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Summary 

 

Cosmology is currently facing some major challenges. In addition to dark matter and dark energy, the James Webb 

Space Telescope has brought the issue of "impossible" galaxies to the fore. In the present work, we put to the test 

the following conjecture: something simple eludes us, and the various problems mentioned are interrelated. Our 

proposition is that, on the cosmological scale, it is appropriate to take a value of the speed of light c lower than its 

standard value c0 in vacuum. For this, we will write c = cc (subscript c for "cosmological"). This defines an optical 

index nc = c0 /cc. We account for this "refringence" by a Shapiro effect extended to the scale of the universe, 

described by its average density ρu and its equivalent gravitational radius Ru. Remarkably, universes with indices 

greater than two are entirely conceivable, and their characteristics are close to those we determine for our own. 

The velocities v of celestial objects are estimated from redshifts in ratios of the type v/c, where the speed c of light 

is usually taken to be equal to c0. With an equal v/c ratio (all things considered, only the v/c ratio has any meaning), 

dividing c0 by a certain factor α lowers the velocities v without postulating the existence of dark matter nor dark 

energy. Taking into account the problems cited suggests a value of α close to 2.4. The refringence of the universe 

may indeed be responsible for this. If we accept this approach, we are led to a lengthening of the age of the universe: 

it could reach 33 billion years. This would allow it to host in its relatively young phases objects that are already 

old and structured in relation to the duration scales established for them elsewhere. 

 

 

Keywords: dark matter; dark energy; Shapiro effect; general relativity; Schwarzschild metric; refringence; 

impossible galaxies; universe; Hubble radius; density; cosmological refractive index; age of the universe; Doppler 

shift; cosmological scale 
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Introduction 

Cosmology is currently facing some major challenges. Since the James Webb Space Telescope 

(JWST) came into service, the question of "impossible" galaxies (is the universe too young?) 

has been added to those of dark matter and dark energy (what are they made of, given that they 

make up some 95% of the universe's matter and energy content?). Among a vast literature, see, 

on the first subject, Zwicky (1933) and Rubin & Ford (1970), on the second, Perlmutter et al. 

(1999), and on the third, Boyett et al. (2023), as well as Gupta (2023) where numerous 

references can be found. 

In the present work, we'd like to put the following conjecture to the test: there's no need for new 

detectors nor new equations1 , something simple eludes us, and the various problems mentioned 

are interrelated. The proposition we are putting on the table is that, on the cosmological scale, 

we need to take a value for the speed of light c that is lower than its standard value c0 in vacuum. 

For this, we'll assume c = cc (subscript c for "cosmological"). This defines an optical index nc 

= c0 /cc. We account for this "refringence" by a Shapiro effect extended to the scale of the 

universe, described by its average density ρu and its equivalent gravitational radius Ru. The 

slowdown results from the cumulative influence of length and time variations in a non-

Euclidean metric.  

As it happens, the velocities v of celestial objects are estimated from redshifts in ratios of the 

type v/c, where the speed of light is taken to be equal to c0. With an equal v/c ratio (only the 

ratio has any meaning), by dividing c0 by a certain factor α, we lower the velocities v without 

postulating the existence of dark matter nor dark energy. If we accept this approach, we are also 

led to a lengthening of the age of the universe. Taking the above problems into account suggests 

a value of α close to 2.4. Preliminary use of the Schwarzschild metric (also used for the Shapiro 

effect) shows that we can hold an index nc equal to the factor α for values of mean density and 

radius of the universe consistent with the ranges of values accepted today (ρu in the interval 10-

28 - 10-26 kg/m3, Ru to be counted in tens of billions of light-years).  

 

Our plan is as follows. In the first part, we'll take a look at the reduction in the speed of light on 

a cosmological scale, by calculating the equivalent refractive index nc (extended Shapiro effect), 

and giving a first indication of the values of the densities and sizes of the universe: we'll see 

 
1 Another way of saying: let's make do with the data at our disposal, and keep as far as possible the tried-and-tested theories on 

which we've built our representation of the world. 
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that it is indeed possible to lower c on this scale. We'll discuss the different ways of talking 

about the speed of light within the framework of general relativity. In the second and third parts, 

we'll look at the problems of dark matter and dark energy: what factor α makes it possible to 

bring the excessive speeds that make them postulate down to a level consistent with our usual 

physical laws, dividing the speed of light c that brings us the information? We will then compare 

(part 4) the results of parts 2 and 3 with those of part 1: fortunately, the two approaches can be 

brought together, by identifying the α factor with an optical index nc, calculable and of value 

2.4 for plausible choices of density and universe size that we can identify. We'll examine the 

consequences of our approach on the age of the universe, with its possible upward revision, and 

the view to be drawn from it on the case of impossible galaxies. We end (part 5) with a few 

concluding words: our hypothesis stands up to initial tests. On it we are building what is at this 

stage only a first iteration and a framework for re-examining models; due to the coupling 

between theoretical approaches, observations and measurements (object distances, redshifts, 

Hubble constant, size and age of the universe, densities, etc.) a readjustment of the whole 

representation of our universe is required. At this preliminary stage, we have not reviewed all 

the tensions that are appearing in cosmology today (see Guy, 2022a). Furthermore, and in this 

context, the various figures announced should not be given a precision they do not have. 

In the course of our work, we first postulated a lower speed of light on the cosmological scale 

compared with our local standards (avoiding recourse to dark matter and dark energy), for 

reasons we'll say a word about (part 2), see Guy (2022a and b). In a second stage, after exploring 

various avenues (some of which have now been abandoned), we saw the relevance of the 

gravitational approach based on general relativity and the Schwarzshild metric (Guy, 2023a and 

b). However, as far as the exposition of results is concerned, it seems more logical to us to begin 

by establishing the physico-mathematical framework useful for tackling cosmological 

problems, the succession of parts 1, and 2 and 3, being the reverse of that which initially 

presented itself to us. 

  

1. A refractive universe 

1.1. Universe-wide Shapiro effect. Calculation of the equivalent index 

The Shapiro effect (1964) is manifested by an increase in the travel time of light, due to the 

effect of a mass intervening along its path. This is due as much to the lengthening of the path 

in a space curved locally by matter, as to the consequences for clocks of a non-Euclidean metric. 

The result can be seen in comparison with a travel assumed to take place in a vacuum in the 
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absence of matter; or in comparison with a Euclidean distance projected towards distant objects, 

which is the case with the use of standard candles, or angular distances using our local standards 

based on c = c0. This effect, to be cumulated over all the matter traversed from a distant object, 

leads us to understand that the equivalent "speed" of light on the cosmological scale is, in any 

case, strictly less than c0. The lengthening is conveniently expressed by an equivalent optical 

index of refraction, greater than one. On the scale of the universe, the path of a photon, reaching 

us from distances to be counted in light-years up to billions of light-years, is slowed down by 

all the masses encountered. These masses are of different sizes, and we can replace them, at the 

scale we're at (which we'll come back to), by an equivalent density of matter. 

 

A calculation is possible using a non-Euclidean metric within the framework of general 

relativity. As a preliminary approach, we choose the Schwarzschild (1916) metric. The simplest, 

it is used by the authors to determine an optical index equivalent to a matter distribution, in 

particular for the effect of a single mass. The optical analogy is not new; it has been proposed, 

at least to first order, by many authors: Möller (1952), Feynman (1964), Landau and Lifchitz 

(1970), Evans et al. (1996), Straumann (2000), Nandi and Islam (2009), Sarazin et al. (2018). 

The Schwarzschild metric implements directly accessible parameters such as masses and their 

distances, and its writing requires no special assumptions about the evolution of the universe. 

By contrast, in other metrics (such as the FLRW metric: Friedmann Lemaître Robertson 

Walker), the parameters are engaged in circularities involving choices about the expansion of 

the universe. Information on masses and distances are not provided, but density parameters Ωi 

(curvature, ordinary and dark matter, vacuum energy, radiation), which are themselves subject 

to different assumptions. They are based on a scaling parameter a(t): in this case, we manipulate 

comoving distances, the physical meaning of which to link to a global optical index is more 

problematic. Sitter's metrics, on the other hand, involve the cosmological constant (linked to 

dark energy), which is precisely what we want to dispense with. But in a second step, we'll have 

to take the expansion of the universe into account. 

 

For a problem with spherical symmetry, the Schwarzschild metric can be read, in spherical 

coordinates: 

 

ds2 = ac2dt2 - b(dr2 + r2 dθ2 + r2 sin2θdφ)2   (1) 
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with   𝑎 = (1 − 
2𝐺𝑀

𝑟𝑐2
)  (2) and  𝑏 = (1 − 

2𝐺𝑀

𝑟𝑐2
)−1  (3) 

 

The coefficients of the metric involve the influential mass M seen at distance r. The value c is 

the usual standard value c0 (in the absence of a subscript in the following, c = c0 ). Within the 

framework of the cosmological hypothesis of isotropy and homogeneity of the universe, we 

won't need to take into account possible variations in angles θ and φ, i.e. dθ = 0, dφ = 0. Writing 

that the propagation of light is defined by, and respects, ds2 = 0 (a mathematical property 

expressing the second postulate of special relativity, extended to general relativity in non-

Euclidean space), we derive from the preceding relations 

 

𝑑𝑟2

𝑑𝑡2
=  

𝑐2

𝑛2
     (4) 

 

Where we define the optical index n equivalent to the gravitational effect of the mass M at a 

distance r from the observer. We have 

 

𝑛2 =  
𝑏

𝑎
= (1 − 

2𝐺𝑀

𝑟𝑐2
)−2    (5) 

 

From which we derive: 

 

𝑛 = (1 − 
2𝐺𝑀

𝑟𝑐2
)−1     (6) 

 

The previous value applies to the effect of a single mass M; but we're looking for a property of 

the universe as a whole, and we have to take into account all the masses mi that populate it, at 

distances ri. These include interstellar dust and gas as well as stars, galaxies, galaxy clusters and 

so on. Summing up all these masses, we get 

 

𝑛 = (1 − 
2𝐺

𝑐2
∑

𝑚𝑖

𝑟𝑖
𝑖 )−1    (7) 

 

Where i subscript runs through all the particles of matter, from the smallest to the largest. This 

can be written so because it is a summation of scalars, not vectors. But we obviously lack 
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complete knowledge of the distribution of matter in the universe. We can attempt a calculation 

(which will be accurate on an ensemble scale) using two parameters thought to give an adequate 

account of the universe's properties: - the average density of the universe ρu, and - its 

"equivalent" gravitational radius Ru, responsible for the gravitational potential at the point 

where the observer is located. The pair (ρu, Ru) determines the total influential mass of the 

universe at a certain average distance. In a first approach, we assume that this makes sense, 

despite the expansion of the universe.  

Let's sum the previous expression over the spherical volume of the universe of radius Ru around 

the observer. We then have: 

 

∑
𝑚𝑖

𝑟𝑖
𝑖 ≈ ∫

𝜌𝑢𝑑𝑉

𝑟

𝑅𝑢

0
    (8) 

and 

𝑛 = (1 − 
2𝐺

𝑐2 ∫
𝜌𝑢𝑑𝑉

𝑟

𝑅𝑢

0
)−1  (9) 

 

Equation (9) expresses the change of scale we propose by referring to a continuous rather than 

a discrete summation (cosmological scale and cosmological principle). Local effects (such as 

the deviation of light by the sun, used as a test for the Schwarzschild metric) are incorporated. 

Using polar coordinates, the integration volume around the observer is written as dV = 4πr2 dr 

(corona of thickness dr located at distance r). By transferring to the previous relationship, the r 

in the numerator is simplified and the part to be integrated remains: 

 

∫
𝜌𝑢𝑑𝑉

𝑟

𝑅𝑢

0
= ∫ 4π𝜌𝑢rdr

𝑅𝑢

0
    (10) 

 

Whose value is 

2πρuRu
2     (11) 

 

It then comes  

 

𝑛𝑐 = (1 −  
4𝜋𝜌𝑢𝐺𝑅𝑢

2

𝑐2
)−1   (12) 
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Where we call nc the index on the cosmological scale. Relation (12) can be applied to any point 

in the universe; it includes the influence of stars close to the point of calculation, corresponding 

to higher densities and on a very small scale compared to that of the universe where nc is 

evaluated. What's important is homogeneity and isotropy on different scales, despite differences 

in densities (or distances between objects). Isotropy and homogeneity are already guaranteed 

on the scale of stars in a galaxy (light-years).  

 

Note that, in the Schwarzschild metric as used, we don't need to take into account the 

wavelength shifts caused by the "Einstein effect" (gravitational redshift for light arriving from 

a zone of higher gravitational potential). Because we don't have a gravitational potential 

gradient, we're at a scale where n is the same everywhere. 

 

First exploration 

Our aim in this work is not to say: "This is the density, this is the radius of our universe". It is 

more simply to ask the question: "Is a universe with a cosmological index of the order of 2.4 

conceivable for amplitudes Δρ and ΔR that frame the values of the universe that hosts us?" As 

a result of the circularities between models (choice of laws, choice of parameters, which, as we 

propose, will have to evolve), observations and measurements, our universe itself cannot 

already be characterized by defined parameter values, but by intervals. Equation (12) provides 

a basis for discussion of the relationships between the value of the index nc and those of the 

density and size parameters of the universe. It can also be written as: 

 

    𝜌𝑢𝑅𝑢
2 =  

𝑛𝑐−1

𝑛𝑐

𝑐2

4𝜋𝐺
   (13) 

 

Let's use this last relation2 to represent the conceivable refractive universes in an a priori 

general way, and let's position the values of nc in a space (Ru, ρu). We'll adopt a logarithmic 

representation (base 10) where the nc iso-index curves are straight lines of equation: 

 

 
2 It's interesting to note that A. Einstein (1917), in his paper on a static universe of radius R and matter density ρ, 

found the relationship ρR2 = c2 /4πG, identical to ours to within a factor (nc -1/nc). It corresponds to a universe 

where, according to our analysis, the index nc is infinite and light cannot propagate on this scale (see below). This 

is actually what Einstein did analyze: “light can never leave the system”. 
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𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅𝑢 = 𝑙𝑜𝑔
𝑛𝑐−1

𝑛𝑐
+ 𝑙𝑜𝑔

𝑐2

4𝜋𝐺
    (14) 

 

They have a slope equal to -2. For the universes we will be dealing with, it is appropriate to 

express distances in billions of light-years, i.e. 9.46 1024 m (1 ly = 9.46 1015 m). If R'u is the 

value of Ru in billions of light-years, we have Ru =R'u  x 9.46 1024. Carrying this expression for 

Ru into (14), we get 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = 𝑙𝑜𝑔
𝑛𝑐−1

𝑛𝑐
+ 𝑙𝑜𝑔

𝑐2

4𝜋𝐺
 −  2 log(9,46) − 2 × 24  (15) 

 

We carry out the various calculations with c = c0 = 3.108 m/s (inherited from the Schwarzschild 

metric in its original expression, referring to "local" standards) and G = 6.67 10-11 u.S.I. We are 

primarily interested in orders of magnitude, and the significant digits used in the calculations 

have a simple intermediate and relative value. We have 𝑙𝑜𝑔
𝑐2

4𝜋𝐺
  = 26.03 and the constant part 

of the second member of equation (15) is equal to 26.03 - 1.95 - 48 = - 23.92. This gives : 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = 𝑙𝑜𝑔
𝑛𝑐−1

𝑛𝑐
− 23,92  (16) 

 

In the following, we'll write Ru or R'u indifferently, knowing that the radii are expressed in 

billions of light-years. Which domain of space (Ru, ρu) should we explore? Let's study a field 

of a priori plausible values for universes encompassing the one we inhabit. 

 

The range of orders of magnitude of the density of matter ρm can be assessed by inspection of 

the quantity of gas, dust, stars, galaxies, etc., observed directly or indirectly, and its distribution 

as a function of the assumed size of the domains examined. Today, it takes account of possible 

dark matter, highlighted by estimates of the velocities of observed objects and their comparison 

with a priori models of behavior.  

"Direct" inspection taking dark matter into account leads to values of ρm of the order of 5.10-27 

kg /m3. This value needs to be lowered to exclude dark matter (estimated to be 6 times more 
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abundant than ordinary baryonic matter), which is precisely what we want to avoid. Dividing 

the previous figure by 7, we obtain a ρm of the order of 7.10-28 kg /m3. 

The value of the critical density ρc, a function of the Hubble constant H (ρc = 3H2 /8πG) gives 

another indication. For H = 71 km/s/Mpc, ρc is of the order of 10-26 kg/m3 for a universe age of 

13.8 billion years3. The so-called Hubble tension shows an interval for H of between 67 and 73 

km/s/Mpc, which is reflected in the Hubble radius (to which we return later) and the age of the 

universe, between 13.4 and 14.6 billion years. The detour via the critical density is consistent 

with the total density ρm (baryonic matter + dark matter) via the densities Ωi of the different 

energies in the expansion models. With Ωm  = ρm / ρc  = 30% (according to the standard ΛCDM 

model), we find the order of magnitude ρm = 3.10-27 kg /m3  close to that given just now (5.10-

27 kg /m3 ). If we restrict ourselves to ordinary matter, we arrive at a value just under 5.10-28 kg 

/m3, close to the 7.10-28 kg /m3 given just now. 

The circularities we've been talking about link measurements and models (laws, choice of 

density parameters Ωi). All in all, we are led to an interval of between 10-26 and 10-28 kg/m3, as 

a first approximation without taking into account the expansion of the universe, which causes 

it to vary slowly. In our present understanding, the density value of our universe is probably 

close to the lower values of this interval (of the order of 5.10-28 kg/m3). 

 

 

As for the size Ru of a gravitationally-influenced universe equivalent to our own (this 

determines the gravitational potential at our Earth observation point, given that gravitational 

influences travel at the same speed as electromagnetic light waves), an order of magnitude is 

given by the Hubble radius RH (derived from the value of H). This represents the distance light 

has travelled to us from the earliest objects in the Big Bang, taking into account the age of the 

universe (this distance refers to the date of emission of the light reaching us). The estimated age 

of the universe today is 13.8 billion years, giving a Hubble radius of 13.8 billion light-years. A 

different view of the same distant points concerns their position today (time at reception), given 

the distance they have receded as light was reaching us. In terms of distances, we speak of the 

cosmological horizon Rz limiting the observable universe, which, depending on the model, is 

equal to several times the Hubble radius (e.g. Rz = 45 billion light-years). From points beyond 

these distances, no signal can be received, due to the finite speed of light and the expansion of 

the universe (recession velocities then exceed that of light). As a first approximation, these 

 
3 This value 13,8 Gy for the age of the universe represents a kind of average, taking into account the variability of 

H and the different models and their parameters Ωi. 
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different orders of magnitude of R-radiuses are considered independently of the expansion of 

the universe. They are related to our local Euclidean standards, knowing that the detours made 

by light to transport images of distant celestial objects to us are accommodated by the index nc. 

 

Thus we can frame likely ρu in the range 10-26 10-28 kg/m3 and radii Ru of the order of magnitude 

equal to tens of billions of light-years. As a first step, in a "broad" way, we will take densities 

and sizes of universes largely encompassing the previous values: sizes spanning four orders of 

magnitude, from 100 to 103 billion light-years, densities covering five orders of magnitude from 

10-29 to 10-24 kg/m3.  

 

For optical indices, let's choose three degrees within the range of possible values from 1 to 

infinity: nc = ∞, nc = 2.4 and nc = 1.2. As for the lowest values, nc = 1 is not obtained, except, 

asymptotically, for densities tending towards zero (as soon as we have a little matter, the index 

is greater than 1, as the formulas of the Shapiro effect tell us again) and/or for universes of size 

also tending towards zero. 

For an infinite value of the index, the term 𝑙𝑜𝑔
𝑛𝑐−1

𝑛𝑐
 in equation (16) cancels out, leaving 

equation 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = −23,92  (17) 

 

For values of nc equal to 1.2 and 2.4, the terms 𝑙𝑜𝑔
𝑛𝑐−1

𝑛𝑐
 are respectively equal to - 0.778 and 

- 0.234, and we have the two equations: 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = −24,70       (18) 

and 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = −24,15      (19) 

 

Figure 1 shows the equal value lines for nc = 1.2, nc = 2.4 and nc infinite, in the plane (Ru, ρu).  

They form an oblique scarf, highlighted in color on the figure; the band is bounded on the upper 
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right by nc infinite. Beyond this, light does not propagate on a cosmological scale; for the lower 

zone, the index slowly decreases towards 1 at infinity in the bottom left. 

 

Let's now restrict the values of universe sizes and densities to get even closer to our own: 

dimensions in the tens of billions of light-years (let's take the interval 10 - 100 109 ly) and 

densities in the interval 10-26, 10-28 kg/m3. This time, we're in a tighter neighborhood around the 

Hubble radius (13.8 billion light-years), with densities closer to the critical density (10-26 kg/m3) 

and average density (5.10-28 kg/m3), as reviewed above. These choices make it possible to draw 

two colored bands on the figure, for sizes and densities respectively. 

 

Let's take a look at how the three bands of indices, sizes and densities selected just now are 

positioned in relation to each other. A priori, we might expect a random distribution, the most 

likely being one in which the three bands' intersections define a triangle of any kind. In other 

words, the zone of "strong" indices (around 2) of interest to us has no reason to correspond to 

any of the universes we've selected; either these universes are too small or too large, or they are 

too dense or too sparse. 

As it happens, no. Remarkably, the zone of strong indices lies in the middle of the zone of 

plausible universes. Or, conversely, the zone of selected universes contains the zone of strong 

indices.  We observe an "improbable" fit, in a single region, of the three overlapping sectors: 

strong indices, "expected" universe densities and sizes. 

 

Let's leave it at that for now, and remember that, interestingly enough, universes with indices 

greater than two are not unreasonable. We'll come back to this after Part 3. 

 

 1.2 Two ways of talking about the speed of light 

Is the postulate that c = c0 in vacuum is a universal constant called into question by talking of a 

reduced speed of light in the cosmological vacuum? In response, let's point out that two non-

contradictory points of view on the speed of light, corresponding to two scales of observation, 

are adopted. 
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First of all, there's the local world of terrestrial observers. The word local extends to the space 

around us, up to the sun and the solar system (150 million km and beyond). On this scale, we 

relate to a speed of light "fixed" by convention at the value c0. This is the value used in special 

relativity and its Euclidean space, where we describe increments of space and time by the small 

amplitudes dx, dy, dz and dt, linked as to their measurements by the relation dx2 +dy2 + dz2 = 

c0
2dt2. For objects far from the observer, it is normal to relate everything to his space and time 

standards based on the reference c0. Angular distances, or luminosity distances in cosmology, 

correspond, as we have said, to a projected distance in a supposedly Euclidean universe like our 

own, but, because of the effect of the non-Euclidean metric, they do not refer to the actual path 

of the light that reaches us. Following the logic of the 1983 definition of the metre 

(corresponding to a certain travel time of light at its decreed speed c0 in vacuum), it would seem 

natural, for the journey of light from objects of evaluated distances d, to imagine durations 

given by t = d/c0. This is what we commonly do when we talk quantitatively about the "past" 

we contemplate when looking at the sky. But, because of the "refringence" calculated above, 

we have to break this quantitative correspondence with c0. For distant objects on the scale of 

the universe, we no longer use the local speed of light c0, but cc, and the durations are lengthened 

according to d/cc. We then need to define the translation coefficients between the two scales 

(local / cosmological), and the second way of talking about the speed of light comes into play. 

 

The cosmological point of view corresponds to a scale where the representative elementary 

volume has a side equal to the light year, larger by a factor of 105 than the previous local scale 

(the distance to the sun). It's as if we could look at the universe from the outside, with the 

appearance of a homogeneous fluid. On this scale, relating it to the c0 of our base, light travels 

at a speed c0 /nc. This is the same as in a refractive medium, where the "macroscopic" speed is 

different from the local speed. In water, for example, the speed of the photon remains c0 between 

atom to atom interactions on the nanometric scale, but it would be a mistake to assign this value 

to light arriving from millimeter to hectometer distances, as it is slowed down by interactions 

with the electrons of the atoms encountered (absorption/excitation - de-excitation/re-emission 

delay). Similarly, the light we receive from celestial objects is always c0 in its elementary paths, 

but cc on the scale of the overall path, due to interactions - this time gravitational (taken into 

account by a non-Euclidean metric) - with all the matter it encounters. Note that in the case of 

the universe, there is no interface with an outside world; we are inside. But that doesn't mean 

that we cannot consider two scales and two speeds. 
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In short, mathematical formalism enables us to distinguish between - 1) the local scale, in the 

tangent plane to the overall curved space; here we define the increments of distances and 

durations dx, dy, dz, dt measured by the standard of motion at speed c0. - 2) space in its 

cosmological dimension, where lengths are measured by weighting dx, dy, dz, dt by the 

coefficients gij of a metric. Their effect is responsible, via the writing of ds2 = 0, for a 

megascopic speed of light of less than c0. 

 

1.3 Light in black holes 

The two previous levels of scaling can be seen in what is said about the speed of light in black 

holes. We continue to speak of c0 locally, but if we step back, we can say that, when crossing 

the event horizon, it is as if the speed of light could be cancelled out (seen from the outside, it 

is not equal to c0). If we return to the optical comparison, we can calculate an optical index for 

the Schwarzchild black hole.  For this metric, the index is: 

 

𝑛 = (1 − 
2𝐺𝑀

𝑟𝑐2
)−1  (6) 

 

For the value of the horizon radius r = 2GM/c2, we have an asymptote with n tending towards 

infinity; the speed of light tends towards zero. 

 

For the universe as a whole, we find the situation seen above, for straight lines in the plane (Ru, 

ρu) along which nc is infinite. The universe then prevents the progression of light on its 

megascopic scale (whereas locally it is always equal to c0). With 

 

𝑛𝑐 = (1 −  
4𝜋𝜌𝑢𝐺𝑅𝑢

2

𝑐2
)−1   (16) 

 

nc is infinite for ρuRu
2 = c2 /4πG. We are led to a "horizon" discussion, to be distinguished from 

other horizons relating to the expansion of the universe (can we imagine other universes 

separated from ours by this type of barrier?). 
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The discrepancy between the two points of view ("local" and cosmological) can be seen in the 

way the aforementioned authors use the equivalent optical index obtained from the 

Schwarzschild metric, following a first-order approximation. Taking equation (6), we have 

 

𝑛(𝑟) = (1 − 
2𝐺𝑀

𝑟𝑐2
)−1  ≈  1 + 

2𝐺𝑀

𝑟𝑐2
 (20) 

 

in a development limited to first order. For "local" use, the 2GM/rc2 term is negligible in front 

of 1 and we use the approximate formula 

 

    𝑛(𝑟) =  1 + 
2𝐺𝑀

𝑟𝑐2
    (21) 

 

The latter expression is frequently used in the literature, seeming to have forgotten that it is an 

approximation. It's the one that has successfully passed tests on the "local" scale of the solar 

system. On the contrary, when summed to the scale of the universe, the GM/rc2 term is not 

negligible in front of 1, and is even of order zero!  

 

The considerations in this first part (about the speed of light on a cosmological scale), are 

extended to what is said about the speed of propagation of gravitational interactions (whether 

gravitons or gravitational waves). It can be said that the latter also propagate at the speed cc = 

c0 /nc , which corresponds to what has been observed: for various events detected in recent years 

by gravitational wave detectors, the arrivals are simultaneous with those of light waves detected 

by conventional means. Some authors have even pointed out that the Shapiro effect is just as 

effective for some as for others. This makes the overall approach coherent and supports the one 

we propose. 

 

2. Does the universe have a dark side? A. Dark matter 

Leaving aside general relativity and calculations of the equivalent speed of light on a 

cosmological scale, let's return to the problems raised in the introduction. 
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2.1. Overestimated speeds 

As we've already said, the problems we're facing, before they concern matter and energy, are 

first and foremost linked to the way we estimate the velocities v of distant celestial objects, 

which are excessive in relation to our well-established laws of physics. How are these velocities 

established? In answer, they are not established by determining ratios between distances 

travelled Δl and time intervals Δt, in the form v = Δl/Δt: they are established through ratios to 

the speed of light v/c, informed by its redshifts (the Doppler effect in the broadest sense). This 

is a general characteristic of physics based on ratios of magnitudes (including what concerns 

light), as analyzed in our various works (cf. Guy, 2011, 2019, 2022a). We are dealing with ratios 

r = v/c and only these ratios are "true"; c is the speed of light. If the "measured" speed v’m’ of a 

distant object (via a c0 corresponding to our local standards) is too great and does not correspond 

to the value ve that we expect from it, we need to ask ourselves the question of a smaller speed 

of light cc (on the cosmological scale) which carries us the information. We have the 

fundamental relation:  

 

    𝑟 =  
𝑣′𝑚′

𝑐0
=

𝑣𝑒

𝑐𝑐
   (22)  

 

or   𝑣𝑒 =  
1

𝛼
𝑣′𝑚′   (23) with  𝛼 =  

𝑐0

𝑐𝑐
 (24) 

 

If dark matter is "demonstrated" by excessively high velocities, the question is whether we can 

determine the same α ratio in the various cases, which would bring us back to velocities in line 

with the physical laws we know, experience and measure (in our laboratories and the 

experiments within our reach, extended to our solar system)? We will then have to confront this 

α factor with an nc index calculable according to the method set out in the first part for a universe 

of characteristics to be discussed. 

 

The considerations set out in the first part of this article would be enough to make us accept the 

idea of a speed of light below its standard value in a vacuum. But, in the course of our research, 

other, more fundamental considerations had steered us towards the path just outlined. They are 

rooted in a historical review and in epistemological reflections. On the first point, it's worth 

pointing out that none of the measurements of the speed of light (Römer, Bradley, Fizeau, 

Foucault, etc.) reveal this speed as a simple ratio between an interval of space and an interval 
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of time, space and time assumed to be already defined and equipped with independent gauges. 

But another motion is always involved (earth's motion, the motion of a cogwheel, etc.) and the 

speed of light appears in a ratio of the type r = c/v or v/c (Uzan and Lehouq, 2005). If we 

estimate that we know v, we deduce c. The 1983 decree sets c = c0 = 299,792,458 meters per 

second. Since then, it's been as if we were only thinking in terms of c, forgetting the fundamental 

relational aspect expressed in speed ratios. Where have all the other v's gone? What is m/s, the 

speed of one metre per second, which is not linked to any other phenomenon? The preceding 

decree is not without question! We have to accept being reduced to circular comparisons of v/c 

ratios (particularly in cosmology); we fix a numerator or denominator by inevitable convention, 

but only the ratios have any meaning. 

As for the second point (epistemological considerations), the duality of points of view (c0, cc) 

is very much in keeping with a "relational" rationality based on comparisons between physical 

quantities. Henri Poincaré (1902, 1905) would remind us that we can't say anything about space 

on its own (is it Euclidean or not?): we base its properties on matter, the trajectories that pass 

through it, compared with one another: we speak of a curve in relation to what we call (what 

we decide to call) a straight line, and vice versa. The same applies to velocities: the ratios v/c 

relate gravitation (for v) to electromagnetism (for c). This "solidarity" of the two phenomena 

(gravitation / electromagnetism) cannot be avoided in the two terms of the ratio c0 /cc (nor is c0 

alone there). The two ways of talking about the speed of light (referring to two different 

phenomena) are not contradictory, but complementary, and indispensable to each other in a 

comparison4 . 

 

2.2. Dark matter in spiral galaxies 

If we want to summarize the emergence of this problem, two authors, Zwicky (1933) and Rubin 

(Rubin & Ford, 1970), played a pioneering role. The first looked at galaxy velocities in galaxy 

clusters, while the second looked at star velocities in spiral galaxies. In both cases, values are 

estimated using Doppler shifts. Different corrections are required, depending on the assumed 

angles between star velocities and observer radii. If the galaxy is seen from the surface, no 

relative star motion is detected. If we view it from the edge, the movements of stars at different 

distances from the center are superimposed, causing confusion, especially in the denser inner 

 
4 See also from this point of view our work on the relationship between quantum mechanics and general relativity, 

Guy (2016). 
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parts. The speed of recession of galaxies as a whole, due to the expansion of the universe, must 

also be taken into account. Finally, there may be signal disturbances of various kinds on the 

way to the observer. Based on this data acquisition work, Zwicky and Rubin both concluded 

that the observed velocities were too high in relation to what was expected, i.e.in relation to the 

estimated mass of the objects involved (which presupposes a transition between mass and 

velocity, using Newton's laws), given their luminosity and a standard link between luminosity 

and mass.  

But the question is precisely how to estimate the expected masses to be involved in 

understanding the observed movements. At the start of this research, the supposed missing mass 

was very large (Zwicky speaks of a factor of 100 compared with the visible mass), but we later 

came to understand the large quantity of gas and dust present and yet unseen. It is now thought 

that luminous baryonic matter (stars) accounts for only one-fifteenth of the total baryonic mass; 

gas and diffuse gas, in equal proportions, account for the remaining 14/15. This is established 

by measurements of non-visible light wavelengths, in particular the 21 cm radio line for neutral 

hydrogen HI, in dominant quantity in gases (in addition to information in the near infrared at 

3.6 μm). The terms "missing mass" or "dark matter" are now used for non-baryonic matter 

(whereas in early texts, they included non-luminous baryonic mass). Today, it is generally 

agreed that the ratio between baryonic and dark matter is on the order of 1 to 6, i.e. 17% baryonic 

matter to total matter (baryonic + dark).  

 

Let's take a close look at the movements of stars and gas in spiral galaxies. They provide a fine 

example, allowing us to get to the heart of our proposal. In Figure 2, we have selected two 

curves from the work of McGaugh (2014). They show the variation in velocities of stars, or 

gas, as a function of the distance R from the galaxy center. For each galaxy, we represent the 

observed/measured velocities v’m’ (using our notation; the dotted curves result from adjustments 

to the data points), and the calculated expected velocities ve (solid curves). This assumes that 

we have sufficiently good knowledge of the existence, quantity and mass distribution of gas, 

stars and dust, acting gravitationally. 

 

We have chosen two galaxies where the distinction between the two curves (measured/expected 

velocities) is clear for small R, as this is generally not the case: near the galaxy center, velocity 

variations are large (slopes close to the vertical; within a mass distribution of constant density, 
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the spatial derivative of velocity is in R-1/2 and becomes infinite at the origin). The two curves 

tend to merge, and small inaccuracies in R translate into large inaccuracies in v. Furthermore, 

information on small R is of inferior quality: - superimpositions of signals from stars at different 

distances from the center; - blurring of information depending on the orientation of the galaxy; 

- difficulties in calculating ve, which is very sensitive to the spatial distribution of baryons (gas 

and stars) in the central zones; - poorer mass/luminosity relationship at the center (McGaugh et 

al., 2016). All in all, the data are not of the best quality. 

 

The two examples chosen (Fig. 2) correspond to a certain variability in velocity ranges (10 to 

80 km/s), and spatial amplitudes; other galaxies in the McGaugh et al. (2016) data deviate even 

further from these value fields (velocities from 10 up to 300 km/s; distances to center in tenths 

of kpc up to several tens of kpc). Two sets of remarks can be made about the curves. 

1) In the part corresponding to small distances from the center of the galaxy, we observe a rise 

in velocities according to more or less regular inclinations (monotonicity of the curve rises in 

R1/2). For a given galaxy and for each abscissa R, the ratio α of the velocities read on the two 

curves (measurements / estimates, i.e. v’m’ /ve) remains within a narrow range (roughly constant 

ratio), whatever the values of the slopes and velocities. For the two galaxies in Figure 2, this 

ratio is equal to 2.4 (galaxy DDO 154) and 2.36 (NGC1560), roughly estimated by the ratios of 

the AA''/AA' and BB''/BB' segments (averaged over two values). 

2) After the rise in velocity from the center, we observe a more or less flat or slightly descending 

plateau (depending on the spatial amplitude observed, bearing in mind that we can now detect 

rotational gas motions significantly outside the visible galaxy). This plateau is connected to the 

top of the ascending parts described in 1). The ratio between v’m’ and ve remains roughly 

constant, although the absolute values may differ. Measurements taken on the figure give values 

of 2.35 (DD0 154), 2.3 (NGC1560), again roughly estimated by the ratios of the CC''/CC' 

segments. The velocity comparison is easier to read on the plateaus for large R distances to 

galaxy centers. In contrast to the data for central stars, the peripheral gas is very reliable, with 

better velocity behavior.  

Let's insist: it's the same behavior, i.e. the same v’m’ /ve, for both ascents and plateaus. The ratio 

can be read on the plateau, but it's already there. Without concern for mathematical and 

statistical rigor, we can average the velocities read on the plateaus by including the various 

galaxies discussed by McGaugh (2014) and McGaugh et al. (2016): these are NGC 7331 (1.7 
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read at 38 kpc), DDO 154 (2.4 at 6 kpc), UGC 128 (2.4 at 55), NGC 6946 (1.7 at 18), NGC1560 

(2.5 at 10), NGC7814 (2.7 at 25), NGC 6503 (2.6 at 20) and NGC3741 (4.5 at 7). The velocity 

shift is not only apparent in areas of low gravitational potential (corrected by the MOND law), 

but also in areas close to the center and of higher potential. 

On these few examples (real statistical studies on larger samples would certainly be needed) we 

have an average α ratio of between 2.4 and 2.55 . This corresponds to the dark matter/baryonic 

matter ratio of 6 to 1. In fact, we relate velocities to masses by the relation 

 

     
𝑚′𝑚′

𝑚𝑒
= (

𝑣′𝑚′

𝑣𝑒
)2   (25) 

 

which is justified by Newton's laws of speed, mass and distance. Thus, the velocity of a body 

(e.g. a planet) around a star of mass M and distance r is such that 

  

     
𝑣2

𝑟
=  

𝐺𝑀

𝑟2    (26) 

 

For the same r, the ratio of masses is equal to that of speeds, squared. And α2 = (2.4)2 ≈ 6, 

proportion of mass seemingly missing. 

 

2.3. Gravitational mirages 

A gravitational mirage (also known as a gravitational lensing effect) shows the displacement of 

the image of a distant object in a direction that is not its "true" direction; it can also lead to its 

distortion, and sometimes its multiplication. It results from interaction with a massive object (a 

star, a galaxy, a cluster of galaxies) interposed between the distant object and the observer. The 

theory of this effect is well established, based on general relativity. Its amplitude is considered 

by many to be proof of the existence of dark matter. A variety of observations, measurements 

and theories can be found, depending on the size and shape of the interposed object, and the 

geometry of the overall device (we distinguish in particular between micro-, weak and strong 

lensing effects). For the purposes of our discussion, we'll retain that the angle manifesting the 

 
5 The α value close to 2.4 is in line with the velocity issue discussed here, but room must be left for other mechanisms invoked by the authors 
that may contribute to keeping v’m’ away from ve in different ways. 
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effect of gravitational mirage verifies the following generic formula (e.g. Gasparini, 2020; 

Claeskens, 2003): 

 

     𝜃 =  
4𝐺𝑀

𝑑𝑐2
       (27) 

 

where M is the deviating mass, d is the distance to the mass M of the light beam carrying the 

image of the observed object, G is the gravitational constant and c is the speed of light in 

vacuum (i.e. our c0; classical Newtonian reasoning gives the same relationship with a factor of 

2 instead of 4). 

According to the authors, the deflection angles θ do not correspond to the observed masses M: 

they are too large. They highlight mass excesses, blamed on invisible dark matter, in average 

proportions similar to those postulated in other situations in relation to baryonic matter (around 

6 times more). 

Taking up the formula just given, we can propose another interpretation. Indeed, if we decrease 

the value of c by the proportion indicated above (a factor α of the order of 2.4), we see that, all 

other things being equal, the mass M respecting the same value of angle θ will be divided by 

α2, i.e. by a factor close to 6. We do this if, in relation to our local standards, the assignment of 

such a value to M seems aberrant to us. In this way, the need for dark matter disappears. This 

is a situation in which there is no object moving at a speed v that needs to be determined. The 

magnitude under discussion here is an angle: our approach thus seems supported by the 

resolution of two distinct problems (a velocity on one side, an angle on the other6), with the 

adoption of the same α factor (same value of c, i.e. cc). 

 

We're not comparing v/c ratios here; but general thinking on velocities encourages us to modify 

c on its own in the equations (which amounts to changing c in relation to c0, and indirectly in 

relation to other v’s). We are led to do this in situations where we tend to forget that c refers to 

propagation, and is not just a structural constant. This makes it possible to bring the equations 

into play in conditions where the speed of light (which guides other phenomena, not only for 

 
6 It may come as a surprise that angular deflection yields roughly the same percentage of dark matter as galaxy rotation curves? The explanatory 

theoretical frameworks are different: the speed of celestial objects refers to Newtonian theory, gravitational mirages to general relativity, which 
certainly encompasses the former. 
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measurement but also for physical mechanisms) may be different from and, for example, lower 

than c0. We're thinking of situations where the equations of general relativity are brought into 

play in the cosmological medium. 

 

2.4. The cosmic microwave background and dark matter 

Work on cosmic microwave background radiation (CMB) has also led the authors to postulate 

dark matter. The CMB is the relic of the radiation emitted by the hot, dense horizon, at the 

moment when photons can break free and the universe becomes transparent. The horizon is the 

opaque wall we come up against as we go back in time, reaching a state of the universe that did 

not allow light to pass through (estimated to be 380,000 years after the Big Bang). At its origin, 

radiation had a temperature of around 3,000 K, but the expansion of the universe has brought it 

down to an estimated 3 K today. The study of the CMB involves velocities, combined with 

temperatures and high densities, through specific interactions between matter and radiation, 

inside a plasma where electrons and protons are dissociated. This is the so-called pre-

recombination period, connected to the more recent history of the universe (galaxy dynamics). 

The characteristics of this early state come into play when we question the homogeneity 

properties of the universe as observed today. The fluctuations observed in the CMB allow us to 

predict the different structures of galaxies, clusters, superclusters, filaments and so on.  

CMB radiation is that of a black body, i.e. the spectrum of wavelengths emitted is a function 

solely of temperature. There are very small temperature fluctuations (determined by the 

wavelengths of light in the context of blackbody radiation) of the relative order of 10-5. The 

Planck satellite has made it possible to map these fluctuations. These fluctuations are related to 

density fluctuations, via the propagation of acoustic waves in the dense plasma of the horizon. 

The relationship between temperature and density fluctuations is demonstrated (Aubert, 2019): 

 

     
𝛿𝑇

𝑇
=  −

1

6

𝛿𝜌

𝜌
     (28) 

 

where T is the temperature and ρ the density of matter (a priori including dark matter and 

baryonic matter). According to the authors, a proper quantitative understanding of this physics 

(acoustic waves, coupling with thermal equilibrium, links between temperature and density) 

requires the intervention of dark matter. Do we have a say? The CMB horizon from which the 
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3K radiation originates is receding away from the observer due to the expansion of the universe. 

To plot the temperature map, we need to take into account the escape velocity, deduced from 

the Doppler effect (for a z of the order of 1100). If our reasoning is correct, we can imagine that 

the escape velocity has been exaggerated; however, this velocity shifts everything towards the 

red, i.e. lowers the temperatures T of black bodies. On the other hand, the δT remain the same 

(these are differences, the two limits of the interval are equally shifted by the expansion). So, 

for the same red, by decreasing the escape velocity, which would have been exaggerated, we 

increase the thermal red, i.e. we decrease the temperature. We increase the ratio δT / T; the 

previous relationship shows us that we then increase the absolute value of the density 

fluctuation without the need for additional dark matter. 

The previous question reflects only one of the many aspects relating to CMB. There's the 

question of the chronology of dark matter's intervention in relation to baryonic matter. Dark 

matter is insensitive to electromagnetic interaction, and does not interact with charges in plasma 

(ionized matter): it is unaffected by acoustic waves. It can form lumps that will then attract 

baryonic matter: the seeds of galactic structures. The authors estimate that these structures 

would not have had time to form (given the age assigned to them) if dark matter had not initiated 

their birth. As we shall see, we are tending to lengthen the chronology of the universe: does this 

aging avoid the need for dark matter from this point of view? 

Insofar as the authors believe that, for these various questions, the proportion of dark matter is 

still a factor of 6 higher than baryonic matter, we are comforted as to a velocity gap of a factor 

(6)1/2 influencing the interplay of temperatures, the guiding parameter for phenomena taking 

place in the CMB. 

 

2.5. Discussion of dark matter 

There is a wealth of literature on where dark matter is postulated to exist. It covers a wide 

variety of galaxy types (elliptical, spiral, diffuse, ultra-diffuse, young or old, large or small, 

massive or not) and groupings (clusters, superclusters, filaments, colliding galaxies, etc.), each 

with its own star/galaxy behavior, depending on position and mass distribution. For each case, 

the discussion focuses not only on the existence of dark matter, but also on its distribution: 

larger or smaller / fragmented halos, encompassing galaxies or nestled within them, variations 

according to distance from the center of the galaxy or cluster, and so on.  
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While some are convinced of the existence of dark matter and are looking for the particles that 

might correspond to it (physics work aims at a modification of the Standard Model and the 

detection of new particles, in a so-called supersymmetry framework, Bertone, 2014), others 

propose modifying the laws of gravitation (MOND model, Milgrom, 2002; Beckenstein, 2009; 

Sus, 2014; Borka et al., 2016). Paturel and Teerikorpi (206) and Paturel et al. (2017) highlight 

the various biases affecting the evaluation of the Hubble constant. For Buchert (2012) curvature 

and the existence of large voids in the universe would be responsible for the effects attributed 

to dark matter, while Maeder (2017a and b) proposes a scale invariance hypothesis. 

The problematic nature of dark matter and the situations in which it can be found are highlighted 

by many: - it manifests itself through gravitational effects, but does not interact with baryonic 

matter, nor with itself; - it is correlated with ordinary matter in a large number of galaxies 

(McGaugh et al., 2016); - it seems capricious, sometimes overabundant, sometimes virtually 

absent; - it can be correlated with the age of objects; - surprising effects are observed in its 

appearance or disappearance, in the loss of symmetries observed during certain transformations; 

- its behavior over time and as a function of relative distances in galaxy clusters is difficult to 

explain, given what is otherwise assumed for it (Aubert, 2018); - the question of its production 

and annihilation arises in the course of the universe's history; - the question of its distribution 

in space is made tricky by the very interplay of gravitational forces: long-distance forces: dark 

matter is positioned where it doesn't play; integrative character: an infinite number of spatial 

distributions are possible for the same gravitational effect (additional assumptions must be 

made to choose the most reasonable one). Some authors make no secret of their embarrassment 

and question the very existence of dark matter.  

 

As a conclusion to these steps on dark matter, without having inspected in detail all the 

situations where it is postulated, we will underline, as a key of more general value, the beautiful 

homotheticity between star velocity curves, measured on the one hand, expected on the other, 

in many galaxies. The α ratio is not just an average of scattered data, it holds together along 

particular curves, observed on stars and outer gas, and has the same value for very many 

galaxies. This fit is a little strong for dark matter, which is reputed not to interact with ordinary 

matter! There is something constant, not the effect of chance, behind this variety of 

observations. On this basis, it seems to us that we are dealing with an artefact, and not with the 

problem of a missing mass to search for. This hypothesis is extended and strengthened by the 

fact that it works well in the case of gravitational mirages and by a preliminary analysis of other 
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situations (such as those of the CMB). This is in line with work highlighting the correlations 

between dark matter and baryonic matter. This leads us to say: if this effect of poorly estimated 

velocities does indeed come into play in such situations, it will inevitably manifest itself in all 

others where motions are at stake (expansion of the universe, dark energy, Hubble tension, etc.). 

 

3. Does the universe have a dark side? B. Dark energy 

Dark energy is evidenced by the fact that the speed of expansion of the universe exceeds that 

predicted by modelling: this is known as acceleration. It has been postulated by three teams of 

astrophysicists, led respectively by Saul Perlmutter, Brian Schmidt and Adam Riess (see, for 

example, Perlmutter et al., 1999). The excess of the expansion velocity is manifested for recent 

periods, since 5 billion years, i.e. from an age of the universe equal to some 8 billion years. 

Gasparini (2020) recalls the results of the Supernovae cosmology project: the luminosity 

distance of Supernovae Ia is plotted as a function of redshift, and observations are compared 

with models of decelerated universes, without dark energy. The least bright supernovae, and 

therefore the most distant, are less luminous than predicted for a normally decelerated universe. 

The distance at which they occur is greater than expected, indicating an accelerating universe. 

To accommodate this, theorists introduce into the evolution equations a density Ωv (the 

subscript v stands for "vacuum"; also referred to as ΩΛ where Λ is the cosmological constant) 

manifesting a repulsive energy (dark energy). 

So we need to go back to the drawing board. According to our approach, the simulations should 

be redone with a factor Ωv (ΩΛ) of zero, and Ωm close to 1 (and without dark matter), bearing 

in mind that all the observed velocities that constrain the model (including c velocity on the 

cosmological scale), would be divided by a factor α (close to 2.4). For the time being, it's 

difficult to assess the remedies for the acceleration that would be assumed to be fake, insofar as 

the choices of model parameters made upstream are intertwined with the observations: thanks 

to looping, we're back on our feet!  

Let's look at the proportions accepted today for Ωv (ΩΛ) and Ωm. The term ΩΛ corresponds to a 

"missing" quantity of around 68-70% of the universe's energy, calculated according to the 

respective weights of Ωi in the evolution equations (compared with 32-30% for ordinary and 

dark matter taken together with 4-5% for the former and 25-26% for the latter). According to 

Asgari et al. (2020), the relative weight of ΩΛ could reach a larger value of 82%, bringing the 
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sum of ordinary and dark matter down to 18%7. Given that ordinary matter accounts for roughly 

one-sixth of the latter fraction, we can estimate that its weight vis-à-vis dark energy, if we 

dispense with dark matter, is of the order of 3%, opposed to 97%. 

 

One avenue already shows the potential contribution of our approach. It takes advantage of the 

authors' work on the cosmological constant in Einstein's equation, which they claim 

accommodates the question. Einstein's equation is, in fact, the source of models for the 

expansion of the universe. In its initial version, with no cosmological constant, it is written: 

 

    𝑅𝜇𝑣 −  
1

2
𝑔𝜇𝑣 =  

8𝜋𝐺

𝑐4 𝑇𝜇𝑣   (29) 

 

The geometric parameters of metric g and curvature R (to the left of the equal sign) are linked 

to the energy content (stress-energy tensor T, to the right, expressed in mass, i.e. kg). By adding 

a term to the left-hand member, involving the cosmological constant Λ, we show that a repulsive 

force is manifested that accommodates the accelerated expansion: 

 

    𝑅𝜇𝑣 −  
1

2
𝑔𝜇𝑣 +  Λ𝑔𝜇𝑣 =  

8𝜋𝐺

𝑐4 𝑇𝜇𝑣  (30) 

 

We can propose another solution, noting that the factor c is explicitly involved in the 

denominator of the factor on the right. If we think that, on the cosmic scale where the problems 

arise, we must divide c by a factor α, we see that we are committing an error of a factor α4 - 1 

according to: 

 

   
8𝜋𝐺

𝑐4
𝑇𝜇𝑣 = 𝛼4  

8𝜋𝐺

𝑐4
𝑇𝜇𝑣 − (𝛼4  − 1)

8𝜋𝐺

𝑐4
𝑇𝜇𝑣  (31) 

 

 
7 The difference between the values of the density parameters predicted by Asgari et al. (based on gravitational, 

or so-called weak lensing, shear effects by nearby galaxies, z = 1.5) and those usually predicted (based on data 

acquired by the Planck satellite on the cosmic microwave background) is what we call the S8 tension, named after 

the parameter concerned, depending on Ωm. 
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In fact, according to our analysis, we should take only the first term of the second member of 

the above equation, which can also be written as: 

  

    𝛼4 8𝜋𝐺

𝑐4 𝑇𝜇𝑣 =  
8𝜋𝐺

𝑐4 𝑇𝜇𝑣 + (𝛼4  − 1)
8𝜋𝐺

𝑐4 𝑇𝜇𝑣  (32) 

 

This shows that, wanting to take only the term in α4, we have to correct the usual term by adding 

the factor (𝛼4  − 1)
8𝜋𝐺

𝑐4 𝑇𝜇𝑣. Let's write two exponents to differentiate, in the stress-energy 

tensor, the standard term referring to the usual matter m, and the corrective term designated by 

Λ; we can write 

 

𝑇𝜇𝑣
(Λ)

=  (𝛼4  − 1)𝑇𝜇𝑣
(m)

   (33) 

 

The stress-energy tensor we have to add is larger than the usual stress-energy tensor by a factor 

α4 - 1. This manifests itself in mass energies, or mass densities, in the same ratio. If we take α 

to be close to 2.4, the factor α4 - 1 is close to 35. We thus expect  

 

     ρΛ = (α4 - 1)ρm    (34) 

 

or approximately ρΛ ≈ 35ρm. As it happens, the ratio of 1 to 35, out of a total of 36 corresponds 

to the ratio of 3 to 97 (baryonic matter, without dark matter/dark energy) that we discussed just 

now from the work of Asgari et al. (the correspondence is a little better than for the proportion 

of 4 to 5% versus 95 to 96% in the other works). What is important is the notable difference 

between the ordinary matter/dark matter proportion and the ordinary matter/dark energy 

proportion, which could be accommodated by the ratio α4 / α2 equal to α2 i.e. of the order of 6. 

 

If we take for ρm a value in the range discussed in Part 1, in particular the low value of the order 

of 5.10-28 kg/m3, we are led to propose ρΛ ≈ 35 x 5.10-28 kg/cm3 = 1.75.10-26 kg/m3. From this 

we deduce, via the relationship between ρΛ and Λ, i.e. ρΛ = c2 Λ/8πG, a cosmological constant 

Λ of the order of 10-52 m-2. This is in line with what we read in the literature, both for ρΛ and 
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for Λ. Taking the high end of the density range, of the order of 5.10-27 kg/m3 multiplies the 

previous values of ρΛ and Λ by ten. 

In any case, ρΛ is a fictitious density designed to correct an error in the initial understanding. 

The consistency of our approach in this respect is a way of giving the cosmological constant its 

full value in solving the problem of dark energy, as various authors have called for. 

 

A great deal of research is being carried out to understand what lies behind dark energy of 

density Ωv. Some authors identify it with the cosmological constant Λ. The latter, which 

opposes the attractive force of gravitation, was introduced by A. Einstein in his equations to 

guarantee a stationary universe. Others see it as the expression of vacuum energy (in the sense 

of quantum mechanics): however, according to particle physics and quantum field theory, 

there's a big difference in orders of magnitude between the two energies. The vacuum energy 

estimated by quantum mechanics would be some 1040 times greater, making the supposed link 

between the two problematic. For some authors, this is one of physics' greatest enigmas. For 

us, there is no problem with the cosmological constant, insofar as it does not refer to an actual 

force of nature but expresses a correction to an initial erroneous understanding. Rather, many 

are seeking to dispense with dark energy, and point to the difficulties or paradoxes associated 

with it (e.g. Huterer & Turner, 1999): - we don't know which physical field to link it to; - its 

density doesn't decrease with expansion (this observation wouldn't be embarrassing for us, since 

it's a question of misjudged velocities, not of energy and density); - its intervention is 

intermittent in the history of the universe (cf. the accelerated expansion of inflation at the very 

beginning of the Big Bang). Not to mention the superimposed problems of dark matter and dark 

energy playing antagonistic roles in the equations, leading to a kind of outbidding: the authors 

speak of degeneracies that are difficult to resolve. Buchert (2000, 2008, 2012) points to the non-

homogeneity of the universe on large scales. Chardin (2018) proposes a role for anti-matter. 

Without fundamentally challenging the idea of accelerated expansion, Fleury et al. (2013) 

attempt to calculate the Hubble diagram in the case of a non-homogeneous universe. 

 

4. Discussion: a brighter universe, an older universe? 

4.1 Orders of magnitude 

At this point in our work, we're looking at two pieces of a puzzle, each with its own consistency 

and solidity. One shows us that it is possible to envisage a refractive universe characterized by 
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an index nc that can reach and exceed the value 2 (1st part). The other shows that the same α 

factor, of the order of 2.4, dividing the speed of light as it travels through the universe, seems 

likely to account for the problems of the dark side of physics (2nd and 3rd parts).  

Can we put these two pieces together? By a pleasant surprise, our answer is: yes! They fit almost 

perfectly! In fact, their synergy reinforces both theoretical predictions and observational data! 

So we'll take a gamble and say: by getting rid of its dark side, the α factor can be explained by 

the refringence of the universe. This is characterized by a density ρu and an equivalent radius 

Ru linked together by the value nc = 2.4 in relations (13) or (19).  

 

Let's look at where we started from: "only about 5% of the matter and energy in the universe is 

known; 25% of unknown dark matter (6 times more abundant than ordinary matter) and 70% 

of mysterious dark energy are missing from the inventory." We therefore propose a simple 

solution to these challenges by considering the universe on a cosmological scale as a refractive 

medium. The numbers given here are orders of magnitude subject to a certain variability. It is 

to these proportions, considered on average, that our proposals apply. On average, the value α 

≈ 2.4 accounts for the velocity differences observed for celestial objects; its square α2 ≈ 6 gives 

the ratio of dark matter to baryonic (or ordinary) matter, its power 4, i.e. α4 ≈ 36, the ratio of 

dark energy to ordinary matter. These powers are derived from physical reasoning using 

Newton's laws and Einstein's equations. Dark matter and dark energy are the names of 

corrections to compensate for the error made in keeping for the speed of light at cosmological 

scales its "usual" value. 

 

Can we go further and discuss more precisely for our universe the value of the coordinates of 

the point (Ru, ρu) on the line connecting them (Fig. 1)? Before we do so, it's appropriate to make 

two sets of remarks, firstly on the use of the value cc in the equations derived from relativity (in 

response to objections that might arise), and secondly on the age of the universe. 

 

4.2 Back to gravitational mirages and Einstein's equations 

The distinction between scales (section 1.2): local scale and its velocity c0 vs cosmological scale 

and its velocity cc, allows us to clarify a question we could, or should, have asked ourselves. 

This concerns the replacement of c = c0 by cc, in the gravitational mirage equations (section 
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2.3) on the one hand, and in Einstein's equations (part 3) on the other. Why do it? Isn't 

refractivity (bringing velocity cc) already accommodated by the metric's gij coefficients, as seen 

in section 1 with the Schwarzschild metric?  In response, however, it seems to us that we have 

done the right thing. 

 

For gravitational deflection first of all, the curved path from the objects observed by 

astronomers must be considered on a cosmological scale. But the calculation is made in general 

relativity as if the deflecting mass were alone, bypassed by a photon at speed c0, and not bathed 

in the real universe populated by matter. In this case, as we have shown, we need to consider a 

global velocity equal to cc. Without repeating all the calculations, we can see that a good 

approximation of what is happening is provided by replacing c = c0 by cc in equation (27). 

 

The situation is similar for the Einstein equation. This equation has its first value in local space 

in the sense we have given it (which can extend as far as the solar system). The speed of light 

is c0. However, in the case of the accelerated expansion of the universe, it must be transposed 

to the cosmological scale (the stress-energy tensor will be that of a fluid or gas of galaxies and 

not of a star). We restore the situation by taking a value of cc for the speed of light in this 

equation, replacing c = c0. 

 

4.3. The age of the universe and impossible galaxies  

An important consequence of the above developments concerns the age of the universe, i.e. the 

time elapsed since the Big Bang. This age is determined from the Hubble constant, itself 

estimated from the escape velocities of galaxies as a function of their Euclidean distances 

"projected" from our spot as observers on Earth. If we say that we now need to reduce the 

escape velocities of galaxies, the entire Hubble diagram must be tilted by a factor of nc. We end 

up with a new constant H' = H/ nc, i.e. an age of the universe multiplied by nc; starting from a 

standard age of 13.8 billion years, the modified age would then be 33 billion years? 

The reason for this increase lies in the chronology based on Hubble's law, with a constant 

revised downwards8, and in the slower evolutionary dynamics of certain phenomena due to 

smaller masses than previously thought. This should not compromise the various stages in the 

 
8 These considerations must also come into play in the discussion of Hubble tension, cf. Guy (2022a). 
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history of the universe, bearing in mind that there are always circularities between models and 

observations; can we think of them working better with cc than with c0? To make progress in 

this direction, we need to re-examine the scenarios, measurements and assumptions that 

regulate the variation of the scale factor a(t) as a function of time. 

 

In any case, this ageing could alleviate the problem of "impossible" galaxies. In recent years, 

we've been observing objects (massive black holes, quasars, stars, galaxies) inhabiting the very 

young universe, and have found that the existence of such objects, which require long periods 

of time to structure, doesn't match the supposed youth of the universe that hosts them. For 

example, galaxy formation and structuring times are in the region of a billion years, whereas 

galaxies are now observed to be a few hundred million years old. See Boyett et al. (2023) on 

galaxies, in a very abundant literature; the problem also arises for black holes (Maiolino et al. 

2023). Gupta (2023) provides numerous references. Based on a model combining the standard 

model of cosmology and the theory of tired light, this author proposes an age of the universe of 

26.7 billion years, alleviating in his own way the problem of impossible galaxies. 

 

According to our proposal, if all the times allocated to the observed objects are multiplied by 

the same factor of 2.4, the young galaxies observed will correspond to universe ages that can 

exceed one billion years (i.e. the hundreds of millions of years allocated by the JWST multiplied 

by 2.4). This gives them greater temporal latitude to form and structure, and provides an avenue 

to alleviate their "impossibility" character. But if all the durations are lengthened in the same 

proportion, including those needed to structure the objects in question, the problem of their 

registration in a longer duration will still arise. Fortunately, star formation times are estimated 

on the basis of the kinetic constants of various reactions, particularly nuclear, measured in the 

laboratory with our "local" standards, and there is no need to modify them. For the same 

formation time, the problem of matching the age of the universe estimated from "distant" data 

is effectively solved by extending the age of the universe. If the increase in the age of the 

universe and its modalities don't leave enough time for the evolutionary durations of galaxies 

at the beginning of the Big-Bang history (we're talking several billion years for the increase in 

galaxy mass and their structuring), we'll have to revise our copy; it only gives the indication of 

tracks, to be taken again - by taking into account the expansion of the universe, - by departing 

from linearity between ages and redshift z values (for the most distant objects), - by envisaging 

stronger refraction indices for ancient epochs (? ), etc. 

 



32 
 

4.4 Choose an average density and equivalent radius of the universe? 

As we have said, our main objective is not to focus on the precise characteristics of our universe, 

but to understand as plausible its refractive quality on its own scale, with an index of the order 

of 2.4. However, as a more or less artificially chosen reference point, can we position a universe 

"closest to our own" with coordinates ρu and Ru on the index line nc = 2.4 in the diagram in 

figure 1? The Hubble radius (statically equivalent, in terms of its gravitational influence, to the 

radius of an expanding universe) is estimated from the age of the universe, itself evaluated by 

Hubble's law. If we trust this method, in our case we'll have to start from a higher age (that 

we've just talked about impossible galaxies), and take a Hubble radius increased by the same 

proportion 2.4. Given today's accepted age of 13.8 billion years, the new radius Ru is 13.8 x 2.4 

= 33.12 light-years; we'll take 33. The corresponding density value is obtained from equation 

(19), i.e. log ρu = -26.96, or ρu = 1.1.10-27 kg/m3. Let's call this point U0 (Fig. 3). It summarizes 

our proposal, increasing the value of Ru, it corresponds to a lower value of ρu compared to what 

is accepted today (see section 1). Universe is indeed devoid of dark matter (which contributes 

to lowering ρu), but without reaching a possibly even lower value than we had assumed; we 

spoke of a first iteration on the way to a better understanding. 

 

What other values should be shown on the diagram? 

As an indication, we can position other points on figure 3. The point U1 corresponds to the 

universe as we know it today (before our proposal), with Ru = 13.8 billion light-years. We then 

have log ρu = -26.19, or ρu = 6.5.10-27 kg/m3. In relation to the previous point, we can say that, 

for the same total mass, if we decrease the radius (and therefore the volume), we need to 

increase the density. 

 

We can also position critical density universes, both for the standard universe and for our 

proposed one. This density corresponds to a flat universe without curvature; it is calculated 

from the Hubble constant by the formula 

 

𝜌𝑐 =  
3𝐻2

8𝜋𝐺
   (35) 

 

For the standard universe, accepted values for the Hubble constant range from 67 to 73 

km/s/Mps. For an intermediate value (see section 1.1), we find log ρu = -26.00. For this value, 
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the radius is still given by equation (19) and has the value Ru = 11.09 light-years, or 101,045. 

Let's call the corresponding point on figure 3 Uc1. 

 

The value of the critical density calculated for the modified universe, i.e. with a value of 

constant H revised downwards by a factor of 2.4, is equal to the standard critical density divided 

by (2.4)2 = 6. From the relations ρR2 = cte derived from equation (13) defining the index, and 

(35) for the critical density as a function of the constant H, we deduce that ρ/H2 = cte. A division 

of H by 2.4 will induce a lowering of ρ by 6. This gives log ρu = -26.78 or ρu = 1.7. 10-27 kg/m3. 

The corresponding radius is then given (equation 19) by log RU = 1.435 i.e., Ru = 101.435 = 

27.22 billion light-years. We call the corresponding point on figure 3 Uc0. 

The points U0, U1 Uc0 and Uc1, simple milestone, are all four positioned on the straight line nc 

= 2.4 in figure 3. The vertical offset between points Uc0 and Uc1 is the same as between points 

U0 and U1 , equal to log 6 or 0.78. The horizontal offset also remains unchanged. 

 

 

5. Conclusions 

In conclusion, in the face of contemporary astrophysical problems, wouldn't it be encouraging 

to consider, on a cosmological scale, a speed of light a factor of around 2.4 slower than in our 

"local" physics? Gravitation could be responsible for this reduction, with a "cosmological" 

index that we have calculated to be equal to 

 

 𝑛𝑐 = (1 −  
4𝜋𝐺𝜌𝑢𝑅𝑢

2

𝑐2
)−1   (36) 

 

for a universe with matter density ρu and equivalent gravitational radius Ru. The values of ρu 

and Ru where such an index is conceivable are close to, or consistent with, the range of values 

accepted today for our universe; bearing in mind that we need to shift the characteristics of our 

"standard" universe by making use of the parameter α = nc and its powers. 

The factor α = nc for reducing the velocity values of distant objects avoids the need for dark 

matter, dark energy and, by increasing the age of the universe, may spare us the difficulty of 

impossible galaxies. 

 

We haven't gone through all the situations that raise questions, particularly those concerning 

dark matter: in such and such cases where we are led to postulate it, our scenario (dividing the 
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speed of light by a ratio nc) may seem flawed (even though proponents of modified laws of 

gravitation or other effects, such as those related to the non-homogeneity of the universe, would 

not see dark matter either). We then need to go back to the drawing board, taking a close look 

at how the data were obtained and the various biases that may have come into play (absence of 

observations or observations tainted by uncertainties, types of data processing, including 

statistical processing, data based on a model, or models, that are debatable in a circularity that 

needs to be properly framed, etc.). This examination can be cross-referenced with the work of 

authors who, proposing other explanations, highlight the problems of dark matter and dark 

energy. It is possible for several explanations to play out concurrently, in cases where, for 

various reasons, the optical explanation exhibits local variability. 

 

In the meantime, we'd like to emphasize the great economy of means of our approach, proposing 

a single explanation to solve a variety of a priori disjoint problems. Our economy extends to 

respect for existing laws (we don't propose any new laws, such as that of the MOND model, 

whose limitations, conversely, dark matter proponents point out).  
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Figure 1. Representation of universes in the plane (Ru, ρu) 

Representation of universes characterized by their average density ρu (in the range 10-24, 10-29 kg/m3) and their 

equivalent gravitational radius Ru (in the range 1 to 103 billion light-years). Logarithmic scales.  A reduced window 

closer to our universe: (10-26, 10-28 kg/m3) and (10 to 102 billion light-years) has been highlighted by coloring. The 

iso-index curves are straight lines, of which we have shown three: nc infinite, nc = 2.4 and nc = 1.2, also defining 

a colored band. Remarkably (see text), the three zones overlap, demonstrating the possibility that indices greater 

than two are relevant to our universe on its own scale. 
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Figure 2. Star speeds in spiral galaxies 

Two spiral galaxies were chosen from McGaugh (2014): the DDO 154 galaxy on the left, the NGC 1560 galaxy 

on the right. The rotational velocities of the stars are plotted on the ordinate (km/s), their distance from the galaxy 

center is noted R, on the abscissa (kpc). Two curves are shown for each galaxy: the dotted line represents the 

"measured" values (original points in the article cited); the solid line represents the values estimated on the basis 

of assumptions made about the amount of baryonic matter and its distribution in the galaxy. As a function of 

increasing R, velocities rise sharply, stabilize at a plateau and then fall back slightly. The velocities in the rising 

parts of both curves show a constant ratio (the slopes are not strictly rectilinear, but the ratio between velocity 

values remains roughly constant). This ratio is the same on the plateaus, where it is particularly noticeable. That 

is, we have AA''/AA' ≈ BB''/BB' ≈ CC''/CC' for each of the two galaxies. For DDO 154, the ratios are respectively 

equal to 2.3; 2.5 and 2.4; for NGC 1560, the ratios are respectively equal to 2.4; 2.3 and 2.3 (rough estimates). 

These are therefore also the same ratios found in the two different galaxies. 
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Figure 3. Universe positionings along the straight line nc = 2.4 in the plane (Ru, ρu)  

These are simple milestones in a revision process that is yet to be iterated. Each is characterized by its pair of 

coordinates Ru and ρu. The points U0, U1, Uc0 and Uc1 are defined in the text; they correspond respectively to our 

proposal (U0), to the "standard" universe accepted today (U1), to universes of critical density for two Hubble 

constants, the downwardly revised Uc0 and that of the universe in its standard knowledge (Uc1). 

 


