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Explicit parameters of the exponential stability and Natural Lyapunov function for Linear Systems

In this paper, we are proposing a change of coordinates that brings the state matrix of an autonomous linear system into a modified Jordan Block form. This change of coordinates and the obtained modified Jordan Block form, allows us to obtain exact values of the scaling factor and the convergence rate of the exponential stability bound for Linear systems. Moreover, the obtained change of coordinates allow us to directly obtain a Lyapunov function candidate, that we call 'Natural'. To conclude the paper, we show the effectiveness of the results by applying the analysis to the design of the observation error convergence time characteristics.

Introduction

Since the origin of Lyapunov's direct method [START_REF] Mikhailovich | The general problem of the stability of motion[END_REF], assessing the stability of an unforced system is done by considering an (energy-like) positive scalar function of the state vector and check that its value is monotonically decreasing in time. The approach was also described and extended in [START_REF] Re Kalman | Control systems analysis and design via the second method of lyapunov[END_REF][START_REF] José | Contributions to stability theory[END_REF][START_REF] Evgeny | On stability of motion in the large[END_REF][START_REF] Hahn | Stability of motion[END_REF][START_REF] Hahn | Theory and application of Liapunov's direct method[END_REF], see also [START_REF] Andreevich | Advances in Stability Theory at the End of the 20th Century[END_REF] to review on the development of the definition of stability during last century and [START_REF] Remco I Leine | The historical development of classical stability concepts: Lagrange, poisson and lyapunov stability[END_REF] for an historical perspective on stability concept. Usually the problem with the Lyapunov's direct method is to find such a scalar function [START_REF] Wilson | Linear system theory[END_REF][START_REF] Hassan | Nonlinear systems[END_REF]. It is well-known and worldwide accepted that, for linear systems, time-(in)dependent quadratic forms are used to study the stability property of systems and such functions are usually called quadratic Lyapunov functions. We focus in this work only on time invariant linear systems and we thus consider quadratic forms of the state vector that are associated with a consteant symmetric positive definite matrix. Thus, to prove the stability of an autonomous linear system ẋ = Ax, x(0) = x 0 ∈ R n , one has to look for a symmetric positive definite P0 such that PA + A P < -2αI, for some real α > 0. However, rather than directly specify such a matrix P, the standard approach [START_REF] Wilson | Linear system theory[END_REF][Ch.7] involves an additional positive definite matrix Q, and one has to look for a P solution of PA + A P = -Q, where Q is a degree of freedom, for example it can be taken as Q = 2qI, for some real q > 0. It is also well-known, that such a solution P exists and is also unique if and only if A has all negative real parts, and such P is given by

P = ∞ 0 exp(A s)Q exp(As)ds, Q = Q > 0.
It also also possible to numerical compute P by exploiting the vectorization of matrices as introduced in [START_REF] Bellman | Kronecker products and the second method of lyapunov[END_REF]. Other approaches to compute the Lyapunov function for nonlinear systems can be found in [START_REF] Hassan | Nonlinear systems[END_REF], or [START_REF] Ej Davison | A computational method for determining quadratic lyapunov functions for non-linear systems[END_REF], [START_REF] Blanchini | Nonquadratic lyapunov functions for robust control[END_REF], see [START_REF] Giesl | Review on computational methods for lyapunov functions[END_REF] for a recent review on the topic. Such a pair P, Q can be exploited to determine the positive real constants κ and α, respectively, the scaling factor and the con-vergence rate, in the standard definition of uniform exponential stability, [START_REF] Wilson | Linear system theory[END_REF][START_REF] Hassan | Nonlinear systems[END_REF], i.e., |x| ≤ κ exp(-αt)|x(0)|.

In particular, by considering σ min (Q) to be the minimum singular value of Q is easy to show, by comparison lemma [START_REF] Hassan | Nonlinear systems[END_REF], that we have |x| ≤ σ max (P) σ min (P) exp -σ min (Q) σ max (P)

• t |x(0)|, (1) 
where κ is given by the condition number of P and the maximum eigenvalue of P is involved in the convergence rate α, along with the minimum eigenvalue of Q. Although very general, the obtained constants for the norm upper bound, thus highly depend on the choice of the matrix Q. And it is a very hard task to choose Q to obtain the optimal values of the exponential convergence, i.e., to obtain κ and α such that the upper bound is close to the real norm evolution. Usually, taking Q with a large σ min (Q) (aiming at obtaining a large convergence rate α), makes P very ill-conditioned, thus increasing the condition number κ in the upper bound. Moreover, σ max (P) re-scales the value of σ min (Q) in the convergence rate α, accordingly with the real part of the eigenvalues of A.

To the best of the author's knowledge there is no other general approach available in the literature to explicitly obtain the scaling factor κ and the convergence rate α for linear systems. The closer results we were able to find are [START_REF] Hu | Exponential decay rate conditions for uncertain linear systems using integral quadratic constraints[END_REF] in which the authors test the exponential convergence rate using integral quadratic constraints, and in [START_REF] John Ad Applelby | On exact convergence rates for solutions of linear systems of volterra difference equations[END_REF] the author obtain the exact rate of decay of solutions of a class of convolution Volterra difference equations. In [START_REF] Mori | On an estimate of the decay rate for stable linear delay systems[END_REF] the authors were able to find sufficient conditions to the stability of linear delayed systems and thus to propose an estimation procedure to obtain the convergence rate of the system by involving the matrix measure of the state matrix.

In this work, we propose a modification of the Jordan block normal form [START_REF] Strang | Linear algebra and its applications[END_REF], of the state matrix (Section 3) and we exploit the matrix transformation to obtain a direct exponential upper bound for the norm evolution thus obtaining in closed form with respect to the eigenvalues and the (generalized) eigenvectors, the values of κ and α. We also provide some numerical example to show the effectiveness of the proposed analysis. Moreover, we are able to directly define what we call the Natural Lyapunov function in Section 4 and exploiting this Natural Lyapunov function we obtain the same norm upper bound. In Section 5 we describe the reason why we call the obtained Lyapunov function as Natural and this is related to the nice property of the norm upper bound characterization and the simplicity we construct and get such a Lyapunov function. Finally, in Section 7, we use the proposed Lyapunov function to characterize the stability properties of the error of an identity (Luemberger-like) observer and so we provide a constructive approach to the observer design with prescribed estimation performances (in term of convergence time to a ball of given radius around the origin). Some conclusions are then given in Section 8.

Nomenclature

The L 2 -norm of matrix M is denoted by M 2 , and it is related to the singular values of M; in particular, we denote

M + = σ max (M M), and M -= σ min (M M).
We can thus write lower and upper bound for the norm of M and, if it is also invertible, of its inverse, i.e.

0 ≤ M -≤ M 2 = M + 0 ≤ M -1 + ≤ M -1 2 = M -1 -.
Moreover, if M is full rank, we have that M M is a strictly positive definite matrix, and thus its eigenvalues are always strictly larger than zero, i.e, 0 < M -≤ M 2 . Because, we are using the L 2 norm for the matrices, we have that the condition number of M

µ(M) = σ max (M M) σ min (M M) = µ(M -1 ) = σ max (M -M -1 ) σ min (M -M -1
) .

We consider as orthogonally diagonalizable matrix, M if (and only if) it has an orthonormal set of eigenvectors. Given a complex number µ ∈ C and a natural number n ∈ N, we denote

D n (µ) := diag(1, µ, . . . , µ n-1 ), if µ 0, I n , if µ = 0. (2) 
Then, the following identity

N n D µ n = µD µ n N n (3) 
holds for any µ ∈ C and n ∈ N.

Preliminaries

Norm of the Matrix exponential

We recall some properties of the matrix exponential norm. We first consider the fact that the exponential of a skewsymmetric (or symplectic) matrix is always orthonormal (and hence has unitary norm), i.e., for S = -S , exp(S) 2 = exp(S ) exp(S) 2 = exp(0) 2 = 1. The general formula of the products of the exponential of two non-commuting matrices A and B, is given by

exp(A) exp(B) = exp(A + B) exp 1 2 (AB -BA) .
In particular, when we consider A = B , we have We hence proved that Lemma 2.1. Given a matrix M and its matrix exponential exp(M), then

exp(M ) exp(M) ≤ exp(M + M) .

A positive definiteness property

For the analysis in Sec. 4, we need to study the properties of a particular matrix, associate with the proposed modified Jordan block form, J, introduced below. For the purpose of all the proofs, is enough to consider, without loss of generality, a matrix with a single Jordan block of dimension g associated with an unitary eigenvalue, I + N, where N is matrix with only ones on the super diagonal, i.e.,

I + N =       1 1 . . . 0 0 1 . . . . . . . . . . . . 1 0 . . . 1       .
In particular, for the above analysis on the Lyapunov function, we are interested in the symmetric part of I + N, i.e, Hence, we can always decompose the symmetric part of 2(I + N) into the sum of a positive definite matrix and positive semidefinite matrix, that gives again a positive definite matrix.

Sym(I + N) = I + N + I + N 2 .
This analysis can be easily extended to all the single blocks of the modified Jordan normal form, with blocks of different dimensions.

Some explicit eigenvalues

From [19, Ex. 7.2.5], we have an explicit formula for the eigenvalues of a matrix A ∈ R n×n , with a 0 and c 0,

A =        b a c b a . . . . . . . . . c b a c b        = bI + aN + cN (4) 
are explicitly given by

λ i = b + 2a c a cos π i n + 1 , i ∈ {1, . . . , n}. (5) 
For our purposes we only deal with the case c = a, as also exploited in [START_REF] Baggio | Reachable volume of large-scale linear network systems: The single-input case[END_REF], leading to the explicit eigenvalues form given by

λ i = b + 2a cos π i n + 1 , i ∈ {1, . . . , n}. (6) 

Explicit parameters for Continous time LTI systems

Consider an asymptotically stable system

ẋ = Ax, x(0) = x 0 ∈ R n , (7) 
i.e. A is Hurwitz with appropriate dimension. Given the A eigenvalues, {λ 1 , . . . , λ n }, without loss of generality in decreasing order, with the associated geometric g i , for i = 1, . . . , s, where s is the number of distinct eigenvalues. We define the diagonal matrix of the ordered eigenvalues of A with their relative multiplicity i , i = 1, . . . , n, i.e., Λ = diag (λ 1 , λ 2 , . . . , λ n ), where for some i and j, we might have λ i = λ j , according to the algebraic and geometric multiplicity of each eigenvalue. We can define the Jordan normal form J as the block diagonal matrix composed of the Jordan blocks of the eigenvalues of A. It is possible to find such a Jordan normal form, by means of a change of coordinates, obtained by defining T as the matrix composed of the associated normalized (generalized) T i , i = 1, . . . , n i.e.

T = T 1 . . . • • • . . . T n
where for each eigenvalue we have 1

AT i = T i λ i , or (A -λ i I) T i+ j = T i+ j-1 , j = 1, . . . , g i -1
if the associated eigenvalue λ i has geometric multiplicity g i > 1.

Through this matrix T we can construct a change of coordinates and obtain the standard Jordan block form of A, i.e. 1 With some abuse of notation.

T -1 AT = J. We now define, the modified Jordan normal form, J, by defining the diagonal matrix

D = blckdiag (D g 1 (λ 1 ), D g 2 (λ 2 ) . . . , D g m (λ m )) , (8) 
and the change of coordinates T = T D where the columns of T, T i , i = 1, . . . , n are the (generalized) eigenvectors in scaled version solution of2 

AT i = T i λ i , or (A -λ i I) T i+ j = λ i T i+ j-1 , j = 1, . . . , g i -1
and we obtain, as change of coordinates T -1 AT = J = Λ(I + N), where N being the super diagonal of the standard Jordan block form of A, i.e., J.

We hence take z = T -1 x, with z(0) = T -1 x(0), whose dynamics is given by ż = T -1 ATz = Jz, and its solution is simply z(t) = exp (Jt) z(0). And hence, we obtain the solution in the original coordinates

x(t) = Tz(t) = T exp(Jt)T -1 x(0),
where

T = T D and 3 T -1 = D -1 T -1 .
Then we can write the evolution of x(t) passing for x(0) as

x(t) = T D exp(Jt)D -1 T -1 x(0) (9) 
Hence, we have following Theorem 3.1. The norm of the state evolution associated to the state matrix A can be explicitly bound as

µ(T) exp(λt)|x(0)| ≤ |x(t)| ≤ µ(T) exp(λt)|x(0)| ( 10 
)
where λ = ℜ{λ max (J +J)} 2 and λ = ℜ{λ min (J +J)}

2

.

Proof. The proof just comes as an application of the norm in the z(t) coordinates, and from Lemma 2.1. In particular, from the norm of z(t) we have

|z| = z z = z (0) exp(J t) exp(Jt)z(0) ≤ |z(0)| exp((J + J)t) ≤ exp J + J 2 t |z(0)|.
Now, from the definition of z we have

|T -1 x| ≤ exp J + J 2 t |T -1 x(0)| |x| ≤ T T -1 exp J + J 2 t |x(0)|
where by the properties of the matrix 2-norm T T -1 = µ(T). Now, since J + J is symmetric and negative definite, there exists an orthonormal change of coordinates that brings it into diagonal form, and thus we can write exp J + J ≤ exp(ℜ{λ max (J + J)}).

Hence, we have the upper bound for |x|. The analogous analysis can be carried out to obtain the lower bound.

Note that, from the upper bound result, we can explicitly write the system convergence rate α and the scaling/amplification factor κ as

α = - ℜ{λ max (J + J)} 2 , κ = µ(T). (11) 
Moreover, we want to highlight the fact that these values are explicitly given as properties of the eigenvalues and the eigenvectors of the matrix A.

Remark. The eigenvalues of J +J can be explicitly written as a function of the eigenvalues of A and of the related geometric multiplicity, since each block of J + J has the form of (6).

Graphical example with λ = -1 and g = 10

We consider the evolution of the norm of z(t) for an eigenvalue, λ = -1, with associated geometric multiplicity g = 10, i.e., we consider an autonomous system dynamics with state matrix

A = -1 •                 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                
The evolution of the components of the z(t) vector are shown in Fig. 1, starting from an initial condition

z 0 = [0.01001979, 0.02185996, -0.01413963 0.08315555, -0.14693675, 0.31947075 -0.4683713, 0.59627956, -0.4827674 0.24631203] . (12) 
Note here that the presence of the overshoot, associated to the standard Jordan block form, is not present 4 . We also show, in Fig. 2, the associated norm evolution and the natural obtained bound with convergence rate -λ ≈ 0.0405, while its evolution is lower bounded by the exponential function with convergence rate -λ ≈ 1.9595, even if the eigenvalue of the dynamics is -1.
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-0.5 Moreover, see that the exponential function with convergence rate given by the associated eigenvalue λ = -1 does not give any particular information.
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Dealing with complex conjugate eigenvalues pairs

For the sake of completeness and clarity of exposition, we want to separately treat how to obtain a real transformation matrix T in case of complex conjugate eigenvalues. In particular note that, the analysis above, leads to complex transformation T and Jordan form J matrices in case A have some complex conjugate eigenvalues pair. Because, the (generalized) eigenvectors associated to such complex conjugate eigenvalues pair are complex conjugate as well, one can replace the two columns in the transformation matrix T , say columns T i and T i+1 = T i , with the real and the imaginary part of T i respectively, i.e. T j = ℜ {T i } and T j+1 = ℑ {T i }, with j = i. This new transformation T will provide a matrix of dimension 2 replacing the complex diagonal matrix with the complex conjugate pair on the main diagonal. When the geometric multiplicity of the pair is larger than one, their associated standard Jordan block form will not have a set of 1 on the super diagonal, but rather have a set of identity matrix of dimension 2 on the super diagonal. Since, we are interested in real realization of the transformation and on the modified Jordan normal form, we claim that once the real transformation T for the standard Jordan normal form is found, we can easily get the real transformation T leading to the real modified Jordan normal form. Theorem 3.2. Assume A ∈ R 2n×2n have a pair of complex conjugate eigenvalues λ 1/2 = α ± iβ (not in the origin, i.e. λ 1/2 0), with geometric multiplicity g = n, and consider T to be the (real) matrix transformation to obtain the real Jordan normal form J, with

D λ = α β -β α
on the main diagonal. Then, by defining

D = D g-1 (D λ ) = diag(I, D 1 λ , D 2 λ , . . . , D g-1 λ )
the (real) transformation that put A into the real modified Jordan normal form, is given by T = T D.

Proof. The objective is prove that the transformation T = T D provides the (real) modified Jordan block associated with D λ , i.e. J = T -1 AT looks like

J = (I + N) ⊗ D λ =        D λ D λ 0 . . . 0 0 D λ D λ . . . 0 0 0 . . . . . . . . . D λ D λ 0 . . . 0 D λ        .
Indeed, this is the case because A = T JT -1 , where

J = I ⊗ D λ + N ⊗ I 2 =        D λ I 0 . . . 0 0 D λ I . . . 0 0 0 . . . . . . . . . D λ I 0 . . . 0 D λ       . So, J = T -1 AT = T -1 T JT -1 T where T = T D and T -1 = D -1 T -1
, hence by very simple manipulations we have that J = D -1 JD, i.e.,

D -1 J =        I 0 0 . . . 0 0 D -1 λ 0 . . . 0 0 0 . . . . . . . . . D -g+2 λ 0 0 . . . . . . D -g+1 λ        • •        D λ I 0 . . . 0 0 D λ I . . . 0 0 0 . . . . . . . . . D λ I 0 . . . 0 D λ        =        D λ I 0 . . . 0 0 I D -1 λ . . . 0 0 0 . . . . . . . . . D -g+3 λ D -g+2 λ 0 . . . 0 D -g+2 λ       
then multiply on the right by D gives the results.

We provided the result only for a single pair of complex conjugate eigenvalues λ = α + iβ and λ = αiβ , the extension to the general case is just an application of the proposed procedure to each involved complex conjugate pair. To obtain a real Modified Jordan matrix when A has complex conjugate eigenvalues with geometric multiplicity larger than 1, we can simply rely on a different definition of the diagonal matrix D, that now becomes block diagonal with all real entries, and on the real transformation matrix T used to obtain a real Jordan block matrix.

A high-gain interpretation

In some sense, we construct the modified Jordan block form from the standard one by defining the D change of coordinates. This sort of change of coordinates is also used in the high gain (observer/stabilizer) framework. In this case, for i = 1, . . . , s, by exploiting for each eigenvalue λ i the transformation matrix D g i (λ i ), we are able to obtain on the super diagonal the value of the interested eigenvalue. More in particular, for each Jordan block form J i ,

D g i (λ i ) -1 (λ i I + N i )D g i (λ i ) = λ i I + D g i (λ i ) -1 ND g i (λ i ) = λ i I + λ i N i = λ i (I + N i ).
In the general case, where we have m distinct Jordan blocks for the matrix A,

D = diag (D g 1 (λ 1 ), D g 2 (λ 2 ), . . . , D g m (λ m ))
and, with Λ = diag (λ 1 , . . . , λ n ),

J = D -1 JD = D -1 T -1 AT D = T -1 AT = D -1 (Λ + N) D = Λ + D -1 ND = Λ + ΛN = Λ(I + N).

Natural Lyapunov function for Continuous Time

Through the definition of the modified Jordan block canonical form and the change of coordinates T = T D, we are able to define a Lyapunov candidate

V = x T -T -1 x, (13) 
that we call the Natural Lyapunov functions5 .

Theorem 4.1. The natural Lyapunov function [START_REF] Hassan | Nonlinear systems[END_REF], is a valid Lyapunov function for system [START_REF] Ej Davison | A computational method for determining quadratic lyapunov functions for non-linear systems[END_REF]. And, moreover, V is exponentially decreasing, with explicit convergence rate equal to 2λ , i.e. V (t) ≤ exp ℜ{λ max (J + J)}t V (x(0)) .

Proof. One can simply notice that T -T -1 is a positive definite matrix, because T has all linearly independent columns, and so it is full rank, hence V (x) > 0 for x 0, and V (0) = 0. Then, by taking the time derivative of V we have

V = 2x T -T -1 ẋ = 2x T -T -1 A x = 2x T T -1 AT T -1 x = 2x T -JT -1 x = x T -(J + J)T -1 x ≤ |x T -||T -1 x| ℜ{λ max (J + J) ) = ℜ{λ max (J + J)} V.
Hence, V is strictly less than zero and, in particular, V is exponentially decreasing. Indeed, by the comparison Lemma [START_REF] Hassan | Nonlinear systems[END_REF][Lemma 3.4], we obtain the result of the theorem.

A consequence of this theorem is the following upper bound on the norm of x.

Corollary 4.1. The natural Lyapunov function [START_REF] Hassan | Nonlinear systems[END_REF], defines the upper bound of state x norm, i.e.,

|x(t)| ≤ µ(T) exp ℜ{λ max (J + J)} 2 t |x(0)|.
The proof simply comes as an application of the previous theorem, by substituting the definition of the Natural function

V = x T -T -1
x, and retrieving the condition number of T from the norms. We thus leave it to the reader.

Remark. By exploiting the definition of the Natural Lyapunov function, we obtained exactly the same upper bound of the norm state evolution (10) in the original system coordinates.

As touched before we called it natural because it is only build on the algebraic properties of matrix A without the need to solving a Lyapunov equation.

Remark. Due to the presence of Generalized eigenvectors, i.e., given by the geometric multiplicity of the associated eigenvalue λ i , the columns of T , i.e., T i , i = 1, . . . , n, are not all orthogonal one each other. Thus, they yield a bad condition number of matrix T . Only when A is orthogonally diagonalizable, we have D = I and we can always normalize the columns of T so to get an orthonormal matrix, i.e. T T = I, thanks to the orthogonality of the eigenvectors of the diagonalizable A. In this case, the x state evolution norm upper bond simplifies to the one one with standard dominant pole convergence rate, i.e. α = |λ 1 |, |x| ≤ exp (-|λ 1 |t) |x(0)|.

Natural Lyapunov Functions are general

Our claim now, is that any valid Lyapunov function V (x) = x Px/2 for ( 7) is just a 'rescaling' of the Natural Lyapunov funtion V (x) = x T -T -1 x. And hence every valid Lyapunov function can be exploited in the norm of x upper bound. And all the consequences about the condition number of P are related to the condition number of T. In order to prove this claim, we are not considering the classical Lyapunov equation of the type

PA + A P = -Q, Q = Q > 0 (15) 
but we rather taking into consideration, for the sake of comparison, the Lyapunov inequality 6PA + A P ≤ -2αP, α > 0 (16)

Now, we prove that any upper bound of the convergence rate obtained via a Lyapunov function, whose P satisfies (16) must be strictly less than the slower eigenvalue of A.

Lemma 5.1. Given the asymptotically stable system [START_REF] Ej Davison | A computational method for determining quadratic lyapunov functions for non-linear systems[END_REF], where the larger eigenvalues of A, i.e., λ 1 , has geometric multiplicity larger than one, then any convergence rate α > 0 of V = x Px, where P is solution [START_REF] Mikhailovich | The general problem of the stability of motion[END_REF], must be slower than the one related to the maximum eigenvalue of A, i.e. α ≤ |λ 1 |.

Proof. Any symmetric matrix, P > 0, can be written as P = T -P T -1 , for some P = P > 0, hence the Lyapunov inequality ( 16) becomes

T -P T -1 A + A T -P T -1 ≤ -2αT -P T -1 P T -1 AT + T A T -P ≤ -2αP P J + J P ≤ -2αP P (J + α) + (J + α) P ≤ 0. ( 17 
)
Where in particular, we have that a possible solution of P existence if and only if α < |λ 1 |, with a strict minor sign, indeed J + αI must be Hurwitz to have a positive definite solution P .

In particular, for α = |λ 1 |, in J + αI, the first block becomes equivalent to the shift matrix, i.e., a Jordan block with all eigenvalues in 0. And it is well known that the corresponding block in P cannot be positive semidefinite due to the instability of the chain of integrators. Hence, all convergence rate α resulting from a Lyapunov function upper bound for the exponential decay of |x| must be strictly less than the one corresponding to the maximum eigenvalue of A, i.e., |λ 1 | = -λ 1 .

Lemma 5.2. The convergence rate of V corresponds to twice the slowest eigenvalue of A if and only if A is diagonalizable, and hence we can take P = I in P = T -P T -1 .

Proof. From P = T -P T -1 , and z = T -1 x we have that

V = x PA + A P x = z P Λ + Λ P z ≤ 2λ 1 z P z = 2λ 1 V (18) 
and this inequality is satisfied for any P , hence, we can always take the identity.

Moreover, note that, for orthogonally diagonalizable matrices A, we can always find T in orthonormal form, so that T = T -1 , and hence T -T -1 = T T -1 = I, because D is the identity matrix, in this case. And we find the simplest case of Lyapunov equation solution P = I. Coming back to the analysis of ( 16), we have an upperbound of the Lyapunov function V such as

V = z P z ≤ exp (-2αt)V (z(0)) (19) 
and hence we have

σ min (P )|z| 2 ≤ σ max P exp (-2αt) |z(0)| 2 |z| 2 ≤ σ min (P ) -1 σ max P exp (-2αt) |z(0)| 2 |z| ≤ σ max (P ) σ min (P ) exp (-αt) |z(0)|, (20) 
where the solution P is strictly related to the value of α, constraining the condition number of P to the choice of the convergence rate α. Where, as described in Lemma 5.1, the value of α must be smaller than the absolute value of the maximum eigenvalue of A. i.e., |λ 1 |. Morever, as a consequence of ( 16), the closer -α is to λ 1 the more ill-conditioned P is, thus giving a larger condition number that amplifies the norm of initial condition |z(0)| so to satisfy the norm upper bound. This directly produces an 'over estimation' (or inconsistent bounds) of the state evolution set, that are directly related to the convergence rate α but not in closed form, making thus harder to solve design problems such as, observer error convergence in a dynamic output feedback stabilization scenario, or definition of the level set in the original coordinates due to the absence of constructive tools. Moreover, it is impossible to have, in the upper bound [START_REF] Mori | On an estimate of the decay rate for stable linear delay systems[END_REF], that the condition number of P is strictly lower than 1, because otherwise the upper bound would not hold for t = 0, i.e.

|z(0)| ≤ exp(0)|z(0)| = |z(0)|.
Here, we introduced a tool to directly define a Lyapunov function whose evolution can be directly exploited to upper bound the norm of the state evolution z(t) with coherence on the initial condition and providing a direct relationship a between the eigenvalues of A and the (effective) convergence rate α with the unitary scale factor of the z-initial condition. This is helpful from two points of view, 1) the set in which the z(t) evolves is not overestimated thanks to the coherence of the initial condition norm;

2) all the parameters involved in the exponential upper bound |z| ≤ κ exp(-αt)|z(0)| are directly linked (in a closedform) to the albegraic properties of A, i.e., T , D, J (only exploited in geometry of the trajectories and to determine the stability properties).

This aspect can help the designer with constructive tools to obtain directly the parameters of the exponential upper bound. In particular, by constraining the upper bound at the initial condition, in the z coordinates, the only parameters that one has to take into account is the new concept of effective convergence rate. And indeed this parameters can be computed without passing through the solution of a Lyapunov (in)equality, by simply considering the set of A eigenvalues and their geometric multiplicity g i , i = 1, . . . , n.

Remark. Defining the effective convergence rate as α = -ℜ{λ max (J + J)}/2 yields the concept that also very fast eigenvalues can slow down the state evolution (in norm) when the related geometric multiplicity is sufficiently high. Thus, becoming the equivalent dominant pole of the system dynamics. This effect has been generally hidden by the initial condition scaling factor κ, in the general exponential upper bound |x(t)| ≤ κ exp(-αt)|x(0)|. With the proposed analysis, we define the region of the system evolution, via the upper and lower bound of the norm of the system. This can be useful in control design based on time scale separation principles, when the eigenvalues of the system have large geometric multiplicity.

It is not generally easy to properly define such scaling factor κ as function of the convergence rate of interest α, thus making convergence property design problematic and, in some sense, misleading from the region state evolution point of view.

Natural Lyapunov functions for Discrete Time systems and the explicit parameters

Motivated by the discussion for the continuous time case, we also provide a solution for the natural Lyapunov function in discrete time. In particular we consider now the discrete dynamics

x + = Ax, x(0) = x 0 (21) 
where A has m distinct eigenvalues inside the unitary disk, of which, those lying on the unitary disk, are simple. As done for the continuous time case, we now define another modified Jordan normal form, J , by exploiting this time the diagonal matrix

D = blckdiag D g 1 1 -|λ 1 | 2 3 , . . . , D g m 1 -|λ m | 2 3 , (22) 
and the change of coordinates T = T D where the columns of T , T i , i = 1, . . . , n are the (generalized) eigenvectors in scaled version solution of 7 AT i = T i λ i , or

(A -λ i I) T i+ j = 1 -|λ 1 | 2 3 T i+ j-1 , j = 1, . . . , g i -1.
From this new definition of the change of coordinates, we can put the matrix A into another modified Jordan block form, i.e.,

T -1 AT = J = ΛI + 1 3 (I -Λ 2 )N
where N being the super diagonal of the standard Jordan block form of A. In particular, each Jordan block form will then be modified to

J i = λ i I + 1 -|λ i | 2 3 N, J i = I ⊗ Λ i + 1 3 N ⊗ Λ i (23) 
i = 1, . . . , m, respectively, for scalar real eigenvalues λ i and real realization of complex conjugate pair of eigenvalues λ j1/2 = α j ± iβ j , where

Λ j = α j β j -β j α j , Λ j = 1 -|λ j | 2 1 -|λ j | 2 . ( 24 
)
We then have the following result Proof. By constructions, the change of coordinates z = T -1 x has a state matrix in the modified Jordan Block form, with real realization, whose block are defined as in [START_REF] Strang | Linear algebra and its applications[END_REF]. We have to prove that

V = z z = x T -T -1
x is a valid Lyapunov function for system [START_REF] Wilson | Linear system theory[END_REF], hence that

V + -V = z J J -I z < 0, or I -J J > 0.
Analyzing the matrix inequality block-wise, we have for the i-th block associated to a scalar real eigenvalue 7 With some abuse of notation.

λ i I -J J = (1 -λ 2 i )I - 1 -|λ i | 2 3 N + N + 1 -|λ i | 2 3 N N > 0,
that can be re-written as

9(1 -λ 2 i )I -(1 -|λ i | 2 ) 3(N + N) + (1 -|λ i | 2 )N N > 0.
Because |λ i | < 1, we have (1 -|λ i | 2 ) > 0, and thus we only have to analyze the sign properties of the matrix

9I -3(N + N) + (1 -|λ i | 2 )N N .
By the properties of N, we have N N = I -diag(1, 0, . . . , 0) and thus we can write

9I -3(N + N) + (1 -|λ i | 2 )N N > 8I -3(N + N) =: M.
(25) Now, the matrix M is symmetric by construction and has the same structure of the matrices in the examples in [START_REF] Baggio | Reachable volume of large-scale linear network systems: The single-input case[END_REF] or [19, Ex. 7.2.5], and hence its eigenvalues are give by the formula 8 + 6 cos(π j g i +1 ), for i = 1, . . . , g i , and they are all positive, which implies the positive definiteness of the blocks of I -J J associate to scalar real eigenvalues λ i . For complex conjugate eigenvalues λ j1/2 = α j ± β j i, we have to prove that

I -(I ⊗ Λ j + 1 3 N ⊗ Λ j ) (I ⊗ Λ j + 1 3 N ⊗ Λ j ) > 0. (26) 
For the sake of simplicity of exposition, we analyze the case of geometric multiplicity equal to 2. We thus have, by multiplying both sides by 9,

9 I - Λ j Λ j Λ j Λ j -3 Λ j Λ j Λ j Λ j - Λ j Λ j > 9(1 -|λ j | 2 )I -3(1 -|λ j | 2 ) Λ j Λ j -(1 -|λ j | 2 )I = 8(1 -|λ j | 2 )I -3(1 -|λ j | 2 ) Λ j Λ j = (1 -|λ j | 2 )M
we thus have to prove that the symmetric part of M is positive definite. Indeed,

    8 8 3 α α 3 α α 8 8     = 8 3α 3α 8 ⊗ I 2 = M ⊗ I 2 .
Hence we have that sym(M) = M ⊗ I 2 is positive definite because |α| < 1 and the eigenvalues of

M = 8 3α 3α 8
are all positive. This latter property can be tested by exploiting (6) for any geometric multiplicity, since M has the same structure of the matrices in Section 2.3. The extension to larger geometric multiplicity if trivial and left to the reader.

With this theorem, we provide an explicit solution to the Lyapunov inequality, providing directly a valid Lyapunov function that directly depends on the properties of A.

Explicit convergence parameters

The exact solution of ( 21) is given by x(k) = A k x(0) and for A Shur one can obtain bounds as

x(k) ≤ ρ k κ x(0)
for some real ρ ∈ [0, 1), and for some positive κ. In the following corollary, we propose their, and their values are strictly related as a direct function of the properties of A. In this regard, we propose the following corollary. 

8λ 2 i + 6(1 -λ 2 i ) cos π g i + 1 . ( 27 
)
Proof. We know from Theorem 6.1 that V (x) = x T -T x is valid Lyapunov function for [START_REF] Wilson | Linear system theory[END_REF]. In the

z = T -1 x coor- dinates, V (z(k)) = z(k) z(k), thus its evolution V (z(k + 1)) = z(k) J J z(k).
In order to obtain the discrete time rate of convergence, ρ, we have to evaluate an upper bound for J J , i.e., find the least ρ positive value such that

J i J i ρI g i ⇒ ρ ≥ σ max (J i J i )
where J i is the generic modified Jordan block associated with λ i , with |λ i | < 1 for i = 1, . . . , m. Hence, by evaluating J i J i , we can write

J i J i =λ 2 i I + 1 -λ 2 i 3 (N + N) + (1 -λ 2 i ) 2 9
N N

=λ 2 i I + 1 -λ 2 i 3 (N + N) + (1 -λ 2 i ) 2 9 I - (1 -λ 2 ) 2 9
diag(1, 0, . . . , 0)

≤ λ 2 i + 1 -λ 2 i 9 I + 1 -λ 2 i 3 (N + N) =: M
and the eigenvalues of M can be compute explicitly as in [START_REF] Blanchini | Nonquadratic lyapunov functions for robust control[END_REF], i.e.,

σ i (M) = 1 9 8λ 2 i + 1 + 2 3 (1 -λ 2 i ) cos π g i + 1
from which we obtain (27). The scaling value κ is simply given by relating the evolution of x(k) to the evolution of z(k) ≤ ρ k z(0) , where x = T z(k) and z(0) = T -1 x(0). Simple algebraic steps provides the scaling factor κ = µ(T ), thus proving the corollary.

Application examples

Observer design

Consider the controlled linear system ẋ = Ax + Bu y = Cx (28) with (A, B,C) controllable and observable. Assume to have a given static state feedback gain K such that A -BK is Hurwitz (not necessarily with all distinct eigenvalues). It is very well-known that, since in practical applications when the whole state x is not available for feedback, we have to design an observer dynamics in order to reconstruct it via the measurement y, i.e., ẋ

= A x + Bu + L (y -C x) , ( 29 
)
where L is the observer gain matrix designed such that A-L C is Hurwitz (not necessarily with all distinct eigenvalues). Very often, due to a required fast convergence of the observer estimation error, x = xx, the estimate x suffers from what is called the peaking phenomenon. Indeed, the value of x can exceed/exit the region of the evolution of x, providing a bad estimate of the state vector. To overcome possible problems in the closed loop, i.e., u = -K x, a widespread method is to saturate component wise the estimate x, so that it remains into the evolution region of the real state x. The saturation level is thus an additional design parameters to be taken into account and for which there is no constructive method to use, see [START_REF] Isidori | Lectures in feedback design for multivariable systems[END_REF] or [START_REF] Hassan | Nonlinear systems[END_REF]. By exploiting the analysis developed in this work, we are able to provide more constructive and useful tools to describe the output dynamics feedback.

In particular, we start by defining the ideal closed loop evolution region of x, through its norm upper bound, i.e.

ẋ = (A -BK )x =⇒ |x| ≤ κ exp(σ max (A -BK )t)|x(0)|,
where κ is related to the eigenvectors of transformation matrix

T K diagonalizing (A -BK ), i.e., κ = σ max T K T K σ min T K T K ,
moreover, by considering x(0) ∈ X 0 ⊂ B ρ , we can upper bound the evolution of |x| by setting t = 0 and considering |x(t)| ≤ κρ for all t ≥ 0. Thus providing the value for the saturation level to the implemented control law u = -K sat κρ+ε ( x), where ε > 0 is an additional parameter that is related to the observer convergence. Indeed, we consider the estimation error evolution

x = x -x, i.e. ẋ = (A -L C) x =⇒ | x| ≤ κ exp(-λeff t)|x(0)|,
where, without loss of generality, we consider x(0) = 0 and thus x = -x(0), and κ is related to transformation matrix T L that puts (A -L C) into the modified Jordan block form, i.e., κ = σ max T L T L σ min T L T L .

We now have the tool to describe the converge of the observer dynamics, and we thus obtain the parameters for which | x| ≤ ε, i.e. . By exploiting, again, det(T L T L ) = 2 , we can write

| x| ≤ κ exp( λeff t)ρ ≤ ε =⇒ exp( λeff t) ≤ ε κ-1 ρ -1 0 
κ = σ max (T L T L ) σ min (T L T L ) = 2 σ min (T L T L ) 2 = σ min (T L T L ) .
By imposing ε = 10 -3 at t = 0.1, we have to find such that

t = ln ε κ-1 ρ -1 λ eff = ln 2+5 2 - √ 25 4 +16 2 +4 2 10 -3 - = 0.1.
By looking at the plotting of t as function of , see Fig. 3 the green curve, we have that ≈ 135 to fulfill the requirement on the convergence time. Hence, almost the half of the previous case, and with the maximum peaking value of the observer state (for unitary plant initial conditions, i.e., ρ = 1) is given by κ ≈ 675, while L = [405 36450] , and the resulting closed loop dynamics (compared to the ideal state feedback case ) is depicted in Fig. 
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Discussion on dynamic output feedback controller

We want to conclude this application section on observer design with an additional detail on the asymptotic behavior of the closed loop dynamics. Indeed, exploiting the model order reduction technique developed in [START_REF] Spirito | Model order reduction beyond singular perturbation for linear systems[END_REF], we can describe the asymptotic evolution (after the observer error transient) of the controlled system with the observer-based controller. In particular, the error dynamics of the observer can be seen as a vanishing disturbance acting on the ideal state feedback closed loop dynamics, as described in (30) where t = 0. Due to the presence of the observer dynamics, some 'energy' is injected into the plant, thus changing its trajectory, and this is due to the initialization error x(0) 0. We can study/predict the asymptotic behavior of the closed loop system, i.e., the trajectory of ẋ = (A -BK) x to which the system convergence after the observer transient expires, by applying the model order reduction method described in [START_REF] Spirito | Model order reduction beyond singular perturbation for linear systems[END_REF]. Thus, by exploiting the technique described can obtain the initial conditions x(0) x(0), so that the real system trajectory x(t) → x with a rate of convergence dictated by the observer error dynamics. In order to get the new initial conditions, we have to solve a Sylvester equation whose terms depend on the state feedback K and on the injection gains L , i. (31)

And one can easily see that by imposing the eigenvalues of A -L C infinitely far from the imaginary axis, i.e., by letting the elements of L to infinity, the Sylvester equations (31) 'tends to' Π (A -L C) = 0, where the only solution is the trivial one, thus obtaining the performance recovery result in the high-gain scenario in [START_REF] Hassan | High-gain observers in nonlinear feedback control[END_REF], i.e., the observer-based controller, with infinite high gain, recovers the ideal state feedback control action. The conclusion of this section analysis is that, the observer dynamics has an influence on the real plant evolution which is equivalent to the modification of its initial conditions. Thus, for observable systems, we can impose to the observation error, x, a convergence time t > 0 to reach a prescribed ball of radius ε > 0, and predict what kind of deviation the observer dynamics provides to the system trajectory in case of non-saturated input.

Remark. Note that with some additional effort, we believe that this technique can also be applied when saturating the input making it an additional design degree of freedom. This topic is taken into account for a future work.

Conclusions

In this work, we present a modification of the Jordan Block normal form of the state matrix of an autonomous linear system. Through the usage of the change of coordinates we define what we call the Natural Lyapunov function. We also analyze the properties of this Lyapunov function. Moreover, we use this analysis to obtain, in closed form, the constant values for the scaling factor κ and the converge rate α for the uniform exponential upper bound of stable linear autonomous system and this is allows us to obtain a constructive characterization of the convergence property of a linear identity observer in terms of the convergence time into a ball of give radius. All the examples are correlated with some numerical example to show the effectiveness of the analysis.

  exp(B ) exp(B) = exp(B + B) exp sk (B B) , where sk(B B) is the skew symmetric part of B B. Hence, we can always write exp(B ) exp(B) ≤ exp(B + B) exp sk (B B) ≤ exp(B + B) .
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 12 Figure 1: Evolution of the components of the z(t) state, whose dynamics is associated to the eigenvalue λ = -1 with geometric multiplicity g = 10, initialized at z(0) = z 0 .
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 61 Defining T as the standard change of coordinates that puts A in (21) into Jordan Block form, and redefining D in (22), we call T = T D. Then P = T -T -1 defines a Lyapunov function for (21), i.e., V = x T -T -1 x is valid Lyapunov function.
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 61 Let A in (21) be Shur, then, κ = µ(T ), with T = T D and
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 4 Figure 4: Evolution of x with two coincident observer eigenvalues. Comparison with the ideal State Feed back (SF) bevahior.
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 5 Figure 5: Evolution of x with high gain observer. Comparison with the ideal State Feed back (SF) behavior.
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 67 Figure 6: Convergence of the design observers into the predefined region ε = 10 -3 , within the desired convergence time t = 0.1.

  e., x(0) = I + Π x(0) with Π being solution of Π (A -L C) -(A -BK ) Π + BK = 0.

With some abuse of notation.

Because of the inverse map D, we have to assume that all the eigenvalues in the origin have at most unitary geometric multiplicity (hence they are simple). In this paper we want to analysis, the stability properties of the system, and since A is assumed to be Hurwitz, there are no eigenvalues on the imaginary axis.

This evolution can be obtained, after 3 seconds of transitory, by initializing the system at a vector of all 1.

For us a Natural Lyapunov function is any Lyapunov function that can be written directly in terms of the algebraic property of a Hurwitz A without passing through a Lyapunov equation (15) (or inequality[START_REF] Mikhailovich | The general problem of the stability of motion[END_REF]) and thus through the choice of positive definite matrices P and Q.

Despite the fact that V = x P ẋ + ẋ Px = x PA + A P x, we also notice that PA + A P is the symmetric part of the matrix 2PA, that is, the only fundamental part of 2PA that describes the evolution of the quadratic form.

and hence we have that for all t ≥ t , where t = ln ε κ-1 ρ -1 λeff , the norm of the estimation error | x| is lower than ε. We can hence describe the behavior in time of the closed loop system with control law u = -K sat κρ+ε (x + x)

x .

(30)

In the following, we provide an example to illustrate the design procedure.

A simple example of design

Consider the evolution of mass with unitary mass moving on a one dimensional space, of which we control the acceleration u and we measure the position y, i.e. the system (28) matrices read as

Let us say, that we stabilize the chain of integrator by assigning to the closed loop two eigenvalues in -1, by choosing K = [1 2]. Note that, unavoidably, the eigenvalue in -1 will have geometric multiplicity equal to 2, and hence the matrix T K will bring the matrix A -BK into Jordan block form, i.e.

In order to exploit all the results described in this paper we should consider the change of coordinates T K = T K D, by since D = diag(1, -1), and in all the analysis D appears always as D 2 = I, we thus drop it in the following. Hence, we have

where the spectrum of

Hence, initializing the system into a region of at most radius ρ = 1, the norm of the state will at maximum be κρ = κ.

Consider, now, two observer design cases, for which we want to impose the observer performances that from time t = 0.1[s] on the estimation error x has a norm x(t) ≤ ε = 10 -3 , for t ≥ t .

In particular, we first consider to place the observer poles both into -1 and then inand -2 , so to compare the differences.

We first start with the case L = [2 1 2 1 ] , that provides the observer error dynamics with two eigenvalues in -1 , and thus with geometric multiplicity equal to 2. We now have that

where T L = T L D, and

, with

By imposing ε = 10 -3 at t = 0.1, we have to find 1 such that By looking at the plotting of t as function of 1 , see in Fig. 3 the blue curve, we have that 1 ≈ 265 to fulfill the requirement on the convergence time. Hence, the maximum peaking value of the observer state (for unitary initial conditions of the plant, i.e., ρ = 1) is given by κ ≈ 530, while L = [530 70225] and the resulting closed loop dynamics (compared to the ideal state feedback case ) is depicted in Fig. 4.

For the second case, we consider the standard high gain approach by thus choosing L = [3 2 2 ] , leading to a spectrum of A -L C is {-, -2 }. We now have that