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Abstract. It is shown that the “periodogram analysis” com-
monly used to find sinusoid-like periodicities can be improved
to search for variable star light curves of any kind of shape.
The use of a particular set of orthogonal functions for the Least
Square Model fitted at different test frequencies permits the
derivation of a generalization of the periodogram and a proba-
bility of detection better adapted to the detection of any sort of
periodic light curve. The results of Monte Carlo simulations are
presented to illustrate the advantage of the new method.
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1. Introduction

The search for periodic phenomena is a key problem in various
branches of physics. With the development of modern observa-
tional and storage techniques, the quantity of data that can be
collected has increased enormously and it has become neces-
sary to develop numerical methods which are able to identify
quickly and with confidence whether a periodicity is presentin a
sequence of unevenly spaced observations. EROS (Experience
de Recherche d’Objets Sombres; see Aubourg et al. 1993) is an
example of a huge database comprising a sample of ~ 5 million
stars in the Large Magellanic Cloud with ~ 130 photometric
measurements in two colours (blue and red) per star. The prob-
lem is to identify systematically and as well as possible all the
variable stars in the EROS database, irrespective of the form of
their light curves. Very recently Gregory & Loredo (1992) have
described a purely statistical solution to this problem.

This paper presents a different approach based on Fourier
transform analysis. Fourier transforms are a well known family
of algorithm commonly used in astronomy which can be com-
puted quickly and which detect a periodic signal efficiently; a
good overview of the periodogram theoretical background can
be found in Scargle (1982) who derived a new expression for the
periodogram in the case of an unevenly spaced data set and who
pointed out a relevant statistical test for detection of the signal.

Additionally, different kinds of fast algorithm have been devel-
oped and can be useful in the case of a large sample (Press et al.
1989; Kurtz 1985; Ponman 1981). It should also be mentioned
that if there are significant gaps in the data, some improved meth-
ods are available: use of windows is detailed by Harris (1978);
and techniques which fill the gaps to produce evenly sampled
data prior to calculation of the power spectrum are described by
Carbonnell et al. (1992). However, numerical simulations made
to compare different kinds of period-determination techniques
have shown that the more the shape of the periodic signal differs
from a sinusoid the less the periodogram is efficient (see Heck
et al. 1985; Pérez de 1a Blanca et al. 1981). This result is not sur-
prising since Scargle (1982) has shown the equivalence between
periodogram analysis and the fitting of a sinusoid at different
frequencies (see also Lomb 1975). It would be better to use a
more general model taking into account several harmonics in a
Fourier series to fit exactly the real shape of the periodic func-
tion (see Vanicek 1969, 1970), but unfortunately this becomes
a heavy numerical problem and the useful statistical properties
are lost. The purpose of this paper is to show that an alternative
way is possible which overcomes such difficulties.

Section 2 presents a review of periodogram fundamentals.

In Sect. 3 we describe the analytical expression of an appro-
priate set of orthogonal functions used to define a generalized
model to fit the data. A new expression for the ”Generalized
Periodogram” (hereafter GP) applied to find periodicities for
any kind of variable star is derived in Sect. 4. A new expres-
sion for the probability of detection as a simple function of
the GP is presented in Sect. 5. Section 6 gives the results from
a Monte Carlo simulation to compare the performance of the
new approach with the old, and justify its utility. Some addi-
tional points are discussed in Sect. 7 and a conclusion is given
in Sect. 8.

2. Periodogram analysis

Scargle (1982) first derived a new expression for the peri-
odogram (or power spectrum) in the case of an unevenly spaced
data set. He then pointed out a statistical test on this Modified
Periodogram (hereafter MP) which estimates the significance
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of the period. The MP defined below (Eq. 2) is also equivalent
to the reduction of the sum of squares (1/202) Z;V:I [X2(t)) —
(T (X () — My(t))?] where X (t5) = a(t;) — T is the time
series of N measures with zero mean and variance ¢'2; the mean
T of the observational data is given by (1/N) zﬁl z(t;); the to-
tal variance o2 is estimated by 1/(N — 1) Z;V:I X(t;)% and M,
is the least square model of a sinusoid which can be expressed
in the form:

M;i(t) = Acos(wt — 1) + B sin(wt — 7) (1)
The analytical expression for the MP is given by:
Pi@) = 55 (A @0 + B@S@)  @a)

where:
> X(tj)cos(wt; — T)
Aw) = 28 o
> X(tj)sin(wt; — 1)
B(w)= 2%

S(w)

Cw) = z cosz(wtj -7)

j=1,N

Sw) = Z sin®(wt; — T)

j=1,N
Z sin(2wt;)
7=—arctan | 2
2 Z cos(wt;)
Jj=1,N

Here A(w) and B(w) are the parameters estimated by the Least
Square Method (hereafter LSM) of the model M; (Eq.1), and 7
is an additional parameter which results in the LSM correlation
terms being zero (see Lomb 1976) or equivalently makes the
periodogram time independent.

The main interest of this method is the statistical behaviour
of the MP. Scargle (1982) has shown that when X is pure
gaussian random noise, Pj(w) presents an exponential proba-
bility distribution in the case of arbitrary sampling. A direct
consequence of this statistical property is the existence of a
confidence level for the detection of periodicities. The basic
test to decide whether a period is not a random noise fluctua-
tion is to search for Pymax (the maximum of P; over the set
of test frequencies) and to compute the probability of finding
such a maximum in a pure noise case: Pr(1) = Pr(P(w;) >
Pimaz,i = 1,Nf) = 1 — (1 — exp(—Pymax))s, where N;
is the number of independent frequencies and Ny the number
of test frequencies calculated in the periodogram. The natural
set of independent frequencies (even sampling) is wy, = 27n/T,
n=0,1,2...N/2 with T the total observational time interval. In
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the unevenly-sampled case it is desirable to adopt an over sam-
pling OF AC and additionaly a hypersampling HI F AC, such
that Ny = OFAC + HIFAC * N/2 ( this point is discussed
further in Sect. 7). Koen (1990) has criticized the validity of
Eq. 2a because o? is also a random variable estimated through
sf=1/(N-1) Z;V:I X (¢;)? (hereafter o2 represents the true
value of the variance and s? its estimation). Consequently the
periodogram P, should be rewritten:

Pi@) = 55 (R@CW + B@SW) @b
and the probability of false detection Pr(1) associated with the
random variable P, is thus proportional to the ratio of two ran-
dom variables with x? distributions of 2 and N — 1 degrees of
freedom, which is the Snédécor distribution F, y_; with the
same degrees of freedom, whence:

Pymaz
Pr=1=([ " fraa@i® O
where fr is the probability density function (fr(zx) =
dF(z)/dz) of the cumulative distribution function F defined
as the probability of finding a random variable £ in the range
[—oo,z] ie. F(z) = Pr(¢ < ) = [°__ f(t)dt. In this case
and for a large data set the F; n_; distribution approaches the
exponential distribution.

3. The model and the orthogonal functions

The first step to improving the above periodogram analysis is to
take a model such as ZL A; cos(iwt — 73) + B; sin(iwt — 1),
where k is the number of harmonics needed to fit the shape of
the curve (see e.g. Vaniceck 1969, 1970). In the general case of
unevenly spaced data it quickly becomes difficult to compute
the coefficients A; and B;; furthermore, the significance test
cannot be applied because of the non-orthogonality of the func-
tions cos(iwt — 73), sin(iwt — 7;). We show in this section that
we can always find an appropriate set of orthogonal function
(®¢, ®) which are linear combinations of the preceding ones.
The resulting general least square model is a linear combination
of k pairs of functions (®¢, ®;):

M= A + B;®S )
i=1,k
The functions @ are:
®¢ = cos(wt — 1) )
&7 = sin(wt — 1)

PS5 = cosut — 1) — af, ®f — Bf, B}

B3 = sinQut — 1) — a5 — B, 8%

®f = cos(hwt —7x) — > (afi®f + 05}
i=1,k—1

O} = sin(kwt — 1) — Y (05 + F5)
i=1,k—1
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in which the coefficients o, 85, o, Bi), Tk are determined
by the orthogonality conditions:

> BtBEt) =0 i=Lk—1 k>1 (6)
j=1,N

> BtHRAt) =0 i=Lk—1 k>1

j=1,N

> it NBE(t) =0 i=1k—1 k>1

Jj=1,N

> Bt =0 i=Lk—1 k>1

7=1,N

> 5@ty = 0

j=1,N

To solve these equations, one can proceed step by step. The
first parameter to find is 71, for which we have > OiPY = 0.
It is given by the expression for 7 following Eq. 2a (1, = 7).
Then, using this result, it is possible to solve the five equations
involving the second harmonic for the five unknown parameters
of,, 05, Bfy, Bty T2, and so on for the following harmonics up
to the desired final harmonic k. The general expressions for the
coefficients are:

of, = cosT A, + sinTp A, i=1,k—-1 k>1 @)
af, = cosT A, — sinT A5, i=1,k—1 k>1
B85 = cosTeBg, + sinty By, i=1,k—1 k>1
Bi = cosTpBy, — sinTk By, i=1L,k—-1 k>1
> sin(2kwt;) — 2N
T) ! arctan LN
k=5
2 > cos(2kwt;) + 2Dy
j=1,N
where
N = &Y Bt + NE D @it
i=1,k—1 j=1,N j=1,N
Dy = Df > 0%t + DE > &5ty
é=1,k—1 j=1,N j=L,N
and

A _ AC gs
Nik—Az‘k ik

B _ pc ps
Nik—Bik ik

DA - ((Azk) = ))

DE - ((B,c) (%) )
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Z 7 (t;) cos(kwt ;)

¢ _ J=1LN
ik Z (I>f(t_,,)2
Jj=1,N
> @s(t;)sin(kwt;)
s _ 7=1,N
=
' PR HDS
j=1,N
Z &7 (t;) cos(kwt;)
c _ j=1,N
G =
’ > @)’
7=1,N

> @it sin(kwt;)

s _ G=LN
PR HCE

ik —
7=1,N

These equations define the analytical expression for the set of or-
thogonal functions used to describe the LSM model M}, (Eq. 1).
If desired these functions can be rewritten in term of a classical
Fourier series Y .4;cos(iwt — ;) + B sin(iwt — 7;), where
fi = Ay — Y oA — Y 0By, By = B — Y B A;

2. B

4. The generalized periodogram
The LSM gives estimates for the Ay, By coefficients:

> X;05(t5)

_ Jj=LN

T

j=1,N

> X;85(t))

3—1 N

Z{)(t)

7j=1,N

®

k=

We can derive a new expression for the periodogram defined
by Py = (1/2ks> (2 Xi* — 3 (X; — My)?), where My, (Eg.
4) is the best fit to the data. It is easy to show that Py can be
expressed as:

P, = 2k32 > b ©)
i=1,k
pi = A? Y @(t;)’ + B Z ®3(t;)’
j=1,N j=1,N

Note that the case k=1 corresponds to the MP (Eq. 2b). Figure
1 shows the variation of P over a set of test frequencies, up to
the fourth harmonic in the Fourier expansion for simulated data
of a semi detached eclipsing binary of 4.5 days period. Note
the best contrast between the true frequency and the others is
obtained for the third order.
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Fig. 1. The generalized periodogram (Eq. 9) versus the frequency for the first four Fourier harmonics of a simulated semi-detached eclipsing

binary of 4.5day period (F=0.22 day ")

5. Probability of false detection

The main advantage of the GP method is the existence of
a simple statistical test which allows us to decide whether
or not the period found is a pure noise effect. The fact of
having chosen an orthogonal base instead of the classical
Fourier series decomposition transforms the periodogram Pj
proportional to the sum of squares of 2k independent terms
(4@, Bi(S(@3))* ). Under the assumption that X

is a pure normal noise N (0, 02) with zero mean and variance o2,

the 2k terms are also normal (Scargle 1982) with zero mean and

variance 02 = 623 8¢, 02 = 623" ®27. Furthermore, the sum
of the squares of 2k random normal variables of unit variance is a
random variable with a x? distribution of 2k degrees of freedom.
From this property and rewriting Py, = (Y%, p;/2ka?)/(s*/?)
we can deduce a probability of false detection Pr(k) as the gen-
eralization of Pr(1) (Eq. 3) in the following form (see Eq. 3 for
the definition of fr):

Prik)=1- ( e (@) dm) e

Prmazx —
L™ fruno @) dz =1 — Iiv_1y(v—142kPemaz) (252, K)
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Fig. 2. The generalized probability of detection Pr(z), < = 1,4 given by Eq. 10 for the same semi-detached eclipsing binary simulated in Fig. 1

where [ is the incomplete beta function (see Press et al. 1989),
P,max is the maximum of Py, over the set of test frequencies,
and N; is the number of independent frequencies (see Sect. 7
for remarks about NNV;). For the same example given in Fig. 1,
Fig. 2 shows the false alarm probability for the first to fourth or-
der development Pr(1)...Pr(4), or equivalently the confidence
level of the tested periods CL = 1 — Pr(3). The minimum of the
probability Pr(3) is obtained for i = 3 which corresponds also
to the best contrast of the P, drawn in Fig. 1. The fact in this
example that Pr(4) > Pr(3) shows that the additional term py4
in Py = P3 + p4 is not statistically meaningful.

6. Monte Carlo simulation

Monte Carlo simulation is a good tool for quantifying the ef-
ficiency of the GP compared to the MP in the case of a peri-
odic non-sinusoidal light curve. Light curve simulations cor-
responding to the model of a semi-detached eclipsing binary
already considered were made of the form a[cos(wt/tp) —
0.75 cos(Rwt[tp) + 0.5 cos(Bwt/tp) — 0.25 cos(4wt/to)] + b,
where the parameter a is proportional to the signal-to-noise ra-
tio, and b is normal noise N(0,1). The value of a was varied
from O to 5 in steps of 0.05; the number of measurements was
N = 50, randomly spaced. In accordance with Scargle (1982,
Appendix D) the number of test frequencies [Ny was taken equal
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Fig. 3. a The minimum probability of false detection versus the signal-to-noise ratio of the signal a for the MP (open squares) and the GP (filled
squares). b Average order of development used to compute the GP versus the signal to noise ratio (to compare with 1 for the case of the MP).
¢,d detection efficiencies versus the signal to noise ratio for a confidence level better than 99% and 99.9%

to the number of Nyquist frequencies /Ny without oversampling
Ny = Ny = N/2 = N; where N; is the number of independent
frequencies used to calculate the probability Pr(z) (i = 1,4).
For each value of a, N; = 100 independent trials were computed
and the probability of false detection Pr (%) defined in Eq. 10 was
estimated, with the true number of independent frequencies N;
taken equal to the number of independent frequencies for each
trial N; multiplied by the number of trials /V;. The computation
of the GP for each test frequency is done in the following order:

1) P, Pr(1),

Only higher peaks of P, are studied to the next order if
Pr(1) < Prpqz where Prp,,, is an appropriate limit on the
probability (for example Pr,,,, = 0.2),then:

2) B, Pr(2),
then if Pr(2) < Prp.; and Pr(2) < Pr(1),

3) P;, Pr(3)...and so on.
Figure 3 gives the Monte Carlo results for the GP and MP meth-
ods. The significant difference between GP (filled squares) and
MP (open squares) proves that GP performs better than MP in
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the case of periodic light curves with shapes different from a
sinusoid such as those of semi-detached eclipsing binaries.

7. Discussion

- a) The choice of test and independent frequencies:

The first step in searching for periodicities is to define a set of
test frequencies for which the GP will be computed. In the case
of evenly sampled data and for a sinusoidal light curve the set
of Nyquist frequencies (w, = 27n/T,n =0, 1,2...N/2, where
T is the total observational time interval) is the best choice, be-
cause it is the lowest number of frequencies required to recover
the original data, and it is also by definition a set of indepen-
dent frequencies. In the general case of unevenly spaced data
and for a non-sinusoidal light curve, it seems useful to increase
the natural Nyquist number of test frequencies by an oversam-
pling (OF AC) and a hypersampling (HIF AC) factor which
define a larger set of test frequencies (w, = 2mn /(T * OF AC),
n = 0,1,2...N « OFAC x HIFAC/2). Basically, we can
choose OF AC ~ k (k being the highest harmonic we hope
to detect) because the higher the harmonics in the light curve,
the more frequencies we need to find them. The hypersampling
defines the largest frequency we can hope to find, and its value is
mainly dependent upon the data sampling. In cases of sampling
where there are no large gaps HI F AC = 2 is commonly used.
This sets the smallest period searched for equal to the average
time between observations. In the cases where significant gaps
are present in the data, H I F'AC can be increased in order to find
periodicities comparable of the average time between observa-
tions. The appropriate value for the number of independent fre-
quencies NV; is unclear and changes with the sample (see Horne
et al. 1986). Until there is a better understanding of this param-
eter, it is safer to adopt N; = N; = Ny * OFAC « HIFAC
so as not to underestimate the probability of false detection
Pr(k) (Eq. 10) or equivalently overestimate the confidence level
(1 - Pr(k)).

- b) Pseudo-periodic light variation:

The GP method is strictly speaking only applicable for periodic
variable stars. We could think of generalizing this approach to
pseudo-periodic light curves (f(t) = fi(¢/T1) + f2(t/T2) + .. +
fma@/Ta)s | fi] > |f2| > ... > |fume]) with M different peri-
ods not in rational ratios. However this means that one should
analyse Ny x N, * ... x Ny test frequencies, increasing by the
same factor the probability of false detection (see Eq. 10 with
N; = N1 * Ny x ... x Njy), and the computing time. However,
if the change |A f,| < |A f1] over the time interval studied, we
could hope to find (T3, f1) in a first step and in a second step,
after subtraction of f; from the data, try to detect (73, f), and
SO on.

- ¢) Light curves with nearly equal eclipses:

Some eclipsing binaries have similar primary and secondary
minima. The GP formulation obviously detects these objects
with half their period. Such cases are easily recognized during
inspection of phased light curves.

P. Grison: Automatic search for periodic light curves

8. Conclusion

In this paper we have derived a new expression of the peri-
odogram in order to search for non simple sinusoidal periodic
light curves with maximum efficiency, independent of the shape
of the variations. The expression of the GP (Eq. 5) with its asso-
ciated probability Pr(k) (Eq. 6) performs better than the com-
mon MP without any significant increase of computing time. A
direct application of such analysis is the detection of all periodic
variable stars in a large data sample. A paper is in preparation
concerning new eclipsing binary stars in the LMC found in this
way in data from the EROS survey.
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