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Abstract. Foveated vision is a trait shared by many animals, includ-
ing humans, but its contribution to visual function compared to species
lacking it is still under question. This study suggests that the retinotopic
mapping which defines foveated vision may play a critical role in achiev-
ing efficient visual performance, notably for image categorisation and
localisation. To test for this hypothesis, we transformed regular images
by using a Log-polar mapping, and used this retinotopic images as the the
input of convolutional neural networks (CNNs). We then applied transfer
learning on pre-trained networks on the ImageNet challenge dataset. Our
results show that surprisingly, the network re-trained on images which
were compressed by the retinotopic mapping performs as well as the re-
trained network applied to regular images. Moreover, we observed that
the retinotopic mapping improves the robustness and localisation of im-
age classification, especially for isolated objects. This was specially acute
on a custom version of the dataset which aimed to categorise images that
contain or not an animal. In summary, these results suggest that such
retinotopic mapping may be an important component of preattentive
processes, a central cognitive characteristic of more advanced visual sys-
tems.

Keywords: Foveated vision - Convolutional Neural Networks - Transfer
learning - Visual categorisation - Neuromorphic transformation.

1 Introduction

The visual system in humans and many mammals is distinguished by a sub-
stantial resolution disparity between the central area of the visual field (fovea)
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Fig. 1. We illustrate the process of transforming an example input image originally de-
fined in Cartesian coordinates into retinotopic space using a Log-polar transformation.
In (A), the input image is presented with the fixation point marked by a red cross.
The regular grid representing the image is defined by vertical (red) and horizontal
(blue) Cartesian coordinates (z, y), as shown in (B). As depicted in (C) to the image
of the grid, by applying the Log-polar transformation, each pixel’s coordinates with
respect to the fixation point are converted based on its angle of azimuth 6 (abscissa)
and the logarithm of its eccentricity p (ordinates). This transformation results in an
overrepresentation of the central area and a deformation of the visual space. When the
transformation is applied to a natural image, as shown in (D), there is a noticeable
compression of information in the periphery.

and the peripheral regions, wherein the number of photoreceptors exponentially
decreases with eccentricity [11]. Consequently, a natural question arises regard-
ing the advantages conferred by these non-isotropic visual inputs in terms of
information processing. Numerous hypotheses have been proposed regarding the
role of this deformation of the visual field. One primary explanation is the cou-
pling of foveal inputs with visual exploration : a retina with a fovea allows for
efficient visual processing if the eye can actively move and focus its attention on
specific points of interest. Studies have shown that this combination of saccades
and foveal retina, coupled with an effective mechanism for detecting points of
interest, significantly enhances visual acuity [4,5,3].

The most common approach to modeling foveal retinas involves reorganizing
the pixels of an image into a Log-polar reference frame [9]. A Log-polar trans-
formation organizes the visual field based on the angle and distance from the
fixation point (eccentricity), with a resolution that exponentially decreases with
the eccentricity. The primary role of a Log-polar transformation is to strongly
compress the visual information, keeping high spatial frequencies at the center,
but only low-spatial frequencies at the periphery. This conducts to process far
less visual information when compared to the full resolution. Another impor-
tant feature of the Log-polar transformation is the changing of the geometrical
properties of the image, transforming rotations and zooms (homotheties) into
translations [16].

We thus assess Log-polar visual processing on a well-known task, in the
study of vision, that is the detection of an animal in a scene [6]. Applied to
generic natural scenes, the task is such that the animal species is arbitrary. A
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further difficulty is due to the large variations in identity, shape, pose, size, and
position of the animals that could be present in the scene. Yet, biological visual
systems are able to efficiently perform such detection in images which are briefly
flashed [15]. Recently, deep learning algorithms have achieved an accuracy that
is currently superior to humans for some visual recognition tasks. However, the
tasks on which these artificial networks are typically trained and evaluated tend
to be highly specialised and do not generalise well, e.g. accuracy drops after image
rotation [8]. Here, we propose that a retinotopic mapping may be one essential
ingredient in that robustness and study the advantages of this transformation
in the context of image classification and localization.

2 Methods

2.1 Retinotopic mapping

We implement retinotopic mapping, as found in some animal species such as
humans, so that visual information is concentrated at the center of gaze by ap-
plying a transformation from the regular Cartesian pixel grid to a Log-polar grid
(see Figure 1). This transformation is accomplished using Pytorch library’s [10]
function : grid _sample(), it applies a grid to the pixels of the image in Cartesian
coordinates. Therefore with a Log-polar grid, each pixel in Cartesian space is
assigned a new position in Log-polar space. We set the number of angles sampled
(Np) and the number of eccentricity sampled (IN,) to 256 to get an output image
with a 256 x 256 resolution which was also used during the training process. All
0 values are within a linear distribution in [0;27], while p values are within a
logarithmic distribution in 1ogy (7min; Tmax ). After analyzing various rp,;, param-
eters (performed with a central fixation point), we set ryi, t0 —5; Tmax fixes the
radius and depend on the desired sub-sampling size. For instance, setting ryax
to 0 gives maximal p values range within a log 2 distribution in [0.03;1].

2.2 Transfer Learning

Transfer learning is a powerful technique that leverages knowledge gained from
solving one problem, such as ImageNet [13], and applies it to a different yet
related problem. Through our research, we successfully demonstrated the use
of transfer learning to retrain VGG networks [14], enabling their application to
various tasks. During the retraining process, we explored two network config-
urations: one with a retinotopic mapping at the input, and the other without.
We have shown in our previous study that an appropriate training process is
sufficient to produce performance with robustness comparable to physiological
data [8]. Also we have shown that it is possible to predict the likelihood of a
network trained on the animal task using the semantic link that connects the
outputs of a pre-trained network to a label library such as ImageNet [8]. There-
fore, we expect similar results even though we did not examine the networks
re-trained on the animal task in this study. We extended the study by retraining
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a Deep CNN RESNET101 on the categorization of 1000 ImageNet labels. This
deeper network exhibited enhanced robustness, albeit at the cost of a higher
computational load [7].

Each of these networks (i.e. VGG16 and RESNET101) is then re-trained
with Log-polar inputs and compared with the baseline network on the Ima-
genet dataset. Two types of task will be exploited: (i) categorization of a tag
of interest among the 1000 labels in ImageNet and (ii) categorization and lo-
calization of an animal. The study covers 4 networks: VGG16 CARTESIAN IM-
AGENET and VGG16 POLAR IMAGENET, RESNET101 CARTESIAN IMAGENET
and RESNET101 POLAR IMAGENET (where only VGG16 CARTESIAN IMA-
GENET and RESNET101 CARTESIAN IMAGENET are not re-trained using trans-
fer learning).

2.3 Data sets

We have selected two datasets for our study. The first dataset is IMAGENET [13],
which is widely used due to its extensive collection of images and associated
labels. This dataset offers rich semantic links, enabling the construction of task-
specific datasets, such as those focused on "animal" recognition. However, it is
worth noting that IMAGENET exhibits certain biases, particularly with objects
being centered in many images. This characteristic makes it suitable for apply-
ing a Log-polar transformation, where information is concentrated around the
fixation point, which is considered the center of the image during training.

Despite its advantages, IMAGENET has limitations for localization tasks. For
instance, it lacks multilabels, meaning there is only one label per image, and
the proportion of bounding boxes relative to the image size is relatively small,
which can limit the impact of certain analyses. To address these limitations, we
also utilize the ANIMAL 10K [17] dataset. This dataset provides key points for
each animal present in an image. By fitting Gaussians to these key points, we
can generate heat maps centered around the label of interest, which, in this case,
is ’animal’, see Figure 2. This approach enables us to improve localization and
better analyze the distribution of animals in the images.

2.4 Likelihood map protocol

The CNNs described above are designed to categorise images by providing a
likelihood value for each label. This likelihood is a probability that is, a scalar
between 0 and 1) which predicts the probability that the label is present in the
image. This allows to take a binary decision ("presence" or not) by choosing
the label corresponding to the top likelihood, for instance. In our setting, we
can also take different views from a large image and compute the likelihood
for each of these, allowing to compare which view provides the best likelihood
(“Bootstraping”). Views may consist for instance of cropping sub-images centred
on different fixation points, with the fixation points aligned on a regular grid in
visual space, see Figure 3.
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Original Image Heatmap from keypoints full Reduce 8 x 8 heatmap from
resolution keypoints

Fig. 2. (A) The original image of the ANIMAL 10k dataset. (B) A heat map constructed
by fitting Gaussians to the key points of the ANIMAL 10k data set (see Methods :
Data sets). (C) The heat map constructed in (B) is normalized and reduced to an 8 x 8
resolution to be used as ground truth when evaluating the heat map. A threshold (0.2)
is applied to reduce the heatmap field to the assumed contour of the animal.

We used two parameters to define these maps: the first parameter is the
resolution of the grid of fixation points. The second one is the size of the samples
cropped at each of these positions define as the proportion of the input’s Log-
polar grid radius on the total input size (respectively Cartesian grid size, as the
grid is a square for Cartesian samples see Figure 3-A & C). The input grid values
determine the size of the sample taken. For a sample size of ratio 1.0 representing
the entire input image, the grid values will lie within [-1.0;1.0], for a sample size
of ratio 0.33 representing 30% of the total size of the input, the grid values will
lie within [-0.33;0.33]. In the next section, we’ll refer to the ratio of sample size
to input size.

This sample is then transformed or not by the retinotopic mapping before
being used as input for the corresponding network see Figure 3-B & D. Con-
veniently, a collection of samples for different fixation points can be process as
a single batch, and we used here a range between 50 and 70 fixation points.
This protocol define a likelihood map for any given network as the likelihood
of categorising the presence of a label of interest (here "an animal") inferred at
regularly spaced fixation points in the image.

3 Results

3.1 Average accuracy

We observed that the network retrained on transformed images had a similar
categorisation accuracy to that of the network retrained on regular images. This
is surprising, given that the networks were pretrained on regular images and that
images with a Log-polar transformation show a high compression of visual infor-
mation around the fixation point and a degradation of textures in the periphery,
see Figure 4.
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Fig. 3. Generating different views of a single image to compute likelihood maps.
(A) For the networks using Cartesian inputs, we used a regular grid of 8 x 8 fixation
points, which allow to crop samples, one particular view being highlighted. As shown
in (B), this creates a batch of images which can be used to generate likelihood maps.
(C)) Similarly, we used a similar grid for generating batches of Log-polar inputs, as
shown in (D)). In (B) & (D) each samples correspond to 33% of the input (see text
for more details).

In addition, we found that while the VGG16 network retrained and tested on
regular images showed some degradations for different rotations, the categori-
sation results were much more invariant for the network including a retinotopic
mapping (see Figure 4). This phenomenon is a consequence of the translation
invariance imposed by the structure of CNNs. Applied to the retinotopic map-
ping, this translation invariance in Log-polar space is transferred to a rotation
and zoom invariance in the visual space [1]. The performance of RESNET101
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Fig. 4. Average accuracy over the ANIMAL 10k [17] dataset, shown for both retrained
and pre-trained networks with different input image rotations. The rotation is applied
around the fixation point with an angle ranging from —180° to +180° (in steps of
15°). We tested each network (Vaal6 or RESNET101) either with raw images or with
retinotopic mapping (Cartesian or Polar). The dotted line represents chance level. This
shows that Vaa16 has a degraded performance compared to RESNET101, and notably
that rotating images may have an adversarial effect on categorization performance, an
effect which is less observed for RESNET101.

with Cartesian or Log-polar mapping are similar. Surprisingly, while this net-
work was not designed a priori for retinotopic images, we observe a slight, but
consistent, advantage for the retinotopic mapping.

3.2 Likelihood maps as a proxy for saliency

We tested the networks on the likelihood map protocol on a 8 x 8 fixed grid of
fixation points varying the relative size of the input sample with different ratios
(15%, 30%, 45%, 60%, see Table 1). Using the heat map extracted from the key
points of the ANIMAL 10K [17] data set as ground truth, "in" represents coor-
dinates inside an animal (and respectively "out" coordinates outside an animal,
see Table 1). For each point in the 8 x 8 grid, a likelihood value is obtained
(probability of an animal’s presence). Next, we calculate the average likelihood
for all points located within the zone corresponding to the animal (likelihood
"in") as well as the average likelihood for the zone that does not contain the an-
imal (likelihood "out"). Next, we compare the values obtained in the "in" zone
with those obtained in the "out" zone. A higher contrast indicates the network’s
better ability to identify regions of interest in an image. For the RESNET101,
both performed well on the task even if the CARTESIAN tend to maintain a high
accuracy outside the box. For the RESNET101 networks, the CARTESIAN version
of the network seems to perform much less well than the POLAR version in this
exercise (see Table 1). If we consider a good categorization to be a high average
probability on "in" coordinates (or a low probability on "out" coordinates), then
in general, networks using POLAR grids tend to be slightly more contrasted than
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networks using CARTESIAN grids, which is more manifest in the RESNNET101
case. From this perspective, we observe that image ratios ranging between 30%
and 45% appear to be best suited for highlighting the contrast between regions
inside and outside the area of interest.

Table 1. Likelihood maps results for the VaGg16 and RESNET101 networks and as
computed on the IMAGENET challenge. Results are given as a fonction of the relative
size of the samples with respect to the full image (Image Ratio). We highlight for each
network the mapping which reaches maximal likelihood ratio for the "in" vs. "out"

conditions.
VaGacl6 RESNET101
Ratio Cartesian|Log—Polar Cartesian|Log—Polar
15% 1.18 1.14 1.06 1.14
30% 1.19 1.24 1.06 1.20
45% 1.10 1.19 1.01 1.14
60% 1.03 1.07 1.01 1.06

3.3 Accuracy after "saccades" protocol

In this part of the study, we focused on finding a label of interest by including
a large number of fixation points per image. Thus, in addition to the central
fixation point (1 point with a sample ratio of 100%), we applied a grid of 7 x 7
fixation points (49 points with a sample ratio of 33%) as well as a grid of 3 x 3
fixation points (9 points with a sample ratio of 60%). All 59 fixation points are
processed in a single image batch. The use of one of these fixation points would
correspond to the network response after a saccade to an area of high salience.

We applied this protocol to the 50,000 images in the validation set of the IMm-
AGENET data set. If we only stop at the best position (Top 1), the performance
of the networks is degraded compared to their accuracy without saccades, and
the same is true for Top 5 (compared to the performance of Top 5 without sac-
cades, not shown here). On the other hand, by adding a simple saccade selection
strategy (Top Choice), we find that the accuracy of all networks exceeds their
baseline level.

4 Conclusion

A first and principal result of this study is proving the excellent capability of
off-the-shelf Deep CNNs to deal with Log-polar inputs, that however represent a
profound transformation of their visual inputs. The RESNET and VGG networks
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Table 2. Accuracy after "saccades" results on the 1000 labels from IMAGENET. BASE
represents the Top 1 accuracy of the network without saccades (state of the art ac-
curacy), Top 1 represents the accuracy using the post-saccade maximum likelihood
as the predictor, TopP 5 represents the accuracy using the five post-saccade maximum
likelihoods as the predictor. The TopP CHOICE represents the accuracy by taking the
maximum post-saccade position if it is correct, otherwise we keep the pre-saccade pre-
diction.

Vaal6 RESNET101
Cartesian|Polar||Cartesian|Polar

Base 0.74 | 0.55 0.78 |0.74
Top 1 0.69 | 0.55 0.67 [0.69
Top 5 0.79 |0.70 0.83 [0.84
Top choice|| 0.74 |0.64 0.85 |0.80

A Cartesian fixation points grid B Log polar fixation points grid

. 1 x 1 fixation points . 3 x 3 fixation points D 7 x 7 fixation points

Fig.5. (A) Example of a superposition of Cartesian fixation points (respectively Log-
polar in (B)) used to carry out the after "saccades" protocol. With a central fixation
point (black), a 3 x 3 grid of nine fixation points, each corresponding to a 60% ratio
of the input (blue) and a 7 x 7 grid of forty-nine fixation points, each taking a sample
corresponding to a 33% ratio of the input (white).

seem to effortlessly adapt to inputs where a large portion (the periphery) is
heavily compressed, and the spatial arrangement significantly perturbed. The
recognition rates achieved with Log-polar inputs are equivalent to those of the
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original models. Additionally, the Log-polar transformation provides the added
benefit of better invariance to zoom and rotation. However, this invariance comes
at the expense of a reduced invariance to translation. For images that would not
be centered on the region of interest, one would need to shift the fixation point
to the area of interest, akin to eye saccades.

The integration of a retinotopic mapping approach holds significant promise
for enhancing the efficiency and accuracy of image processing tasks. Our results
are consistent with physiological data on ultra-rapid image categorisation [12,6].
The Log-polar compression employed in our approach allows for seamless exten-
sion to larger images without a significant increase in computational cost.

As a second result, the definition of saliency maps based on scanning the
visual scene at a limited number of fixation points enables us to gain insights
into Log-polar processing specificities: the Log-polar transformation provides a
more focal view, thereby better separating the different elements of the image
when focusing on its specific parts. In out case, it seems for instance to allow
a more precise localisation of the category of interest, here an animal. It also
gives us an insight into the features on which our networks actually rely. Such
information can be compared with physiological data [2], used to design better
CNNs, and ultimately allow physiological tests to be proposed to further explore
the features needed to classify a label of interest. In particular, by focusing on
the point of fixation with the highest probability in likelihood maps, we could
envisage refining the training of the network our retinotopic mapping.

The accuracy performance of networks with a protocol that implements sac-
cades in the process provides insight into the spatial modulation of network
performance. It also allows us to extend the study of this type of network by
implementing a strategy for choosing the optimal saccade.

Finally, the implementation of this robust categorisation, coupled with a
refined localisation of a label of interest and the optimal selection of saccades,
could allow us to extend this study to a more complex task. One such task is
visual search (i.e., the simultaneous localisation and detection of a visual target),
and the likelihood maps could provide the underlying pre-attentive mechanisms
on which its effectiveness seems to depend.
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