniformly expanding generically (this point of view is developed in [23, §9]). Indeed, by [START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF], it is enough to show that at such a persistent periodic orbit, for a general parameter , we can find parabolic elements in Γ that exhibit a non-trivial twisting in different directions. Geometrically, this would require to understand how the rotation numbers associated to sub-quadrilaterals vary when deforming the pentagon (an explicit formula for this rotation number is given in [START_REF] Benoist | Itération de pliages de quadrilatères[END_REF][START_REF] Izmestiev | Deformation of quadrilaterals and addition on elliptic curves[END_REF]).

6.2. Dynamics on Pent 1 p q. Recall that U denotes the unit circle in R 2 » C. To an element u P U corresponds a unique rotation R u (centered at the origin); in complex coordinates, it just corresponds to multiplication by u, and its inverse is R ´1 u " R u . For " p 0 , . . . , 4 q P R 5 ą0 , let us introduce the space of pentagons modulo translations (6.5)

Pent 1 p q " Pentp q{R 2 .

With notation as in § 5.1, every element x of Pent 1 p q admits a unique representative with a 0 " p0, 0q. Then, Ý Ý Ñ a 0 a 1 " 0 t 0 , for some unit vector t 0 P U and if we apply the rotation R t 0 , we get a normalized pentagon x (with a 0 " p0, 0q and a 1 " p 0 , 0q). This shows that Pent 1 p q is a trivial circle bundle over Pent 0 p q: (6.6)

Pent 1 p q » Pent 0 p q ˆU.

The reciprocal diffeomorphism is obtained as follows. Let px, uq be an element of Pent 0 p qˆU.

-To x, one associates its normalized pentagon, that is, the unique pentagon pa i q in its SOp2q ˙R2 orbit corresponding to x such that a 0 " p0, 0q and a 1 " p 0 , 0q.

-then one rotates it by R u to get an element of Pent 1 p q.

As a real algebraic variety, Pent 1 p q is the real locus, with respect to the involution (6.7) s :

pz i q Þ Ñ p1{z i q,
of the variety defined in C 5 by the system of Equations (5.4).

The involutions σ ij and the groups Γ and Γ m are defined exactly as before, with the same formulas; to avoid confusion with the action on Pent 0 , we may denote the involutions by σij and the corresponding pentagons by x). In the coordinates px, uq P Pent 0 p q ˆU, σij is given by (6.8)

# σij px, uq " pσ ij pxq, uq, if 0 R ti, ju σ0j px, uq " pσ 0j pxq, h 0j pxquq
where x Þ Ñ h 0j pxq takes values in U. To justify the second line, simply observe that σ ij commutes with the rotation R v , i.e. with px, uq Þ Ñ px, uvq; thus, σ0j px, uq " R u σ0j px, 1q.

Instead of choosing a 0 as a base point (which is translated to the origin), we could choose any of the five vertices a m , m " 0, . . . , 4. This provides five different identifications Pent 1 p q » Pent 0 p qˆU; for each of them, we denote by ϑ m : Pent 1 p q Ñ U the projection onto the second factor (in other words, for a pentagon x, ϑ m pxq is the angle =p Ý ÝÝÝÝ Ñ a m a m`1 , p1, 0qq). Changing from the basepoint a i to the basepoint a j yields a change of coordinates of the form px, uq Þ Ñ px, R α ij pxq uq, where α i,j pxq is the unit vector with angle =p Ý ÝÝÝ Ñ a i a i`1 , Ý ÝÝÝ Ñ a j a j`1 q. So, (6.9) vol Pent 1 p q :" vol Pent 0 p q ˆLeb U defines a Γ-invariant volume.

Proposition 6.7. The action of Γ is ergodic on Pent 1 p q with respect to the natural volume vol Pent 1 p q .

Proof. The argument is borrowed from Chivet's master's thesis [START_REF] Chivet | Itération aléatoire de pliages de quadrilatères[END_REF]. Let B be a Borel set of positive volume such that for every γ P Γ, (6.10) vol Pent 1 p q pB∆γ ´1pBqq " 0.

Pick an index m P t0, . . . , 4u, and note that Γ m preserves the fibers of ϑ m . Since B is almost Γ m -invariant and the Γ m -action on Pent 0 p q is ergodic, we get that B is ϑ m -saturated, which means that every fiber of ϑ m intersects B on a set of zero or full measure for vol Pent 0 p q .

Let us fix a value of m, say m " 0 and work in the system of coordinates px, uq associated to this choice; in these coordinates, R v is of the form px, uq Þ Ñ px, uvq. Set (6.11) B 0 "

! u P U; vol Pent 0 p q pB X ϑ ´1 0 puqq " 1
) .

If we push vol Pent 1 p q onto U by ϑ 0 , one gets the Lebesgue measure, and B 0 has a positive Lebesgue measure; below, we shall consider Lebesgue density points u 0 of B 0 . Now fix another value of m, say m " 1. Let F be any fiber of ϑ 1 . Since ϑ 0 | F : F Ñ U admits a regular value, there exists δ ą 0 and an open set W Ă F such that ϑ 0 | W is a submersion onto an interval of length 2δ. In addition, since any other fiber of ϑ 1 is of the form R v pF q, we deduce that there exists an open set V P Pent 0 p q such that, for any u 0 P U, there exists a neighborhood N pu 0 q Ă U such that, for every u P N pu 0 q and every x P V , there exists W x P ϑ ´1 1 pϑ 1 px, uqq such that ϑ 0 | Wx realizes a submersion W x Ñsu ´δ, u `δr.

Fix any density point u 0 of B 0 , so that there exists A Ă B 0 X N pu 0 q of positive Lebesgue measure. For every u P A, B X pV ˆtuuq is of full vol Pent 0 p q mass in V ˆtuu. By Fubini's theorem, and the fact that the B is ϑ 1 -saturated, there is a set of positive measure B 1 Ă A ˆV such that for any px, uq P B 1 , the ϑ 1 -fiber of px, uq is contained in B (modulo a set of measure zero). Projecting back by ϑ 0 and using the fact that B is ϑ 0 -saturated, we conclude that su 0 δ, u 0 `δrĂ B 0 (modulo a set of measure zero). From this we easily conclude that B 0 " U (modulo a set of measure zero) and, applying the Fubini theorem again completes the proof. Theorem 6.8. Let P R 5 ą0 be a general parameter. Fix a probability measure ν on Γ satisfying the moment condition (M) and whose support generates Γ. Then, the ergodic, ν-stationary measures are atomic measures on Γ-periodic orbits( 7); -measures of the form

˜ÿ xPF δ x ¸ˆLeb U
where F is a finite orbit for the action of Γ on Pent 0 p q; -the measure vol Pent 1 p q .

In particular, every ν-stationary measure on Pent 1 p q is invariant.

If ν is a probability measure on Γ ext satisfying condition (M) and generating Γ ext , and if is very general, then the only ergodic ν-stationary measure on Pent 1 p q is vol Pent 1 p q .

In the latter case, we could also state an equidistribution result in the spirit of Corollary 6.5. The core of the proof is the following stationary version of a celebrated argument due to Furstenberg [START_REF] Furstenberg | Strict ergodicity and transformation of the torus[END_REF], which we state here in a general form. Lemma 6.9. Consider a random dynamical system pX, pf ω q, ν, µq, where X is a compact metric space, ν is a Borel probability measure on HomeopXq, and µ is an ergodic ν-stationary measure on X. Let G be a compact group, with Haar measure λ. Consider a G-extension of this random dynamical system, by transformations of X ˆG of the form

F ω : px, gq Þ Ñ pf ω pxq, h ω pxq ¨gq
Then for this extension, µ ˆλ is ν-stationary, and if it is ergodic, it is the unique stationary measure projecting down to µ.

Proof. The stationarity of µˆλ is an easy exercise. Let μ be an ergodic, ν-stationary probability measure on X ˆG with marginal pπ X q ˚μ " µ. By the random ergodic theorem, μ-almost every 7 Such periodic orbits are even rarer than periodic orbits on Pent 0 p q (we do not know any example). So we strongly believe that there exists a dense, Zariski open subset W Ă R 5 ą0 such that for P W , Γ does not have any finite orbit in Pent 1 p q (see Question 6.6).

px, gq is μ-generic: this means that for ν N -almost every ω, (6.12)

1 n n´1 ÿ k"0 δ F k ω px,gq ÝÑ nÑ8 μ.
Let R h : px, gq Þ Ñ px, g ¨hq denote the right translation induced by h P G. Note that F ω commutes with R h and µ ˆλ is R h -invariant. From this we infer that if px, gq is µ ˆλ-generic, then all points in the fiber txu ˆG are µ ˆλ-generic. By Fubini's theorem, it follows that μ-almost every point is in fact µ ˆλ-generic, hence μ " µ ˆλ, as asserted.

We shall also need the following well known lemma.

Lemma 6.10. Let Γ be a group of rotations of the unit circle and ν be a measure such that xSupppνqy " Γ.

-If Γ is infinite, the Lebesgue measure is the only ν-stationary measure.

-If Γ is finite, the ergodic stationary measures are supported by its finite orbits.

Proof. Let us prove the first assertion (the second one is obvious). Since Γ is infinite, it is a dense subgroup of SOp2q. Since SOp2q is Abelian, by the Choquet-Deny theorem, every stationary measure is invariant. Now, if µ is Γ-invariant, it its SOp2q-invariant too, by density and dominated convergence. Thus, µ is the Lebesgue measure.

Proof of Theorem 6.8. By Equation (6.8), the dynamics on Pent 1 p q is a U-extension of the one on Pent 0 p q. Theorem 6.2 implies that if ν generates Γ, any ergodic ν-stationary measure μ on Pent 1 p q either projects to a finite orbit or to vol Pent 0 p q . In the latter case, Proposition 6.7 and Lemma 6.9 imply that μ " vol Pent 1 p q . Assume now that (6.13) pπ Pent 0 p q q ˚μ "

1 |F | ÿ xPF δ x
for some finite orbit F . In this situation we can also use Lemma 6.9 to classify stationary measures. Restricting to a finite index subgroup, endowed with the induced measure (see [START_REF] Benoist | Random walks on reductive groups, volume 62 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]Chap. 5]) reduces the problem to the case where F " tx 0 u. Then the classification follows from Lemma 6.10.

The second statement of the theorem follows similarly, using Theorem 6.4 instead of 6.2.

6.3. Dynamics on Pentp q. We can finally derive some information about the dynamics of random foldings on Pentp q, which is a R 2 -extension of the dynamics on Pent 1 p q. Indeed Pentp q can be identified to Pent 1 p qˆR 2 by choosing a preferred vertex, say a 0 , and translating it to the origin. Doing so, we obtain a diffeomorphism (6.14) Pentp q Q pa i q Þ ÝÑ px, a 0 q " ppv i q, a 0 q P Pent 1 p q ˆR2 , where v i " Ý ÝÝÝ Ñ a i a i`1 .

We already introduced the involution s i in § 5.1, which descends to σi,i`1 (indices modulo 5) on Pent 1 p q and to σ i,i`1 on Pent 0 p q. With the identification given by Equation (6.14), we obtain: (6.15) # s i ppa i qq " pσ i,i`1 pxq, a 0 q for i ‰ 4 s 4 ppa i qq " pσ 40 pxq, a 0 `σ 40 pv 4 q ´v4 qq By definition the group Γ is the group generated by the involutions s i (we are slightly abusing notation here).

To find an involution descending to σij when j ‰ i `1, different options can be chosen, depending on the vertices that remain fixed under the involution. First, observe that if j ‰ i `1 we can always choose i, j so that j " i `2 modulo 5 (so the vectors v i and v i`2 will change while the others remain fixed). In analogy with the case of s i , we define r i such that r i pa i q " a i and rr i pP qs " σ i,i`2 prP sq, so that r i fixes a i , a i`3 and a i`4 and moves a i`1 and a i`2 (another option would have been to leave a i`2 fixed). It can be expressed in coordinates in Pentp q as in (6.15). We define Γ ext acting on Pentp q by Γ ext :" xs i , r i , i " 0 . . . 5y. In [START_REF] Benoist | Itération de pliages de quadrilatères[END_REF][START_REF] Benoist | Itération de pliages de quadrilatères[END_REF], the authors study in detail how a quadrilateral drifts in the plane under successive foldings. Fix a probability measure ν on Γ ext . From a pentagon P 0 " pa i q with a 0 " p0, 0q and a sequence ω " pf n q P pΓ ext q N of folding instructions, we obtain the following random sequence of pentagons P n P Pentp q: (6.16)

P n pωq " f n´1 ¨¨¨f 0 pP 0 q.

Note that the parameter space for the starting point is Pent 1 p q. Proposition 6.11.

(1) Let P R 5 be a general parameter. Assume that ν satisfies the moment condition (M) and generates Γ. Then, for vol Pent 1 p q -almost every P 0 , the linear drift of the sequence pP n q vanishes, that is

lim nÑ8 1 n distpP n pωq, p0, 0qq " 0 for ν N -almost every ω.
(2) Assume now that is very general, ν satisfies the moment condition (M `), and ν generates Γ ext . Then the same conclusion holds for every P 0 P Pent 1 p q.

Proof. To study the drift it is enough to study the location of the point a 0 . For this we use the coordinates given by the identification Pentp q » Pent 1 p q ˆR2 and write P n pωq " prP n pωqs, a 0 pP n pωqqq. From Equation (6.15) and its analogue for the r i , we see that there exists a function w : Γ ext ˆPent 1 p q Ñ R 2 such that a 0 pf pP qq " a 0 pP q `wpf, rP sq. This function is continuous and is a cocycle: wpf g, rP sq " wpf, grP sq `wpg, rP sq. We then obtain (6.17) a 0 pP n pωqq "

n´1 ÿ k"0 wpf k , rP k pωqsq.
For Assertion (1), we apply the Birkhoff ergodic theorem to the skew product (6.18)

F : pω, xq Þ Ñ pσpωq, f ω pxqq
(where σ is the shift on pΓ ext q N ) and to the ergodic measure ν N ˆvol Pent 1 p q . This shows that for vol Pent 1 p q -almost every P 0 and ν N -almost every ω,

(6.19) 1 n n´1 ÿ k"0 wpf k , rP k pωqsq ÝÑ nÑ8 ż
wpγ, P q dνpγqdvol Pent 1 p q pP q.

Now for every γ P Γ ext , the invariance of vol Pent 1 p q under rotations implies that (

ż wpγ, P qdvol Pent 1 p q pP q " 0, and the result follows.

For Assertion (2), being very general, we can assume that vol Pent 1 p q is the unique stationary measure on Pent 1 p q (see Theorem 6.8). The argument will be the same as for Assertion [START_REF] Abboud | Sur la dynamique des endomorphismes des surfaces affines[END_REF], except that we shall need a more sophisticated limit theorem that makes use of this unique ergodicity. As already observed, w is a cocycle and, by unique ergodicity, it has a unique average in the sense of [11, §3.3.2]. The analogue of formula (6.15) for extended foldings implies that there exists Cp q ď 2 ř i such that that for any γ P Γ ext (6.21) w sup pγq :" sup rP sPPent 1 p q }wpγ, rP sq} ď Cp q lengthpγq, where the length lengthpγq is relative to the given generators of Γ ext . The moment condition implies that (6.22)

ż Γ ext w sup pγqdνpγq ă 8,
thus we can apply the Law of Large Cocycles [11, Thm 3.9], which completes the proof.

It is natural to ask for a better understanding of the asymptotic behavior of distpP n pωq, p0, 0qq. Intuitively, by Equation (6.17), the first vertex a 0 pP n pωqq should behave like a random walk in the plane, the steps of which are random vectors distributed according to some explicit measure supported by a bounded disk. Under appropriate non-degeneracy properties of this measure, such a random walk escapes with speed Op ? nq and, after rescaling, converges to a Brownian motion (for some positive definite covariance form). Numerical experiments indicate that distpP n pωq, p0, 0qq indeed behaves like ? n.

Question 6.12. Does a 0 pP n pωqq satisfy a central limit theorem? Does 1 ? n a 0 pP n pωqq converge to a Brownian motion?

As far as we know, this question is already open for random foldings of quadrilaterals. An even simpler variant is to take a triangle and reflect it randomly along one of its sides. This last problem falls into the setting of random iteration of Euclidean isometries in which case the result is known (see e.g. [START_REF] Ådahl | Random iteration of Euclidean isometries[END_REF] and references therein). To establish such a result, it is likely that some estimates would be needed for the speed of the ergodicity of the base dynamics in Pent 0 , as discussed in § 1.8 (cf. [START_REF] Benoist | Random walks on reductive groups, volume 62 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]Chap. 11 and 12]). C and a point q P C. Denote by σ q : P 2 C P 2 C the birational involution defined by the following properties: it fixes C pointwise and it preserves the pencil of lines through q. If L is a general line through q, the restriction of σ q to L is defined as follows: beside q, L intersects C in two other points p and p 1 ; identifying Lz tp, p 1 u to P 1 z t0, 8u, with affine coordinate z, σ q |L corresponds to z Þ Ñ ´z. By definition, σ q is the Jonquières involution associated to the pencil of lines through q and fixing C pointwise. Now, fix a positive integer k, and k distinct points q i on C. Each q i gives rise to a Jonquières involution σ i :" σ q i . It has five base points, namely q i and the four points p i,j P C such that the line pq i p i,j q is tangent to C at p i,j . One of the p i,j may be infinitely near (above q i ) if q i is an inflexion point, but for simplicity we shall assume that: (Hyp1) none of the q i is an inflexion point of C; (Hyp2) the points q i and p i,j for 1 ď i ď k and 1 ď j ď 4 are pairwise distinct.

In fact, (Hyp2) implies (Hyp1) since otherwise one of the p i,j would coincide with q i (as a point of the plane, i.e. p i,j would be infinitely near q i ). We shall denote by X the rational surface obtained by blowing up the 5k points q i and p i,j and by π : X Ñ P 2

C the natural projection. We also consider the surface X i obtained by fixing i and blowing up the base points q i and p i,j of σ i , creating five exceptional divisors Epq i q, and Epp i,j q for 1 ď j ď 4. Doing so, we get a birational morphism π i : X i Ñ P 2 C , and a distinguished basis for its Néron-Severi group: -e 0 will denote the class of the total transform of a line L Ă P 2 C ; -e q i the class of Epq i q; -and e p i,j the class of Epp i,j q. This basis is orthogonal for the intersection form, e 2 0 " 1, and e 2 q i " e 2 p i,j " ´1. Abusing slightly, the same notation will be used for the classes of (the total transform of) these curves in the surface X.

The involution σ i lifts to an involutive automorphism σi of X i , and then all the σi lift to automorphisms of X, which we still denote by σi . Indeed, since σi fixes the strict transform of C in X i pointwise, it preserves the exceptional divisors obtained by blowing up the q and p ,j for ‰ i. Acording to [START_REF] Blanc | On the inertia group of elliptic curves in the Cremona group of the plane[END_REF], the subgroup Γ Ă AutpXq generated by the σi is a free product of k copies of Z{2Z, i.e.

(7.1) Γ » Z{2Z ˚¨¨¨˚Z{2Z,
acting faithfully on the Néron-Severi group NSpXq. Since the canonical bundle of P 2 pCq is Op´3q and we only blow-up points of C, we obtain the following properties.

(1) The strict transform C X of C in X is fixed pointwise by the group Γ. Its self-intersection is equal to

(7.2) C 2 X " 9 ´5k , so it is negative when k ě 2. The strict transform C X i of C in X i has self-intersection C 2 X i " 4. (2) Assume k ě 2.
The curve C X is the unique member of the linear system |C X |, and its cohomology class is equal to the anticanonical class ´kX . In particular, C X is invariant under the action of AutpXq. More precisely, C being a cubic curve, there is a meromorphic 2-form Ω 0 on P 2 C that does not vanish and has a simple pole along C. Now, since we only blow up smooth points of C, an easy local computation shows that the pull back (7.3)

Ω X :" π ˚Ω0
is a meromorphic 2-form that does not vanish and has a simple pole along C X . We shall fix such a form Ω X ; it is almost unique: on X, any non-vanishing meromorphic 2-form is proportional to Ω X .

(3) The total volume of the singular volume form Ω X ^ΩX is infinite:

(7.4) ż X Ω X ^ΩX " `8.
We set (7.5) vol 8 X " Ω X ^ΩX , which we identify to a positive measure on X.

(4) Let Jac Ω : AutpXq Ñ C ˚denote the homomorphism such that (7.6) @f P Γ, f ˚Ω " Jac Ω pf qΩ (cf. Remark 4.3). We have (

Jac Ω pΓq " t1u .

To see this, consider the involution σ 1 and the pencil of lines through q 1 . Let r be a point of C such that pq 1 rq intersects C transversely; then, σ 1 determines a germ of diffeomorphism fixing r. Since this germ has order 2 and fixes C pointwise, we can linearize it( 8 ). Since C is pointwise fixed, there is a small euclidean neighborhood of r and holomorphic coordinates px, yq on it, in which r " p0, 0q, σ 1 px, yq " px, ´yq and C " ty " 0u. In these coordinates, the form Ω X is equal to ϕpx, yq dx ^dy y for some non-vanishing holomorphic function ϕ. Then, Jac Ω pσ 1 q " ϕpx, ´yq{ϕpx, yq. Evaluating this ratio at r, we get Jac Ω pσ 1 q " 1. Thus, Jac Ω pσ i q " 1 for i " 1, . . . k, and Jac Ω pΓq " t1u.

(5) If C and the q i are defined over Q, then X and Γ are also defined over Q. Indeed, if K is the number field over which C and the q i are defined then, for each i, the p i,j are defined over some quartic extension of K; thus, X and Γ are defined over some extension L of K of degree rL : Ks ď 4k.

Finer description of the involution σ i .

8 Indeed, its differential L at the origin in the system of coordinates mentioned just below is Lpx, yq " px, ´yq, and ψ ˝σ1 " L ˝ψ, where ψ " 1 2 pid `L ˝σ1q 7.2.1. Invariant fibration. For each i " 1, . . . , k, the pencil of lines through q i gives rise to a rational fibration (7.8) η q i : X i Ñ P 1 C . The singular fibers of η q i correspond to the total transform of the lines pq i p i,j q (each of them is made of two rational curves). In X, we obtain k fibrations η q i : X Ñ P 1 C , each of them with 5k ´1 " 4 `5pk ´1q singular fibers.

Let L i,j Ă X i be the strict transform of the line pq i p i,j q. Since pq i p i,j q is tangent to C at p i,j , the three curves C X i , Epp i,j q, and L i,j have a unique common point (7.9) pi,j :" C X i X Epp i,j q " L i,j X Epp i,j q in X i . The involution σi permutes Epp i,j q and L i,j and fixes this intersection point pi,j . This can be seen as follows: if L is the strict transform of a general line though q, then σi prLsq " rLs. It follows that σi prL i,j s `rEpp i,j qsq " rL i,j s `rEpp i,j qs. Now, σ i contracts π i pL i,j q onto p i,j , so σi pL i,j q " cEpp i,j q for some integer c ě 1; and we infer that c " 1 because σi is an involution. Thus, σi pL i,j q " Epp i,j q and σi pEpp i,j qq " L i,j 7.2.2. Action on E p i,j . Let x be a point of Epp i,j q. A first possibility is that σi pxq belongs to Excpπ i q (more precisely σi pxq P Epq i q Y Epp i,j q). This happens precisely when σi pxq " x, and in that case x " pi,j " L i,j X Epp i,j q; -or σi pxq is the intersection point of L i,j and Epq i q, and in that case x is the intersection of Epp i,j q with the conic D i (see below § 7.2.4).

Otherwise, σi pxq is a point of L i,j that does not belong to the exceptional set Excpπ i q.

7.2.3. Blow-ups of points of C. Now, let r P C be distinct from the base points of σ i . The line pqrq is σ i -invariant, and σ i acts as z Þ Ñ ´z on it, by fixing 0 » r and 8 » r 1 , where r 1 is the third point of intersection of pqrq with C. Thus, when r is blown up, the action of σi on the exceptional divisor Eprq is an involution with exactly two fixed points: a fixed point corresponding to the tangent line T r C, and a fixed point corresponding to the line pqrq (or more precisely to T r pqrq).

Remark 7.1. By (Hyp2), q i does not coïncide with q l or a p l,j when l ‰ i. Thus, the intersection point between Epq l q and the strict transform of pq l p l,j q is never fixed by σi : it is mapped to another point of Epq l q.

7.2.4. Action on Néron-Severi, and the conic D i . Acording to [START_REF] Blanc | On the inertia group of elliptic curves in the Cremona group of the plane[END_REF], the action of σi on the Néron-Severi group of X i is given, in the basis pe 0 , e q , e p 1 , . . . , e p 4 q, by the matrix (7.10)

¨3 2 1 1 1 1 ´2 ´1 ´1 ´1 ´1 ´1 ´1 ´1 ´1 0 0 0 ´1 ´1 0 ´1 0 0 ´1 ´1 0 0 ´1 0 ´1 ´1 0 0 0 ´1 ‹ ‹ ‹ ‹ ‹ ‹ ' .
For instance, the second column means that the exceptional divisor Epq i q is mapped to the strict transform Di of a plane conic D i which goes through the points q i and p i,j with multiplicity 1; its class in NSpX i ; Zq is 2e 0 ´eq ´ep 1 ´. . . ´ep 4 . This conic intersects C in 6 points, counted with multiplicity, and Di intersects C X i in exactly one point, which must be fixed under the action of σi . On the other hand, since σi fixes C X i pointwise, the point (7.11) qi :" Epq i q X C X i must be fixed under the action of σi (9 ). Since σi pEpq i qq " Di , we conclude that Di XC X i " qi , thus D i is tangent to C at q i . This argument also shows that the only points of Epq i q which are mapped into the exceptional set of π i (resp. π) are qi and the intersection points of Epq i q with the L i,j : the point Epq i q X L i,j is mapped to L i,j X Epp i,j q, a point which corresponds to the tangent direction of D i at p i,j (cf. § 7.2.2). We already stated without proof the fact that Γ is isomorphic to the free product of the σi . Blanc obtains this result by using (7.10) and proving that the action of Γ on NSpX; Zq is faithful and its image is such a free product Z{2Z ˚¨¨¨˚Z{2Z. Thus we get: Lemma 7.2. When k ě 3, the group Γ Ă AutpXq is non-elementary.

Invariant curves (k ě 3).

With the matrix from Equation (7.10) at hand, we deduce that all fixed points of σi ˚acting on NSpX i q (resp. NSpX i ; Rq) are of the form (7.12)

u " de 0 ´pd ´2mqe q i ´m 4 ÿ j"1

e p i,j
for some pair of integers pd, mq (resp. pair of real numbers pd, mq). From now on we set (7.13) Σ i :"

4 ÿ j"1
e p i,j P NSpX i ; Zq presp. P NSpX; Zqq.

Lemma 7.3. If k ě 3 and (Hyp1) and (Hyp2) are satisfied, the only (reduced) effective curve U Ă X which is invariant under the action of Γ is the curve C X .

Proof. Let u P NSpXq be the class of an invariant curve U . Then by Equation (7.12) its expression in the basis pe 0 , e q 1 , . . . , e q k , e p 1,1 , . . . , e p 1,4 , e p 2,1 , . . . e p k,4 q is of the form (7.14) u " de 0 ´pd ´2m 1 qe q 1 ´¨¨¨´pd ´2m k qe q k ´m1 Σ 1 ´¨¨¨´m k Σ k for some integers d and m i . The strict transform of a general line through q i , whose class is e 0 ´eq i , must intersect U non-negatively. This implies that m i ě 0. Similarly, d ě 0 because a general line intersects U non-negatively. The equality rC X s " 3e 0 ´eq 1 ´Σ1 ´¨¨¨´e q k ´Σk implies (7.15) U ¨CX " ´pk ´3qd ´2pm 1 `¨¨¨`m k q. Now, assuming that C X is not an irreducible component of U , we obtain (7.16) 0 ď ´pk ´3qd ´2pm 1 `¨¨¨`m k q.

the involution σ1 would have a fixed point in F ; such a fixed point would also be fixed by σ2 because σ2 " σ1 ˝g1,2 ; thus, it is fixed by xσ 1 , σ2 y, in contradiction with the first assertion. We conclude that g 1,2 is not elliptic. Since it preserves the isotropic class u 1,2 , it is parabolic 10 .

Let us now prove the third property. Set M 1,2 " OpC X `M1,2 q and L 1,2 " OpM 1,2 q (viewed as line bundles or as sheaves on X). Since X is rational we have χpO X q " 1. Since M 1,2 is a smooth rational curve with M 2 1,2 " ´1, the Riemann-Roch theorem gives (7.18) h 0 pX, L 1,2 q ´h1 pX, L 1,2 q `h2 pX, L 1,2 q " 1.

We have h 0 pX, L 1,2 q " 1 because M 1,2 is irreducible and has negative self-intersection, and h 2 pX, L 1,2 q " 0 by Serre duality; thus, h 1 pX, L 1,2 q " 0. Now, looking at the restriction of M 1,2 to C X , we get the long exact sequence

(7.19) H 0 pX, L 1,2 q Ñ H 0 pX, M 1,2 q Ñ H 0 pC X , M 1,2|C X q Ñ H 1 pX, L 1,2 q Ñ ¨¨B
y what we know of the H i pX, L 1,2 q this gives (7.20)

C Ñ H 0 pX, M 1,2 q Ñ H 0 pC X , M 1,2|C X q Ñ 0.
Let us identify C X to C via the projection X Ñ P 2 C and fix an inflexion point o of C; the divisor obtained by intersecting a line with C is equivalent to 3o. In restriction to C X » C, M 1,2 is given by the divisor 12o ´2q 1 ´2q 2 ´p1,1 ´¨¨¨´p 2,4 , of degree 0. According to § 7.2.4, there is a conic D 1 tangent to C at q 1 and passing through the p 1,j ; thus, 2q 1 `p1,1 `¨¨¨`p 1,4 " 6o on C; similarly, 2q 2 `p2,1 `¨¨¨`p 2,4 " 6o. Hence 12o ´2q 1 ´2q 2 ´p1,1 ´¨¨¨´p 2,4 " 0, which means that M 1,2|C X is the trivial line bundle OpC X q. Thus, h 0 pC X , M 1,2|C X q " 1 and Equation (7.20) gives h 0 pX, M 1,2 q " 2.

In other words, the linear system |C X `M1,2 | is a pencil of curves. The general member D of this linear system is irreducible, because otherwise C X or M 1,2 would be a fixed component, then we could write D " D 0 `CX (resp. D 0 `M1,2 ) for some movable curve D 0 , but since C 2

X " M 2 1,2 " ´1, this curve D 0 would simultaneously satisfy D 2 0 " ´1, a contradiction. Now, since the self-intersection of C X `M1,2 is 0, the elements of |C X `M1,2 | are disjoint and form a fibration. Finally, since they intersect trivially C X and C X " ´kX , the genus formula shows that they have genus 1.

FINITE ORBITS AND INVARIANT MEASURES

We keep notation as in the previous sections. In § 8.2, we prove that when k ě 4, under general assumptions on the the q i , every orbit of Γ outside C X is infinite. Then we discard the possibility of Γ-invariant measures in § 8.3. This relies heavily on the results of [START_REF] Cantat | Finite orbits for large groups of automorphisms of projective surfaces[END_REF][START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF]. 8.1. Finite orbits outside C X : a finiteness result. By a generalized Kummer surface, we mean a desingularization of a quotient A{G where A is an Abelian surface, G is a subgroup of AutpAq, and the set of points x P A with a non-trivial stabilizer in G is a finite subset F G of A (see [START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF][START_REF] Cantat | Automorphisms of surfaces: Kummer rigidity and measure of maximal entropy[END_REF]).

Proposition 8.1. The surface X is not a generalized Kummer surface.

Proof. Assume, by contradiction, that X is a generalized Kummer surface. Then, there exists a birational morphism ε : X Ñ X 0 onto a singular surface X 0 , an Abelian surface A, and a finite subgroup G of AutpAq as above, such that X 0 is isomorphic to A{G; the singularities of X 0 correspond to the finite set F G Ă A (see [24, §4]). In particular, the singularities of X 0 are of quotient type, and the genus 1 curve C X cannot be contracted by ε; set C X 0 " εpC X q and let C A be the preimage of C X 0 in A under the quotient map η : A Ñ A{G " X 0 . As a consequence, the meromorphic 2-form Ω X induces a meromorphic 2-form Ω X 0 on the regular part of X 0 , hence a meromorphic 2-form η ˚ΩX 0 on AzF G ; this 2-form has poles along C A because the quotient map η is a local isomorphism on C A zF G . Let Ω A be a holomorphic 2-form on A with ş A Ω A ^ΩA " 1. Then, there is a holomorphic function ϕ : AzF G Ñ C such that Ω A " ϕη ˚ΩX 0 . By the Hartogs theorem, this function ϕ extends holomorphically to A; and because it vanishes along C A , it is identically zero. This contradiction shows that X is not a Kummer surface. Proposition 8.2. Suppose k ě 3. If C and the q i are defined over Q, then Γ has at most finitely many finite orbits in XpCqzC X .

Proof. By Lemma 7.4, the group Γ contains parabolic elements. If the curve C and the points q i are defined over Q, then X and the σi are all defined over some number field K. Since X is not a Kummer surface, pX, Γq is not a Kummer group and Theorem B of [START_REF] Cantat | Finite orbits for large groups of automorphisms of projective surfaces[END_REF] implies that the union PerpΓq of all finite orbits of Γ is not Zariski dense. Let PerpΓq be its Zariski closure: it is made of a one-dimensional part Per 1 pΓq that contains C X , together with a sporadic finite set Per 0 pΓq. Since Per 1 pΓq is Γ-invariant, Lemma 7.3 shows that Per 1 pΓq " C X . This concludes the proof. 8.2. Finite orbits outside C X : non-existence. By (Hyp2), q i does not coincide with q l or a p l,j with l ‰ i. Thus, the points of intersection between Epq l q and the strict transform L l,j of pq l p l,j q is never fixed by σi : it is mapped to another point of Epq l q (see § 7.2.3). To get more rigidity, let us add a stronger hypothesis (Hyp4) For i ‰ l, the involution σi acts on Epq l q, by mapping the four points corresponding to the directions pq l p l,j q to four other points (i.e. pσ i q ˚Tq l pq l p l,j q ‰ T q l pq l p l,j 1 q for any i, l ‰ i, and 1 ď j, j 1 ď 4).

To check that this condition is satisfied for a general choice of points, note that for fixed q l and varying q i , σi acts upon Epq l q as an involution fixing a fixed point (corresponding to the line T q l C) and a mobile one (corresponding to the line pq l q i q). Fix a coordinate on Epq l q in which T q l C " 8. Then the induced involution is of the form z Þ Ñ ´z `2cpq i q, where cpq i q is the coordinate of the mobile point. For fixed a and b in Epq l q, taken among the points L l,j X Epq l q, the relation σi paq " b reads a `b " 2cpq i q; such a relation is not satisfied for a general choice of q i . Proposition 8.3. Let C Ă P 2 Q be a smooth cubic curve, and let k ě 4 be an integer. Consider the set H k of k-tuples pq 1 , q 2 , . . . , q k q P CpQq satisfying hypotheses (Hyp1) to (Hyp4). Fix such a k-tuple pq 1 , q 2 , . . . , q k q; then, for q 1 k P CpQq outside a finite set, the pair pX, Γq determined by pq 1 , q 2 , . . . , q k´1 , q 1 k q does not have any finite orbit, except for the points of C X , which are fixed.

Lemma 8.4. Assume k ě 2. If x does not belong to C X , there exists an element f of Γ such that πpf pxqq R C.

Proof. Observe that if πpΓpxqq Ă C, then Γpxq Ă ExcpπqzC X . If x R Excpπq, we are done. Otherwise x belongs to some Epp i,j q, or to some Epq i q.

In the first case, assume for concreteness that x P Epp 1,1 q and set y " σ1 pxq. By § 7.2.2, if y P Excpπq, then y is the intersection point of the strict transform L 1,1 of the line pp 1,1 q 1 q either with Epq 1 q or with Epp 1,1 q. The first possibility does not happen because L 1,1 X Epq 1 q is in C X and is fixed by σ1 (see § 7.2.1). In the second possibility, by (Hyp4), σ2 pyq is not on one of the strict transforms of the lines pq 1 p 1,l q, thus by § 7.2.2 again, σ1 pσ 2 pyqq R Excpπq and we are done.

In the second case, assume for concreteness that x P Epq 1 q and, again, set y " σ1 pxq. By § 7.2.4, y belongs to D1 . If y P Excpπq, then either y P D1 X Epp 1,j q for some j, and we are back to the previous case, or y P D1 X Epq 1 q and then x " q1 P C X is fixed, contradicting our assumptions.

Proof of Proposition 8.3. Consider the subgroup Γ 3 of Γ generated by σ1 , σ2 , and σ3 . By Proposition 8.2, Γ 3 has only finitely many finite orbits outside C X . By the previous lemma, each of these is the orbit Γpx j q of some x j R C X Y Excpπq. Let F be the union of these finite orbits Γpx j q, and set F 1 " F zpC X Y Excpπqq. For a general choice of q k P C, the lines pq k xq for x P πpF 1 q are pairwise distinct, and x does not belong to the lines pq k p k,j q, for 1 ď j ď 4, nor to the conic D q k from § 7.2.4 (see Lemma 8.5 below). Thus, σ k pπpF 1 qq X πpF 1 q " H, and the orbit of σk pzq under Γ 3 is infinite for any z in F 1 . This shows that Γ does not have any finite orbit, except for its fixed point set, which coincides with C X . Lemma 8.5. Fix x P P 2 zC. Then for general q P C, x does not belong to the conic D q .

Proof. Indeed, suppose that x is in D q for every q in some Zariski dense open subset U of C. By continuity, the same holds for U " C. Choose q P C such that pxqq is tangent to C at q and q is not an inflexion point of C ( 11 ). By § 7.2.4, D q is tangent to C, hence to pxqq, at q, so D q X pxqq " tqu. This is a contradiction. 11 Such a point always exists. Otherwise, looking at the linear projection from C to P 1 » PpTxP 2 q, which is a ramified cover of degree 3, one sees that there would be three inflexion lines meeting in x. So, assume p, q, r are inflexion points with TpC X TqC X TrC " txu. Put C in Weierstrass form x 2 2 x3 " x 3 1 `bx1x 2 3 `cx 3 3 , with r " r0 : 1 : 0s, TrC " tx3 " 0u, and x " r1 : d : 0s for some d P C. The lines passing through x have equations x2 " dx1 `ex3. Such a line intersects C when

x 3 1 ´d2 x 2 1 x3 `pb ´2deqx1x 2 
3 `pc ´e2 qx 3 3 " 0, and it is an inflexion line when this cubic equation coincides with px1 ´τ x3q 3 for some triple root τ . This implies that 3τ " d 2 , 3τ 2 " b ´2de, and e " pd 4 ´3bq{6d, which means that e is determined by d; in other words, there is at most one inflexion line of slope d (plus the line at infinity), and it is impossible, for a smooth cubic curve C, to have three inflexion lines with a common point.

Invariant measures.

Theorem 8.6. Fix a smooth cubic curve C Ă P 2 defined over Q. Assume that k ě 4, and consider a k-tuple of points pq 1 , q 2 , . . . , q k q P CpQq satisfying hypotheses (Hyp1) to (Hyp4). Then, for q 1 k P CpQq outside a proper real analytic curve, the pair pX, Γq determined by pq 1 , q 2 , . . . , q k´1 , q 1 k q does not have any invariant probability measure except for the probability measures supported on the fixed point set C X .

Proof. We have to show that every ergodic, invariant probability measure is supported on C X . According to Lemma 7.3, there is no invariant curve except C X . Thus, from Proposition 8.3, it suffices to exclude the existence of invariant measures giving no mass to proper Zariski closed subsets. Let µ be such a measure. By Theorem A of [START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF], there are two possibilities:

(1) either µ is supported on a totally real, real analytic subset Σ Ă X, and µ is absolutely continuous with respect to the 2-dimensional Lebesgue measure on Σ, with a real analytic density along the smooth locus of Σ; (2) or the support of µ is the whole surface X, and µ is absolutely continuous with respect to any smooth volume form, with a positive and real analytic density outside some invariant algebraic subset Z.

Let us exclude the second case. We already know that C X is the only invariant algebraic subset, hence µ " ϕ vol 8

X for some real analytic function ϕ : XzC X Ñ R `. The ergodicity of µ and the invariance of vol 8

X imply that ϕ is constant. But then, by Property (3) of § 7.1, µpXq " 8, which is a contradiction.

To rule out the first case, we argue as follows. The real (singular) surface Σ is invariant under the action of Γ k´1 " xσ 1 , σ2 , . . . , σk´1 y, and supports an invariant probability measure with a smooth density. According to Theorem C of [START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF], there are only finitely many surfaces of this type. We denote by Σ k´1 Ă X the union of these real analytic subsets: it is the maximal, 2dimensional, real analytic subset of X that supports a Γ k´1 -invariant probability measure with full support. To conclude, it suffices to show that, after perturbation of q k , the surface Σ k´1 is not σk -invariant.

For this, denote by z a smooth point of Σ k´1 with πpzq R C. As r varies along C, the point σ r pπpzqq describes a complex algebraic curve. This curve cannot be contained in πpΣ k´1 q, because Σ k´1 is totally real. Thus, the set B k´1 " tr P C; σ r pzq P Σ k´1 u is a proper real analytic subset of C. Then, we choose a point q 1 k P CzB k´1 such that pq 1 , . . . , q 1 k q satisfies (Hyp1) to (Hyp4) and the conclusion of Proposition 8.3, and we are done. Remark 8.7. Since the proof of the theorem goes by breaking down all possible invariant totally real surfaces, the argument does not apply to the real case. Another argument will be given for the real setting in Theorem 10.3 below.

We believe that under the assumptions of Theorem 8.6, every stationary measure is invariant. More precisely, every ergodic stationary measure should have both Lyapunov exponents zero, therefore be invariant. In the next sections, we establish this result for some real examples.

REAL CONSTRUCTION

In this section, we construct examples for which X and the σ i are defined over the real numbers, XpRq is obtained by blowing-up 12 points of P 2 pRq (while XpCq is obtained by blowing up 20 points), and the action of Γ on the 1-dimensional homology of XpRq admits a positive Lyapunov exponent. 9.1. Topology of real rational surfaces. Let X R be a real projective surface obtained by blowing up a points r i of P 2 pRq, as well as b pairs of complex conjugate points ts j , s j u Ă P 2 pCqzP 2 pRq. We shall look at the first homology group of XpRq with integral or rational coefficients. For simplicity, consider some homogeneous coordinate system rx : y : zs on P 2 R , and suppose that the points r i are not contained in the line at infinity L 8 " tz " 0u: they are contained in the affine plane A 2 pRq of points rx : y : 1s with px, yq P R 2 . We endow this plane R 2 with the usual, counterclockwise, orientation.

For each index i, we denote by U i a small disk centered at r i , and we orient its boundary C i :" BU i in the clockwise direction. We suppose that the U i are pairwise disjoint. The exceptional divisor E i obtained by blowing up r i is a projective line. Then E i pRq is a circle, that we orient in such a way that C i " 2E i modulo homotopy (see Figure 5). Let V be the complement of the U i in R 2 , with the orientation induced by the orientation of R 2 . We orient L 8 in such a way that BV " 2L 8 `ři C i . Then in H 1 pXpRq, Zq,

2 8 `2 ÿ i e i " 0
where e i " rE i pRqs is the homology class of E i pRq and 8 " rL 8 pRqs is the homology class of L 8 pRq. Then, H 1 pXpRq, Zq is isomorphic to Z a ' Z{2Z, and H 1 pXpRq, Qq is isomorphic to Q a . More precisely, a basis of H 1 pXpRq, Qq is provided by the classes pe 1 , . . . , e a q.

If L is any line in P 2 pRq which is not vertical, we orient L from left to right; in other words, one can parametrize L by x P R Þ Ñ rx : αx`β : 1s for some α, β in R, and this parametrization is compatible with orientations. Letting U L be the open half-plane above L, its boundary in P 2 pRq is made of L and the line at infinity. In XpRq, this gives (9.1) 8 ` `2 ÿ r i PU L e i `ÿ r j PL e j " 0, (see Figure 6 for a local picture of a blow-up at a boundary of a domain) hence (9.2) " ÿ r i strictly below L e i ´ÿ r i strictly above L e i in H 1 pXpRq; Qq. This formula works even if some of the r i are contained in L. 9.2. Action of one Jonquières involution. Consider a smooth real cubic curve C Ă P 2 R such that CpRq is connected. We assume that C is in Weierstrass form y 2 " x 3 `ux 2 `vx `w and we orient CpRq from bottom to top, i.e. from negative values of y to positive ones.

Let q be a point of CpRq which is not an inflexion point. Let σ be the Jonquières involution associated to pC, qq, as in Sections 7.1 and 7.2 above. Besides q, the four remaining base points p j of σ are made of two real points p 1 , p 2 and two complex conjugate points tp 3 , p 4 " p 3 u; here, we shall assume that the position of q, p 1 , and p 2 are as on Figure 4 below. Denote by X the surface obtained by blowing up the base points of σ, by π : X Ñ P 2 the natural morphism, and by σ the automorphism π ´1 ˝σ ˝π of X. To describe the action of σ on H 1 pXpRq; Qq, we use the following facts:

-the involution σ permutes E p 1 and the strict transform L qp 1 Ă X of the line pqp 1 q Ă P 2 pRq. More precisely, L qp 1 , E p 1 , and C X have a unique common point p1 . This point is fixed by σ and the differential Dσ p1 can be described with the help of Figure 5. There is a basis of T p1 X given by vectors u and v which are respectively tangent to E p 1 and L qp 1 and are compatible with their orientations; moreover, after scaling v by some positive factor, we may assume that ´u `v is tangent to C X pRq (and is compatible with its orientation). Then, the matrix of Dσ p1 in this basis is

(9.3) Dσ p1 " ˆ0 ´1 ´1 0 ˙.
Thus, σpE 1 pRqq " ´Lqp 1 pRq, where the minus sign means that the orientation is reversed. In homology, this gives (9.4) σ˚e p 1 " ´ qp 1 " ´ep 2 . Here, for the second equality we used formula (9.2) and the fact that the unique point outside pqp 1 q is the point p 2 which is below it. When we shall blow up more points, extra terms will be added.

-the picture is different at p 2 (because the concavity of C is reversed), and we obtain (9.5) σ˚e p 2 " qp 2 " ´ep 1 .

-the "image" of q by σ is the conic D q that goes through q, p 1 , p 2 , and the points tp 3 , p 4 " p 3 u.

It is tangent to C at q; its real part is an ellipse, which we orient in the clockwise direction. Now,

p1 α β γ δ L qp1 C(R) α β γ δ E(p1) p1 FIGURE 5
. This Möbius band is obtained from a blow-up of a small disk around p 1 ; its boundary is the preimage of the circle bounding this disk. On the right, the green curve is the exceptional divisor Epp 1 q; the blue line is the strict transform of pqp 1 q; the red curve is the strict transform of C. The involution σ fixes the point of intersection of these three curves, permuting the green and blue curves. The orientations are the ones defined previously.

D q pRq bounds a disk Ω, more precisely, the boundary of Ω is ´Dq pRq (i.e. D q pRq but with the anti-clockwise direction). Taking the preimage of Ω in XpRq, this gives BΩ " ´Dq pRq `Ep 1 pRq `Ep 2 pRq `Eq pRq (9.6) rD q pRqs " e q `ep 1 `ep 2 (9.7) and then we obtain (9.8) σ˚e q " e q `ep 1 `ep 2 .

Altogether, in the basis pe q , e p 1 , e p 2 q of H 1 pXpRq; Qq, the matrix for σ˚i s (9.9) σ˚" ¨1 0 0 1 0 ´1 1 ´1 0 '. 9.3. Action of three Jonquières involutions. We now move on to the case when three involutions σ i are considered, each of them attached to a point q i of CpRq. We suppose that the relative position of the points q i and p i,j are in the following order along C (from bottom to top): (9.10) p 1,2 , p 2,2 , p 3,2 , q 3 , q 2 , q 1 , p 1,1 , p 2,1 , p 3,1 ;

to obtain such a configuration, start with q 1 as in Figure 4, then choose q 2 P C slightly below q 1 and q 3 slightly below q 2 . Now, X is the blow up of the plane at the fifteen points q i , p i,j , 1 ď i ď 3, 1 ď j ď 4, and the lifts of the σ i to X are denoted σi .

To compute the action of σ1 on H 1 pXpRq; Qq, we remark that the relative positions of the q i and p i,j , impose the following properties:

-the points p 2,1 and p 3,1 are above the line pq 1 p 1,1 q, and the points p 1,2 , p 2,2 , p 3,2 , q 3 , and q 2 are below it. Thus, (9.11) σ1 e p 1,1 " ´ep -the ellipse D q 1 pRq bounds an open set V 1 that contains q 2 , q 3 , p 2,2 , and p 3,2 in its interior. Thus, if we cut out small disks centered at those four points from V 1 , and take its boundary in XpRq, we obtain the equality (9.13) rD q 1 pRqs " e q 1 `ep 1,1 `ep 1,2 `2e q 2 `2e p 2,2 `2e q 3 `2e p 3,2 .

-if r is a point from CpRq that is not one of q 1 , p 1,1 , or p 1,2 , and if one blows up that point, the curve E r is fixed by the lift σ1 . The line pq 1 rq and its strict transform L q 1 ,r are also invariant. Since r is not one of the p 1,j , pq 1 rq and C intersect transversely at r: along C, σ 1 is the identity, and along pq 1 rq, σ 1 is conjugate to z Þ Ñ ´z, fixing r and another point r 1 of C. Thus, on the blow up E r pRq, we see that σ1 reverses the orientation (see Figure 6). This gives σ1 pe r q " ´er for r P tq 2 , p 2,1 , p 2,2 , q 3 , p 3,1 , p 3,2 u.

Altogether, in the basis pe q 1 , e p 1,1 , e p 1,2 , e q 2 , e p 2,1 , e p 2,2 , e q 3 , e p 3,1 , e p 3,2 q of H 1 pXpRq; Qq, we obtain the following matrices for σ1 (9.15) σ1 "

¨1 0 0 0 0 0 0 0 0 1 0 ´1 0 0 0 0 0 0 1 ´1 0 0 0 0 0 0 0 2 ´1 1 ´1 0 0 0 0 0 0 1 ´1 0 ´1 0 0 0 0 2 ´1 1 0 0 ´1 0 0 0 2 ´1 1 0 0 0 ´1 0 0 0 1 ´1 0 0 0 0 ´1 0 2 ´1 1 0 0 0 0 0 ´1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
Similarly, we obtain

(9.16) σ2 " ¨´1 0 0 2 1 ´1 0 0 0 0 ´1 0 2 1 ´1 0 0 0 0 0 ´1 0 ´1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 ´1 0 0 0 0 0 0 1 ´1 0 0 0 0 0 0 0 2 ´1 1 ´1 0 0 0 0 0 0 1 ´1 0 ´1 0 0 0 0 2 ´1 1 0 0 ´1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , (9.17) σ3 " ¨´1 0 0 0 0 0 2 1 ´1 0 ´1 0 0 0 0 2 1 ´1 0 0 ´1 0 0 0 0 ´1 1 0 0 0 ´1 0 0 2 1 ´1 0 0 0 0 ´1 0 2 1 ´1 0 0 0 0 0 ´1 0 ´1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 ´1 0 0 0 0 0 0 1 ´1 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' . 9.4. Positive Lyapunov exponent. Let Γ ˚be the image of Γ " xσ 1 , σ 2 , σ 3 y in GLpH 1 pX; Zqq.
This group preserves a three dimensional subspace, on which it acts by multiplication by ˘1.

The quotient is given by the linear map (9.18) px 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 q Þ Ñ px 1 , x 2 ´x3 , x 4 , x 5 ´x6 , x 7 , x 8 ´x9 q.

On the quotient space, which we denote by V , the involutions act by the following matrices.

(9.19)

A 1 " ¨1 0 0 0 0 0 0 1 0 0 0 0 2 ´1 ´1 0 0 0 ´2 2 ´1 0 0 0 2 ´1 0 0 ´1 0 ´2 2 0 0 0 ´1 ‹ ‹ ‹ ‹ ‹ ‹ ' . (9.20) A 2 " ¨´1 0 2 1 0 0 0 ´1 2 2 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2 ´1 ´1 0 0 0 ´2 2 0 ´1 ‹ ‹ ‹ ‹ ‹ ‹ ' . (9.21) A 3 " ¨´1 0 0 0 2 1 0 ´1 0 0 2 2 0 0 ´1 0 2 1 0 0 0 ´1 2 2 0 0 0 0 1 0 0 0 0 0 0 1 ‹ ‹ ‹ ‹ ‹ ‹ ' .
We shall denote by Γ ˚the subgroup of SL 6 pZq generated by these involutions, and by G the Zariski closure of Γ ˚in SL 6 .

Lemma 9.1. The following properties are satisfied:

(1) The group Γ ˚contains a non-Abelian free group.

(2) The group G is semi-simple.

(3) The action of Γ ˚on V b C is strongly irreducible. (4) If ν is a probability measure on Γ that satisfies Conditions (S) and (M), then ν has a positive Lyapunov exponent on H 1 pXpRq; Rq.

From this lemma and the calculation of the spectral radius Proof. We shall need the following facts (computations of characteristic polynomials and Galois groups were done with sagemath):

(a) The element f " A 1 A 2 A 3 has characteristic polynomial (9.22) P f ptq " t 6 ´4t 5 ´3t 4 ´2t 3 `5t 2 `2t `1
whose factorization in Qrts is P ptq " pt ´1q ˆpt 5 ´3t 4 ´6t 3 ´8t 2 ´3t ´1q. In particular, f has six distinct eigenvalues, and only one of them is rational, namely 1. The only other real eigenvalue is λ f » 4.679, then there are two complex conjugate eigenvalues of modulus strictly between 1 and λ f , and two of modulus ă 1. Moreover, for every k ě 1, f k has also 6 distinct eigenvalues (see below an argument for the similar case of g).

(b) The element g "

A 1 A 2 A 3 A 2 A 1 A 3 A 1 A 3 A 1 A 2 A 3 A 2 A 1 A 2 A 3 has characteristic polynomial (9.23) P g ptq " t 6 ´24t 5 ´83t 4 ´122t 3 ´35t 2 `22t `1
which is irreducible in Qrts. In particular, g has six distinct eigenvalues. Four of them are real, with a single one of maximal absolute value λ g ą 1, and there are two complex conjugate eigenvalues of modulus ą 1. Moreover, for every k ě 1, g k has also 6 distinct eigenvalues.

To prove this last point, it suffices to show that λ k g is an algebraic number of degree 6 for every k ě 1. For this, one computes the Galois group of the splitting field F of P g : it is isomorphic to the symmetric group S 6 , so rF : Qs " 6!. The degree 6 extension Qpλ g q of Q is the subfield of F fixed by a subgroup H Ă S 6 of index 6. Note that λ k g can not be rational for any k ě 1, because since λ g is a unit, λ k g would be equal to 1, in contradiction with λ g ą 1. Thus, if λ k g had degree ă 6, there would be an intermediate extension K Ă Qpλ g q of degree d " 2 or 3. This extension would be the fixed field of a group G Ă S 6 of index d. For d " 3 such a group does not exist. For d " 2 we get G " A 6 and A 6 would contain H as a subgroup of index 3; this is a contradiction, since the largest maximal subgroup of A 6 has index 6.

(c) The eigenvector of f corresponding to the eigenvalue 1 is defined over Q. Thus, it is in general position with respect to the eigenvectors of g (i.e. it is not contained in any proper ginvariant subspace of V , because such a subspace would be rational, thereby producing a rational factor of P g ) To show that Γ ˚contains a non-Abelian free group, note that the eigenvector of f for the leading eigenvalue λ `pf q » 4.679 is not mapped to another eigenvector of f by A 1 . Thus by the ping-pong lemma, if we set h " A 1 ˝f ˝A´1

1 " A 2 A 3 A 1 , then the group generated by f and h contains a non-Abelian free subgroup of GLpV q all of whose elements ‰ Id have an eigenvalue ą 1 (see Lemma 3.1). So, at this stage we know that Γ is non-elementary.

Consider the connected component of the identity G o Ă G. The intersection Γ 0 :" Γ ˚X G o pCq is a finite index subgroup of Γ ˚and is a Zariski dense subgroup of G o . Since Γ ˚is contained in SL m pZq, the linear algebraic groups G and G o are both defined over Q. Let R be the solvable radical of G o and let U be its unipotent radical (see [START_REF] Milne | Algebraic groups[END_REF], Chap. 6.h, page 135); they are defined over Q and are characteristic subgroups of G o ; in particular, they are normal in G.

Let F Ă V be the fixed point set of U . This vector subspace is defined over Q, its dimension is positive, and it is g-invariant. Since the characteristic polynomial of g is irreducible over Q, we infer that F " V and U " tid V u. This implies that R is a torus; over C, R is diagonalizable and RpCq isomorphic to pC ˆqr for some r ď 5. The group G acts by conjugacy on R; since the automorphism group of R is discrete (isomorphic to GL r pZq) and G o is connected, we deduce that R is central in G o . In particular, R commutes with f k and with g k if k is chosen to insure that f k and g k are in G o . Thus, R being connected, each of the sixth complex eigenlines of f k is R-invariant, and the same holds for the eigenlines of g k . By Property (c) above, this implies that R is made of homotheties, and since R Ă SL 6 we deduce that R is trivial. Thus G o is semi-simple, and so is G. By the first property, G o pRq is not bounded, so at least one of its semisimple factors is a (non-Abelian) non-compact almost simple real Lie group.

Now, V b C is a direct sum of irreducible representations V i of G o . Choose k ě 1 such that f k P G o . One of the V i , say V 1 ,
must contain the eigenline of f k corresponding to the eigenvalue 1; thus, V 1 contains an element of V pQq, and since Γ 0 is Zariski dense in G o and is defined over Z, we deduce that, in fact, V 1 is defined over Q. By Property (b), V 1 " V , and G o acts irreducibly on V . Thus, Γ 0 acts strongly irreducibly on V , and so does Γ ˚.

Finally, since the action of Γ ˚on V is strongly irreducible and unbounded, Theorem 3.31 of [START_REF] Benoist | Random walks on reductive groups, volume 62 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] shows the positivity of the first Lyapunov exponent in V , hence in H 1 pXpRq; Rq, and the proof is complete.

Putting together all the results in this section, we have established the following result. Theorem 9.2. Let C be a smooth, real, plane cubic whose real part CpRq is connected. There exists a non-empty open subset U Ă CpRq 3 such that if pq 1 , q 2 , q 3 q belongs to U , and ν is a probability measure on the corresponding group Γ " xσ 1 , σ2 , σ3 y, generating Γ and with a finite first moment, then the top Lyapunov exponent of the action of Γ on H 1 pXpRq, Rq is positive.

We now extend this theorem to the case of 4 points instead of 3. So, we blow-up one more point q 4 P CpRq, with q 4 between q 1 and q 3 , and we still denote by X the surface and by Γ the group generated by the 4 involutions. The cohomology group H 1 pXpRq; Qq of the new surface XpRq has dimension 12, with coordinates px 1 , . . . , x 12 q; the subspace defined by (9.24)

x 2 " x 3 , x 5 " x 6 , x 8 " x 9 , x 11 " x 12 , x 1 " x 4 " x 7 " x 10 " 0 is invariant, and the restriction of Γ to this subspace factors through a finite group. Let W be the quotient space, which is of dimension 8.

Choose an index j P t1, 2, 3, 4u and consider the subgroup Γ j of Γ generated by the σi with i ‰ j. Then, there is a finite index subgroup Γ o j of Γ j whose action on W b C is reducible: there is an invariant subspace T j of dimension 2 (on which Γ j acts diagonally with eigenvalues equal to ˘1), and the quotient space W {T j is a strongly irreducible representation V j , defined over Q, and of dimension 6 (it is isomorphic to the representation V studied in Lemma 9.1). Pick g j in Γ o j satisfying Property (b) of the proof of Lemma 9.1. Then g j preserves a unique subspace W j of W of dimension 6, defined over Q, which projects surjectively onto V j . Now, take a finite index subgroup Γ 1 of Γ and let K Ă W be a Γ 1 -invariant subspace. Changing the Γ o j into finite index subgroups, we may assume that they preserve K. Projecting K to V j , Lemma 9.1 implies that either K is contained in T j (and then dimpKq ď 2), or that K is mapped onto V j (and then dimpKq ě 6). If K is contained in one of the T j , one checks that its projection onto some other V i is non-trivial, which gives a contradiction. It follows that the projection of K onto each V j is surjective. Since K is g j -invariant, it contains W j , and finally we obtain that K " W . Thus, the action of Γ on W is strongly irreducible, and we get: Theorem 9.3. Let C be a smooth, real, plane cubic whose real part CpRq is connected. There exists a non-empty open subset U Ă CpRq 4 such that if pq 1 , q 2 , q 3 , q 4 q belongs to U , and ν is a probability measure on the corresponding group Γ " xσ 1 , σ2 , σ3 , σ4 y, generating Γ and with a finite first moment, then the top Lyapunov exponent of the action of Γ on H 1 pXpRq, Rq is positive.

DYNAMICS ON THE REAL SURFACE

In this section we complete the proof of Theorem 1.9. 10.1. Preliminaries from ergodic theory. Proposition 10.1. Let X be a complex projective surface (resp. a real projective surface). Let Γ be a non-elementary subgroup of AutpXq (resp. of AutpX R q) containing a parabolic element. Then the action of Γ is ergodic with respect to the Lebesgue measure on X (resp. on XpRq).

Proof. This result is contained in [START_REF] Cantat | Sur la dynamique du groupe d'automorphismes des surfaces K3[END_REF][START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF] but it was not explicitly stated there, so we provide details in the case of complex surfaces. We only deal with the case where X is not Abelian, in which case Γ is automatically countable. We closely follow [25, §4] and freely use the vocabulary from that paper. Let A Ă X be a measurable subset such that vol X pA∆γ ´1Aq " 0, where vol X is the probability measure associated to some Kähler form on X. Replacing A by Ş γPΓ γ ´1A, we may assume that A is Γ-invariant. Assuming that vol X pAq ą 0, we have to show that vol X pAq " 1. As in [25, §4.3.1], Γ contains a "special" subgroup xg, hy, freely generated by two independent Halphen twists. Denote by π g , π h : X Ñ P 1 the associated invariant fibrations. Recall that for almost every w P P 1 , the action of g (resp. h) on π ´1 g pwq (resp. π ´1 h pwq) is uniquely ergodic, and the unique invariant measure is the Haar measure. Since A is g-invariant, there is a subset B g P P 1 of positive measure such that vol X pA∆π ´1 g pB g qq " 0. Consequently A intersects any π h -fiber on a set of positive Haar measure, and then using the hinvariance, A " X up to a set of volume 0. Proposition 10.2. Let X be a compact Kähler surface. Let ν be a probability measure on AutpXq that satisfies the moment condition (M) and let µ be an ergodic ν-stationary measure. Let η be a non-trivial meromorphic 2-form on X such that (i) ż log `| Jac η pf qpxq|dµpxqdνpf q ă `8;

(ii) µ gives zero mass to the set of zeroes and poles of η.

Then the Lyapunov exponents of µ satisfy:

λ ´`λ `" ż logp|Jac η f pxq| 2 qdµpxqdνpf q.

In particular, if η is invariant, λ ´`λ `" 0.

Before starting the proof, let us recall some notation from § 1.4: we denote Ω " AutpXq N and F `the skew-product transformation of Ω ˆX associated to the random dynamics, acting as the one-sided shift on Ω and by automorphisms on X. The measure ν N ˆµ is F `invariant. One may also consider the 2-sided shift ϑ : AutpXq Z Ñ AutpXq Z and the corresponding skewproduct F on AutpXq Z ˆX, defined by F pξ, xq " pϑξ, f 0 pxqq, where ξ " pf i q iPZ . The natural extension of ν N ˆµ will be denoted by m: it is invariant and ergodic and its projection on AutpXq Z is ν Z . Beware that m differs from ν Z ˆν unless µ is invariant.

Proof. Fix a Kähler metric κ 0 on X. Fix a trivialization of the tangent bundle T X, given by a measurable family of linear isomorphisms Lpxq : T x X Ñ C 2 such that (a) detpLpxqq " 1 and (b) 1{c ď }Lpxq} `› › Lpxq ´1› › ď c, for some constant c ą 1; here, the determinant is relative to a volume form vol X on X and the standard volume form on C 2 , and the norm is with respect to pκ 0 q x on T x X and the standard euclidean metric on C 2 .

For pξ, xq P AutpXq Z ˆX and n ě 0, the differential D x f n ξ is expressed in this trivialization as a matrix The form η ^η can be written η ^η " ϕpxqvol X for some function ϕ : X Ñ r0, `8s. Locally, one can write η " hpxqdx 1 ^dx 2 where px 1 , x 2 q are local holomorphic coordinates and h is a meromorphic function; then ϕpxqvol X " |hpxq| 2 By the Oseledets theorem, the left hand side of (10.4) converges almost surely to λ ´`λ `. Since the Jacobian Jac η is multiplicative along orbits, i.e. Jac η f n ξ pxq " ś n´1 k"0 Jac η f ϑ k ξ pf k ξ xq, the integrability condition and the ergodic theorem imply that, almost surely, Let divpηq be the set of zeroes and poles of η. Since µ is ergodic and does not charge divpηq, we deduce that for m-almost every pξ, xq, there is a sequence pn j q such that f n j ξ pxq stays at positive distance from divpηq; along such a sequence, log |ϕpf n j ξ pxqq{ϕpxq| stays bounded, and the right hand side of (10.4) tends to 2 ş log |Jac η f pxq| dµpxqdνpf q. This concludes the proof.

10.2. Stiffness.

Theorem 10.3. Let C be a smooth, real, plane cubic which is defined over Q and whose real part CpRq is connected. One can find four points q 1 , q 2 , q 3 , q 4 in CpRq such that the following properties hold. Let X be the Blanc surface constructed in § 7 and let Γ " xσ 1 , σ2 , σ3 , σ4 y Ă AutpX R q be the group generated by the four Jonquières involutions.

By Markov's inequality, there exists M ą 0 such that (10.10) 0 ă vol 8 X ptξ ą M uq ă `8. Given such an M , the real number (10.11) α :"

ż tξąM u pξ ´M qdvol 8 X " ż tξąM u
pξ ´ξM qdvol 8 X satisfies 0 ă α ď 1 because µ is a probability measure. If α ă 1, µ could be decomposed as a convex combination µ " αµ M `p1 ´αqµ Ḿ , with µ M " α ´1pξ ´ξM qvol 8 X and µ Ḿ " p1 ´αq ´1ξ M vol 8 X . (10.12) Such a decomposition must be trivial, because the harmonicity of ξ M and of ξ imply that µ Ḿ and µ M are stationary measures, while µ is assumed to be ergodic. Thus, α " 1, for any such M . This shows that there is measurable subset A Ă X such that (a) vol 8

X pAq P s0, 8r; (b) ξ " vol 8 X pAq ´11 A , where 1 A is the characteristic function of A. The stationarity relation for ξ implies that A is Supppνq-almost invariant, hence Γ-invariant, up to a subset of zero volume. Proposition 10.1 then implies that A " XpRq up to a subset of zero volume. This is a contradiction because µ is a probability measure and vol 8 X pXq " `8.

Step 3.-Let µ be an ergodic ν-stationary measure as in Step 2. Assume by way of contradiction that µ is not invariant. A first observation is that µpC X pRq " 0, so µ is Zariski diffuse. By Proposition 10.2, λ ``λ ´" 0. Therefore, Crauel's invariance principle implies that µ must be hyperbolic. Thus, by Theorem 1.7 and [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]Thm. 3.4], µ is a fiberwise SRB measure. Specifically, this means that working in AutpXpRqq Z ˆXpRq, and considering a measurable partition P u subordinate to the family of local Pesin unstable manifolds, then for m-almost every pξ, xq, the conditional m u pξ,xq :" mp¨|P u pξ, xqq is absolutely continuous with respect to the Lebesgue measure on W u pξ, xq (see [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF] and [26, §7] for details on these concepts, and the paragraph following Proposition 10.2 for the notation).

The same construction can be done with a local stable partition P s to get stable conditional measures m s pξ,xq . These conditional measures admit a pointwise Hausdorff dimension at pξ, xq which is defined almost everywhere and is constant by ergodicity. We denote these dimensions by dimpµ u{s q. In this context, the analogue of the Ledrappier-Young formula holds 12 and asserts that for m-almost every pξ, xq, (10.13) h µ pX, νq " λ `dim u pµq " ˇˇλ ´ˇd im s pµq, where h µ pX, νq is the fiber entropy (see Section 2 for a brief account on this notion). Since dim u pµq " 1 and λ `" |λ ´|, we conclude that dim s pµq " 1 as well. As in deterministic dynamics, this implies that µ s is absolutely continuous with respect to the Lebesgue measure along stable manifolds 13 . Thus, m has absolutely continuous conditionals along both stable and unstable manifolds.

The next important property is the absolute continuity of the local stable and unstable laminations, which follows the lines of the classical deterministic case. A detailed treatment for the stable lamination is given in [71, Chap. III], and a unified treatment for the stable and unstable laminations (with less details) is in [START_REF] Kifer | Random dynamics[END_REF]Thm 2.2.12].

At this stage we can directly adapt Theorems 5.1 and 5.5 of [START_REF] Franc | Propriétés ergodiques des mesures de Sinaï[END_REF], which implies that the conditionals of m along the fibers tξu ˆXpRq are almost surely absolutely continuous with respect to the Lebesgue measure, and we conclude that µ itself is absolutely continuous. But Lemma 10.4 asserts that this is impossible. This contradiction shows that µ is invariant. Thus, applying Step 2, we conclude that every ergodic stationary measure is a Dirac mass δ x at some point x P C X pRq.

Step 4.-It remains to show that the point masses on C X , viewed as stationary measures, have zero Lyapunov exponents. This is elementary: let x P XpRq (possibly among the qi ) and let pv 1 , v 2 q be a basis of T x X such that v 1 is tangent to C X . Then pσ i q › pv 1 q " v 1 so the matrix of pσ i q › in the basis pv 1 , v 2 q is upper triangular, and the other eigenvalue of this upper-triangular matrix is ´1 (cf. the proof of Formula (7.7)). So any product of such matrices is of the form `1 0 ˘1 ˘and the result follows.

10.3. Orbit closures.

Theorem 10.5. Let C, q 1 , . . . , q 4 , X and Γ be as in Theorem 10.3. Then every x P XpRqzC X pRq has a dense orbit in XpRq.

Proof. In [START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF], we defined an invariant algebraic subset STang Γ , which is the union of the maximal invariant curve and a finite set, and we proved that for every x P XpCq, either Γ ¨x is dense in XpCq, or AccpΓ ¨xqzSTang Γ is locally equal to some Γ-invariant real surface. In our situation, STang Γ " C X , because C X is the maximal invariant curve and every orbit outside C X is infinite. For x P XpRqzC X pRq, we deduce that if Acc pΓ ¨xq zC X pRq is non-empty, then it is open (and closed) in XpRqzC X pRq, so by connectedness Γ ¨x is dense in XpRq. To sum up, all we need to show is that Acc pΓ ¨xq zC X pRq ‰ H for every x P XpRqzC X pRq. For this, we use the structure of the invariant fibrations of parabolic elements in Γ.

Step 1.-Geometry of the invariant fibration of g ii 1 .

Fix two distinct indices, say i " 1 and i 1 " 2. In this step we study the geometry of the invariant fibration π 12 of g 12 " σ1 ˝σ 2 near C X .

Let us first work over C. Recall from § 7.4 that the fibration comes from the pencil of quadrics going through q 1 and q 2 with multiplicity 2 and through the p i,j with multiplicity 1 for i " 1, 2. In the surface X 12 obtained by blowing up these 10 points (as in Lemma 7.4), it corresponds to the linear system |C X 12 `M12 |, where M 12 is the strict transform of the line pq 1 q 2 q. We denote by π 12 : X 12 Ñ P 1 this fibration, and fix an affine coordinate z on P 1 such that π 12 pC X 12 Y M 12 q " 0 and π 12 pX 12 pRqq Ă P 1 pRq. Let r be the third intersection point of C and pq 1 q 2 q; we also denote by r its incarnation in X 12 or X (because r is not blown up). It is the only intersection point of C X 12 and M 12 . Now, M 12 is a smooth rational curve with self-intersection ´1, so it can be blown down to get a new, smooth projective surface Y . The fibration π 12 gives a genus 1 fibration π Y : Y Ñ P 1 and C X 12 is a smooth fiber C Y of π Y . In a small tubular neighborhood of C Y , the fibration π Y is a submersion (otherwise, C Y would be a multiple fiber, and C X would have multiplicity ą 1 in C X 12 `M12 ). The curve M 12 is contracted to a point r Y P Y , and M 12 is the exceptional divisor of the blow-up of Y at r Y . Thus, the geometry of π 12 : X 12 Ñ P 1 near M 12 is the geometry of a smooth foliation after a blow-up, and:

(1) π 12 has a Morse singularity at the point r P X 12 ; there are local coordinates such that π 12 px, yq " xy, with the two coordinate axes corresponding to C X and M 12 , respectively; (2) if b is close to 0, the fiber π ´1 12 pbq is close to C X 12 Y M 12 ; it is the pull-back of a smooth fiber of π Y close to C Y ; as b approaches 0, π ´1 12 pbq converges towards C X 12 Y M 12 in the Hausdorff topology, and in the C 1 topology in the complement of r;

(3) in the real surface, C X 12 pRq is a topological circle with a Möbius band as tubular neighborhood, and so is M 12 pRq; the smooth fibers of π 12 in XpRq near C X 12 pRq Y M 12 pRq are topological circles, turning once around C X 12 pRq and around M 12 pRq.

If we blow-up the remaining points to construct XpRq, C X 12 pRq Y M 12 pRq is replaced by its total transform: we add 6 topological circles corresponding to the exceptional divisors obtained by blowin up q 3 , q 4 , p 3,1 , . . . p 4,2 , and the picture near each of these circles is similar to the one near M 12 (see Figure 7 for a visual illustration).

Step 2.-Dynamics of g 12 on smooth fibers.

If we fix an affine coordinate z on pq 1 q 2 q such that r " 8, q 2 " 0 and q 1 " 1, then σ 2 pzq " ´z and σ 1 pzq " 2 ´z. So σ 1 ˝σ2 pzq " z `2, that is, on M 12 g 12 acts as a parabolic transformation with fixed point at r. Pick x P XpRqzC X pRq such that Γ ¨x accumulates C X pRq; fix a sequence px j q of distinct points of Γ ¨x converging to C X pRq, and set b j " π 12 px j q.

Step 1 shows that X b j pRq converges in the Hausdorff topology to C X Y M 12 Y E q 3 Y ¨¨¨Y E p 4,2 ; this convergence holds in the C 1 topology away from the singular points. Take an arbitrary point y 0 P M 12 pRqz tru and consider the segment ry 0 , g 12 py 0 qs in M 12 pRq. By the description of g 12 in the first paragraph of Step 2, ry 0 , g 12 py 0 qs is disjoint from r. If I is a small interval containing y 0 and transverse to the fibration π 12 , then the intervals I and J :" g 12 pIq intersect each fiber X b near M 12 transversely into two points y b and g 12 py b q; as b goes to 0, the segment ry b , g 12 py b qs Ă X b pRq converges towards the segment ry 0 , g 12 py 0 qs Ă M 12 .

The following lemma is elementary and left to the reader.

Lemma 10.6. Let R : R{Z Ñ R{Z be a rotation of angle ´1{2 ă α ă 1{2. Fix t P R{Z and let K be the shortest closed segment joining t to Rptq. Then for any s P R{Z, the R-orbit of s intersects K.

This lemma shows that the orbit of x j under g 12 must intersect ry b j , g 12 py b j qs, hence so does Γ ¨x. Taking j Ñ 8, this implies that Γ ¨x accumulates ry 0 , g 12 py 0 qs, which is contained in M 12 pRqzC X pRq. As explained before Step 1, this completes the proof of the theorem. 10.4. Conclusion of the proof of Theorem 1.9. We pick C and the q i as in Theorem 10.3. Assertion (1) follows from the smoothness of C and the genus formula, and Assertion (2) is a theorem of Blanc. Assertions (3) and ( 4) on Ω X are described in Section 3. Property (5) follows from Proposition 8.3. Assertion (6) on the generic density of orbits is an elementary consequence of Proposition 10.1: indeed for any non-empty open set U , the set of x P X such that pΓ ¨xq X U " H has zero Lebesgue measure. The statement (7) on orbit closures is Theorem 10.5. The stiffness property [START_REF] Benoist | Itération de pliages de quadrilatères[END_REF] is established in Theorem 10.3, and finally, Assertion (9) is Theorem 9.3.

We conclude the paper with an open question. By Breiman's ergodic theorem, for every x P XpRqzCpRq and ν N -almost every ω, any cluster value of the sequence of empirical measures 1 n ř n k"1 δ f k ω pxq is a probability measure on C, a priori depending on x, ω and a choice of subsequence. The question is about the complexity of the set of limiting measures: Question 10.7. Which probability measures do arise in this way? Do the sequences of empirical measures typically converge or, on the contrary, does "historic behavior" occur?
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 43 vol X pU q " ż U |ξpx, yq| dx ^dy ^dx ^dy " ż U |ξpx, yq| pidx ^dxq ^pidy ^dyq determines a measure vol X " " Ω 1{2 X

Proof. By [ 23 ,

 23 Thm 1.5], at a very general parameter the action of Γ ext is uniformly expanding. Since uniform expansion is an open property, it holds on a dense open set. Then the equidistribution result follows from[START_REF] Cantat | Hyperbolicity for large automorphism groups of projective surfaces[END_REF] Thm 10.4] 

4 FIGURE 3 .

 43 FIGURE 3. The black pentagon on the left is folded to the blue pentagon on the right by the lift r 1 of σ 1,3 . The red segment is parallel to ra 3 , a 4 s and the red dotted segment gives the direction along which the vectors v 1 and v 3 are reflected.
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 31 Ergodic theory of Blanc's examples 7. ACTION ON COHOMOLOGY IN THE COMPLEX SURFACE 7.Setting and volume form. Consider a smooth cubic curve C Ă P 2
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 6 FIGURE 6. The involution exchanges the hatched and the plain sides of C, so in the blow-up it reverses the orientation of E r pRq

(10. 1 ) 1 n

 11 A pnq pξ, xq " Lpf n ξ pxqq ˝Dx f n ξ ˝Lpxq ´1. Denote by χ ń pξ, xq ď χ ǹ pξ, xq the singular values of A pnq pξ, xq. Then m-almost surely, log χ n pξ, xq converges towards λ ˘as n goes to `8.

lim nÑ8 1 n log ˇˇJac η f n ξ pxq ˇˇ" ż log ˇˇJac η f 1 ξ

 1 pxq ˇˇdmpξ, xq (10.5) " ż log ˇˇJac η f 1 ω pxq ˇˇdm `pω, xq " ż log |Jac η f pxq| dµpxqdνpf q.

FIGURE 7 .

 7 FIGURE 7. Schematic view of a real fiber of π 12 (in red) close to the singular fiber on P 2 (left), on X 12 (middle) and on X (right). All components (including the red fiber, except on the left) are topological circles.

For b P P 1

 1 pRq near 0, denote by Y b pRq the real part of π ´1 Y pbq; thus, Y 0 pRq is the smooth fiber C Y pRq. The complex curve Y b pCq is smooth of genus 1; it is a quotient C{L b , where L b " Z `Zτ pbq is a lattice in C and Y b pRq corresponds to R{Z (because C Y pRq and the fibers near it are connected). Thus, in a neighborhood N of 0, we get a real analytic map τ with values in the upper half plane, and, a map ϕ b : t P R{Z Ñ ϕ b ptq P Y pRq parametrizing Y b pRq, depending analytically on pb, tq P N ˆR{Z. Pulling back ϕ b by the natural birational map 12 : X 12 Ñ Y (resp. X Ñ Y ), we get a family of parametrizations φb of the fibers X 12,b (resp. X b ) of π 12 , for b P N z t0u. Since g 12 acts by translation along the curves Y b (resp. X b , b ‰ 0), and g 12 is the identity on C X , we see that ϕ b conjugates g 12|Y b to a rotation of the circle with angle αpbq converging towards 0 as b goes to 0. Step 3.-Conclusion.

  1,2 ´eq 2 `ep 2,1 ´ep 2,2 ´eq 3 `ep 3,1 ´ep 3,2 . " ´ep 1,1 `eq 2 ´ep 2,1 `ep 2,2 `eq 3 ´ep 3,1 `ep 3,2 .

	-similarly,	
	(9.12)	σ1 e p 1,2

  dx 1 ^dx 2 ^dx 1 ^dx 2 . The jacobian Jac η satisfies (10.2) | Jac η pf qpxq| 2 " ϕpf pxqq ϕpxq Jac vol pf qpxq for every f P AutpXq and x P X. Using detpLpxqq " 1, we get (10.3) detpA pnq pξ, xqq " Jac vol pf n

							ξ qpxq,	
	and then							
	(10.4)	1 n	log χ ń pξ, xq	`1 n	log χ ǹ pξ, xq "	2 n	log ˇˇJac η f n ξ pxq ˇˇ´1 n	logpϕpf n ξ pxqq{ϕpxqq.

To illustrate the difficulty of this kind of question, it may be interesting to recall that Furstenberg's famous problem asking for a classification of measures on the circle invariant under ˆ2 and ˆ3 is still open to date (this is however quite different from our setting since it concerns an Abelian semigroup).

With the notation of[START_REF] Guivarc | Actions of large semigroups and random walks on isometric extensions of boundaries[END_REF], the KAN `decomposition of SL2pCq can be chosen in such a way that A " R ˆis the group of diagonal matrices with real positive coefficients, and its centralizer M in the maximal compact subgroup K is S 1 , the group of diagonal matrices with eigenvalues of modulus 1. Then, the product M A is just C ˆ, the group of complex diagonal matrices in SL2pCq. In particular, this group is connected (it corresponds to the group C in[START_REF] Guivarc | Actions of large semigroups and random walks on isometric extensions of boundaries[END_REF]). Thus, our assertions follows from the main theorems stated on the second page of[START_REF] Guivarc | Actions of large semigroups and random walks on isometric extensions of boundaries[END_REF].

4 0 ` 1 z 1 ` 2 z 2 `

z 3 ` 0 " 0.[START_REF] Baragar | Orbits of points on certain K3 surfaces[END_REF] This follows from computations which are similar to the ones used to prove Lemma 5.4 and Lemma 5.5 below, the difference being that the singularities of X are not isolated when n ě 6.

We actually do not know any example of a "general" periodic pentagon, that is a pentagon x P Pent 0 p q with a finite Γ-orbit, for which satisfies the conditions of Proposition 5.10.

We abuse notation for convenience and use similar notations (like Li,j, pi,j, qi) for objects defined in X and Xi.For instance, qi also stands for qi :" Epqiq X CX .

Alternatively, one can compute the product of the matrices for σ1 and σ2 , and check that some power of it is unipotent, but not the identity.

The first equality in formula(10.13) is proven in[START_REF] Qian | Entropy formula for random dynamical systems: relations between entropy, exponents and dimension[END_REF]. For random dynamical systems there is a dissymmetry between the future and the past, because F ´1 is not the skew product map associated to a independent, identically distributed, random dynamical system. So we can not just consider F ´1 to get the second inequality. Fortunately, only minor adaptations are required for this: they are described in the paragraphs following Theorem 2.1 in[START_REF] Liu | Dimension of hyperbolic measures of random diffeomorphisms[END_REF] (see also[START_REF] Kifer | Random dynamics[END_REF] for a unified discussion, with additional pointers to the literature

This is proven for the unstable direction in[START_REF] Liu | Smooth ergodic theory of random dynamical systems[END_REF], and the adaptation to the stable direction is explained in[START_REF] Bahnmüller | Characterization of measures satisfying the Pesin entropy formula for random dynamical systems[END_REF].

The research of the first author is partially funded by the European Research Council (ERC GOAT 101053021); he also benefited from the stimulating atmosphere of the Center Henri Lebesgue, a French government "Investissements d'Avenir", bearing the following reference ANR-11-LABX-0020-01.

Since k ě 3, we infer that k " 3 and m i " 0 for all i, therefore u " de 0 ´dpe q 1 `¨¨¨`e q k q. From this it follows that the intersection of U with the strict transform of a general line through q i is 0 for all i. This means that U is the strict transform of a plane curve of degree d and is mapped to a point by each of the fibrations η q i (see §7.2). This is a contradiction, so C X must be a component of U ; in particular, U zC X is also invariant. Repeating this argument with U zC X finishes the proof. 7.4. Parabolic automorphisms. From now on, let us add the following hypothesis (Hyp3) For any i ‰ j, the line pq i q j q does not contain any of the points p l,m for 1 ď l ď k, 1 ď m ď 4, nor q n for 1 ď n ď k and n ‰ i, j.

The strict transform M i,j of the line pq i q j q is invariant under Γ i,j :" xσ i , σ j y. Furthermore this line pq i q j q intersects C in a third point and (Hyp3) assures that this point is none of the points that we blow-up. Assume for a few lines that k " 2, so that X is obtained by blowing-up the points q r and p r,j for r " 1, 2. Then rM 1,2 s " e 0 ´eq 1 ´eq 2 and M 1,2 ¨CX " 1. The class u 1,2 of C X `M1,2 satisfies (7.17) u 1,2 " 4e 0 ´2e q 1 ´2e q 2 ´Σ1 ´Σ2 ;

it is invariant under Γ 1,2 , i.e. under σ1 ˚and σ2 ˚, and it is isotropic.

Lemma 7.4. Assume k " 2 and the three hypotheses (Hyp1-Hyp3) are satisfied.

(1) If v is the class of an R-divisor with non-negative self intersection and v is invariant under σ1 ˚and σ2 ˚then v is a multiple of u 1,2 . (2) The composition g 1,2 " σ 1 ˝σ2 is a parabolic automorphism of X that preserves the isotropic class u 1,2 . (3) The invariant genus 1 pencil of g 1,2 is given by the pencil of plane quartic curves going through the p i,j with multiplicity 1 and through q i with multiplicity 2, for i " 1, 2.

Before proving this lemma, let us state the following immediate corollary.

Corollary 7.5. If k ě 2 and the hypotheses (Hyp1-Hyp3) are satisfied, then

(1) each of the automorphisms g i,j " σi ˝σ j , i ‰ j, is parabolic;

(2) the invariant genus 1 fibration of g i,j corresponds to the linear system of plane quartics going through q i and q j with multiplicity 2 and through the p i,l and p j,l with multiplicity 1 (for l " 1, . . . , 4q.

Proof of Lemma 7.4. Every invariant class can be written as v " de 0 ´pd ´2m 1 qe q 1 ´m1 Σ 1 ṕd´2m 2 qe q 2 ´m2 Σ 2 . These classes form a 3-dimensional subspace of NSpX; Rq on which the intersection form is non-positive and degenerate: its kernel is generated by u 1,2 . So, if v 2 ě 0, v is proportional to u 1,2 ; more precisely, m 1 " m 2 and v " m 1 u 1,2 .

In the group xσ 1 , σ2 y, g 1,2 generates a cyclic, normal subgroup of index 2. Thus, the fixed point set of g 1,2 in NSpX; Rq is invariant under xσ 1 , σ2 y. If g 1,2 were elliptic, this set of fixed points would intersect the set of classes v P H X Ă NSpX; Rq on a non-empty convex subset F of the hyperbolic space H X . This convex set F would be invariant under the action of σ1 , and Let ν be any probability measure on Γ which satisfies Conditions (S) and (M). Then, any ergodic ν-stationary measure on XpRq is the Dirac mass δ x at some point x P C X pRq. Such measures have vanishing Lyapunov exponents.

In fact, the q i can be chosen in some explicit open subset of CpR X Qq 4 .

Proof. We first choose the points pq 1 , . . . , q 4 q in CpR X Qq such that the properties (Hyp1-4) hold and such that pq 1 , q 2 , q 3 q satisfies the assumption of Theorem 9.2. Then we move q 4 to q 1 4 as in Proposition 8.3 to make sure that the conclusions of this proposition are satisfied.

Step 1.-Here we show that every invariant ergodic probability measure is a Dirac mass δ x for some x P C X pRq. The argument is similar to that of Theorem 8.6. First, the invariant meromorphic 2-form is real and induces a volume form vol 8 XpRq , which is not locally integrable along C X pRq. By Lemma 7.3 and Proposition 8.3 every proper Zariski closed invariant subset is contained in C X (hence fixed pointwise). Thus, by [START_REF] Cantat | Invariant measures for large automorphism groups of projective surfaces[END_REF], if µ is any ergodic invariant measure on XpRq then either µ is a Dirac mass on C X pRq or µ " ϕ vol 8 XpRq , for some real analytic function ϕ on XpRqzC X pRq. To exclude this second possibility, note that CpRq is connected and has a unique point at infinity, so P 2 pRqzCpRq is connected, and so is XpRqzC X pRq. Then, the ergodicity of µ and the invariance of vol 8 XpRq imply that ϕ is constant µ-almost everywhere; since ϕ is analytic, it must be locally constant, and since XpRqzC X pRq is connected, ϕ is constant; but then µpXpRqq " 8, which is absurd.

Step 2.-Now, pick a probability measure ν on Γ satisfying (S) and (M). Let µ be an ergodic, ν-stationary measure on XpRq.

Lemma 10.4. The measure µ cannot be absolutely continuous with respect to the Lebesgue measure on XpRq.

Proof. Equivalently, let us show that µ is not absolutely continuous with respect to the invariant infinite volume vol 8 XpRq . For notational ease, in this proof we write X for XpRq (actually the result holds for both the complex and the real variety). Reasoning by contradiction, we assume that there is a function ξ : X Ñ R `such that ξ P L 1 pX, vol 8 X q and µ " ξ vol 8 X . The stationarity of µ and the invariance of vol 8

X under the action of Γ give ξ " ż Γ ξ ˝f ´1dνpf q (10.6) vol 8

X -almost everywhere. For M ě 0, we set ξ M " minpξ, M q and obtain ξ M ě ż Γ ξ M ˝f ´1dνpf q (10.7) because the minimum of two harmonic functions is subharmonic. Then

X dνpf q (10.8) " ż X ξ M dvol 8 X (10.9) because vol 8

X is invariant and ξ M is integrable. This shows that the Inequality (10.7) is in fact an equality vol 8 X -almost everywhere. Thus, ξ and ξ M are both ν-harmonic.