
HAL Id: hal-04233796
https://hal.science/hal-04233796

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Powerset multi-class cross entropy loss for neural
speaker diarization

Alexis Plaquet, Hervé Bredin

To cite this version:
Alexis Plaquet, Hervé Bredin. Powerset multi-class cross entropy loss for neural speaker diarization.
24th INTERSPEECH Conference (INTERSPEECH 2023), Aug 2023, Dublin, Ireland. pp.3222-3226,
�10.21437/Interspeech.2023-205�. �hal-04233796�

https://hal.science/hal-04233796
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Powerset multi-class cross entropy loss for neural speaker diarization

Alexis Plaquet & Hervé Bredin
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Abstract
Since its introduction in 2019, the whole end-to-end neural di-
arization (EEND) line of work has been addressing speaker
diarization as a frame-wise multi-label classification problem
with permutation-invariant training. Despite EEND showing
great promise, a few recent works took a step back and studied
the possible combination of (local) supervised EEND diariza-
tion with (global) unsupervised clustering. Yet, these hybrid
contributions did not question the original multi-label formula-
tion. We propose to switch from multi-label (where any two
speakers can be active at the same time) to powerset multi-class
classification (where dedicated classes are assigned to pairs of
overlapping speakers). Through extensive experiments on 9 dif-
ferent benchmarks, we show that this formulation leads to sig-
nificantly better performance (mostly on overlapping speech)
and robustness to domain mismatch, while eliminating the de-
tection threshold hyperparameter, critical for the multi-label
formulation.
Index Terms: speaker diarization, loss function, powerset clas-
sification

1. Introduction
Speaker diarization is the task of partitioning an audio stream
into homogeneous temporal segments according to the identity
of the speaker. Most dependable diarization approaches consist
of a cascade of several steps [1]: voice activity detection to dis-
card non-speech regions, speaker embedding to obtain discrim-
inative speaker representations, and clustering to group speech
segments by speaker identity. This family of approaches has
two main drawbacks:
• errors made by each step are propagated to the subsequent

steps, possibly escalating into even larger errors;
• they are not designed to detect (let alone assign to the right

speakers) overlapping speech regions – an additional post-
processing step is needed to handle them [2].

To circumvent these limitations, a new family of ap-
proaches have recently emerged, rethinking speaker diarization
completely [3, 4, 5]. Dubbed end-to-end diarization (EEND),
the main idea is to train a single neural network that ingests
the audio recording and directly outputs the diarization, hence
addressing the error propagation issue. They formulate the
problem as a multi-label classification task, allowing multiple
overlapping speakers to be active simultaneously. Furthermore,
permutation-invariant training [3] is the critical ingredient that
turns clustering – an intrinsically unsupervised task – into a su-
pervised classification task. EEND approaches do have a few
significant limitations:
• they struggle to predict the correct number of speakers, espe-

cially when it is larger in test data than during training – ad-
ditional mechanisms such as encoder-decoder attractors were
proposed to partially solve this issue [6];

• training such approaches is extremely data hungry as each
conversation in the training set constitutes a single training
sample – one has to resort to synthetic (hence unrealistic)
conversations instead [7];

• because of the internal self-attention mechanism, they do not
scale well to long conversations.

Therefore, a few recent works took a step back to borrow
the best of both worlds (BoBW, i.e. multi-stage and end-to-end
approaches) [8, 9]. The general principle is based on three steps:

1. split long conversations into shorter chunks;
2. apply end-to-end speaker diarization on each of them;
3. stitch them back together using speaker embeddings and un-

supervised clustering.
To both start with a strong baseline and ensure reproducibil-

ity, we build on top of the speaker diarization pipeline available
in version 2.1.1 of pyannote.audio open source toolkit [10]
that embraces this aforementioned three-steps principle. More
precisely, we focus on the loss function used for training neural
networks towards end-to-end speaker diarization of short audio
chunks. [5] calls this task speaker segmentation and states that
working with short audio chunks has the following advantages:
• it circumvents the scalability issue because the neural net-

work only ever ingests short fixed-duration (5s in our case)
audio chunks;

• it makes it easier to train (as each conversation can now pro-
vide multiple training samples);

• it allows to set a small upper bound on the (local) number
of speakers Kmax – for instance, there is a 99% chance that
any 5s chunk contains less than Kmax = 3 speakers in the 9
benchmarking datasets used in this paper.

Since its introduction a few years ago, the EEND line
of work has been processing whole conversations with up to
Kmax ≈ 20 (partially overlapping) speakers. Therefore, ad-
dressing it as a frame-wise multi-label classification problem
was a brilliant (and efficient!) idea that we summarize in Sec-
tion 2. Working with a much smaller number of (Kmax = 3)
speakers opens up a new set of opportunities which have not
yet been investigated by recent BoBW approaches. Inspired
by [11], we propose to address speaker segmentation as a frame-
wise powerset multi-class classification problem. Section 3 pro-
vides a detailed description of the approach but one can un-
derstand the main idea by looking at Figure 1. The advan-
tages of this approach are two-fold: it completely removes the
need for the (sensitive) detection threshold hyperparameter, and
it leads to significant performance improvement of the overall
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Figure 1: From multi-label to powerset multi-class encoding.
While powerset classes are mutually exclusive, several multi-
label classes must be active at the same time to encode overlap-
ping speakers.

speaker diarization pipeline (as shown by a thorough evaluation
on 9 benchmarking datasets in Sections 4 and 5). In particu-
lar, we claim state-of-the-art performance on AISHELL-4 [12],
AliMeeting [13], AMI [14], Ego4D [15], MSDWild [16], and
REPERE [17] benchmarks, make the approach available in the
pyannote.audio library, and release pretrained models publicly.

2. From multi-label classification...
As depicted in the upper part of Figure 1, the reference seg-
mentation of an audio chunk X can be encoded into a sequence
of Kmax-dimensional binary frames y = {y1, . . . ,yT} where
yt ∈ {0, 1}Kmax and yk

t = 1 if speaker k is active at frame
t and yk

t = 0 otherwise. We may arbitrarily sort speakers by
chronological order of their first activity but any permutation of
the Kmax dimensions is a valid representation of the reference
segmentation. Therefore, the binary cross entropy loss function
LBCE (classically used for such multi-label classification prob-
lems) has to be turned into a permutation-invariant loss func-
tion L by running over all possible permutations perm(y) of y
over its Kmax dimensions:

L (y, ŷ) = min
perm(y)

LBCE (perm(y), ŷ) (1)

with ŷ = f(X) where f is the segmentation model whose ar-
chitecture is described below. In practice, for efficiency, we first
compute the Kmax ×Kmax binary cross entropy losses between
all pairs of y and ŷ dimensions, and rely on the Hungarian algo-
rithm to find the permutation that minimizes the overall binary
cross entropy loss.

For the segmentation model f , we use the exact same ar-
chitecture as the one introduced by [5]. It consists in a SincNet
convolutional block [18] (that performs frame-wise feature ex-
traction), four bi-directional LSTMs (that contains most of the
learnable weights), two fully-connected layers, a classification
layer with Kmax outputs, and a final sigmoid activation function
to squash the frame-wise speaker activities ŷ between 0 and 1.

At test time, a subsequent binarization step is needed to de-
cide whether each speaker s is active in each frame t. This is
achieved by comparing ŷst to a detection threshold θ ∈ [0, 1]
whose value needs to be tuned carefully.

3. ... to powerset multi-class classification
While the standard multi-label loss relies on Kmax = 3 classes
(one for each speaker s1, s2, s3) that may be active simulta-
neously to encode overlapping speech, the powerset multi-class
encoding considers a grand total of Kpowerset = 7 mutually ex-
clusive classes:
• ∅ for non-speech frames;
• {s1}, {s2}, {s3} for frames with one active speaker;
• {s1, s2}, {s1, s3}, {s2, s3} for two overlapping speakers1.

Switching to powerset encoding entails no radical change to
the rest of the approach. It only amounts to changing the output
size of the classification layer from Kmax = 3 to Kpowerset = 7,
the final activation function from sigmoid to softmax, and the
training loss function from binary to regular cross-entropy. Fur-
thermore, a nice by-product is that the critical detection thresh-
old θ is removed in favor of a simple argmax at test time.

Yet, powerset permutation space is slightly more complex
than in the multi-label setting. For example, swapping speakers
s1 and s2 in the multi-label case obviously implies swapping
classes {s1} and {s2}, but also overlapping speakers classes
{s1, s3} and {s2, s3}. Therefore, to find the optimal permuta-
tion in the powerset space, we use the following process:
• convert target (y) from powerset to multi-label encoding;
• convert binarized prediction (argmaxk ŷ) from powerset to

multi-label encoding;
• find the optimal permutation as described in Section 2;
• permutate the target accordingly in the multi-label space, and

convert it back to powerset encoding;
• compute the cross-entropy loss in the powerset space.

While [11] introduced the use of powerset encoding for
speaker diarization, it has two main limitations. First, powerset
encoding does not play well with a variable number of speak-
ers: adding an extra speaker to a pool of K speakers results in
K + 1 new powerset classes (one for the actual speaker, and
one for each possible overlapping speakers classes). Therefore,
[11] had to resort to use a fixed and conservatively high num-
ber of speakers (Kmax = 16). Second, this leads to a number
of powerset classes which is prohibitively high. For instance,
using Kmax = 16 results in Kpowerset =

(
0
K

)
+

(
1
K

)
+

(
2
K

)
=

137 classes, most of which are almost never seen during train-
ing. For reasons already explained in the introduction, our ap-
proach overcomes both issues: we can stick to a small upper
bound on the number of speakers (Kmax = 3) thanks to our pro-
cessing of short audio chunks, and the unsupervised clustering
step takes care of estimating the number of speakers specific to
each conversation later in the pipeline.

4. Experiments
To ensure reproducibility, the research described in this paper
builds on top of the speaker diarization pipeline from version
2.1.1 of pyannote.audio open source toolkit that follows the

1We do not consider the case of three or more overlapping speakers
because the number of frames for which this happens in our bench-
marking datasets is marginal: 1.6% in the compound dataset, 0.73% in
DIHARD III.
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Figure 2: Compound multi-domain training set.

three-steps principle of BoBW approaches. More details on the
pipeline internals are available in [10] but we describe the gist
of it in the following section.

4.1. Baseline

The first step consists in applying the pretrained end-to-end
neural speaker segmentation model pyannote/segmentation in-
troduced in [5] using a sliding window of 5s with a step of
500ms. A binarization step is further applied using the de-
tection threshold θ ∈ [0, 1] which constitutes the first hy-
perparameter of the approach. The second step consists in
extracting one speaker embedding per active speaker in each
5s window. More precisely, speaker embeddings are only ex-
tracted from audio samples with exactly one active speaker:
overlapping speech regions inferred automatically from the
first step are discarded before computing the embeddings.
All experiments reported in this paper rely on the pretrained
ECAPA-TDNN model [19] from SpeechBrain [20] available at
hf.co/speechbrain/spkrec-ecapa-voxceleb. The third and fi-
nal step consists in applying agglomerative clustering on the
aforementioned embeddings, using a second hyperparameter δ
as the maximum allowed distance between centroids of two
clusters for them to be merged. Once each local (i.e. from first
step) active speaker is assigned to a global cluster, the global
speaker diarization output can be constructed.

4.2. Datasets

We report performance on the official test sets of 9 different
datasets: AISHELL-4 [12], AliMeeting [13], AMI [14] (with
two variants), DIHARD III [21], Ego4D2 [15], MSDWild [16],
REPERE [17], and VoxConverse [22]. AMI variants are head-
set mix (or IHM, merged audio of the participants’ headset mi-
crophones) and array 1 channel 1 (or SDM, first channel from
the first far-field microphone array).

For datasets distributed with an official train-
ing/development split, we use the training subset as is.
For those only providing a development set, we split it into
two parts which we call training and development subsets in
the rest of the paper. Models were trained on a compound

2At the time of writing this paper, test labels of Ego4D were not
available. Hence, Ego4D results were obtained on its development sub-
set and should therefore be taken with a grain of salt.

multi-domain training set made of the concatenation of the
training sets of all aforementioned datasets, but DIHARD.
DIHARD was kept aside to measure how robust our models
are to domain mismatch: it is composed of 11 sub-domains, all
tested individually in this paper. Figure 2 showcases the amount
of data from each dataset in the compound training set as well
as their source and language. We do expect that including
DIHARD in the compound training set would significantly
improve the results found in this paper.

While Figure 2 highlights the relative imbalance between
each dataset in the compound training set, we do make sure that
the compound development set is balanced, in two variants:
• dev duration is built by picking random 5s chunks from

the development subset of each dataset, for a grand total of
8 hours (one hour per dataset);

• dev files is built by randomly picking 25 files from the
development subset of each dataset3, for a grand total of
164 files.

4.3. Experimental protocol

Speaker segmentation models are trained on the compound
training set for at most one hundred hours, using Adam opti-
mizer, an initial learning rate of 10−3, and a scheduler that di-
vides the learning rate by 2 after 30 epochs with no improve-
ment. The validation metric used by the scheduler and for
model selection is the local (i.e. computed on 5s chunks) di-
arization error rate on the dev duration development set.

hyperparameters tuning is performed with
pyannote.pipeline in order to minimize the average di-
arization error rate on the dev files compound development
subset. More specifically, in the case of an internal multi-label
speaker segmentation model, two hyperparameters need to
be optimized: the detection threshold θ and the clustering
threshold δ. In the case of powerset segmentation models, the
detection threshold θ is not needed (because it is replaced by a
parameter-less argmax): only the clustering threshold δ needs
to be optimized.

Domain adaptation experiments reported in Section 5 are
done by fine-tuning speaker segmentation models further on one
specific domain. In those cases, for each dataset (or domain in
case of DIHARD), model fine-tuning relies on the correspond-
ing training set, model selection relies on the whole develop-
ment set, and so does the tuning of pipeline hyperparameters.

5. Results and discussions
While the first line of Table 1 reports the performance of the
speaker diarization pipeline based on the pretrained multi-label
model available at hf.co/pyannote/segmentation, the second
line is our (successful) attempt at retraining it from scratch with
the proposed compound training set.

Powerset compound training consistently gets better results
than its multi-label counterpart – with an average relative im-
provement of 8% for in domain datasets (from 25.6% to 23.5%
diarization error rate). Further adapting the powerset model
to each dataset gives an additional 8% relative improvement,
reaching state of the art performance for most of them.

Both approaches are tested for robustness to domain mis-
match using the DIHARD III dataset, which is composed of
11 domains that were never seen during (compound) train-

3Except for AISHELL-4, AliMeeting, and AMI which have only 20,
8, and 18 files in their respective development subsets.



Table 1: Performance on 8 different datasets. We report diarization error rates on the official test sets (with the exception of
Ego4D validation set because test labels are not available). Best result for each dataset are reported in bold (as well as those
less than 5% worse relatively). No forgiveness collar is used for evaluation, except for numbers in italics with a grey background
computed with a 250ms forgiveness collar (to allow comparison with some results reported in the literature). � indicates the win-

ning (ensemble) submission to the VoxSRC or DIHARD III challenges.
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Figure 3: Decomposition of diarization error rate on DIHARD III in terms of its false alarm, missed detection, and speaker confusion
components. Errors happening in conjunction with overlapping speakers are hatched.

ing. Powerset training shows a 11% relative improvement over
multi-label (from 33.8% to 29.9%), even larger than for the in
domain case. This suggests that powerset training is more ro-
bust to domain mismatch than its multi-label variant – a be-
havior that could be explained by the removal of the otherwise
sensitive detection threshold θ.

Figure 3 provides a detailed analysis of the errors commit-
ted by the various approaches. We find that most of the im-
provement comes from a consistent reduction in missed over-
lapping speech. This also holds for in-domain data (with missed
detection rate reduced from 13.1% to 9.9% on average), sup-
porting the idea that powerset explicit modeling of overlapping
speakers classes has a huge impact on the overall performance.

Fine-tuning the powerset segmentation model on each DI-
HARD domain (‘with domain adaptation’ bars in Figure 3)
tends to converge towards an overall better compromise be-
tween false alarm and missed detection rates, with little to no
impact on speaker confusion. This suggests that this addi-
tional domain adaptation step also plays the role of the detection
threshold θ (which is a separate hyperparameter in the multi-
label case); thus making the whole approach even more robust.

6. Conclusion
In this paper, we study the impact of framing the speaker di-
arization task as a powerset multi-class classification problem.
We extensively test this approach on 8 in domain datasets, as
well as the 11 domains of DIHARD used as out-of-domain data.
Compared to the classic multi-label approach, using a power-
set multi-class encoding results in significant diarization error
rate improvement (mostly due to better predictions on overlap-
ping speech) and better robustness to domain mismatch. We
obtain state of the art performance on AISHELL-4, AliMeeting,
AMI, Ego4D, MSDWild, and REPERE. In the spirit of repro-
ducible research, the powerset multi-class segmentation code is
available in the open-source pyannote.audio library. The mod-
els trained on the compound training dataset, as well as their
precomputed output on each separate dataset are available at
github.com/FrenchKrab/IS2023-powerset-diarization.
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