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Abstract

One of the main challenges for interpreting black-box models is the ability to uniquely decompose
square-integrable functions of non-mutually independent random inputs into a sum of functions of every
possible subset of variables. However, dealing with dependencies among inputs can be complicated. We
propose a novel framework to study this problem, linking three domains of mathematics: probability
theory, functional analysis, and combinatorics. We show that, under two reasonable assumptions
on the inputs (non-perfect functional dependence and non-degenerate stochastic dependence), it is
always possible to decompose uniquely such a function. This “canonical decomposition” is relatively
intuitive and unveils the linear nature of non-linear functions of non-linearly dependent inputs. In this
framework, we effectively generalize the well-known Hoeffding decomposition, which can be seen as
a particular case. Oblique projections of the black-box model allow for novel interpretability indices
for evaluation and variance decomposition. Aside from their intuitive nature, the properties of these
novel indices are studied and discussed. This result offers a path towards a more precise uncertainty
quantification, which can benefit sensitivity analyses and interpretability studies, whenever the inputs
are dependent. This decomposition is illustrated analytically, and the challenges to adopting these
results in practice are discussed.

1. Introduction

When dealing with complex black-box models (e.g., predictive models, numerical simulation codes)
with non-deterministic inputs, assessing the effects of the random nature of the inputs on the output
is paramount in many studies. This general problem has broad application in many fields, such as
sensitivity analysis (SA) [10] and explainability in artificial intelligence (XAI) [1]. In particular, in
industrial practices (e.g., when dealing with critical systems), uncertainty quantification (UQ) enables
the improvement of the studied phenomenon modeling process and can allow for scientific discoveries
[14].

One of the main challenges when it comes to UQ is to deal with dependent inputs. The proposed
methods usually assume mutual independence of the inputs [53, 38], either for the simplicity of the
resulting estimation schemes or for the lack of a proper framework. However, in practice, the inputs are
often endowed with a dependence structure intrinsic to the (observed or modeled) studied phenomena.
Always assuming mutual independence can be seen as expedient and can lead to improper insights [26].
One of the main challenges to a better understanding of black-box models is to take this dependence



structure into account [45] and, above all, to formally justify the proposed methods without heavily
relying on empirical observations or specific benchmarks.

One classical way to assess the effects of input uncertainties is using functional decompositions, ob-
taining so-called high-dimensional model representations (HDMR) [43]. Formally, for random inputs
X = (X1, . . . , Xd)

>, and an output G(X), it amounts to finding the unique decomposition

G(X) =
∑
A∈PD

GA(XA), (1)

where D = {1, . . . , d}, PD is the set of subsets of D, and GA(XA) are functions of the subset of input
XA = (Xi)i∈A. Whenever the Xi are assumed to be mutually independent, such a decomposition is
known as Hoeffding’s decomposition, due to his seminal work on the subject [27]. Whenever the inputs
are not assumed to be mutually independent, many approaches have been proposed in the literature.
Notably, [26] proposed an approximation theoretic framework to address the problem, and provides
useful tools for importance quantification, but they lack a proper and intuitive understanding of the
quantities being estimated. On the one hand in [7], the authors approached the problem differently
and brought forward an intuitive view on the subject, but under very limiting assumptions on the
probabilistic structure of the inputs. On the other hand, [28] and [34] proposed a projection-based
approach under constraints derived from desirability criteria. However, all of these approaches lack
a clear framework or do not offer completely satisfactory answers to uncertainty quantification with
dependent inputs. Other approaches rely on transforming the dependent inputs to achieve mutual
independence using, e.g., Nataf or Rosenblatt transforms [36, 37, 40]. While these approaches can
be applied to a broad range of probabilistic structures, they can be seen as lacking in generality
(e.g., existence of probability density functions, being in an elliptical family of distribution). While
they offer meaningful indications on the relationship between X and G(X), they do not quantify the
effects due to the dependence.

To fill this gap, our article proposes a framework at the cornerstone of probability theory, functional
analysis, and abstract algebra. By viewing random variables as measurable functions, we are able to
show that a unique decomposition such as (1), for square-integrable black-box outputs G(X), is indeed
possible under two fairly reasonable assumptions on the inputs:

1. Non-perfect functional dependence;

2. Non-degenerate stochastic dependence.

To be more specific, denote σX the σ-algebra generated by X, and L2 (σX) the space of square-
integrable σX -measurable real-valued functions (i.e., real-valued functions of X). From the proposed
framework, defining a decomposition such as in (1) equates to defining a direct-sum decomposition of
L2 (σX) of the form

L2 (σX) =
⊕
A∈PD

VA,

where VA are some linear vector subspaces of functions of XA. We show that such a decomposition
exists and offers a complete definition of the subspaces VA. Additionally, to the best of our knowledge,
it offers a new way to approach multivariate dependence, relying on linear geometry. We also show
that Hoeffding’s decomposition is a very special case of our framework, which ultimately generalizes
this result. Moreover, it offers a way to better understand, comprehend, handle, and disentangle effects
due to the internal dependence structure of X and the interaction effects due to the model G. Based
on this, novel indices are proposed, allowing decomposing evaluations (observations) of G(X) and
quantifying the influence of the inputs and their interactions within G by decomposing its variance.

This document is organized as follows. Section 2 is dedicated to introducing the overall framework,
notations, and the required preliminaries and key definitions to introduce our result. Section 3 is
dedicated to the main result of this paper. This result is discussed, and a particular focus is put on the
fact that it generalizes the known results in the situation of mutually independent inputs. Section 4
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introduces novel decompositions for two quantities of interest: an evaluation of a model and its variance.
The proposed indices are intuitive, disentangle interaction effects to effects due to the dependence, and
allow for a novel way of quantifying uncertainties. Section 5 is dedicated to the illustration of our result
in the particular case of a model with two Bernoulli inputs. In this illustration, the decomposition can
be computed analytically, and the proposed indices also admit analytical formulas. Finally, Section 6
discusses the challenges for a broad acceptance of the proposed method in practice, as well as some
motivating perspectives.

2. Notations and preliminaries

In the remainder of this document, the following notations are adopted. ⊂ indicates a proper (strict)
inclusion, while ⊆ indicates a possible equality between sets. “Random variables” refer to real-valued
random elements, and “random vector” refers to a vector of random variables. “Random element”
is used if the domain of measurable functions is not necessarily real. Independence between random
elements is denoted using ⊥⊥. For a measurable space (E, E) and B ⊂ E , we denote by σ [B] the
smallest σ-algebra containing B. For a finite set D = {1, . . . , d} for a positive integer d, denote PD its
power-set (i.e., the set of subsets of D, including D and ∅), and for any A ∈ PD, denote P−A = PA\{A}
(i.e., the power-set of A without A). Depending on the context, when dealing with a set A, |A| denotes
its cardinality (i.e., the number of elements in A), while for a real c ∈ R, |c| denotes its absolute value.

2.1. Framework

Let (Ω,F ,P) be a standard probability space, let d ≥ 1 be a positive integer, and let (E1, E1), . . . , (Ed, Ed)
be a collection of standard Borel measurable spaces. Let D = {1, . . . , d} and denote PD the power-set
of D (i.e., the set of subsets of D, including the empty set ∅). For every A ∈ PD, A 6= ∅, denote:

EA :=×
i∈A

Ei, EA :=
⊗
i∈A
Ei,

where × denotes the Cartesian product between sets and ⊗ denotes the product of σ-algebras (see [39],
Section 2.4.2). Notice additionally that (EA, EA) is also a standard Borel measurable space (see, e.g., [31],
Lemma 1.2). Denote E := ED and E := ED.

Let X = (X1, . . . , Xd)
>

be an E-valued, F-measurable function (i.e., a vector of random elements),
which is referred to as the random inputs in the remainder of the paper. Moreover, for any A ∈ PD,
denote XA := (Xi)i∈A the EA-valued function, and notice that it is F-measurable as well, and hence
also forms a vector of random elements (see, e.g., [31] Lemma 1.9).

Denote by σ∅ the P-trivial σ-algebra, defined as

σ∅ := {A ∈ F : P (A) ∈ {0, 1}}

i.e., the smallest σ-algebra generated by the null sets w.r.t. P (see, e.g., [47], p.108). Moreover, for
i = 1, . . . , d, denote

σi :=
{
X−1i (B),∀B ∈ Ei

}
⊆ F

where X−1i denotes the inverse image of Xi (see, e.g., [39], Proposition 2.1.1). Denote by σX the
σ-algebra generated by X, defined as

σX := σ

[⋃
i∈D

σi

]
=
{
X−1(B),∀B ∈ E

}
⊆ F ,
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and finally, for every A ∈ PD, A 6∈ {∅, D}, σA the σ-algebra generated by the subset of inputs XA,
defined as

σA := σ

[⋃
i∈A

σi

]
=
{
X−1A (B),∀B ∈ EA

}
⊆ F .

For every A ∈ PD, A 6= ∅, denote by PXA
the probability measure induced by XA, defined, ∀B ∈ EA,

as,
PXA

(B) = P
(
X−1A (B)

)
.

Denote L2(F) the Lebesgue space of R-valued square-integrable F-measurable functions, and for any
sub σ-algebra G ⊆ F , denote L2 (G) the space of R-valued square-integrable G-measurable functions.
Recall the following classical result ([52], Theorem 2).

Theorem 1. For two sub σ-algebras G1 and G2 of F , the following assertions hold.

1. If G1 ⊂ G2, then L2 (G1) ⊂ L2 (G2).
2. L2 (G1) ∩ L2 (G2) = L2 (G1 ∩ G2).

Remark 1. As the Lebesgue space L2 (σF ) is defined as the canonical quotient space between the R-
valued square-integrable F-measurable functions and the set of functions equal to 0 almost everywhere
(a.e.), every equality between elements of L2 (σF ) stated in the following is to be understood as being
almost sure (a.s.).

For any A ∈ PD, A 6= ∅, notice that for any Y ∈ L2 (σA), one has that there exist a function
f : EA → R such that Y = f(XA) a.s., thanks to the Doob-Dynkin Lemma (see, e.g., [31], Lemma
1.14). Additionally, notice that L2 (σ∅) comprises constant a.s. functions ([47], Lemma 4.5.1). Let
G : E → R be a function representing a black-box model, such that the R-valued random variable G(X)
is in L2 (σX). G(X) is referred to as the random output in the remainder of this paper.

Remark 2. This framework adopts a measure-theoretic point of view for the sake of generality. Taking
the random inputs to be valued in a cartesian product of abstract Polish spaces is a way not to
restrain them from being real-valued. In essence, the inputs can be valued in different types of spaces
(e.g., images, functions, stochastic processes) as long as they are measurable.

2.2. Elements of linear algebra and functional analysis

2.2.1. Vector space direct sum

Let W be a vector space, and W1 and W2 be two proper (linear vector) subspaces of w (i.e., W1 6= W ,
W2 6= W ). The sum between W1 and W2 is the vector subspace of W defined as (see, e.g., [4], Definition
1.36):

W1 +W2 = {w1 + w2 : w1 ∈W1, w2 ∈W2} .
W1 and W2 are said to be in direct sum if additionally W1 ∩W2 = {0W } (i.e., the zero vector of W ),
and the sum of the two subspaces is denoted W1 ⊕W2 (see, e.g., [4], Proposition 1.45).

For a positive integer n ≥ 1, let W1, . . . ,Wn be proper subspaces of W . If for every element w of the
subspace

n

+
i=1

Wi :=

{
n∑
i=1

wi : wi ∈Wi, i = 1, . . . , n

}
there exists only a unique set of elements (wi)i=1,...,n, wi ∈ Wi such that w =

∑n
i=1 wi, then the

subspaces are said to be in direct sum (see, e.g., [4], Definition 1.40), and the sum is denoted using the
⊕ symbol. Moreover, W1, . . . ,Wn are in direct sum (see, e.g., [4], Proposition 1.44) if and only if, for∑n
i=1 wi ∈+n

i=1Wi
n∑
i=1

wi = 0 =⇒ wi = 0, i = 1, . . . , n.
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If additionally

W =

n⊕
i=1

Wi,

then W is said to be in a direct sum decomposition.

2.2.2. Hilbert spaces

A real Banach space is complete normed space, usually defined as a tuple (M, ‖.‖), where M is a
vector space over the reals and ‖.‖ :M→ R is a norm, with the added property that the limit of every
converging sequence of elements ofM (i.e., Cauchy sequences) is inM itself. Whenever the norm ‖.‖
stems from an inner product 〈., .〉, the resulting space is called a Hilbert space (see, e.g., [8], Definition
1.6). Hence, every Hilbert space is a Banach space [50].

Remark 3. ∀A ∈ PD, A 6= ∅, the Lebesgue spaces L2 (σA) introduced in the previous section are
(infinite-dimensional) Hilbert spaces for the inner product defined, for any f(XA), g(XA) ∈ L2 (σA),
as

E [f(XA)g(XA)] =

∫
EA

f(xA)g(xA)dPXA
(xA).

When dealing with infinite-dimensional Hilbert spaces, particularly its (linear vector) subspaces, par-
ticular attention must be put on its closure. Formally, let (H, ‖.‖) be an infinite-dimensional Hilbert
space with inner product 〈., .〉, and let H ⊂ H be a proper subspace of H. H is said to be closed in H if
the limit of every converging sequence of elements of H is in H as well. Hence, if H is a closed subspace
of H, (H, ‖.‖) is itself a Hilbert space. Moreover, a closed proper subspace H of a Hilbert space H
is always complemented, i.e., there exist some subspace K of H such that H admits the direct-sum
decomposition:

H = H ⊕K.
As a consequence of the Hilbert projection theorem, one has that the orthogonal complement H⊥ of
a closed proper subspace H in H always complements H in H (see, e.g., [49], Theorem 12.4), where

H⊥ := {x ∈ H : 〈x, y〉 = 0, ∀y ∈ H} .

Let H1, . . . ,Hn be a collection of Hilbert spaces with respective inner products 〈., .〉1 , . . . , 〈., .〉n and
induced norms ‖.‖1 , . . . , ‖.‖n. The Hilbert space (external) direct-sum is the space denoted and defined
as (see [8], Definition 6.4)

n⊕
i=1

Hi =

{
x = (x1, . . . , xn) ∈

n×
i=1

Hi :

n∑
i=1

‖xi‖2i <∞
}
.

A Hilbert space direct-sum is itself a Hilbert space w.r.t. the inner product 〈., .〉 (see [8], Proposition
6.2)

∀x, y ∈
n⊕
i=1

Hi, 〈x, y〉 =

n∑
i=1

〈xi, yi〉i .

2.2.3. Operators and projections

For two Banach spaces (M1, ‖.‖1) and (M2, ‖.‖2), and an operator T : M1 →M2 denote the range
of T as

Ran (T ) := {T (x) : x ∈M1} ⊆ M2,

and its nullspace as
Ker (T ) := {x ∈M1 : T (x) = 0} ⊆ M1.

Another reasonably useful result (see [2], Theorem 2.5) when it comes to studying the closedness of
subspaces involves operators between Banach spaces.
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Theorem 2 (Closed range operator). Let (M1, ‖.‖1) and (M2, ‖.‖2) be two Banach spaces, and let
T :M1 →M2 be a continuous operator between the two spaces. T is bounded from below, i.e., there
exists some γ > 0 such that, ∀x ∈M1

‖T (x)‖2 ≥ γ ‖x‖1 ,

if and only if T is one-to-one and Ran (T ) is closed in M2.

LetH be a Hilbert space and P : H → H be an operator. P is an idempotent operator (i.e., P ◦P = P ),
if and only if H admits the direct sum decomposition H = Ran (P ) ⊕ Ker (P ). P is then called the
projection on Ran (P ) parallel to Ker (P ) and is defined as

P : H = Ran (P )⊕Ker (P )→ H
x = xR + xK 7→ xR

where xR ∈ Ran (P ) and xK ∈ Ker (P ). The operator I − P is the projection on Ker (P ), parallel to
Ran (P ). As long as H = Ran (P )⊕Ker (P ), P and I−P are linear and bounded (and thus continuous)

operators (see [23] Theorem 7.90). In the case where Ker (P ) = Ran (P )
⊥

, then the projection is said
to be orthogonal, which is equivalent to P being self-adjoint (see [23] Theorem 7.71).

2.3. Angles between subspaces and correlation between random elements

2.3.1. Dixmier’s angle and the maximal canonical correlation

Dixmier’s angle [18], represents the minimal angle between two closed subspaces of a Hilbert space.
Its cosine is defined as follows.

Definition 1 (Dixmier’s angle). Let H and K be closed subspaces of a Hilbert space H with inner
product 〈., .〉 and norm ‖.‖. The cosine of Dixmier’s angle is defined as

c0 (H,K) := sup {|〈x, y〉| : x ∈ H, ‖x‖ ≤ 1, y ∈ K, ‖y‖ ≤ 1} .

This angle is directly linked to the notion of maximal correlation between random elements [24]. Given
two random elements X and Y , the maximal correlation coefficient is none other than the cosine of
Dixmier’s angle between L2 (σX) and L2 (σY ) as closed subspaces of L2

(
σ(X,Y )

)
(i.e., the inner product

is taken w.r.t. to the joint law of (X,Y )). This quantity has been extensively studied as a dependence
measure (see, e.g., [46, 32, 16, 11]), or as a means to quantify the dependence between generated
σ-algebras for studying the mixing properties of stochastic processes [19].

When evaluated on Lebesgue spaces, Dixmier’s angle is particularly suitable for studying the inde-
pendence of random elements. Let X and Y be two random elements, and denote by L2

0 (σX) (resp.
L2
0 (σY )) the subset of centered random variables of L2 (σX) (resp. L2 (σY )). Then, the following

equivalence holds:

c0
(
L2
0 (σX) ,L2

0 (σY )
)

= 0 ⇐⇒ L2
0 (σX) ⊥ L2

0 (σY ) ⇐⇒ σX ⊥⊥ σY ⇐⇒ X ⊥⊥ Y,

(see [39], Chapter 3).

2.3.2. Friedrichs’ angle and the maximal partial correlation

Friedrichs’ angle [22] between two closed subspaces of a Hilbert space differs from Dixmier’s definition
in one way: the supremum is taken outside of the intersection of the two subspaces. It is defined as
follows.
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Definition 2 (Friedrichs’ angle). Let H and K be closed subspaces of a Hilbert space H with inner
product 〈., .〉 and norm ‖.‖. The cosine of Friedrichs’ angle is defined as

c (H,K) := sup

{
|〈x, y〉| :

{
x ∈ H ∩ (H ∩K)

⊥
, ‖x‖ ≤ 1

y ∈ K ∩ (H ∩K)
⊥
, ‖y‖ ≤ 1

}
,

where the orthogonal complement is taken w.r.t. to H.

In probability theory, this quantity is known as the maximal partial (or relative) correlation [5, 6, 12]
between two random elements. For two random elements X and Y , the maximal partial correlation
coefficient is none other than c

(
L2 (σX) ,L2 (σY )

)
taken as closed subspaces of L2

(
σ(X,Y )

)
.

When evaluated on Lebesgue spaces, Friedrichs’ angle is suitable for deciphering conditional indepen-
dence between σ-algebras generated by random elements and whether the conditional expectations
w.r.t. to those σ-algebras commute. For a sub-sigma algebra G ⊂ F , denote EG the conditional ex-
pectation operator w.r.t. G and ⊥⊥

G
denotes the conditional independence relation w.r.t. G (see [31],

Chapter 8). One then has the following equivalence

c
(
L2 (σX) ,L2 (σY )

)
= 0 ⇐⇒ σX ⊥⊥

σX∩σY

σY ⇐⇒ EσX
◦ EσY

= EσY
◦ EσX

= EσX∩σY
, (2)

(see [31], Theorems 8.13 and 8.14).

2.3.3. Some properties

Outside of their intrinsic links with the notions of independence and conditional independence, these
angles are better known in the functional analysis literature as tools to assess if the sum of closed
subspaces of Hilbert spaces is closed. Some properties relevant to proving our result are presented.
The interested reader is referred to the work of [17] for the proofs of these results and a more complete
overview.

Theorem 3 (Properties of Dixmier’s angle). Let H,K be closed subspaces of a Hilbert space H. Then,
one has that 0 ≤ c0 (H,K) = c0 (K,H) ≤ 1, and for any x ∈ H, and y ∈ K:

|〈x, y〉| ≤ c0 (H,K) ‖x‖ ‖y‖ ,
and for a proper closed subspace H̃ ⊂ H,

c0

(
H̃,K

)
≤ c0 (H,K) .

Moreover, the following statements are equivalent.

1. c0 (H,K) < 1;
2. H ∩K = {0} and H +K is closed in H.

Theorem 4 (Properties of Friedrichs’ angle). Let H,K be closed subspaces of a Hilbert space H. Then,
one has that

0 ≤ c (H,K) = c (K,H) ≤ 1.

Notice that if H ⊆ K, then c (H,K) = 0. Moreover, the following statements are equivalent.

1. c (H,K) < 1;
2. H +K is closed in H.

Lemma 1 (Relation between the two angles). Let H,K be closed subspaces of a Hilbert space H.
Then, one has that

0 ≤ c (H,K) ≤ c0 (H,K) ≤ 1.

Moreover, the following equality holds

c (H,K) = c0

(
H ∩ (H ∩K)

⊥
,K
)

= c0

(
H,K ∩ (H ∩K)

⊥
)
,

and if H ∩K = {0}, then c (H,K) = c0 (H,K).
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2.4. A few key definitions and results

To end this section of preliminaries, we introduce and prove some useful results and some required
definitions before proceeding forward with proving our main result. First, one can notice that some of
the Lebesgue spaces generated by subsets of X are nested.

Lemma 2. Let A,B ∈ PD, such that B ⊆ A. Then

L2 (σB) ⊆ L2 (σA) .

Proof of Lemma 2. Notice that, by definition, σA is a σ-algebra that contains ∪i∈Bσi since B ⊆ A.
Since σB is the smallest σ-algebra containing ∪i∈Bσi, then necessarily σB ⊆ σA. Applying in turn
Theorem 1 (1.) leads to the result.

Next, we introduce the orthogonal complements w.r.t. the subspaces L2 (σA) of L2 (σX). Let A ∈ PD
and let H be a subspace of L2 (σA). For any B such that A ⊆ B, denote

H⊥B =

{
f(XB) ∈ L2 (σB) :

∫
EB

f(xB)g(xA)dPXB
(xB) = 0, ∀g(XA) ∈ H

}
,

i.e., the orthogonal complement of H ⊆ L2 (σA) in L2 (σB), and, in particular, denote by ⊥= ⊥D the
orthogonal complement in L2 (σX).

Lemma 3. Let A ∈ PD, B ⊆ A, and let H be a subspace of L2 (σB). Then

H⊥B ⊆ H⊥A .

Proof of Lemma 3. From Lemma 2, one has that L2 (σB) ⊆ L2 (σA), and the proof is a direct conse-
quence of the definition of the orthogonal complements.

Finally, we define a particularly useful matrix. The link between Friedrichs’ angle and the notion of
partial (conditional or relative) correlation is direct from its definition. Precision matrices (i.e., inverses
of covariance matrices) can be written using partial correlations (see, e.g., [35] p.129). In the present
work, in order to prove our result, we propose a generalization of precision matrices, named the maximal
coalitional precision matrix, in two ways:

• First, we consider a
(
2d × 2d

)
set-indexed matrix, where each row/column corresponds to an

element A ∈ PD (hence coalitional);

• Second, we replace the partial correlations with Friedrichs’ angle between the associated gener-
ated Lebesgue spaces (hence maximal).

It leads to the following definition.

Definition 3 (Maximal coalitional precision matrix). The maximal coalitional precision matrix of
X = (X1, . . . , Xd) is the

(
2d × 2d

)
symmetric, set-indexed matrix ∆, defined entry-wise, for any

A,B ∈ PD, by

∆(A,B) =

{
1 if A = B;

−c
(
L2 (σA) ,L2 (σB)

)
otherwise.

Furthermore, denote ∆|A the principal
(
2|A| − 1× 2|A| − 1

)
submatrix of ∆ relative to the proper

subsets of A ∈ PD, i.e., ∀B,C ∈ PA, B 6= A,C 6= A

∆|A(B,C) = ∆(B,C).

Aside from its resemblance with precision matrices, the non-coalitional version of this matrix has been
studied in the functional analysis literature by [20]. It is used to derive a sufficient condition for sums
of closed subspaces of an infinite-dimensional Hilbert space to be closed.
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3. Hoeffding decomposition of functions with dependent random inputs

This section is dedicated to proving the main result of this paper, i.e., showing that

L2 (σX) =
⊕
A∈PD

VA,

where, V∅ = L2 (σ∅) and for any A ∈ PD,

VA =

 +
B∈PA:B 6=A

VB

⊥A

.

3.1. Assumptions

To avoid trivial situations (i.e., constant a.s. inputs or redundancy), it is assumed, in addition to the
general framework presented in Section 2.1, that for any i ∈ D, σ∅ ⊂ σi (i.e., each marginal are not
constants a.e.), and that ∀A,B ∈ PD such that B ⊂ A, σB ⊂ σA (i.e., adding inputs brings forward
some new information).

3.1.1. Non-perfect functional dependence

Our first assumption can be understood as a condition on the subsets of inputs of X as functions
(rather than controlling their law). More precisely, we put a particular restriction on the intersection
of their pre-images.

Assumption 1 (Non-perfect functional dependence). For any A,B ∈ PD,

σA ∩ σB = σA∩B

While mutual independence between the elements of X implies that Assumption 1 hold (see [39],
p.191), it is important to note that this assumption is less restrictive. It implies that “each subset of
inputs cannot be expressed as a function of other subsets”, thanks to the following result.

Lemma 4. Let X = (X1, . . . , Xd) be a vector of random elements such that Assumption 1 hold. Then,
for any A,B ∈ PD such that A ∩ B 6∈ {A,B} (i.e., the sets cannot be subsets of each other), there is
no mapping T : EA → EB such that XB = T (XA) a.s.

Proof of Lemma 4. Suppose a mapping T : EA → EB exists such that XB = T (XA) a.s. Then, one
has that σB ⊆ σA, which in turn implies that σA ∩ σB = σB . Notice that necessarily A ∩B ⊂ B and
thus one has that σA∩B ⊂ σB , and since both σ-algebras cannot be equal, Assumption 1 cannot hold.
The result follows by taking the converse implication.

3.1.2. Non-degenerate stochastic dependence

Our second assumption is rather straightforward.

Assumption 2 (Non-degenerate stochastic dependence). The maximal coalitional precision matrix ∆
of X is positive definite.

Since ∆ can be seen as a generalized precision matrix, this assumption is relatively reasonable since
standard precision matrices (inverses of positive definite covariance matrices) are often assumed to
be positive definite. One can notice that, for any A ∈ PD, the matrices ∆|A are positive definite as
principal submatrices of ∆. This assumption entails an interesting consequence regarding Friedrichs’
angle between generated Lebesgue spaces.

9



Lemma 5. Suppose that Assumption 2 hold. Then, for any A,B ∈ PD such that A 6= B,

c
(
L2 (σA) ,L2 (σB)

)
< 1.

Proof of Lemma 5. If Assumption 2 is assumed to hold, the principal submatrix of ∆(
1 −c

(
L2 (σA) ,L2 (σB)

)
−c
(
L2 (σA) ,L2 (σB)

)
1

)
is positive definite, and thus, in particular

2− 2c
(
L2 (σA) ,L2 (σB)

)
> 0 ⇐⇒ c

(
L2 (σA) ,L2 (σB)

)
< 1.

3.2. Main result

We can now proceed to prove the main result of this paper, which can be stated as follows.

Theorem 5. For every A ∈ PD, let V∅ = L2 (σ∅) and for every B ∈ PA, let

VB =

 +
C∈P−B

VC

⊥B

.

If Assumptions 1 and 2 hold, then for every A ∈ PD, one has that

L2 (σA) =
⊕
B∈PA

VB .

3.2.1. Intermediary results

In order to prove Theorem 5, two preliminary results are required.

Proposition 1. Let A ∈ PD, and let B,C ∈ P−A be non-empty proper subsets of A such that B 6= C.
Let VB , VC be a closed subspace of L2 (σB) and L2 (σC) respectively. If one has that

VB ⊆
[
L2 (σB∩C)

]⊥
, and VC ⊆

[
L2 (σB∩C)

]⊥
,

then, assuming that Assumption 1 hold, then

c0 (VB , VC) ≤ c
(
L2 (σB) ,L2 (σC)

)
.

Proof of Proposition 1. First, recall that, if Assumption 1 holds and thanks to Theorem 1

L2 (σB) ∩ L2 (σC) = L2 (σB ∩ σC) = L2 (σB∩C) .

Then, notice that since

VB ⊆ L2 (σB) ∩
[
L2 (σB∩C)

]⊥
, and VC ⊆ L2 (σC) ∩

[
L2 (σB∩C)

]⊥
,

one has that

c0 (VB , VC) = c0
(
L2 (σB) ∩ VB ,L2 (σC) ∩ VC

)
≤ c0

(
L2 (σB) ∩

[
L2 (σB∩C)

]⊥
,L2 (σC) ∩

[
L2 (σB∩C)

]⊥)
.
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Hence, if Assumption 1 is assumed

c0 (VB , VC) ≤ c0
(
L2 (σB) ∩

[
L2 (σB) ∩ L2 (σC)

]⊥
,L2 (σC) ∩

[
L2 (σB) ∩ L2 (σC)

]⊥)
= c

(
L2 (σB) ,L2 (σC)

)
where the last equality is achieved using Lemma 1.

Proposition 2. Let A ∈ PD, and let (VB)B∈PA,B 6=A be a collection of closed subspaces of L2 (σA)
such that, ∀B,C ∈ P−A, B 6= C,

c0 (VB , VC) ≤ c
(
L2 (σB) ,L2 (σC)

)
then, under Assumption 2, there exist a ρ > 0 such that, for any

∑
A∈P−A

YA ∈+B∈P−A
VB√√√√√√E


 ∑
B∈P−A

YA

2
 ≥ ρ ∑

B∈P−A

√
E [Y 2

A],

and additionally,

+
B∈P−A

VB

is closed in L2 (σA).

Proof of Proposition 2. Let HA =
⊕n

B∈PA:B 6=A VA be the Hilbert space external direct-sum of the
collection of closed (and thus Hilbert) subspaces (VB)B∈PA,B 6=A. Let TA be the operator defined as

TA : HA → L2 (σA)

Y = (YB)B∈P−A
7→

∑
B∈P−A

YB

and notice that
Ran (TA) = +

B∈P−A

VB ⊆ L2 (σA) .

One then has that

E


 ∑
B∈P−A

YB

2
 =

∑
B∈P−A

E
[
Y 2
B

]
+

∑
B,C∈P−A:B 6=C

E [YAYB ]

≥
∑

B∈P−A

E
[
Y 2
B

]
−

∑
B,C∈P−A:B 6=C

c0 (VA, VB)
√

E [Y 2
A]
√

E [Y 2
B ]

≥
∑

B∈P−A

E
[
Y 2
B

]
−

∑
B,C∈P−A:B 6=C

c
(
L2 (σA) ,L2 (σB)

)√
E [Y 2

A]
√

E [Y 2
B ]

where the first inequality is achieved thanks to Theorem 3. Denote EA =
(√

E [Y 2
B ]
)
B∈P−A

and notice

that ∑
B∈P−A

E
[
Y 2
B

]
−

∑
B,C∈P−A:B 6=C

c
(
L2 (σA) ,L2 (σB)

)√
E [Y 2

A]
√
E [Y 2

B ] = E>A∆|AEA
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Denote λA the smallest eigenvalue of ∆|A, and notice that if Assumption 2 holds, ∆|A is definite
positive and λA > 0. Thus, by the min-max theorem, one has that

E>A∆|AEA ≥ λAE>AEA
= λA

∑
B∈P−A

E
[
Y 2
A

]
.

Hence, one has that √√√√√√E


 ∑
B∈P−A

YB

2
 ≥√λA ∑

B∈P−A

E [Y 2
A]

≥
√

λA
2d − 1

∑
B∈P−A

√
E [Y 2

A]

where the last inequality is achieved using Jensen’s inequality. Hence, one has that, for any Y ∈ HA

√
E [TA(Y )2] ≥

√
λA

2d − 1

∑
B∈P−A

√
E [Y 2

A]

where
√

λA

2d−1 > 0, and
∑
B∈PA

√
E [Y 2

A] is the norm of Y product on HA. Hence, by Theorem 2,

Ran (TA) = +
B∈P−A

VB is closed in L2 (σA) .

3.2.2. Proof of the main result

We are ready to proceed with the proof of Theorem 5.

Proof of Theorem 5. The proof is done in two steps. First, we prove by induction that, ∀A ∈ PD

L2 (σA) = +
C∈PA

VC ,

and then we show that the sum is indeed direct.

Statement. Let n = 1, . . . , d − 1. We will show that if for every non-empty B ∈ PD, B such that
|B| = n, one has that

• L2 (σC) = +Z∈PC
VZ where VC =

[
+Z∈P−C

VZ

]⊥C

;

Then, for every A ∈ PD such that |A| = n+ 1, it holds that

L2 (σA) = +
C∈PA

VC where VA =

 +
Z∈P−A

VZ

⊥A

12



Base case. We start for n = 1. For any i ∈ D, denote Vi = [V∅]
⊥i , and notice that since V∅ is closed

in L2 (σi)
L2 (σi) = V∅ ⊕ Vi.

and notice that ∀i ∈ D,

Vi =
[
L2 (σ∅)

]⊥i ⊆
[
L2 (σ∅)

]⊥
,

by Lemma 3.

Next, consider the case where n = 2. Notice from the previous step that for any i, j ∈ D such that
i 6= j, notice that L2 (σi∩j) = L2 (σ∅), and thus one has that

Vi ⊂
[
L2 (σ∅)

]⊥
and Vj ⊂

[
L2 (σ∅)

]⊥
.

Hence, assuming that Assumption 1 hold, from Proposition 1, one can conclude that, for any i, j ∈ D
such that i 6= j,

c0 (Vi, Vj) ≤ c
(
L2 (σi) ,L2 (σj)

)
.

Now, letA ∈ PD such that |A| = 2, and denoteA = {i, j}, and notice that, assuming that Assumption 2
hold, by Proposition 2, one has that

V∅ + Vi + Vj is closed in L2 (σA) .

Hence, let
VA = [V∅ + Vi + Vj ]

⊥A ,

and notice that
L2 (σA) = [V∅ + Vi + Vj ]⊕ VA.

Since A has been chosen arbitrarily, this holds for any A ∈ PD such that |A| = 2.

Induction. Suppose that, for every B ∈ PD such that |B| = n, one has that

L2 (σB) = +
Z∈PB

VZ , where VB =

 +
Z∈P−B

VZ

⊥B

.

Let A ∈ PD such that |A| = n + 1. Notice then that, for any non-empty B,C ∈ P−A, since B ∩ C ∈
P−B ∩ P−C , that

L2 (σB∩C) = +
Z∈PB∩C

VZ ,

is necessarily contained of +Z∈P−B
VZ and of +Z∈P−C

VZ . Thus, one has that

VB =

 +
Z∈P−B

VZ

⊥B

⊂

 +
Z∈P−B

VZ

⊥ ⊂ [L2 (σB∩C)
]⊥
.

and analogously

VC ⊂
[
L2 (σB∩C)

]⊥
.

Hence, assuming that Assumption 1 hold, from Proposition 1, one can conclude that, for every non-
empty B,C ∈ P−A such that B 6= C,

c0 (VB , VC) ≤ c
(
L2 (σB) ,L2 (σC)

)
,
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which, under Assumption 2 and thanks to Proposition 1, in turn implies that

+
Z∈P−A

VZ is closed in L2 (σA) .

Denote VA =
[
+Z∈P−A

VZ

]⊥A

, and notice that

L2 (σA) =

 +
Z∈P−A

VZ

⊕ VA = +
Z∈PA

VZ .

Since A has been taken arbitrarily, this holds for any A ∈ PD such that |A| = n.

Now, we show that these sum decompositions are direct. Let A ∈ PD, and notice that for any
non-empty ∀B ∈ PA, VB ⊥ L2 (σ∅), meaning that any f(XB) ∈ VB is centered. Next, notice that the
principal

(
2|A| × 2|A|

)
submatrix of ∆, indexed by the elements of PA and denoted ∆A, is also definite-

positive, and hence its smallest eigenvalue λA is positive. Next, notice that for any Y ∈ L2 (σA), by
definition, one has that:

Y =
∑
B∈PA

YB , where YB ∈ VB .

Now, suppose that Y = 0 a.s., which is equivalent to E [Y ] = 0 and E
[
Y 2
]

= 0. However, under
Assumptions 1 and 2, notice that

E
[
Y 2
]

= E

( ∑
B∈PA

YB

)2


=
∑
B∈PA

E
[
Y 2
B

]
+

∑
B,C∈PA:B 6=C

E [YBYC ]

≥
∑
B∈PA

E
[
Y 2
B

]
−

∑
B,C∈PA:B 6=C

c0 (VB , VC)
√
E [Y 2

B ]
√
E [Y 2

C ]

≥
∑
B∈PA

E
[
Y 2
B

]
−

∑
B,C∈PA:B 6=C

c
(
L2 (σB) ,L2 (σC)

)√
E [Y 2

B ]
√

E [Y 2
C ]

Let EA =
(√

E [Y 2
B ]
)>
B∈PA

and notice that

E
[
Y 2
]
≥ E>A∆AEA

≥ λAE>AEA
= λA

∑
B∈PA

E
[
Y 2
B

]
by the min-max theorem. Thus, one has that if E

[
Y 2
]

= 0, then necessarily∑
B∈PA

E
[
Y 2
B

]
= 0,

and since this is a sum of positive elements, ∀B ∈ PA, E
[
Y 2
B

]
= 0, which, in addition to the fact that

each YB is centered, is equivalent to YB = 0 a.s. Hence,

Y = 0 a.s. =⇒ ∀B ∈ PD, YB = 0 a.s.
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which ultimately proves that

L2 (σA) =
⊕
B∈PA

VB .

The direct-sum decomposition of Theorem 5 is equivalent to being able to uniquely decompose each
element of L2 (σX) into a particular sum of elements in the subspaces (VA)A∈PD

. This equivalence
between direct-sum decomposition and unique representation is well-known in the literature (see [4]
Theorem 1.44). Formally, it leads to the following result.

Corollary 1 (Canonical decomposition). Let X = (X1, . . . , Xd) be an E-valued random element.
Suppose that Assumption 1 and Assumption 2 hold. Then, for any G : E → R such that G(X) ∈
L2 (σX), G(X) can be uniquely decomposed as

G(X) =
∑
A∈PD

GA(XA),

where each GA(XA) ∈ VA.

Proof of Corollary 1. It is a direct consequence of Theorem 5.

The decomposition described in Corollary 1 is referred to as the canonical decomposition of G(X) in
the following.

Despite the formal nature of Theorem 5, its interpretation is rather intuitive. Given a univariate
function G1(X1) ∈ L2 (σ1), it is well known that it can always be decomposed as

G1(X1) = E [G1(X1)] + [G1(X1)− E [G1(X1)]] . (3)

In other words, a random variable can always be decomposed as its expectation plus its centered
version. The first step of the result formalizes this idea. V∅ = L2 (σ∅) is comprised of constant a.e.
random variables and is a closed subspace of L2 (σ1). Thus V∅ is complemented in L2 (σ1), and, in
particular, it is complemented by V1, its orthogonal complement. V1 is thus comprised of every function
of L2 (σ1) which are orthogonal to the constants (i.e., they are centered). Thus, since L2 (σ1) = V∅⊕V1,
one recovers the relation in (3).

For two inputs X1 and X2, Assumption 1 ensures that the subspaces L2 (σ1) and L2 (σ2) of L2 (σ12)
are not comprised of the same random variables, due to a functional relation between X1 and X2. On
the other hand, Assumption 2 guarantees that these subspaces are not the same due to a degenerate
stochastic relation. Under those two assumptions, the sum L2 (σ1) + L2 (σ2) = V∅ + V1 + V2 is a
closed subspace of L2 (σ12), and thus, is complemented by V12 which is none other than its orthogonal
complement. Notice that V1 and V2 are not necessarily orthogonal, but both are orthogonal to V∅ and
V12.

The same reasoning can be applied with three inputs. The two assumptions ensure that L2 (σ12),
L2 (σ23), and L2 (σ13) are not pairwise equal due to either a functional or a stochastic relation. In
this case, their sum is a closed subspace in L2 (σ123), and thus, it is complemented by V123 (i.e., the
orthogonal complement of L2 (σ12) + L2 (σ23) + L2 (σ13)). However, notice that neither V12, V13 and
V23 are pairwise orthogonal, nor V1, V2 and V3. The same idea can be continued for any number of
inputs.

Hence, the subspaces (VA)A∈PD
in Theorem 5 can be interpreted as the subspaces of functions of X

which, for any A ∈ PD, are σA-measurable (i.e., are functions of XA), but are orthogonal to the linear
combinations of functions in (VB)B∈P−A

. In other words, the elements of VA can be understood as
multivariate non-linear functions of XA. For instance, for two inputs X1 and X2, V12 represent the
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space of functions that are not linear combinations of functions of X1 and X2. Given this construction,
a natural interpretation of VA would be the space of (not necessarily linear) “interactions” between
the inputs XA.

One can additionally notice some structure in the construction depicted above. In particular, some of
the subspaces in (VA)A∈PD

are orthogonal, while others are not necessarily. It is known as a hierarchical
orthogonality structure, which is discussed further in the following section.

3.3. Some observations

3.3.1. Hierarchical orthogonality

The set of subspaces (VA)A∈PD
presents a particular orthogonality structure, namely hierarchical

orthogonality, reminiscent of the one described in [7]. However, in our framework, this structure arises
naturally rather than by construction.

Proposition 3 (Hierarchical orthogonality). We place ourselves in the framework of Theorem 5. For
any A ∈ PD, and any B ⊂ A

VA ⊥ VB .

Proof of Proposition 3. It is a direct consequence of the definition of VA.

This particular structure can be linked with the algebraic structure of PD. When equipped with ⊂
(i.e., the binary relation “is a subset of”), (PD,⊂) forms what is known as a partially ordered set, with
a particular lattice structure: the Boolean lattice (see, e.g., [13]). This structure can be illustrated
using a Hasse diagram, as in Figure 1 a). One can notice that (VA)A∈PD

endowed with the binary
relation ⊥ (i.e., the relation “is in the orthogonal complement of”), then the algebraic structure is
preserved, as illustrated in Figure 1 b). In order to formally differentiate between the structurally
hierarchical subspaces and those that are not necessarily orthogonal, we define two different sets. For
any A ∈ PD, we first define the set of comparables (i.e., the elements of PD that are subsets of A or
such that A is a subset of), denoted

CA = PA ∪ {B ∈ PD : A ⊆ D} ,

and notice that, for any B ∈ CA, VB ⊥ VA. Then, we define the set of uncomparables of A as

UA = PD \ CA,

and notice that, in general, for every B ∈ UA, VA is not necessarily orthogonal to VB . And notice
additionally that, for any A ∈ PD

PD = CA ∪ UA.

This hierarchical orthogonality structure is intimately linked with the notion of projections, particularly
the orthogonal and oblique projections onto the subspaces VA.

3.3.2. Projections and their properties

First, assuming that Theorem 5 hold, we define several projectors onto the subspaces VA, for every
A ∈ PD. Let A be any element of PD. Denote by PA the orthogonal projector onto VA, i.e., ,

PA : L2 (σX)→ L2 (σX) , such that Ran (PA) = VA and Ker (PA) = V ⊥A .

Since VA is a closed subspace of L2 (σX), the orthogonal projector PA is well and uniquely defined.
Next, for any B ⊂ A, we define the restriction of PB on L2 (σA), denoted

PAB : L2 (σA)→ L2 (σA) , such that Ran (PA) = VB and Ker (PA) = V ⊥A

B .
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{∅}
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{12} {23}

{123}

{2}

{13}

a) Boolean lattice

V∅

V3V1

V12 V23

V123

V2

V13

b) Hierarchical orthogonality

Figure 1: Illustration of the hierarchical orthogonality structure for three inputs. These Hasse diagrams are meant to
be read from the bottom to the top. If an edge joins two elements, the bottom element is linked by the binary relation
to the above element. On a), the binary relation is ⊂, while on b) the binary relation is ⊥.

Again, VB being a closed subspace of L2 (σA), this projector is unique and well-defined. Additionally,
for every A ∈ PD, denote the following subspaces of L2 (σX)

WA =
⊕

B∈PD:B 6=A
VB ,

and the operators

QA : L2 (σX)→ L2 (σX)

G(X) =
∑
B∈PD

GB(XB) 7→ GA(XA)

and notice that QA is the projector onto VA parallel to WA, which is well-defined thanks to the
direct-sum decomposition of Theorem 5 (see [44] Theorem 3.4).

Now, we define projectors onto the subspaces L2 (σA), for every A ∈ PD. First, the orthogonal
projector onto L2 (σA) is defined as

EA : L2 (σX)→ L2 (σX) , such that Ran (EA) = L2 (σA) and Ker (PA) = L2 (σA)
⊥
,

and notice that, for any H(X) ∈ L2 (σX), EA (H(X)) = E [H(X) | σA], i.e., , it is in fact the conditional
expectation of H(X) given XA (see [31], Chapter 8). Additionally, denote the subspace

WA =
⊕

B∈PD,B 6∈PA

VB

17



and the operator

MA : L2 (σX)→ L2 (σX)

G(X) =
∑
B∈PD

GB(XB) 7→
∑
B∈PA

GB(XB)

and, thanks to Theorem 5, notice that MA is the projection onto Ran (MA) = L2 (σA) parallel to
Ker (MA) = WA.

The first observation is a particular consequence of the orthogonality structure, namely, the annihilating
property (see, e.g., [28] Lemma 1, or [34]), which has been well-documented in the case of mutually
independent inputs. This property admits a rather surprising generalization in the framework of
Theorem 5.

Proposition 4 (Annihilating property). We place ourselves in the framework of Theorem 5 and
Corollary 1. For any A ∈ PD and any B ⊂ A

PB (QA (G(X))) = PB (GA(XA)) = 0.

Proof of Proposition 4. From Proposition 3, for every B ⊂ A, one has that VB ⊥ VA, and thus
GA(XA) ∈ VA ⊂ V ⊥B .

Another interesting result is the fact that the oblique projections (QA)A∈PD
onto the VA can be

expressed in terms of the oblique projections (MA)A∈PD
onto the generated Lebesgue spaces.

Proposition 5 (Formula for oblique projections). We place ourselves in the framework of Theorem 5
and Corollary 1. One has that, for any G(X) ∈ L2 (σX), and for any A ∈ PD

QA(G(X)) =
∑
B∈PA

(−1)|A|−|B|MA(G(X)),

where |.| denotes the cardinality of sets.

Proof of Proposition 5. By definition of MA, one has that

∀A ∈ PD, MA(G(X)) =
∑
B∈PA

QA(G(X)),

which, thanks to Rota’s generalization of the Möbius inversion formula for power-set valued functions
[48, 33, 29], is equivalent to

∀A ∈ PD, QA(G(X)) =
∑
B∈PA

(−1)|A|−|B|MA(G(X)).

In order to better visualize how the decomposition of Theorem 5 can be understood in terms of
projections, one can take an example with two inputs X1 and X2, and a centered random output
G(X1, X2) ∈ L2 (σ12). Figure 2 illustrates this situation. G(X1, X2) can be written as a sum of
three elements, G1(X1) ∈ V1, G2(X2) ∈ V2 and G12(X1, X2) ∈ V12. G12(X1, X2) is none other than
the orthogonal projection of G onto V12, due to the fact that V12 is the orthogonal complement of
V1 + V2 and, naturally, G1(X1) + G2(X2) = [I − P12] (G(X)). Now, recall that since V1 and V2 are
not necessarily orthogonal (which is represented as the angle α (which is non-zero, thanks to the
Assumptions 1 and 2) in Figure 2), G1(X1) (resp. G2(X2)) is none other than the oblique projection
of G(X) onto V1 parallel to V2 (resp. onto V2 parallel to V1).
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G2 P2(G)

P1(G)

Figure 2: Illustration of a centered function decomposition with two dependent inputs.

3.4. Mutual independence

It is well-known that the independence of two σ-algebras is defined in terms of the orthogonality of the
Lebesgue spaces they generate. More precisely, two sub σ-algebras A1 and A2 of a probability space
(Ω,F ,P) are said to be independent if L2 (A1) and L2 (A2) are orthogonal on the constant functions
(see [39], Definition 3.0.1). More precisely,

A1 ⊥⊥ A2 ⇐⇒ L2 (A1) ∩
[
L2 (σ∅)

]⊥ ⊥ L2 (A2) ∩
[
L2 (σ∅)

]⊥
,

where ⊥ is defined relative to L2 (F). Additionally, two random elements X,Y defined on (Ω,F ,P)
are considered independent if their generated σ-algebras are independent.

When dealing with a vector of random elements X = (X1, . . . , Xd), mutual independence is defined
w.r.t. the independence of the generated σ-algebras. More precisely, X is said to be mutually inde-
pendent if

∀A ∈ PD, σA ⊥⊥ σD\A ⇐⇒ c
(
L2 (σA) ,L2

(
σD\A

))
= 0.

Proposition 6. Let X be a vector of random elements. If X is mutually independent, then Assump-
tion 1 hold.

Proof of Proposition 6. From [39], note that for two σ-algebras A1 and A2,

A1 ⊥⊥ A2 =⇒ A1 ∩ A2 = σ∅.

Suppose that Assumption 1 does not hold. Hence, in particular, for any A ∈ PD,

σA ∩ σD\A 6= σ∅.

It implies that σA and σD\A cannot be independent. Hence, since this holds for any A ∈ PD, X cannot
be mutually independent. The result is proven by taking the converse implication.

Proposition 7. Let X be a vector of random elements. X is mutually independent if and only if
∀A,B ∈ PD, A 6= B,

c
(
L2 (σA) ,L2 (σB)

)
= 0.
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Proof of Proposition 7. Notice that, in the general case, if B ⊂ A, then c
(
L2 (σA) ,L2 (σB)

)
is neces-

sarily equal to zero. Thus, we focus on the case where A ∩B = C 6∈ {A,B}.
Now, suppose that for any A,B ∈ PD, c

(
L2 (σA) ,L2 (σB)

)
= 0. Hence, in particular, if for every

A ∈ PD
c
(
L2 (σA) ,L2

(
σD\A

))
= 0 ⇐⇒ σA ⊥⊥ σD\A

which is equivalent to X being mutually independent.

Suppose that X is mutually independent, and thus, PX =×i∈D PXi
, which implies that, for any

A,B ∈ PD, with A ∩B = C 6∈ {A,B},

EA ◦ EB = EB ◦ EA = EC ,

Thus, the orthogonal projections onto L2 (σA) and L2 (σB) commute, which is equivalent to (see (2))

c
(
L2 (σA) ,L2 (σB)

)
= 0.

Corollary 2. Let X be a vector of random elements. X is mutually independent if and only if its
maximal coalitional precision matrix ∆ is the identity.

Proof of Proposition 2. It is a direct consequence of Proposition 7, by definition of ∆.

Hence, if the inputs are mutually independent, both Assumption 1 and Assumption 2 hold and lead to
the very particular case of ∆ being the identity matrix. When it comes to the resulting decomposition
of L2 (σX), one has the following result:

Proposition 8. We place ourselves in the framework of Theorem 5. X is mutually independent if
and only if

∀A,B ∈ PD, B 6= A VA ⊥ VB .

Proof of Proposition 8. Notice that, in general, if Assumption 1 hold, one has that for any A,B ∈ PD,
B 6= A

c0 (VA, VB) ≤ c
(
L2 (σA) ,L2 (σB)

)
.

Note that, from Proposition 6, Assumption 1 holds for a mutually independent X. Moreover, no-
tice from Proposition 7 that X is mutually independent if and only if, ∀A,B ∈ PD, A 6= B,
c
(
L2 (σA) ,L2 (σB)

)
= 0, thus necessarily c0 (VA, VB) = 0, which is equivalent to VA ⊥ VB .

Proposition 8 is, in fact, equivalent to the Hoeffding functional decomposition for mutually independent
inputs [27, 10], which can be seen as a very particular case of Theorem 5 where X admits a maximal
coalitional precision matrix equal to the identity.

4. Interpretable decomposition of quantities of interest

4.1. Canonical evaluation decomposition

For ω ∈ Ω, denote x = X(ω) ∈ E an observation of X. Subsequently, denote G(x) ∈ R the evaluation
on x of a random output G(X) ∈ L2 (σX). In the XAI literature, “explanation” methods aim at
decomposing G(x) into parts for which each input is responsible [1]. They often rely on cooperative
game theory, particularly on the Shapley values [51], an allocation with seemingly reasonable properties
[38]. However, allocations can be understood as aggregations of coalitional decompositions [29], which
can be trivially chosen. However, Theorem 5, and in particular Corollary 1 offers a canonical coalitional
decomposition of an evaluation of a random output G(X) ∈ L2 (σX).
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Definition 4 (Canonical decomposition of an evaluation). Let X = (X1, . . . , Xd) be a vector of random
elements, let G(X) be in L2 (σX) and assume that Assumptions 1 and 2 hold. For any ω ∈ Ω, denote
x = X(ω). The canonical coalitional decomposition of the evaluation G(x) is defined as

G(x) =
∑
A∈PD

GA(xA),

where xA = XA(ω), and

GA(xA) = QA (G(x)) =
∑
B∈PA

(−1)|A|−|B|MB (G(x)) ,

where QA is the projection onto VA parallel to WA and MA is the projection onto L2 (σA) parallel to
WA.

The usual coalitional decomposition of choice, even for dependent inputs, relies on choosing conditional
expectations (also known as “conditional Shapley values”) [38]. However, the following results show
that this choice entails a canonical decomposition if and only if the inputs are mutually independent.

Proposition 9. Let X = (X1, . . . , Xd) be a vector of random elements, let G(X) be in L2 (σX), and
assume that Assumptions 1 and 2 hold. Then,

GA(xA) =
∑
B∈PA

(−1)|A|−|B|EB (G(x)) , ∀A ∈ PD

if and only if X is mutually independent.

Proof of Proposition 9. First, notice that MA = EA if and only if WA is the orthogonal complement
of L2 (σA). One can notice that, WA is a complement of L2 (σA) in L2 (σX), and from Proposition 8,
one has that

L2 (σA) =
⊕
B∈PA

VB ⊥WA =
⊕

B∈PD,B 6∈PA

VB ,

hold for every A ∈ PD if and only if X is mutually independent. In this case, WA is an orthogonal
complement of L2 (σA), and by unicity, WA = L2 (σA)

⊥
, and thus MA = EA.

Hence, the choice of conditional expectations for the coalitional decomposition to be canonical is
equivalent to X being mutually independent. A large set of allocations can be seen as aggregations of
a coalitional decomposition. In particular, one can define the canonical Shapley attribution scheme by
using the representation of the Shapley values due to Harsanyi [25, 55].

Definition 5 (Canonical Shapley attribution). Let X = (X1, . . . , Xd) be a vector of random elements,
suppose that Assumptions 1 and 2 hold, and let G(X) ∈ L2 (σX). The canonical Shapley attribution
of an evaluation G(x) is the vector C-Sh = (C-Sh1, . . .C-Shd) ∈ Rd given by

C-Shi =
∑

A∈PD:i∈A

QA(G(x))

|A| =
∑

A∈PD:i∈A

∑
B∈PA

(−1)|A|−|B|MA [G(x)]

|A| .

Additionally, one has that
d∑
i=1

C-Shi = G(x).
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Hence, the canonical Shapley attribution are the Shapley values of the cooperative game (D, v) where
the value function v is given by

v(A) = MA [G(X)] =
∑
B∈PA

QA(G(X)), ∀A ∈ PD,

and the subsequent Harsanyi dividends [25, 55, 15] of (D, v) are given by

Dv(A) = QA(G(X)) =
∑
B∈PA

(−1)|A|−|B|MA [G(x)] , ∀A ∈ PD.

While these indices rely on the natural decomposition of L2 (σX) in the context of dependent inputs,
they remain an aggregation of the canonical decomposition of G(X). They can be interpreted as an
egalitarian redistribution of the canonical interaction evaluations among the d inputs. However, as all
aggregations do, they bear less information about G(X) than the canonical decomposition itself.

4.2. Variance decomposition

Performing a variance decomposition of a black-box model is paramount in quantifying a set of inputs’
influence (or importance) towards a multivariate model [10]. Let G(X) be a random output and denote
its variance

V (G(X)) = E
[
(G(X)− E [G(X)])

2
]

= E
[
G(X)2

]
− E [G(X)]

2
.

Suppose G(X) describes a complex system. In that case, its variance can be interpreted as the
“amount” of uncertainty due to the probabilistic nature of the inputs [14], which is at the cornerstone
of uncertainty propagation and sensitivity analysis.

We propose two ways to approach the problem of decomposing V (G(X)). The canonical variance
decomposition relies on the canonical decomposition of G(X) (see Corollary 1). In contrast, the organic
variance decomposition aims at defining and disentangling pure interaction effects from dependence
effects.

4.2.1. Canonical variance decomposition

In light of Corollary 1, the canonical variance decomposition of G(X) is rather intuitive. It relies on
the following rationale:

V (G(X)) = Cov (G(X), G(X))

=
∑
A∈PD

Cov (GA(XA), G(X))

=
∑
A∈PD

[
V (GA(XA)) +

∑
B∈UA

Cov (GA(XA), GB(XB))

]
.

reminiscent of the “covariance decomposition” [54, 7, 26, 10]. Two indices arise from this decomposi-
tion.

Definition 6 (Canonical variance decomposition). We place ourselves in the framework of Theorem 5.
For any A ∈ PD, let

SUA = V (GA(XA)) ,

defines the structural contribution of XA to G(X), while

SCA =
∑
B∈UA

Cov (GA(XA), GB(XB)) ,

represents the correlative contribution of XA to G(X).
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Remark 4. It is important to note that both the magnitude of SUA and SCA varies w.r.t. the dependence
structure of the inputs (i.e., the angles between the subspaces (VA)A∈PD

). It is illustrated in Section 5.

Hence, SCA cannot be understood as a pure quantification of “dependence effects” and SUA cannot
quantify possibly quantify “pure interaction”.

The canonical decomposition of V (G(X)) is suitable in practice if the dependence structure of X is
assumed to be inherent in the modeling of the studied phenomenon. In other words, if one aims to
understand the global relationship between X and G(X).

Proposition 10. We place ourselves in the framework of Theorem 5. Then, for any A ∈ PD
SCA =

∑
B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) .

Proof of Proposition 10. First, recall that, for any A ∈ PD,

GA(XA) =
∑
B∈PA

(−1)|A|−|B|MB(G(X)),

and hence,∑
B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) = Cov (GA(XA), [I −MA] (G(X)))

=
∑

B∈PD:B 6∈PA

Cov (GA(XA), GB(XB)) .

However, notice that UA ⊂ PD \ PA, and that, for any B ∈ PD \ PA with B 6∈ UA,

Cov (GA(XA), GB(XB)) = 0,

and hence,∑
B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) =
∑

B∈PD:B 6∈PA

Cov (GA(XA), GB(XB))

=
∑
B∈UA

Cov (GA(XA), GB(XB))

= SCA .

Proposition 11. We place ourselves in the framework of Theorem 5. Then, for any A ∈ PD
SUA =

∑
B∈PA

(−1)|A|−|B| [V (MB(G(X)))− Cov (MB(G(X)), [I −MA] (G(X)))] .

Proof of Proposition 11. First, recall that

MA(G(X)) =
∑
B∈PA

GB(XB).

Thus,

V (MA(G(X))) = V

( ∑
B∈PA

GB(XB)

)
=
∑
B∈PA

V (GB(XB)) +
∑
C∈UA

Cov (GB(XB), GC(XC))

=
∑
B∈PA

SUB + SCB
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which is equivalent to

V (MA(G(X)))−
∑
B∈PA

SCB =
∑
B∈PA

SUB .

However, notice that, ∀A ∈ PD∑
B∈PA

SCB = Cov (MA(G(X)), [I −MA] (G(X))) ,

and thus, ∀A ∈ PD

V (MA(G(X)))− Cov (MA(G(X)), [I −MA] (G(X))) =
∑
B∈PD

SUB .

Using Rota’s generalization of the Möbius inversion formula applied to the power-set, it yields that
∀A ∈ PD

SUA =
∑
B∈PA

(−1)|A|−|B| [V (MB(G(X)))− Cov (MB(G(X)), [I −MA] (G(X)))] .

4.2.2. Organic variance decomposition

The goal of the organic variance decomposition is to separate “pure interaction effects” to “dependence
effects”. Pure interaction can be seen as the study of the functional relation between the inputs
X and the random output G(X) without considering the dependence structure of X. Hence, it
amounts to performing a canonical variance decomposition of V (G(X)) under mutual independence of
X. Formally, let X = (X1, . . . , Xd) be a vector of random elements. The induced probability measure

PX is not necessarily the product measure×i∈D PXi . Now, denote X̃ = (X̃1, . . . , X̃d) the vector of
random elements such that

X̃i = Xi a.s. and PX̃ :=×
i∈D

PXi
.

In other words, X and X̃ have the same univariate marginals, but X̃ is the mutual independent
version of X and, for any A ∈ PD, denote X̃A its marginals. Suppose that G(X) ∈ L2 (σX) and

G(X̃) ∈ L2
(
σX̃
)
, and, for any H(X̃) denote

E⊥⊥
[
H(X̃)

]
=

∫
E

H(x)
∏
i∈D

dPXi(xi), and V⊥⊥ (H(X)) = E⊥⊥
[(
H(X̃)− E⊥⊥

[
H(X̃)

])2]
.

Notice that, since X̃ is mutually independent, it respects both Assumptions 1 and 2, and hence, one
can perform the following canonical decomposition in L2

(
σX̃
)

G(X̃) =
∑
A∈PD

G̃A(X̃A),

where the G̃A(X̃A) are all pairwise orthogonal (see Section 3.4), and hence

V⊥⊥
(
G(X̃)

)
=
∑
A∈PD

V⊥⊥
(
G̃A(X̃A)

)

We propose the following indices.
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Definition 7 (Pure interaction effect). We place ourselves in the framework of Theorem 5. For any
A ∈ PD, let

SA =
V⊥⊥

(
G̃A

)
V⊥⊥

(
G(X̃)

)V (G(X))

define the pure interaction indices.

These indices are, in fact, the Sobol’ indices of G(X̃) [53], which are known in the literature as
quantifying pure interaction [10]. These indices can also be expressed as functions of the orthogonal

projections onto the subspaces L2
(
σX̃A

)
as follows

SA =
∑
B∈PA

(−1)|A|−|B|E⊥⊥B
(
G(X̃)

)
,

where, ∀A ∈ PD
E⊥⊥B

(
G(X̃)

)
=

∫
ED\A

G(X̃A, xD\A)
∏

i∈D\A
dPXi

(xi).

For further considerations about these indices, we refer the interested reader to [10].

Remark 5. In certain situations, when X is from a certain family of random vectors, it is possible to
find a mapping T : E → E such that

X̃ = T (X).

In particular, if PX is in the family of elliptical distribution, it amounts to performing a Nataf transform
of the inputs [36, 37].

When defining dependence effects, one desirability criterion can be brought forward: the set of indices
must all be equal to zero if and only if X is mutually independent. Formally, denote (φA)A∈PD

an
abstract set of dependence effects. One must have that

φA = 0, ∀A ∈ PD ⇐⇒ X is mutually independent.

Thanks to the geometric interpretation of the canonical decomposition of L2 (σX) (see , Section 3.3),
many quantities can be defined that respect this property. However, we focus on one particular
quantity, which can be easily interpreted.

Lemma 6. We place ourselves in the framework of Theorem 5. Let G(X) ∈ L2 (σX). Then,

QA (G(X)) = PA (G(X)) a.s., ∀A ∈ PD ⇐⇒ X is mutually independent.

Proof of Lemma 6. First, suppose that X is mutually independent. By Proposition 8, one has that

∀A,B ∈ PD, B 6= A VA ⊥ VB ,

which entails that
VA ⊥WA = +

B∈PD:B 6=A
VB .

However, notice that WA still complements VA in L2 (σX). Furthermore, by unicity of the orthogonal
complement, one has that WA = V ⊥A . Thus,

Ran (QA) = VA, Ker (QA) = V ⊥A ,

and thus QA = PA, leading to
QA (G(X)) = PA (G(X)) a.s.
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Now, suppose that for any A ∈ PD, QA (G(X)) = PA (G(X)) a.s. Hence, it implies that

∀A ∈ PD, GA(XA) = PA (G(X)) .

which implies that PA = QA, since the above equation defines the operator QA. Thus, PA and QA
must share the same ranges and nullspaces. In particular,

Ker (QA) = Ker (PA) = V ⊥A ,

implying that WA = V ⊥A , which leads to

VA ⊥WA,∀A ∈ PD ⇐⇒ VA ⊥ VB ,∀A,B ∈ PD, B 6= A.

Finally, thanks to Proposition 8, notice that this is equivalent to X being mutually independent.

In other words, Lemma 6 states that the oblique projections QA are orthogonal if and only if X is
mutually independent. Hence, a rather intuitive index would quantify the distance between these two
projections.

Definition 8 (Dependence effects). We place ourselves in the framework of Theorem 5. For any
A ∈ PD, let

SDA = V (QA(G(X))− PA(G(X))) = E
[
(QA(G(X))− PA(G(X)))

2
]

define the dependence effect of XA.

Furthermore, these indices are naturally all zero if and only if X is mutually independent.

Proposition 12.
SDA = 0,∀A ∈ PD ⇐⇒ X is mutually independent.

Proof of Proposition 12. This is a direct consequence of Lemma 6, coupled with the fact that the
expected squared distance is a distance.

4.2.3. Links between the canonical and organic indices

It is possible to draw some links between the canonical and organic indices. The first one is that,
in certain situations, the dependence effects can be written w.r.t. both the structural and correlative
indices.

Proposition 13. We place ourselves in the framework of Theorem 5. For every A ∈ PD, if GA(XA) 6=
0, then

SDA =

(
SCA
)2

SUA
.

Proof of Proposition 13. Notice that, if GA(XA) 6= 0, then it is always possible to write

PA(G(X)) =
E [G(X)GA(XA)]

E [GA(XA)2]
GA(XA).

However, notice that

E [G(X)GA(XA)] = E
[
GA(XA)2

]
+
∑
B∈UA

E [GA(XA)GB(XB)]

= V (GA(XA)) +
∑
B∈UA

Cov (GA, GB)

= SUA + SCA
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since the summands are centered. Thus,

PA(G(X)) =
SUA + SCA
SUA

GA(XA) =

(
1 +

SCA
SUA

)
GA(XA)

and thus,

GA(XA)− PA(G(X)) =
SCA
SUA

GA(XA),

and thus

V (GA(XA)− PA(G(X))) = E
[
(GA(XA)− PA(G(X)))

2
]

= E

[(
GA(XA)

SCA
SUA

)2
]

=

(
SCA
SUA

)2

E
[
GA(XA)2

]
=

(
SCA
)2

SUA

The second link entails that the correlative effects sum up to the sum of the differences between the
structural and pure interaction effects.

Proposition 14. We place ourselves in the framework of Theorem 5. One has that∑
A∈PD

SCA =
∑
A∈PD

[
SA − SUA

]
.

Proof of Proposition 14. Notice that∑
A∈PD

SA = V (G(X)) =
∑
A∈PD

SUA + SCA

and thus ∑
A∈PD

[
SA − SUA

]
=
∑
A∈PD

SCA .

5. Illustration: two Bernoulli inputs

In order to illustrate Theorem 5, one can take an interest in a very particular case: X is comprised
of two Bernoulli random variables (here, E = {0, 1}2) X1 and X2, with success probability q1 and
q2 respectively. The joint law of X can be fully expressed using three free parameters: q1, q2, and
ρ = E [X1X2]. More precisely, one has that:

p00 = 1− q1 − q2 + ρ

p01 = q2 − ρ
p10 = q1 − ρ
p11 = ρ

27



where, for i, j ∈ {0, 1}, one denotes pij = P ({X1 = i} ∩ {X2 = j}). Denote the (4×4) diagonal matrix
P = diag(p00, p01, p10, p11). Any function G : {0, 1}2 → R can be represented as a vector in R4, where
each element represents a value that G can take w.r.t. the values taken by X. For i, j ∈ {0, 1}, denote
Gij = G(i, j), and thus

G =


G00

G01

G10

G11

 ,

where each Gij can be observed with probability pij .

5.1. Canonical decomposition as solving equations

In this particular case, one can analytically compute the decomposition of G related to Theorem 5. It
can be performed by finding suitable unit-norm vectors in R4

v∅ =


c
c
c
c

 , v1 =


g0
g0
g1
g1

 , v2 =


h0
h1
h0
h1

 , v12 =


k00
k01
k10
k11


such that 

v>∅ Pv1 = 0

v>∅ Pv2 = 0

v>∅ Pv12 = 0

v>12Pv1 = 0

v>12Pv2 = 0

, and ,


v>∅ Pv∅ = 1

v>1 Pv1 = 1

v>2 Pv2 = 1

v>12Pv12 = 1

(4)

which results in a system of nine equations with nine real unknown parameters (i.e., c for v∅, h0, h1
for v1, g0, g1 for v2, and k00, k01, k10, k11 for v12). Given these vectors, one has that any function G
can be written as

G = ev∅ + αv1 + βv2 + δv12,

resulting in four additional equations with four unknown parameters. These 13 equations and 13
parameters can be found analytically.

In our case, we used the symbolic programming package sympy to perform these calculations [41]. We
refer the interested reader to the accompanying GitHub repository1 for the analytical formulas obtained
for this decomposition, as well as the analytical formulas of the indices introduced in Section 4. The
remainder of this section is dedicated to discussing one interesting finding.

5.2. Angle, comonotonicity and definite positiveness of ∆

First, notice the following equality, which holds in general.

Proposition 15. We place ourselves in the framework of Theorem 5. Let i, j ∈ D such that i 6= j.
Then,

c
(
L2 (σi) ,L2 (σj)

)
= c0 (Vi, Vj)

Proof of Proposition 15. First, notice that under Assumption 1, one has that, for every i, j ∈ D, i 6= j

c0 (Vi, Vj) ≤ c
(
L2 (σi) ,L2 (σj)

)
.

1https://github.com/milidris/GeneralizedAnova

28

https://github.com/milidris/GeneralizedAnova
https://github.com/milidris/GeneralizedAnova


Next, recall the following classical inclusion result. Let M,N,K be subspaces of a Hilbert space H.
Then,

(M ∩K) + (N ∩K) ⊂ (M +N) ∩K.
And hence, one has that

c
(
L2 (σi) ,L2 (σj)

)
= c0

(
L2 (σi) ∩ V ⊥∅ ,L2 (σj) ∩ V ⊥∅

)
= c0

(
(V∅ + Vi) ∩ V ⊥∅ , (V∅ + Vj) ∩ V ⊥∅

)
≤ c0

((
V∅ ∩ V ⊥∅

)
+
(
Vi ∩ V ⊥∅

)
,
(
V∅ ∩ V ⊥∅

)
+
(
Vj ∩ V ⊥∅

))
= c0

(
Vi ∩ V ⊥∅ , Vj ∩ V ⊥∅

)
= c0

(
V ⊥i

∅ ∩ V ⊥∅ , V
⊥j

∅ ∩ V ⊥∅
)

= c0

(
V ⊥i

∅ , V
⊥j

∅

)
= c0 (Vi, Vj)

and thus,
c
(
L2 (σi) ,L2 (σj)

)
= c0 (Vi, Vj) .

Back to the illustration, the first notable observation is as follows

c
(
L2 (σ1) ,L2 (σ2)

)
= c0 (V1, V2) =

∣∣v>1 Pv2∣∣ =

∣∣∣∣ −q1q2 + ρ√
q1
√
q2
√

1− q1
√

1− q2

∣∣∣∣ .
Hence, for ∆ to be definite positive (and for Assumption 2 to hold), it entails that∣∣∣∣ −q1q2 + ρ√

q1
√
q2
√

1− q1
√

1− q2

∣∣∣∣ < 1

which is equivalent to strictly bound ρ in the following fashion

B0 := max
(

0,−√q1
√
q2
√

(q1 − 1) (q2 − 1) + q1q2

)
< ρ < min

(
1,
√
q1
√
q2
√

(q1 − 1) (q2 − 1) + q1q2

)
:= B1.

However, recall the classical Fréchet bounds for ρ for bivariate Bernoulli random variables (see [30],
p.210)

H0 := max (0, q1 + q2 − 1) ≤ ρ ≤ min (q1, q2) := H1,

and notice that these bounds are attained if and only if X is counter-comonotonic or comonotonic.
However, attaining these bounds violates Assumption 1 (and in particular Lemma 4). However, one
can notice that

B0 ≤ H0, and , H1 ≤ B1,

which entails that if X is not either counter-comonotonic or comonotonic (and thus Assumption 1
holds), and ρ is strictly contained in the Fréchet bounds, then ∆ is will always be definite-positive,
and Assumption 2 will hold.

6. Discussion and perspectives

In this paper, we proposea framework in order to study the problem of decomposing functions of random
inputs, which are not necessarily assumed to be mutually independent. This framework merges tools
from probability theory, functional analysis, and some notions of combinatorics. This framework leads
to a generalization of the Hoeffding decomposition [27]. It can be expressed using oblique projections of

29



the random output on some particular subspaces, which obey some underlying structure: hierarchical
orthogonality. Based on this result, we propose methods to decompose two quantities of interest: an
evaluation (i.e., observation) of the random output, and its variance. For the latter, two approaches
are proposed, which correspond to different situations one may encounter in practice. The properties
of the resulting indices are studied, and an emphasis is put on their geometric interpretation. Finally,
a particular case is studied, where the inputs are composed of two Bernoulli random variables. We
describe a strategy in order to analytically obtain the decomposition, and discuss some interesting
findings.

The first main challenge towards adopting the indices presented in Section 4 is estimation. While many
methods exist to estimate conditional expectations (i.e., the orthogonal projections onto the Lebesgue
spaces generated by subsets of inputs), we are unaware of any scheme allowing the estimation of oblique
projections. Many of these schemes rely on the variational problem offered by Hilbert’s projection
theorem (i.e., orthogonal projections as a distance-minimizing problem). A first idea would be to
express oblique projections as a distance-minimizing optimization problem under constraints. A second
idea would be to take advantage of the particular expression of oblique projections (see, e.g., [3, 9]),
which, in our case, would translate, in particular, for every A ∈ PD, to

MA = PL2(σA) ◦
(
PL2(σA) + PWA

− PWA
◦ PL2(σA)

)−1
,

where for a subspace V ⊂ L2 (σX), PV is the orthogonal projection on V . However, this approach
involves estimating the inverse of an operator, which is a challenging feat. A final idea would be to find
suitable bases for each (VA)A∈PD

to project G(X) onto. However, it remains relatively complicated
since these subspaces are infinite-dimensional (i.e., the bases are most likely Schauder). Non-orthogonal
polynomial bases would be a great start to study this problem whenever X is endowed with a mul-
tivariate Gaussian probabilistic structure. When it comes to estimating the pure interaction effects,
a final idea would be to take inspiration from importance sampling schemes, and in particular on
copula densities. In our framework, multiplying by a copula density allows for an isometric mapping
between L2 (σX) and L2

(
σX̃
)
, which enables to go from the Lebesgue space generated by X and to

the Lebesgue space generated by the mutually independent version on X.

The second main challenge is understanding the extent of such an approach. Aside from the uncertainty
quantification that this framework offers, we believe it is a step towards a more global treatment
of dependencies in (non-linear) multivariate statistics. As one can notice, our framework offers a
(somewhat surprisingly) linear approach to possibly highly non-linear problems (due to the function G,
and/or to the stochastic dependence on X), and that Assumptions 1 and 2 will play a pivotal role going
forward. The question of the closure of subspaces generated by subsets of inputs is not new (we refer
the interested reader to the pioneering and inspiring work of Ivan Feshchenko, see, e.g., [21, 20]) but, to
the best of our knowledge, no such approach has been proposed in multivariate statistics. We believe
the framework presented in this paper can enable an exciting path towards a more complete overview
of non-linear multivariate statistics. However, many aspects remain to be mastered, implications to
be discovered, and links with existing literature to unveil.

Finally, we emphasize the importance of the Boolean lattice algebraic structure, which is intrinsically
part of our framework. It may seem natural and hidden, but it is essential in our analysis and a
path toward studying different algebraic structures for different analyses. One can notice that several
references to Rota’s generalization of the Möbius inversion formula [48, 33] are made in our reasoning.
This result is paramount to the well-foundedness of our approach. However, Rota’s result is very
general and does not only apply to Boolean lattices (i.e., powersets). It holds for any (finite) partially
ordered set. Our approach allows for clearly identifying the role of the underlying algebraic structure
in the resulting analyses (the role of uncomparables and the link with hierarchical orthogonality). It
paves the way for more complex analysis, where the relationship between the inputs may differ. For
example, one can think of hierarchical structures (e.g., to represent physical causality) or the presence
of trigger variables [42], which would result in a different algebraic structure, but still be partially
ordered.
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