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Abstract

One of the main challenges for interpreting black-box models is the ability to uniquely decompose
square-integrable functions of non-independent random inputs into a sum of functions of every possible
subset of variables. However, dealing with dependencies among inputs can be complicated. We propose
a novel framework to study this problem, linking three domains of mathematics: probability theory,
functional analysis, and combinatorics. We show that, under two reasonable assumptions on the inputs
(non-perfect functional dependence and non-degenerate stochastic dependence), it is always possible
to decompose such a function uniquely. This generalizes the well-known Hoeffding decomposition.
The elements of this decomposition can be expressed using oblique projections and allow for novel
interpretability indices for evaluation and variance decomposition purposes. The properties of these
novel indices are studied and discussed. This generalization offers a path towards a more precise
uncertainty quantification, which can benefit sensitivity analysis and interpretability studies whenever
the inputs are dependent. This decomposition is illustrated analytically, and the challenges for adopting
these results in practice are discussed.

Keywords: Hoeffding’s decomposition ; oblique projection ; black-box model ; interpretability ;
variance decomposition ; uncertainty quantification ; dependent inputs ; interaction effects

1. Introduction

When dealing with complex black-box models (e.g., predictive models, numerical simulation codes)
with non-deterministic inputs, assessing the effects of the random nature of the inputs on the output
is paramount in many studies. This general problem has broad application in many fields, such as
sensitivity analysis (SA) [10] and explainability in artificial intelligence (XAI) [4]. In particular, in
industrial practices (e.g., when dealing with critical systems), uncertainty quantification (UQ) enables
the improvement of the studied phenomenon modeling process and can allow for scientific discoveries
[14, 24].

One of the main challenges when it comes to UQ is to deal with dependent inputs [46]. The proposed
methods usually assume mutual independence of the inputs [52, 38], either for the simplicity of the
resulting estimation schemes or for the lack of a proper framework. However, the inputs are often
endowed with a dependence structure intrinsic to the (observed or modeled) studied phenomena.
Always assuming mutual independence can be seen as expedient and can lead to improper insights
[25].

One classical way to assess the effects of input uncertainties is using functional decompositions, ob-



taining so-called high-dimensional model representations (HDMR) [44]. Formally, for random inputs
X = (X1, . . . , Xd)

⊤, and an output G(X), it amounts to finding the unique decomposition

G(X) =
∑

A∈PD

GA(XA), (1)

where D = {1, . . . , d}, PD is the set of subsets of D, and GA(XA) are functions of the subset of input
XA = (Xi)i∈A. Whenever the Xi are assumed to be mutually independent, such a decomposition is
known as Hoeffding’s decomposition, due to his seminal work on the subject [26]. Whenever the inputs
are not assumed to be mutually independent, many approaches have been proposed in the literature.

Notably, [25] proposed an approximation theoretic framework to address the problem and provides use-
ful tools for importance quantification, but their approach lacks a proper and intuitive understanding
of the quantities being estimated. On the one hand, in [7], the authors approached the problem differ-
ently and brought forward an intuitive view on the subject, but under very limiting assumptions on
the probabilistic structure of the inputs. On the other hand, [27] and [33] proposed a projection-based
approach under constraints derived from desirability criteria. [42] proposed a generalization under
input exchangeability. However, these approaches do not offer completely satisfactory answers to un-
certainty quantification with dependent inputs. Other approaches rely on transforming the dependent
inputs to achieve mutual independence using, e.g., Nataf or Rosenblatt transforms [35, 36, 40]. While
they offer seemingly meaningful indications, they do not quantify the effects due to the dependence.

To fill this gap, this article proposes a framework at the cornerstone of probability theory, functional
analysis, and abstract algebra. By viewing random variables as measurable functions, we prove that
a unique decomposition such as (1), for square-integrable black-box outputs G(X), is indeed possible
under two fairly reasonable assumptions on the inputs:

1. Non-perfect functional dependence;

2. Non-degenerate stochastic dependence.

To be more specific, denote σX the σ-algebra generated by X, and L2 (σX) the space of square-
integrable σX -measurable real-valued functions (i.e., real-valued functions of X). From the proposed
framework, defining a decomposition such as in (1) equates to defining a direct-sum decomposition of
L2 (σX) of the form

L2 (σX) =
⊕

A∈PD

VA,

where VA are some linear vector subspaces of functions of XA. We show that such a decomposition is
achievable and we propose a complete characterization of the subspaces VA. To the best of our knowl-
edge, it offers a new way to approach multivariate dependence, relying on geometric considerations.
We also show that Hoeffding’s classical decomposition is a very special case of our framework.

Furthermore, we propose novel sensitivity indices based on this decomposition, along with theoretical
arguments to justify their relevance. Notably, we show that the popular SHAP [38] method to decom-
pose predictions is theoretically sound if and only if the inputs are mutually independent. Moreover,
we propose four indices for quantifying the importance of inputs, based on the variance decomposition
of G(X). They allow the disentanglement of effects due to interactions and the effects due to the
dependence structure.

This document is organized as follows. Section 2 is dedicated to introduce the overall framework, nota-
tions, and the required preliminaries. Section 3 is dedicated to the main result of this paper. Its proof
is presented and discussed. In Section 4, some observations resulting from this novel decomposition are
presented. Section 5 introduces novel decompositions for two quantities of interest: an evaluation of a
model and its variance. The proposed indices are intuitive, disentangle interaction effects to effects due
to the dependence, and allow for an original way of quantifying uncertainties. Section 6 is dedicated
to the illustration of our result in the particular toy case of a model with two Bernoulli inputs. In
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this illustration, the decomposition can be computed analytically, and the proposed indices also admit
analytical formulas. Finally, Section 7 discusses the challenges for a broad acceptance of the proposed
method in practice, as well as some motivating perspectives.

2. Framework and preliminaries

In the remainder of this document, the following notations are adopted. ⊂ indicates a proper (strict)
inclusion, while ⊆ indicates a possible equality between sets. The positive integer d denotes the number
of inputs (i.e., covariates), and D := {1, . . . , d}. “Random element” is used if the domain of measurable
functions is not necessarily R or Rd. The term “random variables” is exclusive to real-valued random
elements, and “random vector” is exclusive to a vector of random variables. Independence between
random elements is denoted using ⊥⊥. For a measurable space (E, E) and B ⊂ E , we denote by σ [B]
the smallest σ-algebra containing B. For a finite set, e.g., D, denote by PD its power-set (i.e., the set
of subsets of D, including D and ∅), and for any A ∈ PD, denote P−A = PA \ {A} (i.e., the power-set
of A without A). Depending on the context, when dealing with a set A, |A| denotes its cardinality
(i.e., the number of elements in A), while for a scalar c ∈ R, |c| denotes its absolute value.

2.1. General framework

2.1.1. Random inputs

Let (Ω,F ,P) be a probability space, and let (E1, E1), . . . , (Ed, Ed) be a collection of standard Borel
measurable spaces. For every A ∈ PD, A ̸= ∅, denote:

EA :=×
i∈A

Ei, EA :=
⊗
i∈A

Ei,

where × denotes the Cartesian product between sets and ⊗ denotes the product of σ-algebras. Denote
E := ED and E := ED.

The random inputs are an E-valued, (F)-measurable mapping denoted X = (X1, . . . , Xd). For every
A ⊂ D, the EA-valued random elements defined as XA := (Xi)i∈A characterizes a subset of the inputs.

Denote by σ∅ the P-trivial σ-algebra, i.e.,

σ∅ := σ [{A ∈ F : P (A) = 0}]

i.e., the smallest σ-algebra containing every null sets of F w.r.t. P. Denote by σX the σ-algebra
generated by X. For every A ∈ PD, A ̸∈ {∅, D}, let σA be the σ-algebra generated by the subset of
inputs XA. For every A ∈ PD, A ̸∈ {∅, D}, denote by PXA

the probability measure induced by XA,
and PX the probability measure induced by X.

When it comes to random elements, especially when the very particular case of mutual independence
is not assumed, one needs to restrict the inputs explicitly to avoid trivial situations (e.g., , constant
a.s. inputs or redundancy). Throughout this paper, it is assumed that:

1. For every i ∈ D, σ∅ ⊂ σi, i.e., the P-trivial σ-algebra is strictly contained in the σ-algebras
generated by individual inputs;

2. For every A,B ∈ PD such that B ⊂ A, σB ⊂ σA, i.e., the σ-algebra generated by a subset of
inputs is necessarily strictly contained in the σ-algebras generated by a bigger subset of inputs;

Remark 1. While (1.) is standard in many probabilistic theoretical frameworks (see, e.g., [51]), (2.)
is less standard but remains reasonable. For instance, consider an example with three inputs. The
fact that σ1 ⊆ σ12 comes naturally from the definition of generated σ-algebras. However, if one lets
σ1 = σ12, that would entail that every σ12-measurable random variable f(X1, X2) can in fact be
written as a function of only X1, hence making the subset (X1, X2) “redundant” w.r.t. to X1.
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2.1.2. Space of square-integrable outputs and its subspaces

Denote L2(F) the Lebesgue space of R-valued square-integrable F-measurable functions on (Ω,F ,P).
For any sub σ-algebra B ⊆ F , denote L2 (B) the subspace of L2(F) containing B-measurable functions.
L2
0 (B) denotes the subspace of centered elements of L2 (B).

These Lebesgue spaces show some intrinsic properties concerning the sub-σ-algebras they are defined
on. First, recall the following well-known classical result [51, Theorem 2]:

Theorem 1. For two sub σ-algebras B1 and B2 of F , the following assertions hold.

1. If B1 ⊆ B2, then L2 (B1) ⊆ L2 (B2).

2. L2 (B1) ∩ L2 (B2) = L2 (B1 ∩ B2).

This article focuses on the Lebesgue space L2 (σX), i.e., the space of square-integrable, σX -measurable
random variables. Recall that elements of L2 (σX) can always be expressed as functions of X, thanks
to the Doob-Dynkin Lemma. Thus, in the following, L2 (σX) is referred to as the output space.
Additionally, notice that L2 (σ∅) only contains constant a.s. functions [30, Lemma 4.9].

Notably, for every A ∈ P−D, the Hilbert space L2 (σA) is a closed subspace of L2 (σX) (due complete-
ness). From Theorem 1, one can notice that the set of subspaces

{
L2 (σA)

}
A∈PD

are nested following

the partial order of PD (see Appendix Appendix A). In the following, for every A ∈ PD, the closed
subspace L2 (σA) is referred to as the Lebesgue space generated by XA.

The key point of the proposed approach is to study the relationships between these subspaces generated
by the subsets of inputs. Studying different angles between closed subspaces of a Hilbert space offers
relevant tools for this purpose.

2.2. Angles between subspaces

2.2.1. Dixmier’s angle

Dixmier’s angle [17] can be understood as the minimal angle between two closed subspaces of a Hilbert
space. Its cosine is defined as follows.

Definition 1 (Dixmier’s angle). Let H and K be closed subspaces of a Hilbert space H with inner
product ⟨·, ·⟩ and norm ∥·∥. The cosine of Dixmier’s angle is defined as

c0 (H,K) := sup {|⟨x, y⟩| : x ∈ H, ∥x∥ ≤ 1, y ∈ K, ∥y∥ ≤ 1} .

Dixmier’s angle can be understood as the smallest angle between two elements of the two closed
subspaces (or limits of converging sequences of these elements). In probability theory, when applied
to the Lebesgue spaces generated by two random elements, this angle is better known as the maxi-
mal correlation: a dependence measure between general random elements [23].Let Z1 and Z2 be two
random elements, and denote σZ1

and σZ2
their generated σ-algebra. The maximal correlation be-

tween Z1 and Z2 is nothing more than the cosine of Dixmier’s angle between L2
0 (σZ1

) and L2
0 (σZ2

),
i.e., c0

(
L2
0 (σZ1) ,L2

0 (σZ2)
)
.

The maximal correlation has been extensively studied in the literature (see, e.g., [47, 31, 15, 11]). It
also appears when studying the mixing properties of stochastic processes [18]. Obviously, we have:

c0
(
L2
0 (σZ1) ,L2

0 (σZ2)
)
= 0 ⇐⇒ L2

0 (σZ1) ⊥ L2
0 (σZ2) ⇐⇒ Z1 ⊥⊥ Z2,

where the independence is to be understood w.r.t. P (see [39, Chapter 3]).
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2.2.2. Friedrichs’ angle

Friedrichs’ angle [21] differs from Dixmier’s angle in one way: the intersection of the two subspaces is
disregarded. It is defined as follows.

Definition 2 (Friedrichs’ angle). Let H and K be closed subspaces of a Hilbert space H with inner
product ⟨·, ·⟩ and norm ∥·∥. The cosine of Friedrichs’ angle is defined as

c (H,K) := sup

{
|⟨x, y⟩| :

{
x ∈ H ∩ (H ∩K)

⊥
, ∥x∥ ≤ 1

y ∈ K ∩ (H ∩K)
⊥
, ∥y∥ ≤ 1

}
,

where the orthogonal complement is taken w.r.t. to H.

In probability theory, this quantity is known as the maximal partial (or relative) correlation [5, 6,
12] between two random elements. It is suitable for deciphering conditional independence between
σ-algebras. More precisely, it offers a sufficient and necessary condition for the commutativity of
conditional expectations w.r.t. to those σ-algebras (see [30], Theorems 8.13 and 8.14).

Indeed, for a sub-sigma algebra G ⊂ F , denote EG the conditional expectation operator w.r.t. G, then

c
(
L2
0 (σZ1) ,L2

0 (σZ2)
)
= 0 ⇐⇒ EσZ1

◦ EσZ2
= EσZ2

◦ EσZ1
. (2)

Remark 2. In the remainder of this paper, for conciseness, any reference to Friedrichs’ or Dixmier’s
angle refers to the cosine of the angle (taking values in [0, 1]) instead of the angle itself (which takes
its values in [0, π/2]).

2.2.3. Properties of Friedrichs’ and Diximier’s angles

Besides their links with probabilistic considerations, these angles are traditionally used in functional
analysis as tools to assess the closedness of sums of closed subspaces of a Hilbert space. Some useful
properties, relevant for proving our main result are displayed. The interested reader is referred to [16]
for a more complete overview, as well as the proof of the results presented below.

Proposition 1 (Properties of Dixmier’s angle). Let H,K be closed subspaces of a Hilbert space H.
Then, one has that 0 ≤ c0 (H,K) = c0 (K,H) ≤ 1, and for any x ∈ H, and y ∈ K:

|⟨x, y⟩| ≤ c0 (H,K) ∥x∥ ∥y∥ , (3)

and for a proper closed subspace H̃ ⊂ H,

c0

(
H̃,K

)
≤ c0 (H,K) .

Moreover, the following statements are equivalent.

1. c0 (H,K) < 1;

2. H ∩K = {0} and H +K is closed in H.

The previous result can be understood as follows. First, Dixmier’s angle allows to sharpen the Cauchy-
Schwarz inequality thanks to Eq. (3). For probabilistic considerations, this entails that the minimal
angle between Lebesgue spaces (i.e., the maximal correlation) allows controlling the magnitude of the
covariances between their elements. Moreover, whenever the angle is less than 1, the sum of the two
subspaces is closed, and so their intersection reduces to {0}.

Proposition 2 (Properties of Friedrichs’ angle). Let H,K be closed subspaces of a Hilbert space H.
Then, one has that

0 ≤ c (H,K) = c (K,H) ≤ 1.

Notice that if H ⊆ K, then c (H,K) = 0. Moreover, the following statements are equivalent.
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1. c (H,K) < 1;

2. H +K is closed in H.

For the purposes of this article, one property of Friedrichs’ angle is of interest: whenever its value is
less than 1, the sum of the two subspaces is closed. The closure of sums of subspaces plays a central
part in the following developments.

These two angles are related, as highlighted by the following Lemma.

Lemma 1 (Relation between the two angles). Let H,K be closed subspaces of a Hilbert space H.
Then, one has that

0 ≤ c (H,K) ≤ c0 (H,K) ≤ 1.

Moreover, the following equality holds

c (H,K) = c0

(
H ∩ (H ∩K)

⊥
,K
)
= c0

(
H,K ∩ (H ∩K)

⊥
)
.

Furthermore, if H ∩K = {0}, then c (H,K) = c0 (H,K).

2.2.4. Feshchenko matrix

As illustrated above, the maximal and partial correlation are good candidates to control the dependence
structure of random elements. They can be understood as a generalization to random elements of
the correlation and partial correlation of random variables. Hence, they offer a natural avenue for
generalizing to the notion of covariance and precision matrices.

It is well-known that precision matrices (i.e., inverses of covariance matrices) can be written using
partial correlations (see, e.g., [34, p.129]). Generalized precision matrices are not new. In the study
of graphical models, generalized covariance and precision matrices have been used to study σ-algebras
following a graph structure [37]. However, using Friedrichs’ angle as a generalized partial correlation
in such a setting does not seem to have been done yet in the probability theory literature.

We propose a novel generalization of precision matrices, called themaximal coalitional precision matrix.
It is defined as follows.

Definition 3 (Maximal coalitional precision matrix). Let X = (X1, . . . , Xd) be random inputs (i.e., a
vector of random elements). The maximal coalitional precision matrix of X is the

(
2d × 2d

)
symmetric,

set-indexed matrix ∆, defined entry-wise, for any A,B ∈ PD, by

∆(A,B) =

{
1 if A = B;

−c
(
L2 (σA) ,L2 (σB)

)
otherwise.

Moreover denote by ∆|A the principal
(
2|A| − 1× 2|A| − 1

)
submatrix of ∆ relative to the proper subsets

of A ∈ PD.

In the field of functional analysis, a similar type of matrix is used to derive a sufficient condition for
sums of more than two closed subspaces of an abstract Hilbert space to be closed. The interested
reader can refer to the pioneering works of Ivan Feshchenko [20, 19]. In the proof of our main theorem,
this matrix is primarily used for that purpose. For conciseness, the matrix ∆ defined in Definition 3
is referred to as the Feshchenko matrix.

One particular and interesting aspect of the Feshchenko matrix of a set of inputs is that it is equal to
the identity if and only if the inputs are mutually independent (see Appendix Appendix C).
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2.3. Closed subspaces, complements, and oblique projections

2.3.1. Closure and complement of a subspace

A closed proper subspaceH of a Hilbert spaceH is always complemented, i.e., there exist some subspace
K of H such that H admits the direct-sum decomposition (see Appendix Appendix B.1):

H = H ⊕K.

For instance, the orthogonal complement H⊥ (see, e.g., [49, Theorem 12.4]) of H in H is uniquely
defined as

H⊥ := {x ∈ H : ⟨x, y⟩ = 0, ∀y ∈ H} .

Additionally, orthogonal complements are always closed subspaces themselves. However, it is important
to note that many other complements may exist for a single closed subspace.

For a subspace H ⊂ L2 (σB), denote by H⊥A the orthogonal complement of H in L2 (σA). They have
an interesting property:

Lemma 2. Let A,B ∈ PD, such that B ⊆ A, and let H be a subspace of L2 (σB). Then

H⊥B ⊆ H⊥A .

Proof of Lemma 2. From Theorem 1, one has that L2 (σB) ⊆ L2 (σA). The result is a direct conse-
quence of the definition of orthogonal complements.

2.3.2. Oblique projections

For two Hilbert spaces (M1, ∥·∥1) and (M2, ∥·∥2), and a linear operator T : M1 → M2 denote the
range of T as

Ran (T ) := {T (x) : x ∈ M1} ⊆ M2,

and its nullspace as
Ker (T ) := {x ∈ M1 : T (x) = 0} ⊆ M1.

Let H be a Hilbert space and P : H → H be a bounded linear operator. If P is additionally idempotent
(i.e., P ◦ P = P ), then H admits the direct sum decomposition H = Ran (P ) ⊕ Ker (P ) (see [8,
Proposition 3.2]). P is then called the oblique projector on Ran (P ) parallel to Ker (P ) and is defined
as

P : H = Ran (P )⊕Ker (P ) → H
x = xR + xK 7→ xR

where xR ∈ Ran (P ) and xK ∈ Ker (P ). In this case, the operator I − P is the oblique projection
on Ker (P ), parallel to Ran (P ). On the other hand, if there are two closed subspaces M and N of a
Hilbert space H such that H = M ⊕ N , then there exists a continuous idempotent operator (i.e., an
oblique projector) P with range Ran (P ) = M and Ker (P ) = N (see [22, Theorem 7.90]). In this case,
P is said to be the canonical projector (w.r.t. to the direct sum decomposition H = M ⊕N).

If Ker (P ) = Ran (P )
⊥
, then the projection is said to be orthogonal, which is equivalent to P being

self-adjoint (see [22, Theorem 7.71]). The direct-sum decomposition, in this case, is justified thanks to
Hilbert’s projection theorem.

It is well known that, for every A ∈ PD, one can consider the conditional expectation operators
w.r.t. σA, denoted EA [·] as the orthogonal projectors of elements of L2 (σX) onto L2 (σA), parallel to

L2 (σA)
⊥
.

7



3. Generalized Hoeffding decomposition

Being able to define a unique HDMR of a random output G(X) ∈ L2 (σX) can be seen as finding
a direct-sum decomposition of L2 (σX). More precisely, it can be seen as expressing the direct-sum
decomposition

L2 (σX) =
⊕

A∈PD

VA,

where each VA is a subspace of L2 (σA). By definition, such a decomposition entail that elements
G(X) ∈ L2 (σX) can be uniquely decomposed as

G(X) =
∑

A∈PD

GA(XA),

where GA(XA) ∈ VA, which is reminiscent of Eq. (1).

This section shows that such a direct-sum decomposition is achievable under two reasonable assump-
tions on the inputs, which are less restrictive than mutual independence:

• Non-perfect functional dependence ;

• Non-degenerate stochastic dependence.

These two assumptions are introduced and discussed in the following, and then our main result is
stated, proved, and discussed.

3.1. Assumptions

3.1.1. Non-perfect functional dependence

The first assumption can be formulated as a condition on the intersection of the σ-algebras generated
by the subsets of inputs.

Assumption 1 (Non-perfect functional dependence). For any A,B ∈ PD,

σA ∩ σB = σA∩B

This restriction entails that “the subsets of inputs cannot be expressed as a function of other subsets”,
according to the following result.

Proposition 3. Let X = (X1, . . . , Xd) be inputs, and suppose that Assumption 1 holds. Then, for
any A,B ∈ PD such that A ∩ B ̸∈ {A,B} (i.e., the sets cannot be subsets of each other), there is no
mapping T : EA → EB such that XB = T (XA) a.s.

Proof of Proposition 3. Suppose that there exists a mapping T : EA → EB such that XB = T (XA)
a.s. Then, one has that σB ⊆ σA, which in turn implies that σA ∩ σB = σB . Notice that necessarily
A ∩ B ⊂ B and in the present framework σA∩B ⊂ σB . Thus σA ∩ σB is necessarily different than
σA∩B , and thus Assumption 1 cannot hold. The result follows by taking the opposite implication.

3.1.2. Non-degenerate stochastic dependence

The second assumption directly restricts the distribution of X through a condition on the inner product
of the Lebesgue space L2 (σX). More precisely, it amounts to control the angles between the subspaces
L2 (σA), A ∈ PD using the Feshchenko matrix of the inputs X.
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Assumption 2 (Non-degenerate stochastic dependence). The Feshchenko matrix ∆ of X is positive
definite.

Since ∆ can be seen as a generalized precision matrix, this assumption is relatively reasonable since
standard precision matrices are often assumed to be positive definite to ensure non-degeneracy of the
probabilistic structure. One can notice that under this assumption, for any A ∈ PD, all the matrices
∆|A are also positive definite. This assumption entails an interesting consequence regarding Friedrichs’
angle between generated Lebesgue spaces.

Proposition 4. Suppose that Assumption 2 hold. Then, for any A,B ∈ PD such that A ̸= B,

c
(
L2 (σA) ,L2 (σB)

)
< 1.

Proof of Proposition 4. Suppose that Assumption 2 hold. Then, in particular, the principal submatrix
of ∆ (

1 −c
(
L2 (σA) ,L2 (σB)

)
−c
(
L2 (σA) ,L2 (σB)

)
1

)
is positive definite as well, and thus,

2− 2c
(
L2 (σA) ,L2 (σB)

)
> 0 ⇐⇒ c

(
L2 (σA) ,L2 (σB)

)
< 1.

Thus, having a definite positive Feshchenko matrix entails that the maximal partial correlation between
XA and XB is strictly less than 1 (i.e., the angle itself must be greater than zero).

3.2. Direct-sum decomposition of generated Lebesgue spaces

3.2.1. Statement

Our main result can be stated as follows.

Theorem 2 (Direct-sum decomposition of generated Lebesgue spaces). For every A ∈ PD, let V∅ =
L2 (σ∅) and for every B ∈ PA, let

VB =

 +
C∈P−B

VC

⊥B

.

If Assumptions 1 and 2 hold, then for every A ∈ PD, one has that

L2 (σA) =
⊕

B∈PA

VB .

Then, the HDMR of a random output G(X) ∈ L2 (σX) follows directly as a corollary.

Corollary 1 (Orthocanonical decomposition). Let X = (X1, . . . , Xd) be random inputs. Suppose that
Assumptions 1 and 2 hold. Then, for any G : E → R such that G(X) ∈ L2 (σX), G(X) can be uniquely
decomposed as

G(X) =
∑

A∈PD

GA(XA),

where each GA(XA) ∈ VA.

Proof of Corollary 1. It is a direct consequence of Theorem 2.
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3.2.2. Proof of the main result

In order to prove Theorem 2, two preliminary results are required

Lemma 3. Let A ∈ PD, and let B,C ∈ P−A be non-empty proper subsets of A such that B ̸= C.
Let VB , VC be a closed subspace of L2 (σB) and L2 (σC) respectively. Suppose that Assumption 1 holds,
and that

VB ⊆
[
L2 (σB∩C)

]⊥
, and VC ⊆

[
L2 (σB∩C)

]⊥
.

Then,
c0 (VB , VC) ≤ c

(
L2 (σB) ,L2 (σC)

)
.

Proof of Lemma 3. First, recall that, if Assumption 1 holds and thanks to Theorem 1

L2 (σB) ∩ L2 (σC) = L2 (σB ∩ σC) = L2 (σB∩C) .

Then, notice that since

VB ⊆ L2 (σB) ∩
[
L2 (σB∩C)

]⊥
, and VC ⊆ L2 (σC) ∩

[
L2 (σB∩C)

]⊥
,

one has that

c0 (VB , VC) = c0
(
L2 (σB) ∩ VB ,L2 (σC) ∩ VC

)
≤ c0

(
L2 (σB) ∩

[
L2 (σB∩C)

]⊥
,L2 (σC) ∩

[
L2 (σB∩C)

]⊥)
.

Hence, if Assumption 1 is assumed

c0 (VB , VC) ≤ c0

(
L2 (σB) ∩

[
L2 (σB) ∩ L2 (σC)

]⊥
,L2 (σC) ∩

[
L2 (σB) ∩ L2 (σC)

]⊥)
= c

(
L2 (σB) ,L2 (σC)

)
where the last equality is achieved using Lemma 1.

Lemma 4. Let A ∈ PD, and let (VB)B∈PA,B ̸=A be a collection of closed subspaces of L2 (σA) such
that, ∀B,C ∈ P−A, B ̸= C,

c0 (VB , VC) ≤ c
(
L2 (σB) ,L2 (σC)

)
.

Then, under Assumption 2, there exist a ρ > 0 such that, for any
∑

A∈P−A
YA ∈+B∈P−A

VB√√√√√√E


 ∑

B∈P−A

YA

2
 ≥ ρ

∑
B∈P−A

√
E [Y 2

A],

and additionally, the sum of subspaces +B∈P−A
VB is closed in L2 (σA).

Proof of Lemma 4. Let HA =
⊕

B∈PA:B ̸=A VA be the Hilbert space external direct-sum (see Ap-
pendix Appendix B.2) of the collection of closed (and thus Hilbert) subspaces (VB)B∈PA,B ̸=A. Let
TA be the operator defined as

TA : HA → L2 (σA)

Y = (YB)B∈P−A
7→

∑
B∈P−A

YB

10



and notice that
Ran (TA) = +

B∈P−A

VB ⊆ L2 (σA) .

One then has that

E


 ∑

B∈P−A

YB

2
 =

∑
B∈P−A

E
[
Y 2
B

]
+

∑
B,C∈P−A:B ̸=C

E [YAYB ]

≥
∑

B∈P−A

E
[
Y 2
B

]
−

∑
B,C∈P−A:B ̸=C

c0 (VA, VB)
√

E [Y 2
A]
√

E [Y 2
B ]

≥
∑

B∈P−A

E
[
Y 2
B

]
−

∑
B,C∈P−A:B ̸=C

c
(
L2 (σA) ,L2 (σB)

)√
E [Y 2

A]
√

E [Y 2
B ]

where the first inequality is achieved thanks to Proposition 1. Denote EA =
(√

E [Y 2
B ]
)
B∈P−A

and

notice that ∑
B∈P−A

E
[
Y 2
B

]
−

∑
B,C∈P−A:B ̸=C

c
(
L2 (σA) ,L2 (σB)

)√
E [Y 2

A]
√
E [Y 2

B ] = E⊤
A∆|AEA

Denote λA the smallest eigenvalue of ∆|A, and notice that if Assumption 2 holds, ∆|A is definite
positive and λA > 0. Thus, one has that

E⊤
A∆|AEA ≥ λAE

⊤
AEA

= λA

∑
B∈P−A

E
[
Y 2
A

]
.

Hence, one has that √√√√√√E


 ∑

B∈P−A

YB

2
 ≥

√
λA

∑
B∈P−A

E [Y 2
A]

≥
√

λA

2d − 1

∑
B∈P−A

√
E [Y 2

A]

where the last inequality is achieved using Jensen’s inequality. Hence, one has that, for any Y ∈ HA√
E [TA(Y )2] ≥

√
λA

2d − 1

∑
B∈P−A

√
E [Y 2

A]

where
√

λA

2d−1
> 0, and

∑
B∈PA

√
E [Y 2

A] is the norm of Y on HA. Hence, by the closed ranged operator

theorem (see [1, Theorem 2.5]),

Ran (TA) = +
B∈P−A

VB is closed in L2 (σA) .

We can now proceed with the proof of Theorem 2.
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Proof of Theorem 2. The proof is done in two steps. First, we prove by induction that, ∀A ∈ PD

L2 (σA) = +
C∈PA

VC ,

and then we show that this sum of subspaces is direct. The induction is done on the number of inputs
up to d.

Statement. Let n = 1, . . . , d − 1. We will show that if for every non-empty B ∈ PD, B such that
|B| = n, one has that

L2 (σC) = +
Z∈PC

VZ where VC =

 +
Z∈P−C

VZ

⊥C

.

In this case, it follows that for every A ∈ PD such that |A| = n+ 1,

L2 (σA) = +
C∈PA

VC where VA =

 +
Z∈P−A

VZ

⊥A

.

The induction is made on the passage from n to n+ 1.

Base case. We start for n = 1. For any i ∈ D, denote Vi = [V∅]
⊥i , and notice that since V∅ is closed

in L2 (σi)
L2 (σi) = V∅ ⊕ Vi.

and notice that ∀i ∈ D,

Vi =
[
L2 (σ∅)

]⊥i ⊆
[
L2 (σ∅)

]⊥
,

by Lemma 2.

Next, consider the case where n = 2. Notice from the previous step that for any i, j ∈ D such that
i ̸= j, notice that L2 (σi∩j) = L2 (σ∅), and thus one has that

Vi ⊂
[
L2 (σ∅)

]⊥
and Vj ⊂

[
L2 (σ∅)

]⊥
.

Hence, assuming that Assumption 1 hold, from Lemma 3, one can conclude that, for any i, j ∈ D such
that i ̸= j,

c0 (Vi, Vj) ≤ c
(
L2 (σi) ,L2 (σj)

)
.

Now, let A ∈ PD such that |A| = 2, and denote A = {i, j}, and notice that, under Assumption 2, by
Lemma 4, one has that

V∅ + Vi + Vj is closed in L2 (σA) .

Hence, let
VA = [V∅ + Vi + Vj ]

⊥A ,

and notice that
L2 (σA) = [V∅ + Vi + Vj ]⊕ VA.

Since i and j have been chosen arbitrarily, this holds for any A ∈ PD such that |A| = 2.
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Induction. Suppose that, for every B ∈ PD such that |B| = n, one has that

L2 (σB) = +
Z∈PB

VZ , where VB =

 +
Z∈P−B

VZ

⊥B

.

Let A ∈ PD such that |A| = n + 1. Notice then that, for any non-empty B,C ∈ P−A, since B ∩ C ∈
P−B ∩ P−C , that

L2 (σB∩C) = +
Z∈PB∩C

VZ ,

is necessarily contained of +Z∈P−B
VZ and of +Z∈P−C

VZ . Thus, one has that

VB =

 +
Z∈P−B

VZ

⊥B

⊂

 +
Z∈P−B

VZ

⊥

⊂
[
L2 (σB∩C)

]⊥
.

and analogously

VC ⊂
[
L2 (σB∩C)

]⊥
.

Hence, assuming that Assumption 1 hold, from Lemma 3, one can conclude that, for every non-empty
B,C ∈ P−A such that B ̸= C,

c0 (VB , VC) ≤ c
(
L2 (σB) ,L2 (σC)

)
,

which, under Assumption 2 and thanks to Lemma 4, implies that +Z∈P−A
VZ is closed in L2 (σA) .

Denote VA =
[
+Z∈P−A

VZ

]⊥A

, and notice that

L2 (σA) =

 +
Z∈P−A

VZ

⊕ VA = +
Z∈PA

VZ .

Since A has been taken arbitrarily, this holds for any A ∈ PD such that |A| = n.

Now, we show that these decompositions are direct. Let A ∈ PD, and notice that for any non-empty
∀B ∈ PA, VB ⊥ L2 (σ∅), meaning that any f(XB) ∈ VB is centered. Next, notice that the principal(
2|A| × 2|A|) submatrix of ∆, indexed by the elements of PA and denoted ∆A, is also definite-positive,
and hence its smallest eigenvalue λA is positive. Notice further that for any Y ∈ L2 (σA), by definition,
one has that:

Y =
∑

B∈PA

YB , where YB ∈ VB .

Now, suppose that Y = 0 a.s., which is equivalent to E [Y ] = 0 and E
[
Y 2
]
= 0. However, under

Assumptions 1 and 2, notice that

E
[
Y 2
]
= E

( ∑
B∈PA

YB

)2


=
∑

B∈PA

E
[
Y 2
B

]
+

∑
B,C∈PA:B ̸=C

E [YBYC ]

≥
∑

B∈PA

E
[
Y 2
B

]
−

∑
B,C∈PA:B ̸=C

c0 (VB , VC)
√
E [Y 2

B ]
√
E [Y 2

C ]

≥
∑

B∈PA

E
[
Y 2
B

]
−

∑
B,C∈PA:B ̸=C

c
(
L2 (σB) ,L2 (σC)

)√
E [Y 2

B ]
√

E [Y 2
C ]
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Let EA =
(√

E [Y 2
B ]
)⊤
B∈PA

and notice that

E
[
Y 2
]
≥ E⊤

A∆AEA ≥ λAE
⊤
AEA = λA

∑
B∈PA

E
[
Y 2
B

]
since ∆A is definite positive, and λA > 0 is its smallest eigenvalue. Thus, one has that if E

[
Y 2
]
= 0,

then necessarily ∑
B∈PA

E
[
Y 2
B

]
= 0,

and since this is a sum of positive elements, ∀B ∈ PA, E
[
Y 2
B

]
= 0. In addition to the fact that each

YB is centered, it is equivalent to every the summand YB being equal to 0 a.s. Hence,

Y = 0 a.s. =⇒ ∀B ∈ PD, YB = 0 a.s.

which ultimately proves that

L2 (σA) =
⊕

B∈PA

VB .

4. Some observations

Two main observations are discussed in this section. First, the “hierarchical orthogonality” structure
that naturally arises from the orthocanonical decomposition developed above. Then, we leverage
canonical projections due to the direct-sum decomposition of Theorem 2 to characterize the elements
of the decomposition and we present some of their properties.

4.1. Hierarchical orthogonality

The set of subspaces (VA)A∈PD
benefit of a particular orthogonality structure, namely hierarchical

orthogonality, reminiscent of the one described in [7].

Proposition 5 (Hierarchical orthogonality). We place ourselves in the framework of Theorem 2. For
any A ∈ PD, and any B ⊂ A,

VA ⊥ VB .

Proof of Proposition 5. It is a direct consequence of the definition of VA.

This particular structure can be illustrated using the Boolean lattice [13]. In order to formally differ-
entiate between the structurally hierarchical subspaces and those that are not necessarily orthogonal,
two different sets related to this structure are introduced. For any A ∈ PD, the first one is the set of
comparables (i.e., the elements of PD that are subsets of A or such that A is a subset of), denoted

CA = PA ∪ {B ∈ PD : A ⊆ D} ,

and notice that, for any B ∈ CA, VB ⊥ VA. Then, we define the set of uncomparables of A as

UA = PD \ CA,

and notice that, in general, for every B ∈ UA, VA is not necessarily orthogonal to VB . And notice
additionally that, for any A ∈ PD

PD = CA ∪ UA.
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Remark 3. It is important to note that the hierarchical orthogonality of the subspaces (VA)A∈PD
is

a consequence of the choice of inductively choosing orthogonal complements in Theorem 2. Other
complements, i.e., not necessarily orthogonal, could have been chosen, leading to a different structure.
This is why the output decomposition in Corollary 1 is called “orthocanonical”. A different choice of
complements could lead to a different decomposition.

4.2. Canonical oblique projections and their properties

Two different projectors onto the subspaces VA (A ∈ PD), can be defined. Let A be any element of
PD. Denote by PA the orthogonal projector onto VA, i.e., ,

PA : L2 (σX) → L2 (σX) , such that Ran (PA) = VA and Ker (PA) = V ⊥
A .

Additionally, for every A ∈ PD, denote the following subspaces of L2 (σX)

WA =
⊕

B∈PD:B ̸=A

VB ,

and the operators

QA : L2 (σX) → L2 (σX)

G(X) =
∑

B∈PD

GB(XB) 7→ GA(XA)

and notice that QA is the projector onto VA parallel to WA, which is well-defined thanks to the direct-
sum decomposition of Theorem 2 (see [45, Theorem 3.4]). For any A ∈ PD, the operators PA(·) and
QA(·) are both projectors onto VA, but their nullspaces differ.

Now, we define the orthogonal projector onto L2 (σA), as

EA : L2 (σX) → L2 (σX) , such that Ran (EA) = L2 (σA) and Ker (PA) = L2 (σA)
⊥
,

and notice, as mentioned before, that it is the conditional expectation operator of H(X) given XA

(see [30, Chapter 8]). Additionally, denote the subspace

|WA =
⊕

B∈PD,B ̸∈PA

VB

and the operator

MA : L2 (σX) → L2 (σX)

G(X) =
∑

B∈PD

GB(XB) 7→
∑

B∈PA

GB(XB).

Thanks to Theorem 2, notice thatMA is the projection onto Ran (MA) = L2 (σA) parallel to Ker (MA) =
|WA. For any A ∈ PD, the operators EA [·] and MA [·] are two projections onto L2 (σA), but with dif-
ferent nullspaces.

The first result is a particular consequence of the hierarchical orthogonality structure, known as the
annihilating property (see, e.g., [27, Lemma 1] or [33]). This property admits a generalization in the
framework of Theorem 2.

Proposition 6 (Annihilating property). We place ourselves in the framework of Theorem 2 and
Corollary 1. For any A ∈ PD and any B ⊂ A,

PB (QA (G(X))) = PB (GA(XA)) = 0.

15



Proof of Proposition 6. From Proposition 5, for every B ⊂ A, one has that VB ⊥ VA, and thus
GA(XA) ∈ VA ⊂ V ⊥

B .

Another interesting result is the fact that the oblique projections (QA)A∈PD
onto the VA can be

expressed in terms of the oblique projections (MA)A∈PD
onto the generated Lebesgue spaces.

Proposition 7 (Formula for oblique projections). We place ourselves in the framework of Theorem 2
and Corollary 1. One has that, for any G(X) ∈ L2 (σX), and for any A ∈ PD

QA(G(X)) =
∑

B∈PA

(−1)|A|−|B|MA(G(X)).

Proof of Proposition 7. By definition of MA, one has that

∀A ∈ PD, MA(G(X)) =
∑

B∈PA

QA(G(X)),

which, thanks to Rota’s generalization of the Möbius inversion formula [48, 28], is equivalent to

∀A ∈ PD, QA(G(X)) =
∑

B∈PA

(−1)|A|−|B|MA(G(X)).

5. Sensitivity analyses with dependent inputs

This section is dedicated to introduce the notion of orthocanonical decompositions of quantities of
interest (QoIs) by leveraging the decomposition offered in Theorem 2. In particular, two QoI decom-
positions are presented: the decomposition of an evaluation of the model and the decomposition of its
variance.

5.1. Orthocanonical evaluation decomposition

For ω ∈ Ω, denote x = X(ω) ∈ E a realisation of X. Subsequently, denote G(x) ∈ R the evaluation
on x of a random output G(X) ∈ L2 (σX). In the XAI literature, “explanation” methods aim at
decomposing G(x) into parts for which each input is responsible [4]. They often rely on cooperative
game theory, particularly on the Shapley values [50], an allocation with seemingly reasonable properties
[38]. However, allocations can be understood as aggregations of coalitional decompositions [28], which
can be trivially chosen. However, Theorem 2, and in particular Corollary 1 offers an orthocanonical
approach.

Definition 4 (Orthocanonical decomposition of an evaluation). Let X = (X1, . . . , Xd) be a vector of
random elements, let G(X) be in L2 (σX) and assume that Assumptions 1 and 2 hold. For any ω ∈ Ω,
denote x = X(ω). The orthocanonical coalitional decomposition of the evaluation G(x) is defined as

G(x) =
∑

A∈PD

GA(xA),

where xA = XA(ω), and

GA(xA) = QA (G(x)) =
∑

B∈PA

(−1)|A|−|B|MB (G(x)) ,

where QA is the projection onto VA parallel to WA and MA is the projection onto L2 (σA) parallel to
|WA.
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The usual coalitional decomposition of choice, even for dependent inputs, relies on choosing conditional
expectations (also known as “conditional Shapley values”) [38]. However, the following results show
that this choice entails a canonical decomposition if and only if the inputs are mutually independent.

Proposition 8. Let X = (X1, . . . , Xd) be a vector of random elements, let G(X) be in L2 (σX), and
assume that Assumptions 1 and 2 hold. Then,

GA(xA) =
∑

B∈PA

(−1)|A|−|B|EB (G(x)) , ∀A ∈ PD

if and only if X is mutually independent.

Proof of Proposition 8. First, notice that MA = EA if and only if |WA is the orthogonal complement
of L2 (σA). One can notice that, |WA is a complement of L2 (σA) in L2 (σX), and from Proposition 14,
one has that

L2 (σA) =
⊕

B∈PA

VB ⊥ |WA =
⊕

B∈PD,B ̸∈PA

VB ,

holds for every A ∈ PD if and only if X is mutually independent. In this case, |WA is an orthogonal
complement of L2 (σA), and by uniqueness, |WA = L2 (σA)

⊥
, and thus MA = EA.

5.2. Variance decomposition

Performing a variance decomposition of a black-box model is paramount in quantifying a set of inputs’
importance towards a multivariate model [10]. Let G(X) be a random output and denote its variance

V (G(X)) = E
[
(G(X)− E [G(X)])

2
]
= E

[
G(X)2

]
− E [G(X)]

2
.

We propose two ways to approach the problem of decomposing V (G(X)). The orthocanonical variance
decomposition relies on the decomposition of G(X) offered by Corollary 1. In contrast, the organic
variance decomposition aims at defining and disentangling pure interaction effects from dependence
effects.

5.2.1. Orthocanonical variance decomposition

In light of Corollary 1, the orthocanonical variance decomposition of G(X) is rather intuitive. It relies
on the following rationale:

V (G(X)) = Cov (G(X), G(X))

=
∑

A∈PD

Cov (GA(XA), G(X))

=
∑

A∈PD

[
V (GA(XA)) +

∑
B∈UA

Cov (GA(XA), GB(XB))

]
.

reminiscent of the “covariance decomposition” [53, 7, 25, 10]. Two indices arise from this decomposi-
tion.

Definition 5 (Orthocanonical variance decomposition). We place ourselves in the framework of The-
orem 2. For any A ∈ PD, let

SU
A = V (GA(XA)) ,

defines the structural contribution of XA to G(X), while

SC
A =

∑
B∈UA

Cov (GA(XA), GB(XB)) ,

represents the correlative contribution of XA to G(X).
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The orthocanonical decomposition of V (G(X)) is suitable in practice if the dependence structure of X
is assumed to be inherent in the modeling of the studied phenomenon. These indices can be expressed
using the oblique projections {MA}A∈PD

onto the subspaces
{
L2 (σA)

}
A∈PD

.

Proposition 9. We place ourselves in the framework of Theorem 2. Then, for any A ∈ PD

SC
A =

∑
B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) .

Proof of Proposition 9. First, recall that, for any A ∈ PD,

GA(XA) =
∑

B∈PA

(−1)|A|−|B|MB(G(X)),

and hence,∑
B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) = Cov (GA(XA), [I −MA] (G(X)))

=
∑

B∈PD:B ̸∈PA

Cov (GA(XA), GB(XB)) .

However, notice that UA ⊂ PD \ PA, and that, for any B ∈ PD \ PA with B ̸∈ UA,

Cov (GA(XA), GB(XB)) = 0,

and hence,∑
B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) =
∑

B∈PD:B ̸∈PA

Cov (GA(XA), GB(XB))

=
∑

B∈UA

Cov (GA(XA), GB(XB))

= SC
A .

Proposition 10. We place ourselves in the framework of Theorem 2. Then, for any A ∈ PD

SU
A =

∑
B∈PA

(−1)|A|−|B| [V (MB(G(X)))− Cov (MB(G(X)), [I −MA] (G(X)))] .

Proof of Proposition 10. First, recall that

MA(G(X)) =
∑

B∈PA

GB(XB).

Thus,

V (MA(G(X))) = V

( ∑
B∈PA

GB(XB)

)
=
∑

B∈PA

V (GB(XB)) +
∑

C∈UA

Cov (GB(XB), GC(XC))

=
∑

B∈PA

SU
B + SC

B

which is equivalent to

V (MA(G(X)))−
∑

B∈PA

SC
B =

∑
B∈PA

SU
B .
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However, notice that, ∀A ∈ PD,∑
B∈PA

SC
B = Cov (MA(G(X)), [I −MA] (G(X))) ,

and thus, ∀A ∈ PD,

V (MA(G(X)))− Cov (MA(G(X)), [I −MA] (G(X))) =
∑

B∈PD

SU
B .

Using Rota’s generalization of the Möbius inversion formula applied to the power-set, it yields that,
∀A ∈ PD,

SU
A =

∑
B∈PA

(−1)|A|−|B| [V (MB(G(X)))− Cov (MB(G(X)), [I −MA] (G(X)))] .

5.2.2. Organic variance decomposition

The goal of the organic variance decomposition is to separate “pure interaction effects” to “dependence
effects”. Pure interaction can be seen as the study of the functional relation between the inputs X
and the random output G(X) under mutual independence of X. Formally, let X = (X1, . . . , Xd) be
a vector of random elements. The induced probability measure PX is not necessarily the product
measure×i∈D

PXi
. Now, denote X̃ = (X̃1, . . . , X̃d) the vector of random elements such that

∀i ∈ D, X̃i and Xi have the same distribution and PX̃ :=×
i∈D

PXi
.

In other words, X and X̃ have the same univariate marginals, but X̃ is the mutual independent
version of X and, for any A ∈ PD, denote X̃A its marginals. Suppose that G(X) ∈ L2 (σX) and

G
(
X̃
)
∈ L2

(
σX̃

)
.

Notice that, since X̃ is mutually independent, it respects both Assumptions 1 and 2, and hence, one
can perform the following orthocanonical decomposition in L2

(
σX̃

)
G
(
X̃
)
=
∑

A∈PD

G̃A

(
X̃A

)
,

where the G̃A(X̃A) are all pairwise orthogonal (see Appendix Appendix C), and hence

V
(
G
(
X̃
))

=
∑

A∈PD

V
(
G̃A

(
X̃A

))
.

We propose the following indices.

Definition 6 (Pure interaction effect). We place ourselves in the framework of Theorem 2. For any
A ∈ PD, let

SA =
V
(
G̃A

(
X̃A

))
V
(
G
(
X̃
)) V (G(X))

define the pure interaction indices.
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These indices are, in fact, the Sobol’ indices of G
(
X̃
)

[52], which are known in the literature as

quantifying pure interaction [10]. These indices can also be expressed as functions of the orthogonal

projections onto the subspaces L2
(
σX̃A

)
as follows

SA =
∑

B∈PA

(−1)|A|−|B|EB

(
G(X̃)

)
.

For further considerations about these indices, we refer the interested reader to [40, 10].

Remark 4. In certain situations, when X is from a certain family of random vectors, it is possible to
find a simple mapping T : E → E such that

X̃ = T (X).

In particular, if PX is in the family of elliptical distribution, it amounts to performing a Nataf transform
of the inputs [35, 36].

To define dependence effects, one desirability criterion can be brought forward: the set of indices must
all be equal to zero if and only if X is mutually independent. Many quantities can be defined that
respect this property. However, we focus on one particular quantity, which can be easily interpreted
thanks to the following observation.

Lemma 5. We place ourselves in the framework of Theorem 2. Let G(X) ∈ L2 (σX). Then,

QA (G(X)) = PA (G(X)) a.s., ∀A ∈ PD ⇐⇒ X is mutually independent.

Proof of Lemma 5. First, suppose that X is mutually independent. By Proposition 14, one has that

∀A,B ∈ PD, B ̸= A VA ⊥ VB ,

which entails that
VA ⊥ WA = +

B∈PD:B ̸=A

VB .

However, notice that WA still complements VA in L2 (σX). Furthermore, by unicity of the orthogonal
complement, one has that WA = V ⊥

A . Thus,

Ran (QA) = VA, Ker (QA) = V ⊥
A ,

and thus QA = PA, leading to
QA (G(X)) = PA (G(X)) a.s.

Now, suppose that for any A ∈ PD, QA (G(X)) = PA (G(X)) a.s. Hence, it implies that

∀A ∈ PD, GA(XA) = PA (G(X)) .

which implies that PA = QA, since the above equation defines the operator QA. Thus, PA and QA

must share the same ranges and nullspaces. In particular,

Ker (QA) = Ker (PA) = V ⊥
A ,

implying that WA = V ⊥
A , which leads to

VA ⊥ WA,∀A ∈ PD ⇐⇒ VA ⊥ VB ,∀A,B ∈ PD, B ̸= A.

Finally, thanks to Proposition 14, notice that this is equivalent to X being mutually independent.
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Hence, a rather intuitive index is the distance between these two projections.

Definition 7 (Dependence effects). We place ourselves in the framework of Theorem 2. For any
A ∈ PD, let

SD
A = V (QA(G(X))− PA(G(X))) = E

[
(QA(G(X))− PA(G(X)))

2
]

define the dependence effect of XA.

Furthermore, these indices are naturally all zero if and only if X is mutually independent.

Proposition 11.

∀A ∈ PD, SD
A = 0 ⇐⇒ X is mutually independent.

Proof of Proposition 11. This is a direct consequence of Lemma 5.

6. Analytical formulas for two Bernoulli inputs

In order to illustrate Theorem 2, one can take an interest in a very particular case: X is comprised of
two Bernoulli random variables. In this example, the orthocanonical decomposition can be achieved
analytically.

6.1. Decomposition as a system of linear equations

Let X = (X1, X2) where both inputs follow a Bernoulli distribution (here, E = {0, 1}2) with success
probability q1 and q2 respectively. The joint law ofX can be fully expressed using three free parameters:
q1, q2, and ρ = E [X1X2]. More precisely, one has that:

p00 = 1− q1 − q2 + ρ, p01 = q2 − ρ, p10 = q1 − ρ, p11 = ρ

where, for i, j ∈ {0, 1}, one denotes pij = P ({X1 = i} ∩ {X2 = j}). Denote the (4×4) diagonal matrix
P = diag(p00, p01, p10, p11). Any function G : {0, 1}2 → R can be represented as a vector in R4, where
each element represents a value that G can take w.r.t. the values taken by X. For i, j ∈ {0, 1}, denote
Gij = G(i, j), and thus

G = (G00, G01, G10, G11)
⊤

where each Gij can be observed with probability pij .

In this particular case, one can analytically compute the decomposition of G related to Theorem 2. It
can be performed by finding suitable unit-norm vectors in R4

v∅ =


c
c
c
c

 , v1 =


g0
g0
g1
g1

 , v2 =


h0

h1

h0

h1

 , v12 =


k00
k01
k10
k11


such that 

v⊤∅ Pv1 = 0

v⊤∅ Pv2 = 0

v⊤∅ Pv12 = 0

v⊤12Pv1 = 0

v⊤12Pv2 = 0

, and ,


v⊤∅ Pv∅ = 1

v⊤1 Pv1 = 1

v⊤2 Pv2 = 1

v⊤12Pv12 = 1

(4)
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which results in a system of nine equations with nine real unknown parameters (i.e., c for v∅, h0, h1

for v1, g0, g1 for v2, and k00, k01, k10, k11 for v12). Given these vectors, one has that any function G
can be written as

G = ev∅ + αv1 + βv2 + δv12,

resulting in four additional equations with four unknown parameters. These 13 equations and 13
parameters can be solved analytically.

We used the symbolic programming package sympy to perform these calculations [41]. We refer the
interested reader to the accompanying GitHub repository1 for the analytical formulas obtained for this
decomposition, as well as the analytical formulas of the indices introduced in Section 5. The remainder
of this section is dedicated to discussing one interesting finding.

6.2. Feshchenko matrix and the Fréchet bounds on copulas

Friedrichs’ angle between V1 and V2 can be analytically computed. It is equal to:

c
(
L2 (σ1) ,L2 (σ2)

)
=
∣∣v⊤1 Pv2

∣∣ = ∣∣∣∣ −q1q2 + ρ
√
q1
√
q2
√
1− q1

√
1− q2

∣∣∣∣ .
Hence, for the Feshchenko matrix ∆ to be definite positive (and thus for Assumption 2 to hold), it
entails that ∣∣∣∣ −q1q2 + ρ

√
q1
√
q2
√
1− q1

√
1− q2

∣∣∣∣ < 1.

Let

B0 := max

{
0, q1q2

(
1−

√
(q1 − 1) (q2 − 1)

q1q2

)}
and

B1 := min

(
1, q1q2

(
1 +

√
{q1 − 1} (q2 − 1)

q1q2

))
,

and notice that ρ must necessarily be bounded by

B0 < ρ < B1.

However, the classical Fréchet bounds for ρ for bivariate Bernoulli random variables (see [29, p.210])
are equal to

H0 := max (0, q1 + q2 − 1) ≤ ρ ≤ min (q1, q2) := H1,

and notice that these bounds are attained if and only if X is counter-comonotonic or comonotonic.
However, attaining these bounds violates Assumption 1 (and in particular Proposition 3). One can
notice that the Fréchet bounds are always more restrictive than the bounds due to the positive definite-
ness of the Feshchenko matrix. Thus, Assumptions 1 and 2 hold for any copula between two distinct
Bernoulli random variables.

7. Discussion and future work

In this article, we propose a framework to study the problem of decomposing functions of random
inputs, which are not necessarily assumed to be mutually independent. This framework merges tools
from probability theory, functional analysis, and some notions of combinatorics. This framework leads

1https://github.com/milidris/GeneralizedAnova
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to a generalization of the Hoeffding decomposition [26]. It can be expressed using oblique projections
of the random output on some particular subspaces. Based on this result, we propose methods to
decompose two quantities of interest: an evaluation (i.e., observation) of the random output and its
variance. For the latter, two approaches are proposed, which correspond to different situations one
may encounter in practice. The properties of the resulting indices are studied, and an emphasis is put
on their intuitive interpretation. Finally, a particular case is studied, where the inputs are composed of
two Bernoulli random variables, for which the proposed decomposition can be computed analytically.

The first main challenge towards adopting the indices presented in Section 5 is estimation. While
many methods exist to estimate conditional expectations. Many of these schemes rely on the varia-
tional problem offered by Hilbert’s projection theorem, i.e., characterizing orthogonal projections as
a distance-minimizing problem. A first idea would be to express oblique projections as a distance-
minimizing optimization problem under constraints. A second idea would be to take advantage of the
particular expression of oblique projections (see, e.g., [2, 9]). A final idea would be to find suitable
bases for each (VA)A∈PD

to project G(X) onto, analogously to [7]. Non-orthogonal polynomial bases
would be a great start to study this problem whenever X is endowed with a multivariate Gaussian
probabilistic structure.

The second main challenge is understanding the extent of such an approach. Aside from the uncertainty
quantification that this framework offers, we believe it is a step towards a more global treatment
of dependencies in (non-linear) multivariate statistics. As one can notice, our framework offers a
(somewhat surprisingly) linear approach to possibly highly non-linear problems (due to the function
G, and/or to the stochastic dependence on X). We believe that Assumptions 1 and 2 will play a
pivotal role going forward.

Finally, we emphasize the importance of the Boolean lattice algebraic structure, which is intrinsically
part of our framework. It is essential in our analysis and offers a path toward studying different
algebraic structures. One can notice that several references to Rota’s generalization of the Möbius
inversion formula [48, 32] are made in our reasoning. This result is paramount to the well-foundedness
of our approach. However, Rota’s result is much more general and does not only apply to Boolean
lattices (i.e., powersets). It holds for any (finite) partially ordered set. Our approach clearly identifies
the role of the underlying algebraic structure in the resulting analyses. It paves the way for more
complex analysis, where the relationship between the inputs may differ. For example, one can think of
hierarchical structures (e.g., to represent physical causality) or the presence of trigger variables [43],
which would result in a different algebraic structure, but still be partially ordered.
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Appendix A. Generated Lebesgue spaces

When it comes to L2 (σX), Theorem 1 implies that the set of subspaces
{
L2 (σA)

}
A∈PD

display some
ordering structure w.r.t. the inclusion binary relation.
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Lemma 6. Let A,B ∈ PD, such that B ⊆ A. Then

L2 (σB) ⊆ L2 (σA) .

Proof of Lemma 6. Notice that, by definition, σA is a σ-algebra that contains ∪i∈Bσi since B ⊆ A.
Since σB is the smallest σ-algebra containing ∪i∈Bσi, then necessarily σB ⊆ σA. Applying Theorem 1
(1.) leads to the result.

Lemma 6 can be understood as the fact that the Lebesgue space of random outputs w.r.t. a subset
of inputs XB is included in the Lebesgue space of random outputs w.r.t. a bigger subset of inputs
XA (i.e., provided B ⊆ A). For instance, for two inputs X = (X1, X2), Lemma 6 entails that the
set of random outputs which are only functions of X1 is included in the set of random outputs which
are functions of both X1 and X2. This behavior is rather intuitive due to the intrinsic definition of
measurability, i.e., a random variable measurable w.r.t. σB is necessarily measurable w.r.t. σA provided
σB ⊆ σA.

The Lebesgue spaces L2 of square-integrable random variables, display a remarkable property. It is
well known that, whenever equipped with a particular inner product, they are Hilbert spaces, i.e., inner
product spaces that are also complete metric spaces (see, e.g., [39, Theorem 9.4.1]).

Theorem 3. Let B ⊆ F be a sub-σ-algebra. The Lebesgue space L2 (B) is then a Hilbert space when
equipped with the inner product defined, for any Z1, Z2 ∈ L2 (B), as:

E [XY ] =

∫
Ω

Z1(ω)Z2(ω)dP (ω) .

Appendix B. Some notions from functional analysis

Appendix B.1. (Internal) direct-sum decompositions

An internal direct-sum decomposition of a vector space entails expressing this vector space as a partic-
ular sum of subspaces, having exclusively the zero vector as a common element. The adjective internal
is omitted in the following for conciseness, except to avoid any confusion. Direct-sum decompositions
of vector spaces can be characterized thanks to the following theorem (see, e.g., [3, Definition 1.40 and
Proposition 1.44]).

Theorem 4 (Direct-sum decomposition). Let W be a vector space, and for a positive integer n, let
W1, . . . ,Wn be proper subspaces of W (i.e., Wi ⊂ W for every i = 1, . . . , n). Then, the following
statements are equivalent:

1. Any w ∈ W can be written uniquely as w =
∑n

i=1 wi where wi ∈ Wi for i = 1, . . . , n;

2. For i = 1, . . . , n, one has that Wi ∩ (W1 +W2 + · · ·+Wi−1 +Wi+1 + · · ·+Wn) = {0};
3. W = +n

i=1 Wi and additionally, for any w =
∑n

i=1 wi ∈ W , where wi ∈ Wi one has that

w = 0 =⇒ wi = 0, i = 1, . . . , n.

If any of these three conditions are met, then W is said to admit a direct sum decomposition, which
is denoted

W =

n⊕
i=1

Wi.
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One can notice the resemblance between the sought-after decomposition in Eq. (1) and the one defined
in Theorem 4 (1.). Since the random output G(X) belongs to the (vector) Hilbert space L2 (σX), the
problem of HDMR of random outputs can be seen as finding suitable subspaces of L2 (σX), where
each subspace would be related to every Lebesgue space

{
L2 (σA)

}
A∈PD

, and such that they form a

direct-sum decomposition of L2 (σX). In order to properly characterize the subspaces involved in the
decomposition, the notion of complement of a subspace of a Hilbert space is central and introduced in
the following section.

Appendix B.2. Hilbert space external direct sums

Let H1, . . . ,Hn be a collection of Hilbert spaces with respective inner products ⟨., .⟩1 , . . . , ⟨., .⟩n and
induced norms ∥.∥1 , . . . , ∥.∥n. The Hilbert space (external) direct-sum is the space denoted and defined
as (see [8, Definition 6.4])

n⊕
i=1

Hi =

{
x = (x1, . . . , xn) ∈

n×
i=1

Hi :

n∑
i=1

∥xi∥2i < ∞

}
.

A Hilbert space direct-sum is itself a Hilbert space w.r.t. the inner product ⟨., .⟩ (see [8, Proposition
6.2])

∀x, y ∈
n⊕

i=1

Hi, ⟨x, y⟩ =
n∑

i=1

⟨xi, yi⟩i .

Appendix B.3. Closed range operator theorem

The following result can be found in [1, Theorem 2.5].

Theorem 5 (Closed range operator). Let (M1, ∥.∥1) and (M2, ∥.∥2) be two Banach spaces, and let
T : M1 → M2 be a continuous operator between the two spaces. T is bounded from below, i.e., there
exists some γ > 0 such that, ∀x ∈ M1

∥T (x)∥2 ≥ γ ∥x∥1 ,

if and only if T is one-to-one and Ran (T ) is closed in M2.

Appendix B.4. Intuition and interpretation behind of the proof of Theorem 2

Despite the somewhat formal nature of Theorem 2, its interpretation is rather intuitive. Given a
univariate function G1(X1) ∈ L2 (σ1), it is well known that it can always be decomposed as

G1(X1) = E [G1(X1)] + [G1(X1)− E [G1(X1)]] . (B.1)

In other words, a random variable can always be decomposed as its expectation plus its centered
version. The first step of the result formalizes this idea. V∅ = L2 (σ∅) is comprised of constant a.e.
random variables and is a closed subspace of L2 (σ1). Thus V∅ is complemented in L2 (σ1), and, in
particular, it is complemented by V1, its orthogonal complement. V1 is thus comprised of every function
of L2 (σ1) which are orthogonal to the constants (i.e., they are centered). Thus, since L2 (σ1) = V∅⊕V1,
one recovers the relation in (B.1).

For two inputs X1 and X2, Assumption 1 ensures that the subspaces L2 (σ1) and L2 (σ2) of L2 (σ12) are
not comprised of the same random variables, due to a functional relation between X1 and X2. On the
other hand, Assumption 2 ensures that these subspaces are not the same due to a degenerate stochastic
relation. Under those two assumptions, the sum L2 (σ1) + L2 (σ2) = V∅ + V1 + V2 is a closed subspace
of L2 (σ12), and thus, is complemented by V12 which is none other than its orthogonal complement.
Notice that V1 and V2 are not necessarily orthogonal, but both are orthogonal to V∅ and V12.
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The same reasoning can be applied with three inputs. The two assumptions ensure that L2 (σ12),
L2 (σ23), and L2 (σ13) are not pairwise equal due to either a functional or a stochastic relation. In
this case, their sum is a closed subspace in L2 (σ123), and thus, it is complemented by V123 (i.e., the
orthogonal complement of L2 (σ12) + L2 (σ23) + L2 (σ13)). However, notice that neither V12, V13 and
V23 are pairwise orthogonal, nor V1, V2 and V3. The same mechanism can be continued for any number
of inputs.

Hence, the subspaces (VA)A∈PD
in Theorem 2 can be interpreted as the subspaces of functions of

X which, for any A ∈ PD, are σA-measurable (i.e., are functions of XA), but are orthogonal to the
linear combinations of functions in (VB)B∈P−A

. In other words, the elements of VA can only contain
multivariate non-linear functions of exactly XA and the zero vector. For instance, for two inputs X1

and X2, V12 can be seen as the space of functions of X1 and X2, that “are not” (in the sense of being
the complement of) linear combinations of functions of X1 and X2. Given this construction, a natural
interpretation of VA would be the space of “functional interactions” between the inputs XA.

Appendix C. The particular case of mutual independence

It is well-known that the independence of two random elements (w.r.t. to P) is linked to the indepen-
dence of the σ-algebras they generate, which can be characterized by the orthogonality of the centered
generated Lebesgue spaces. More precisely, two sub σ-algebras A1 and A2 of a probability space
(Ω,F ,P) are said to be independent if L2 (A1) and L2 (A2) are orthogonal on the constant functions
(see [39, Definition 3.0.1]). More precisely,

A1 ⊥⊥ A2 ⇐⇒ c0
(
L2
0 (A1) ,L2

0 (A2)
)
= 0,

where ⊥ is defined relative to the inner product on L2 (F). Additionally, two random elements Z1, Z2

defined on (Ω,F ,P) are considered independent if their generated σ-algebras are independent.

When dealing with a vector of random elements X = (X1, . . . , Xd), mutual independence can be
defined w.r.t. the independence of their generated σ-algebras. More precisely, X is said to be mutually
independent if

∀A ∈ PD, σA ⊥⊥ σD\A ⇐⇒ c0
(
L2
0 (σA) ,L2

0

(
σD\A

))
= 0.

Proposition 12. Let X be a vector of random elements. If X is mutually independent, then Assump-
tion 1 hold.

Proof of Proposition 12. From [39], note that for two σ-algebras B1 and B2,

B1 ⊥⊥ B2 =⇒ B1 ∩ B2 = σ∅.

Suppose that Assumption 1 does not hold. Hence, in particular, for any A ∈ PD,

σA ∩ σD\A ̸= σ∅.

It implies that σA and σD\A cannot be independent. Hence, since this holds for any A ∈ PD, X cannot
be mutually independent. The result is proven by taking the opposite implication.

Proposition 13. Let X be a vector of random elements and suppose that Assumption 1 holds. X is
mutually independent if and only if ∀A,B ∈ PD, A ̸= B,

c
(
L2 (σA) ,L2 (σB)

)
= 0.
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Proof of Proposition 13. Notice that, in general, if B ⊂ A, then c
(
L2 (σA) ,L2 (σB)

)
is necessarily

equal to zero. Thus, we focus on the case where A ∩ B = C ̸∈ {A,B}. Now, suppose that for any
A,B ∈ PD, c

(
L2 (σA) ,L2 (σB)

)
= 0. Hence, in particular, under Assumption 1, notice that for every

A ∈ PD

c
(
L2 (σA) ,L2

(
σD\A

))
= c0

(
L2 (σA) ∩ L2 (σ∅)

⊥
,L2

(
σD\A

)
∩ L2 (σ∅)

⊥
)

= c0
(
L2
0 (σA) ,L2

0

(
σD\A

))
.

Thus, for every A ∈ PD,

c0
(
L2
0 (σA) ,L2

0

(
σD\A

))
= 0 ⇐⇒ σA ⊥⊥ σD\A,

which is equivalent to X being mutually independent.

Now, suppose that X is mutually independent, and thus, PX =×i∈D
PXi

, which implies that, for any
A,B ∈ PD, with A ∩B = C ̸∈ {A,B},

EA ◦ EB = EB ◦ EA = EC ,

Thus, the orthogonal projections onto L2 (σA) and L2 (σB) commute, which is equivalent to (see (2))

c
(
L2 (σA) ,L2 (σB)

)
= 0.

Corollary 2. Let X be a vector of random elements and suppose that Assumption 1 holds. X is
mutually independent if and only if its Feshchenko matrix ∆ is the identity.

Proof of Corollary 2. It is a direct consequence of Proposition 13, by definition of ∆.

Hence, if the inputs are mutually independent, both Assumption 1 and Assumption 2 hold and lead
to the very particular case of ∆ being the identity matrix. One has the following result when it comes
to the resulting decomposition of L2 (σX).

Proposition 14. Let X be random inputs and suppose that Assumption 1 holds. X is mutually
independent if and only if

∀A,B ∈ PD, B ̸= A VA ⊥ VB .

Proof of Proposition 14. Notice that, in general, if Assumption 1 hold, one has that for any A,B ∈ PD,
B ̸= A

c0 (VA, VB) ≤ c
(
L2 (σA) ,L2 (σB)

)
.

Note that, from Proposition 12, Assumption 1 holds for a mutually independent X. Moreover,
notice from Proposition 13 that X is mutually independent if and only if, ∀A,B ∈ PD, A ̸= B,
c
(
L2 (σA) ,L2 (σB)

)
= 0, thus necessarily c0 (VA, VB) = 0, which is equivalent to VA ⊥ VB .

Proposition 14 is, in fact, equivalent to the Hoeffding functional decomposition for mutually indepen-
dent inputs, which can be seen as a very particular case of Theorem 2 where X admits a Feshchenko
matrix equal to the identity, and provided Assumption 1 holds. In this very particular case, the
subspaces VA are all pairwise orthogonal, and the canonical projectors are orthogonal.

In a nutshell, Theorem 2 generalizes Hoeffding’s decomposition to inputs with Feshchenko matrices
that are different from the identity, or in other words, for not-necessarily mutually independent inputs.
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