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A B S T R A C T

Onshore pipelines are exposed to corrosion degradation, facilitated by the pipeline’s management and
surrounding aggressive environmental conditions. Every 2 to 6 years, pipeline operators often conduct In-
Line (ILI) inspections to screen for pipe damage using magnetic or ultrasonic sensors. Considering soil and
fluid aggressive conditions, and the possibility of false alarms or a miss-detections from the inspection
device, new defects, i.e., metal loss at either the inner or outer wall, should be expected to occur between
consecutive inspections. Considering the possibility of ‘‘corrosion colonies’’ and their significance in the
pipeline’s reliability assessment, different authors have incorporated new corrosion defects in degradation and
further reliability assessments using a Homogeneous Poisson Process. This process assumes that corrosion points
are evenly distributed, which can be classified as conservative. This study aims to characterize the main spatial
distribution of corrosion defects using the Complete Spatial Randomness (CSR) assumption under hypothesis
testing. Additionally, it assesses how is the interaction between new and old defects from a repulsion–attraction
perspective, and it proposes an alternative to simulate them for further reliability analyses. The suggested
approach was applied in a real case study, obtaining that corrosion defects tend to be clustered and little
repelled from those already detected.
1. Introduction

Corroded pipelines tend to degrade (i.e., metal loss) in a space-
dependent manner either at the inner or outer wall. The different soil
types around the pipeline, as well as the pipe’s installation (under-
ground vs. aboveground), use, and maintenance, all encourage this
degradation. As an example, many studies have noted that soils with
higher levels of chlorides, sulfates, and acidic pH, as well as the pres-
ence of bacteria, fungi, or algae, have a substantial impact on the pipe
wall [1–3]. According to other findings, low flow rates (< 2 m/s) may
result in competition between the corrosive species and the inhibitor,
whereas high flow rates (> 6 m/s) may favor an erosion-corrosion in
a H2S/CO2 medium with Sulfur deposition [4]. This space-dependent
metal loss favors locations more prone to fail and where pipeline
operators should pay more attention [5]. Considering a limit state
perspective, this failure corresponds to an ultimate condition in which
the resistance of the pipe cannot contain the fluid being transported,
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occurring in what is known as a Loss of Containment (LOC), leading
to a leak, burst, or rupture of the pipeline [6]. Bearing in mind these
fluids are commonly flammable, explosive, or even toxic, an uncon-
trolled release could trigger different accidental scenarios such as fires,
explosions, or pollution scenarios [7]. Therefore, pipeline operators
should support further interventions to avoid LOC events or expensive
maintenance based on information from regular monitoring tools, such
as In-Line (ILI) measurements [8,9].

In-Line inspection detects and measures corrosion defects along the
pipeline, functioning as a screening tool for the pipeline condition at
a given moment every 2 to 4 years. The outputs of this inspection
include (Fig. 1): (i) The size of each corrosion defect in terms of
their depth, length, and width detected by the inspection tool. For
this purpose, the defect depth is greater than a predefined threshold,
commonly taken as 10% of the pipe wall thickness. (ii) The location of
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Nomenclature

𝛼 Significance level
E[⋅] Expected value function
E𝑟(𝑛) Mean under the CSR assumption
𝜖𝑑 Defect depth measurement error
̂𝜆𝑁 Estimated intensity of the new defects
𝐾̂𝑟(𝑟) Estimated Ripley’s K-function
𝜆 HPP Poisson intensity
𝛬(𝑥) Cox process
𝜆(𝑥) Inhomogeneous intensity
𝜆𝑁 Intensity of the new defects
 Subset of the evaluating window
(⋅) Indicator function
(⋅) Symmetric’s kernel function
 Set of new points
 Set of old points
 Set of pattern points
 Rectangular window using the abscissa and

the perimeter, i.e., (A × P)
2 Pearson Chi-square test
∡𝑂𝑃𝑄 Angle formed by points 𝑂, 𝑃 , and 𝑄
P[⋅] Probability measure
𝜋1,… , 𝜋𝑛 Points permutations
𝜎𝑟(𝑛) Standard deviation under the CSR assump-

tion
𝜏 Kendall’s rank-correlation coefficient
𝜆̃(𝑢) Uncorrected kernel
𝜆̃𝐷(𝑢) Diggle’s correction kernel
𝜆̃𝑈 (𝑢) Uniform corrected kernel
𝜆̃−𝑖 Kernel-smoothing with the leave-one-out

method
𝐴 Study area
𝐵𝐺 Besag & Gleaves test
𝐵𝑅 Byth & Ripley test
𝐶𝐸𝐷 Clark & Evans test
𝐶𝑣𝐿(ℎ) Cronie & Van Lieshout cross-validation

estimate of the bandwidth
𝑑(𝑖, 𝑗) Distance between the 𝑖th and 𝑗th points
𝑑𝐼𝐿𝐼 Depth reported by the ILI tool
𝑑𝑗𝑖 𝑗th Nearest neighbor of the 𝑖th event
𝑑𝑂𝑁 (𝑖, 𝑗) Distance from the 𝑖th point of 𝑅𝑂 to the 𝑗th

point of 𝑅𝑁
𝑑𝑟𝑒𝑎𝑙 Real corrosion depth
𝑑𝑦 Point-to-event nearest distance
𝑑𝑧 Nearest event neighbor under the T-square

sampling
𝑒𝑖𝑗 Edge correction factor of the Ripley’s K

function
𝐹 -function Cumulative frequency distribution of the

spatial distance between a fixed point-to-
nearest event

𝐺-function Cumulative frequency distribution of the
nearest event-event

𝐻(𝑟) Functional form (i.e., G, F, K, and L)
𝐻𝑜𝑏𝑠(𝑟) Observed functional
𝐻𝑇ℎ𝑒𝑜(𝑟) Theoretical functional form
𝐾, 𝐿-functions Ripley’s and its transformation. Mean num-

ber of points in concentric circles around
each event
2

𝐾𝑂𝑁 (ℎ) Cross-K function
𝐿𝐶𝑉 (ℎ) Loader likelihood cross-validation estimate

of the bandwidth
𝑚 Simulations in the Monte Carlo test
𝑚𝑂, 𝑚𝑁 Old and New defects marks
𝑛 Number of Points
𝑁() Number of points in 
𝑃𝑒 Perimeter
𝑃𝑎𝑡𝑡𝑟𝑎𝑐 Attraction 𝑝-value
𝑃𝑟𝑒𝑝𝑢𝑙 Repulsion 𝑝-value
𝑞(‖𝑥‖) Kernel smoothing border correction
𝑅 Upper limit for the 𝑇𝑀𝐴𝑋 and 𝑇𝐷𝐶𝐿𝐹

functions
𝑟 Radius of concentric circles in 𝐾 and 𝐿

functions
𝑅𝑂 and 𝑅𝑁 Realizations of the old and new populations

with 𝑛𝑂 and 𝑛𝑁 points
𝑠1 … , 𝑠𝑛 Set of observations for the permutation test
𝑡 Pipeline wall thickness
𝑇𝐷𝐶𝐿𝐹 DCLF test
𝑇𝑀𝐴𝐷 MAD test
𝑇𝐻𝑁 Thompson test
𝑋 Point process
API American Petroleum Institute
CSR Complete Spatial Randomness
DCLF Diggle–Cressie–Loosmore–Ford test
HAZ Heat-Affected Zone
HPP Homogeneous Poisson Process
ICCP Impressed Current Cathodic Protection
ILI In-Line Inspection
IQR Inter-quartile range
LOC Loss of Containment
MAD Maximum Deviation test
MFL Magnetic Flux Leakage
MSE Mean Square Error
MVPLN Multivariate Poisson Lognormal Process
NHPP Non Homogeneous Poisson Process
TTLQV Two-termed Local Quadrat Variance
USDA United States Department of Agriculture

each corrosion defect in terms of the pipe abscissa and its orientation
using a clock-position analogy. (iii) The ILI results also include pipeline
structural parameters (e.g., diameter, wall thickness), pipeline distri-
bution (e.g., inclination, latitude/longitude, altitude), and operating
parameters such as the maximum operating pressure [10].

New corrosion defects will appear between consecutive inspections.
On the one hand, they can be related to the aggressiveness of the
surrounding soil, fluid operation, and fluid properties. On the other
hand, they can be missed during the first detection (i.e., miss-detection)
or might raise a false alarm during the subsequent inspection. The
latter case means that the inspection tool ‘‘detects’’ a shallow non-
existing corrosion metal loss with a low probability of detection [10].
Without field measurements, it is impossible to determine why new
defects appear, although there is unquestionably an ‘‘indication’’ of a
new corrosion point [13]. Dealing with new defects from a reliability
analysis implies two main processes of determining how many new
defects would appear for a given period of time and where they will
be spatially distributed. This information is critical to analyze possible
‘‘corrosion colonies’’, which make the pipeline more prone to fail [14],

affecting further maintenance decisions.
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Fig. 1. Scheme of the dimensions of the corrosion defects.
Source: Modified from [11,12].
For this purpose, different approaches have been proposed to ad-
dress new defects appearing between inspections. Some researchers
have considered Poisson processes and Monte Carlo simulations to
estimate the number of new defects and predict when they might
occur [15,16]. These approaches typically consider a uniformly random
location [16]. However, this assumption may be conservative given
that corrosion clusters have been reported close welded joints [17], the
circumferential location may be affected by coating disbondment [18],
and that these clusters are likely to occur depending on their close-
ness [19]. Other alternatives include Multivariate Negative
Binomial [20] or a Multivariate Poisson-Lognormal (MVPLN) [21,22]
for evaluating defect count data. For instance, Wang et al. [22] con-
sidered an MVPLN model to predict the external corrosion of the pipe
based on ILI data and soil corrosivity measurements. These authors also
compared other count data approaches like the Multivariate Poisson
model, Multivariate Negative Binomial model, and their univariate
versions, considering the possibility of random or clustered patterns
using a critical limit distance of 0.364 m. The MVPLN allows obtaining
random variables that account for the spatial dependencies using
the Markov Chain Monte Carlo (MCMC) algorithm from a Bayesian
parameter inference, which can be used to assess the reliability of the
pipeline but may omit the formation of future clusters.

Based on the mentioned above, some questions arise, such as: Are
new corrosion defects, i.e., those being detected between inspections,
randomly distributed along the pipeline? Is there any influence based
on the surrounding soil, location of previous corrosion points, or pipe
position? Do previous corrosion points tend to repel or attract new
corrosion defects? Or are they spatially independent? If there is any
spatial dependency, how new corrosion defects can be simulated to
support further reliability assessments until a new ILI measurement is
available?

This paper addresses these questions, seeking insights into how new
corrosion points could be spatially distributed between consecutive
inspections and how their spatial dependencies can be simulated. For
this purpose, three main approaches are considered:

1. How are new defects distributed? A point pattern analysis
is proposed based on the reported locations of each corrosion
defect. This work evaluates the defects’ distribution consider-
ing the Complete Spatial Randomness (CSR) assumption, which
indicates that the points (i.e., corrosion defects) follow a uni-
form distribution across the evaluating window with a number
of points coming from a Poisson distribution with a fixed in-
tensity or that the points come from a Homogeneous Poisson
Process. This approach is evaluated using hypothesis testing
with clustered and dispersed point pattern alternatives. Different
available tests use a nearest neighbor or functional perspectives,
which were reviewed and selected for this purpose.
3

2. How do new defects interact with old ones? The location of
the new defects could indicate an attraction or repulsion pattern,
which in turn may favor a greater degree of a clustered or
dispersed point pattern of the entire reported corrosion defects.
As in the CSR assumption, this approach is evaluated using hy-
pothesis testing with a null hypothesis of independence between
the two sets of points used under Monte Carlo tests.

3. How can new defects be simulated? Predictions of the pipeline
condition also require simulating new defects, which is why
this work assesses a space-dependent point process to fit the
new corrosion points, considering a Non-Homogeneous Kernel
smoothing approach.

These three approaches contemplate a previous matching process
between two consecutive inspections that allows discrimination of
which defects were detected in the first inspection (i.e., old points) and
which were not (i.e., new points). For this purpose, the methodology
reported in Amaya-Gómez et al. [23] was used, based on the nearest
neighbor perspective using Voronoi tessellation, a matching transfor-
mation, and correspondence and outliers’ optimization approach.

The paper is structured as follows: Section 2 describes the Complete
Spatial Randomness assumption and both possible alternatives: clus-
tered and dispersed patterns. This section describes and selects the main
methods for this analysis. Section 3 evaluates the repulsion/attraction
test between the new and old defects. Section 4 describes the inhomo-
geneous point pattern analysis to simulate the distribution of the new
defects. Section 5 describes spatial dependencies of the real case study,
and the results and discussion are shown in Section 6. Finally, Section 7
presents some concluding remarks.

2. New defects distribution: are they randomly located?

Consider a set of 𝑛 points () on the pipeline either at the inner
or outer wall, i.e.,  = {𝑥1,… , 𝑥𝑛}, 𝑥𝑖 ∈  = (A × P), where 
is the rectangular window formed by the pipeline abscissa (A) and
circumferential position (P). Denote the number of points in a given
area  as 𝑁(). This number of points is characterized to be finite
for any subset area, i.e., 𝑁() < ∞,∀ ⊂  . The Complete Spatial
Randomness (CSR) states that  is uniformly distributed across the
window with a number of points that follow a Poisson distribution with
expected value 𝜆, which is analogous that the  follow a homogeneous
Poisson Process.

Formally, a point process 𝑋 on  is a homogeneous Poisson point
process with density 𝜆 if [24]:

(i) ∀ ⊂  , 𝑁() follow a Poisson distribution with mean 𝜆||,
where || corresponds with the area of , and
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Fig. 2. (a) Random, (b) Cluster, and (c) Regular spatial dispersion points.
(ii) for any 𝑛 ∈ N and  ⊂  with 0 < || < ∞, conditioned on
𝑁() = 𝑛, then 𝑋| follow a Binomial point process with density
1∕||.

Note that in case the intensity depends on the position (i.e., 𝜆(𝑥)),
the process is known as inhomogeneous, and it follows that the ex-
pected number of points is determined by the area under this intensity
function over the corresponding area, i.e., E[𝑁()] = 𝜇() = ∫ 𝜆(𝑥)𝑑𝑥.
Besides, if 𝑋 is invariant under translation, it is said stationary, and if
invariant under rotation, it is known as isotropic.

The point distribution can be explained using a random realization
of a Poisson (or Binomial) point process or as a result of spatial inter-
actions regarding inhibitions or attractions among the points. There-
fore, the patterns are usually classified considering random, cluster, or
regular (inhibited) distributions; Fig. 2 illustrates these three spatial
dispersion points considering stationary processes. The points in Fig. 2a
are independent and randomly distributed, and they come from a
realization of a Poisson Process with 𝜆 = 50. Fig. 2b shows an aggre-
gated pattern where relevant spatial interactions can be perceived. This
example comes from a Matern cluster process, which locates the parent
points initially, and then offspring points are distributed uniformly
around them using a given radius. This figure shows a realization
of a Matern cluster process with 5 parent points and 10 ‘‘offspring’’
points at a distance lower than 0.05. Finally, Fig. 2c shows a more
significant spatial inhibition than the CSR assumption, which comes
from a sequential spatial inhibition process.

There are different approaches to evaluate the Complete Spatial
Randomness assumption, given some points  . In what follows, some
of the most relevant approaches are described in detail below.

2.1. Quadrats and distance-based methods

Usually, quadrat counts and distance-based methods are commonly
reported [25]. The quadrat method divides the study window into
equally size quadrats – or non-overlapping areas – to later implement
a Pearson 2 (Chi-square) test with the mean number of points per
quadrat, following a Poisson distribution. Quadrats are one of the most
recognized tests in the literature, considering continuous approaches
such as the so-called TTLQV (Two-termed local quadrat variance).
However, it is significantly sensitive to the window partition, so this
work did not consider this test. Distance-based methods use either
the nearest event-event separation (initial points ) or the distance
between random points with the events in  .

This work considers the classical distance-based approaches of Clark
& Evans (1954) with the Donnelly edge correction [26] and Thompson
(1956) [27] due to their straightforward interpretation and prediction
power [26,27]. Besides, the statistics of Byth & Ripley (1980) [28] and
Besag & Gleaves (1973) [29] were selected following the recommenda-
tions of Dettloff [30], based on the power to identify non-randomness.
The four distance-based methods are summarized in Table 1; they
4

Fig. 3. T-square method description. The events are illustrated with circles and the
crosses are the random points.

are denoted by 𝐶𝐸𝐷, 𝑇𝐻𝑁 , 𝐵𝑅, and 𝐵𝐺, respectively; for further
details, please refer to the corresponding reference or the reviews from
Refs. [25,30].

The Clark & Evans aggregation ratio uses the mean distance of
the nearest event-event with an expected distance following the CSR
assumption. This ratio includes an edge correction associated with the
bias produced by the events at the window’s boundary, which would
produce more considerable nearest-neighbor distances. The Thompson
statistic is a generalization of Clark & Evans by implementing the sec-
ond to the fifth nearest neighbors of each event. Byth & Ripley (1980)
and Besag & Gleaves (1973) consider point-event distances where a
random point 𝑂 is initially added, and the distance to its nearest event
𝑃 is determined. Finally, the distance from 𝑃 to its nearest neighbor 𝑄
is measured. The approach of Besag & Gleaves is part of a particular
class known as T-square, where the angle ∡𝑂𝑃𝑄 = 𝜃 > 90◦, as shown
in Fig. 3.

2.2. Functionals and angle-based approaches

Other methods to evaluate the CSR assumption include approaches
based on angles formed between the points and functionals [25]. For
instance, the former case adds some random points and determines the
angle formed between each of them and their two nearest events [31].
Despite some exciting capabilities for detecting non-randomness, its
performance is usually less accurate than distance-based methods, par-
ticularly those with a T-square sampling [31]; therefore, they are also
discarded. Functional approaches include the cumulative frequency
distribution of the nearest event-event (𝐺-function), the cumulative
frequency distribution of the spatial distance between a fixed point-
to-nearest event (𝐹 -function), and the mean number of points if circles
with known radius are placed around each event (𝐾 and 𝐿-function).
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Table 1
CSR tests for patterns with 𝑛 points.

Statistic Significance Test Description Ref.

𝐶𝐸𝐷 =

1
𝑛
∑𝑛

𝑖=1 𝑑1𝑖

E𝑟
Z-test with N(E𝑟 , 𝜎𝑟)a

E𝑟 = 0.5
√

𝐴
𝑛
+0.0514 𝑃𝑒

𝑛
+0.041 𝑃𝑒

𝑛3∕2
;

𝜎𝑟 =
1
𝑛

√

0.07𝐴 +
(

0.037𝑃𝑒

√

𝐴
𝑛

)

Index of aggregation of the
nearest neighbor with an edge
correction.

[26]

𝑇𝐻𝑁 =

1
𝑛
∑𝑛

𝑖=1 𝑑𝑁𝑖

E𝑟(𝑛)
Z-test with N(E𝑟(𝑛), 𝜎𝑟(𝑛))a

E𝑟(𝑛) =
√

𝐴
𝑛

(

(2𝑛)!𝑛
(2𝑛𝑛!)2

)

;

𝜎𝑟(𝑛) =
√

𝐴
𝑛

(√

𝑛
𝜋
− E𝑟(𝑛)2

)

Index of aggregation 𝑁th nearest
neighbors.

[27]

𝐵𝑅 = 1
𝑛
∑𝑛

𝑖=1

𝑑𝑦21𝑖
𝑑𝑦21𝑖 + 𝑑2

1𝑖

Z-test with N
( 1
2
, 1
12𝑛

)

b Ratio of the distance of random
point-to-event and the events’
nearest neighbors.

[28]

𝐵𝐺 = 1
𝑛
∑𝑛

𝑖=1

𝑑𝑦21𝑖
𝑑𝑦21𝑖 + 𝑑𝑧21𝑖∕2

Z-test with N
( 1
2
, 1
12𝑛

)

b Ratio of distances considering the
T-square approach.

[29]

𝐶𝐸𝐷 : Clark & Evans, 𝑇𝐻𝑁 : Thompson 𝑁th nearest neighbor, 𝐵𝑅: Byth & Ripley, and 𝐵𝐺: Besag & Gleaves
𝐴: Study area, 𝑃𝑒: perimeter, 𝑑𝑗𝑖: 𝑗th nearest neighbor of the 𝑖th event, 𝑑𝑦: point-to-event nearest distance, and
𝑑𝑧: nearest event neighbor under the T-square sampling.
a If 𝐶𝐸𝐷 and 𝑇𝐻𝑛 <<1, the tests indicate a cluster point pattern; if 𝐶𝐸𝐷 and 𝑇𝐻𝑛 ≫1, a regular point pattern, and values
near 1 accept the CSR assumption.
b If 𝐵𝑅 and 𝐵𝐺 ≫1/2, the tests indicate a cluster point pattern; if 𝐵𝑅 and 𝐵𝐺 <<1/2, a regular point pattern, and values
near 1 accept the CSR assumption.
Fig. 4. Scheme of the Ripley’s K-function.
Source: Adapted from Ref. [32].
These approaches compare the observed distributions with the empiri-
cal distribution under the CSR assumption, obtaining valuable informa-
tion using confidence envelopes with Monte Carlo tests, see Fig. 4 for
the case of the Ripley’s K, where at the beginning is detected a clustered
pattern, following for more dispersed data. From these approaches, the
𝐿-function (𝐾-function transformation) was considered because of its
recognized variance stabilization and natural interpretation, which is
briefly described below.

The expected number of events within a distance 𝑟 of a randomly
chosen event can be estimated using Ripley’s statistic as [33]:

𝐾̂𝑟(𝑟) =
𝐴

𝑛(𝑛 − 1)
∑

𝑖

∑

𝑗≠𝑖
𝑒𝑖𝑗(𝑑(𝑖, 𝑗) ≤ 𝑟) (1)

where 𝐴 is the study area, (⋅) is the indicator function, 𝑑(𝑖, 𝑗) is the
distance between the 𝑖th and 𝑗th points, and 𝑒𝑖𝑗 is an edge correction
factor that deletes points if the circles around them are partially outside
of the study window. Under CSR, it follows that 𝐾𝑟(𝑟) = 𝜋𝑟2; if 𝐾𝑟(𝑟) >
𝜋𝑟2, the point pattern is said to be clustered, whereas if the 𝐾𝑟(𝑟) < 𝜋𝑟2

it follows a dispersed distribution. Therefore, the 𝐿-function has been
proposed as follows [33]:

𝐿(𝑟) =
√

{𝐾 (𝑟)∕𝜋} (2)
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𝑟

This function states that a point pattern follows a CSR assumption
similarly as in the 𝐾-function with E[𝐿(𝑟)] = 𝑟. To evaluate this
functional, different statistics have been considered using Monte Carlo
tests, as discussed by Baddeley et al. [34] with the Maximum Deviation
(MAD) and so-called Diggle–Cressie–Loosmore–Ford (DCLF) test. These
tests can be applied for any functional mentioned before (i.e., 𝐾 and 𝐿
functions) by denoting them as 𝐻(𝑟) as follows:

𝑇𝑀𝐴𝐷 = max
0≤𝑟≤𝑅

|

|

𝐻(𝑟) −𝐻𝑇ℎ𝑒𝑜(𝑟)|| , 𝑇𝐷𝐶𝐿𝐹 = ∫

𝑅

0

(

𝐻(𝑟) −𝐻𝑇ℎ𝑒𝑜(𝑟)
)2 𝑑𝑟

where 𝑅 is an upper limit about the interaction distance between
points. 𝐻𝑇ℎ𝑒𝑜(𝑟) can be approximated as 𝐻̄(𝑟) =

(

1
𝑚+1

)

(𝐻1(𝑟) + ⋯ +
𝐻𝑚(𝑟)+𝐻𝑜𝑏𝑠(𝑟)), being 𝐻𝑖(𝑟) for 𝑖 = 1,… , 𝑚 the simulated distance-based
summary functions and 𝐻𝑜𝑏𝑠 the one obtained using the observation
data [34]. In the case of Ripley’s function 𝐾𝑇ℎ𝑒𝑜(𝑟) = 𝜋 𝑟2 and Besag’s
transformation 𝐿𝑇ℎ𝑒𝑜(𝑟) = 𝑟. The null hypothesis of CSR is rejected if
𝐻𝑜𝑏𝑠 is higher than the 𝑘th largest simulated value with a significance
level of 𝛼 = 𝑘∕(𝑚 + 1) [34]. This Monte Carlo test was also applied
for the distance-based methods considering a two-sided alternative. For
this case, consider that 𝑗 simulated values statistics are greater than
the observed points, then the significance level can be calculated as
𝛼 = 2min(𝑗+1, 𝑚+1−𝑗)∕(𝑚+1) [34]. According to Baddeley et al. [34],
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the main idea behind these Monte Carlo tests comes from the fact that
if the null hypothesis of CSR is true, then the 𝑚+1 point patterns would
be equivalent from a statistical point of view, i.e., they come from the
same random distribution. The largest index’s probability would then
be 1∕(𝑚 + 1), which corresponds with the 𝑝-value.

3. Interaction of new defects: Repulsion or attraction?

After analyzing the hypothesis of CSR of new defects in Section 2,
i.e., the possibility that corrosion points follow a random distribution,
this section evaluates if new defects tend to be repelled or attracted by
old corrosion points, or if they have no particular influence (i.e., ran-
dom placements). This interaction may occur due to the cathodic
protection mechanism or the corrosion cell. According to the U.S.
Navy Department, some repulsion or attraction of positive metallic ions
may occur depending on whether it is located at the node cathode
or the anode. [35]. If more new points are close to old ones than
expected under the independence assumption, there would be some
‘‘attraction’’ between the two populations. On the contrary, if there are
significantly fewer new defects than expected, a ‘‘repulsion’’ between
he two populations could be suggested. For ease of notation, let  be
he set of old points and  as the set of new ones.

Different approaches have been proposed to evaluate the inde-
endent populations’ assumption, including nearest-neighbor, Kendall’s
orrelation rank, or cross-distance function tests. Nearest-neighbor tests
enerate random points and determine the distance to each popula-
ion’s nearest neighbors, denoted as 𝑑1 and 𝑑2, to estimate the dis-

tribution of both distances. Under the null hypothesis of independent
populations, the distributions of 𝑑1 and 𝑑2 would also be indepen-
ent [36]. Another approach was reported by Diggle & Cox [37],
ollowing a non-parametric test based on Kendall’s rank-correlation
oefficient 𝜏. This approach simulates uniform random points and
etermines the distance to each population. However, in this case,
he correlation is determined using signed indices from the distance
ifference of reference points. The estimated correlation discriminates
gainst the cases of attraction (high positive values) and repulsion (high
egative values) influences [37,38].

Finally, other approaches consider cell-count statistics based on
ross versions of distance functions such as Ripley’s K-function (see
q. (1)), as in the case of Lotwick & Silverman [39] and Smith [38,40].
he approach of Lotwick & Silverman evaluates the influence of the
wo populations based on a cross-version of the distance K-function
ollowing a random-shift perspective. This perspective aims to evaluate
ifferent ‘‘samples’’ of both populations, as in CSR hypothesis testing
ith Monte Carlo tests. However, a test for the repulsion/attraction

nfluence is more complicated than the CSR test because of the impos-
ibility of replicating the particular spatial dependencies [40]. In this
egard, they proposed shifting the evaluation window to simulate a new
ample; they assumed a stationary process on the plane after wrapping
he plane into a torus (i.e., donut) or replicating the entire window to
orm a ‘‘mosaic’’ [39]. Fig. 5 illustrates these random-shifting samples,
onsidering two categories represented with white and blue points that
re analogous to the new and old defects. Fig. 5a shows an initial
oint pattern with a random shifting, which is represented by an initial
range concentric circle that is shifted to the position of the red circle.
his random shifting eventually would be complicated by those defects
ear the window’s boundary, as they are subjected to an edge effect
hat hides the real interaction of both sets. Fig. 5b illustrates the same
lane, but when the plane was wrapped into a torus. Finally, Fig. 5c
uplicates this plane to address a continuous Mosaic shifting.

On the contrary, the approach of Smith contemplates the total
umber of observations 𝑛 (i.e., 𝑛1 + 𝑛2) and a null hypothesis in which
opulations are indistinguishable, so a permutation test considering a
ixed number of points 𝑛 is considered [38]. This work implements
his alternative based on the comparison made by Smith with different
6

oint patterns [40]. Smith remarked that the random-shift approach
of Lotwick & Silverman might hide global clustering in the mosaic
(window replication) [38]. Also, Smith suggested that the approach
of Diggle & Cox is limited for detecting small-scale relations between
both populations, which is a general drawback for nearest-neighbor
approaches that would only focus on local links. This approach will
be explained in more detail in what follows.

Define a K cross-function 𝐾𝑂𝑁 that modifies the K-function for sin-
le populations (Eq. (1)). This function evaluates the expected number
f points in the new dataset (i.e.,  ) given a specific distance lag ℎ
rom the set of old defects (i.e., ). Let 𝑅𝑂 and 𝑅𝑁 be some realizations
f these populations with a number of points of 𝑛𝑂 and 𝑛𝑁 in a given
egion 𝑆, respectively. The cross-K function is defined as follows [40]:

𝐾𝑂𝑁 (ℎ) = 1
𝜆𝑁

E

( 𝑛𝑁
∑

𝑗=1
(𝑑𝑂𝑁 (𝑖, 𝑗) ≤ ℎ)

)

(3)

where (⋅) is an indicator function, 𝑑𝑂𝑁 (𝑖, 𝑗) is the distance from the
th point of 𝑅𝑂 to the 𝑗th point of 𝑅𝑁 , and 𝜆𝑁 is the intensity

of the new defects. According to Smith [40], the number of points
𝑛𝑁 and the distance between the two realizations 𝑑𝑂𝑁 (𝑖, 𝑗) would be
considered random variables because the realizations have a different
number of points that are randomly distributed based on the population
intensities. The cross-K function can be obtained from the maximum
likelihood estimate given below, where 𝜆̂𝑁 is the estimated intensity
of  determined by the ratio between 𝑛𝑁 and the area of the region

[40]:

̂𝑂𝑁 (ℎ) = 1
𝜆̂𝑁

𝑛𝑂
∑

𝑖=1

𝑛𝑁
∑

𝑗=1
(𝑑𝑂𝑁 (𝑖, 𝑗) ≤ ℎ) (4)

Given a set of observations 𝑠1,… , 𝑠𝑛, the indistinguishable test of
Smith establishes that every 𝑠𝑖 could belong either to the  or 
populations, i.e., the point mark 𝑚𝑖 = 𝑚𝑂 or 𝑚𝑖 = 𝑚𝑁 . Consider the
joint probability of the locations 𝑠𝑖 and marks 𝑚𝑖 of the observations
P[(𝑚𝑖)𝑛𝑖 , (𝑠𝑖)

𝑛
𝑖 ]. Under the null hypothesis, the probability of having a

given set of marks does not depend on the locations, and it is invariant
under any permutation 𝜋1,… , 𝜋𝑛 of the observed marks. Therefore,
the sampling distribution under the null hypothesis, considering the
observations with marks 𝑛𝑂 and 𝑛𝑁 , for 𝑛 permutations, is given as
follows [40]:

P
[

(𝑚𝜋1 ,… , 𝑚𝜋𝑛 )|(𝑠1,… , 𝑠𝑛), 𝑛𝑂 , 𝑛𝑁
]

= 1
𝑛!

Based on the mentioned above, the random-permutation approach
uses two point-patterns observations 𝑅𝑂 and 𝑅𝑁 for estimating the K
cross-function 𝐾𝑂𝑁 (ℎ) for a given distance lag ℎ. The observations are
ompared with 𝑀 random permutations of these marks to estimate the
ttraction 𝑝-value as follows:

𝑃𝑎𝑡𝑡𝑟𝑎𝑐 =
𝑚+ + 1
𝑀 + 1

(5)

where 𝑚+ is the number of permutations with a higher cross K function
than in the initial observations. The repulsion 𝑝-value is determined as
𝑃𝑟𝑒𝑝𝑢𝑙 = 1 − 𝑃𝑎𝑡𝑡𝑟𝑎𝑐 . This approach is repeated for a range of distance
values ℎ0 < ℎ1 < ⋯ < ℎ𝑝.1 In another paper, Smith [38] proposed a
similar approach also including Kendall’s correlation-rank coefficient
𝜏, as in the case of Diggle & Cox [37], but it was not used in this work.
For the corroded pipelines, every pipeline segment between joints was
implemented as an independent sample following a similar procedure
as in the function k12_perm of Smith [40].

1 For a rectangular evaluation window with dimensions 𝑙𝑤 and 𝑤𝑤, consider
ℎ ≤ min(𝑙 ∕2, 𝑤 ∕2) to prevent edge effects.
𝑝 𝑤 𝑤
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Fig. 5. Scheme of the random-shift K-function in the (a) initial point pattern, (b) torus wrap, and (c) mosaic wrap.
Fig. 6. Illustrative (a) kernel smoothing and (b) its surface perspective plot.
4. Point pattern analysis: where new defects could be located?

The rejection of the CSR assumption in a cluster or regular point
patterns can be explained by repulsion or attraction forces produced by
already detected defects, which means that defects may tend to inhibit
new defects or rely close on them upon a given distance. The spatial
distribution of defects could also follow an inhomogeneous Poisson
process with a particular intensity function. This process would require
estimating the intensity 𝜆̃(𝑥) upon to a given location 𝑥, which can be
determined using a kernel smoothing estimator as follows [41, §7.4.3]:

𝜆̃(𝑥) = 1
ℎ2

𝑛
∑

𝑖=1

(

‖𝑥 − 𝑥𝑖‖|
ℎ

)

∕𝑞(‖𝑥‖), (6)

where 𝑞(‖𝑥‖) is a border correction to deal with miss-observations close
to the border of the evaluation area, ℎ is a bandwidth associated with
the smoothness level, and (⋅) is a symmetric’s kernel function. Fig. 6a
illustrates the result of the kernel smoothing of 20 random points in
a square window, included as white points, and Fig. 6b depicts the
surface perspective of the obtained intensity 𝜆̃. The following sections
will discuss the tuning of this intensity from the inspection data and
the evaluation of interaction forces between new and old defects.

According to Baddeley et al. [42], the inhomogeneous intensity
can be estimated based on three nonparametric approaches, namely,
an uncorrected kernel 𝜆̃(𝑢), a uniform corrected kernel 𝜆̃𝑈 (𝑢), or an
approach using the Diggle’s correction 𝜆̃𝐷(𝑢). These estimators are
given as follows:

𝜆̃(𝑢) =
𝑛
∑

𝑖=1
(𝑢 − 𝑥𝑖) (7)

𝜆̃𝑈 (𝑢) =
1

𝑛
∑

(𝑢 − 𝑥𝑖) (8)
7

𝑒(𝑢) 𝑖=1
Table 2
Common used Kernels.
Source: Adapted from [43].

Kernel Equation

Uniform (𝑢) = 1
2

Epanechnikov (𝑢) = 3
4
(

1 − 𝑢2
)

Biweight (Quartic) (𝑢) = 15
16

(

1 − 𝑢2
)2

Triweight (𝑢) = 35
32

(

1 − 𝑢2
)3

Gaussian (𝑢) = 1
√

2𝜋
exp

(

− 𝑢2

2

)

Support of all kernels is |𝑢| ≤ 1, except for the Gaussian with R.

𝜆̃𝐷(𝑢) =
𝑛
∑

𝑖=1

1
𝑒(𝑥𝑖)

(𝑢 − 𝑥𝑖) (9)

where (𝑢) is a kernel function representing a probabilistic density with
support given by the window  , i.e., outside this window, is zero. This
kernel is commonly assumed to follow an isotropic Gaussian probability
density, but other possibilities are also contemplated (see Table 2). 𝑒(𝑢)
is a correction for the bias produced from the edge effect given as
follows [42]:

𝑒(𝑢) = ∫
(𝑢 − 𝜈)𝑑𝜈

These kernel estimators have some particularities, as remarked by
Baddeley et al. [42]. For instance, the uncorrected approach 𝜆̃(𝑢) omits
the edge effect, affecting the intensity around the window’s boundary.
Over-smoothing with low-intensity values would be expected in this
case, which may trigger a strong negative bias. The three approaches
are controlled by a bandwidth parameter that smooths the intensity
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associated with the standard deviation of the predicted kernel. This
parameter is more relevant for the intensity prediction, even for the
kernel type [41]. The choice follows a trade-off between the kernel bias
and its variance. According to Baddeley et al. [42], higher bandwidth
parameters would contribute to a higher bias (over-smoothing) and a
lower variance. There are different approaches to estimating this band-
width. Some of them include the algorithm proposed by Diggle [44]
based on the mean square error, the likelihood cross-validation method
proposed by Loader [45], and the non-parametric approach of Cronie
& Van Lieshout [46]. They are briefly explained below.

The Cross-validated selection method of Diggle assumes that the
intensity 𝜆(𝑥) comes from a Cox Process 𝛬(𝑥). Denote as 𝑁(𝑥, ℎ) the
number of points of 𝛬(𝑥) in a distance ℎ (centered at 𝑥), then the inten-
sity can be estimated by 𝜆̃(𝑥) = 𝑁(𝑥, ℎ)∕(𝜋ℎ2). The approach of Diggle
considers a Cross-Validation approach minimizing the Mean Square
Error shown below, considering the expectation from the distribution
of the Cox Process [47].

𝑀𝑆𝐸(ℎ) = E
[

{𝜆̃(𝑥) − 𝛬(𝑥)}2
]

The approach of Loader [45] considers a maximum likelihood Cross-
validation approach to select the bandwidth’s ℎ. It assumes that the in-
tensity comes from an inhomogeneous Poisson Process. The likelihood
estimate is given by:

𝐿𝐶𝑉 (ℎ) =
𝑛
∑

𝑖=1
log(𝜆̃−𝑖(𝑥𝑖)) − 𝑛

(

∫
𝜆̃(𝑢)𝑑𝑢 − 1

)

where 𝜆̃−𝑖 is the kernel-smoothing with the leave-one-out method; that
is, it is determined with the bandwidth ℎ without the 𝑖th point. 𝜆̃(𝑢) is
the kernel-smoothing, also with this bandwidth, at location 𝑢, and  is
the support of the point process.

The method of Cronie & Van Lieshout [46] selects the bandwidth
that minimizes the discrepancy of the area of the window observation
𝓁(𝑊 ) and reciprocal estimates of the density (at the points of the
process), as follows:

𝐶𝑣𝐿(ℎ) =

(

𝓁(𝑊 ) −
𝑛
∑

𝑖=1

1
𝜆̃(𝑥𝑖)

)2

Besides these approaches, other authors have proposed different
humb rules like those reported by Silverman or Scott [48]. These
ules of thumb estimate the bandwidth as ℎ = 𝐶𝑛−1∕5, where 𝐶 =
0.9min(𝑠, 𝐼𝑄𝑅∕1.34) and 𝐶 = 1.06min(𝑠, 𝐼𝑄𝑅∕1.34) for the Silverman
and Scott criteria, respectively. In these expressions, 𝑠 is the standard
deviation of the sample, 𝐼𝑄𝑅 is the interquartile distance, and 𝑛 is the
umber of sample points. These last approaches assume that the kernel
nd the bandwidth do not change in the evaluating window, but the
ntensity may depend greatly on the position.

. Case study description

.1. Main parameters

The case study concerns an API 5LX52 pipeline 45 km long, its
eight lies between 2560 to 2660 m above sea level, and it has six
ain valves. The pipeline has welded covers, supports, and flanges

long the route. The pipeline is mainly localized in plain terrain with
nclinations lower than 7◦; it crosses two mountains and two urban
ones. The mean length for the pipe joints is 10.7 m, and the welded
over is 0.7 m. Near kilometer 33, there is a river crossing, whereas the
ast 10 km are close to urban zones. Regarding the pipeline operation,
t was reported a mean operating velocity of around 2.2 m/s and an
perating temperature from 27 to 34 ◦C. Please refer to Amaya-Gómez
t al. [49] for further details.

The pipeline has a nominal wall thickness of 6.35 mm and an exter-
al diameter of 273.1 mm. The analysis presented here was based on
8

ata obtained from two consecutive ILI measurements two years apart.
The inspection measurements corresponded with two spreadsheets that
include the pipe tally, list of defects, and list of clusters, as described by
the Pipeline Operator Forum [10], covering 23.708 (2.862) corrosion
defects for the inner (outer) wall for the first inspection, and 43.399
(4.264) defects for the inner (outer) wall at the second inspection.
According to the ILI report, this diameter is maintained along the
entire abscissa, while the wall thickness exhibits greater variability
due to welded covers, valves, dents, and manufacturing flaws. The
defects measuring tool was a Magnetic Flux Leakage (MFL). Based on
information reported in Amaya-Gómez et al. [14] about the inspection
vendor, it can be assumed a circumferential uncertainty of 5◦ during
the inspection. The measurement uncertainties of the defect depth,
length, and width are given by 𝑑𝐼𝐿𝐼 = 𝑑𝑟𝑒𝑎𝑙 ± 𝜖𝑑 , 𝑙𝐼𝐿𝐼 = 𝑙𝑟𝑒𝑎𝑙 ± 𝜖𝑙, and
𝑤𝐼𝐿𝐼 = 𝑤𝑟𝑒𝑎𝑙 ± 𝜖𝑤, where 𝑑𝐼𝐿𝐼 , 𝑙𝐼𝐿𝐼 , 𝑤𝐼𝐿𝐼 stand for the depth, length,
and width reported by the ILI tool, and 𝜖𝑑 , 𝜖𝑙 , 𝜖𝑤 are their measurement
errors, respectively. The measurement errors can be assumed to follow
normal distributions centered at 0 with standard deviations obtained
from information provided by inspection vendors [50]. It is reasonable
to assume that 𝜖𝑑 = 0.1 𝑡 with 𝑡 the nominal wall thickness, 𝜖𝑙 = 𝜖𝑤 =
11.70 mm, considering a length and width accuracy of 15 mm with the
confidence of 80% of the data. Further details of the case study cannot
be provided for confidential agreements.

Table 3 shows a broad classification of the soil along the pipeline
following the taxonomy of the USDA (United States Department of
Agriculture). The pipeline has a bituminous coating of coal tar and an
impressed current cathodic protection (ICCP) system. Coal tar is com-
posed principally of aromatic hydrocarbons that constitute the foremost
liquid condensate of the distillation process from coal to coke [51].
Coal-tar-based coatings have exceptional moisture resistance; however,
some disadvantages are poor light stability and possible cracks at the
upper surface from an oxidation process due to a higher level of unsat-
uration [51]. Thicker layers can protect the pipeline, but delamination
is expected more than a polyethylene coat [52].

5.2. Main descriptors of corrosion defects

Most defects are concentrated on the inner wall, which is somehow
expected due to the coal-tar coating that protects the outer wall; a
summary of statistics of these datasets is depicted in Table 4. Because
further information about defects’ shape is not available in ILI, the max-
imum rather than the average depth for each defect will be considered
for being more conservative with the metal loss (Fig. 1).

Following the matching approach proposed by Amaya-Gómez
et al. [23] based on a Voronoi nearest mixed criterion, it was classified
each metal loss from the last inspection as old – i.e., matched – and
new – i.e., not matched defects. Table 5 shows the summary of the
corrosion extent from both sets. Note that larger and wider defects
appeared in the new dataset but with shallow depths, associated with
uniform corrosion that may not have initially been detected in the first
inspection.

6. Results and discussion

In this section, key findings from three major analyses are presented:
(i) the CSR hypothesis testing that determines whether corrosion de-
fects are randomly distributed depending on the inner or outer side
of the pipeline and the type of soil surrounding it; (ii) the repulsion-
attraction test to determine whether new defects interact with old ones,
and (iii) kernel smoothing estimator method that simulates the spatial
distribution of the new defects.

6.1. Complete spatial randomness (CSR) assumption evaluation for new
defects

As explained in Section 2, six independent tests were considered for

this objective. These tests were on their predictive ability using 𝑚 = 99
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Table 3
Pipeline segmentation based on the USDA soil classification.

Segmenta Category Classification ID

0.00–6.66 km Complex Pachic Melanudands (50%), Andic Dystrudepts (20%), Aeric Endoaquepts (15%), Aquic
Hapludands (15%)

Soil 1

6.66–8.2 km Association Humic Lithic Eutrudepts (35%), Typic Placudands (25%), Dystric Eutrudepts (25%) Soil 2
8.2–9.66 km Complex Pachic Melanudands (50%), Andic Dystrudepts (20%), Aeric Endoaquepts (15%), Aquic

Hapludands (15%)
Soil 1

9.66–11.61 km Association Humic Dystrudepts (60%), Typic Hapludalfs (40%) Soil 3
11.61–13.48 km Complex Pachic Haplustands (35%), Humic Haplustands (35%), Fluventic Dystrustepts (30%) Soil 4
13.48–14.86 km Association Aeric Epiaquents (60%), Fluvaquentic Endoaquepts (40%) Soil 5
14.86–15.89 km Complex Humic Dystrustepts (40%), Typic Haplustalfs (35%), Fluvaquentic Endoaquepts (25%) Soil 6
15.89–17.62 km Association Aeric Epiaquents (60%), Fluvaquentic Endoaquepts (40%) Soil 5
17.62–18.65 km Complex Humic Dystrustepts (40%), Typic Haplustalfs (35%), Fluvaquentic Endoaquepts (25%) Soil 6
18.65–18.84 km Association Typic Endoaquepts (40%), Aeric Endoaquepts (30%), Thaptic Hapludands (20%) Soil 7
18.84–21.40 km Complex Humic Dystrustepts (40%), Typic Haplustalfs (35%), Fluvaquentic Endoaquepts (25%) Soil 6
21.40–22.63 km Association Typic Endoaquepts (40%), Aeric Endoaquepts (30%), Thaptic Hapludands (20%) Soil 7
26.07–27.35 km Complex Pachic Haplustands (35%), Humic Haplustands (35%), Fluventic Dystrustepts (30%) Soil 4
27.35–28.22 km Urban zone – –
28.22–30.52 km Association Aeric Epiaquents (60%), Fluvaquentic Endoaquepts (40%) Soil 5
30.52–33.10 km Complex Pachic Haplustands (35%), Humic Haplustands (35%), Fluventic Dystrustepts (30%) Soil 4
33.10–35.45 km Association Typic Endoaquepts (40%), Aeric Endoaquepts (30%), Thaptic Hapludands (20%) Soil 7
35.45–45.00 km Urban zone – –

a Both ILI did not include information of the segment from 22.63 to 26.07 km.
Table 4
Summary of corrosion defects along the abscissa.

Parameter Mean (Coefficient of Variation)

ILI-1 Inner wall ILI-2 Inner wall ILI-1 Outer wall ILI-2 Outer wall

Average depth (%t) 5.49 (0.26) 5.29 (0.27) 7.28 (0.49) 6.77 (0.46)
Maximum depth (%t) 11.54 (0.21) 11.14 (0.19) 15.84 (0.46) 14.62 (0.43)
Length (mm) 26.07 (0.49) 26.07 (0.43) 28.07 (0.48) 27.37 (0.44)
Width (mm) 22.5 (0.40) 25.92 (0.53) 28.81 (0.67) 32.60 (0.75)

Number of defects 23708 43399 2862 4264
Table 5
Summary corrosion extent of the new and old sets [23].

Set Parameter Inner wall Outer wall

Min 𝑄1 𝑄2 Mean 𝑄3 Max Min 𝑄1 𝑄2 Mean 𝑄3 Max

old
Depth 10 10 11 11.64 12 36 10 11 14 16.8 20 70
Length 10 18 22 25.31 30 85 10 19 24 27.47 33 109
Width 14 18 20 26.82 30 255 16 19 28 35.69 41 270

new
Depth 10 10 10 10.89 11 36 10 10 11 13.11 14 36
Length 10 18 23 26.44 32 92 10 19 25 27.3 33 132
Width 12 18 20 25.47 28 271 16 18 24 30.52 35 813

*𝑄1, 𝑄2, and 𝑄3 are the first, second and third quartiles of the data, respectively.
random simulations in the Monte Carlo tests to ensure a minimum 𝑝-
value of 0.01, following the indications of Baddeley et al. [34]. The
tests consider aggregation indexes from the nearest neighbor (Clark
& Evans and Thompson tests), the ratio of a random point-to-event
distance (Byth & Ripley test), the ratio of distances using the T-square
approach (Besag & Gleaves), and two functional approximations from
Ripley’s transformation 𝐿 (DCLF and MAD tests). The sample criterion
suggested by Dettloff [30] was applied in all cases. According to this
standard, a sampling proportion between 10% to 50% would increase
the probability of a possible violation of independence with reflexive
neighbors. In the present study, a sampling of 50% was considered. The
results are divided into three main analyses: (i) the entire soil segments,
(ii) the mean ratio per segment (between consecutive joint welds), but
excluding 1 m to the welds, and (iii) the welds up to 1 m for each side,
as illustrated in Fig. 7.

6.1.1. Results for CSR tests applied to the new defects
The 𝑝-values obtained for each test and soil section in the inner wall

are shown in Table 6. For the analysis, only segments with more than
20 points were included to prevent any significant bias from segments
with few corrosion points. This table classifies the results into clustered
9

(Green cells) or Random (Yellow cells), with a significance level of
5%. The random results occurred when the CSR test failed using both
the clustered and dispersed alternatives. In terms of findings, all tests
rejected the CSR hypothesis favoring a clustered point pattern, with
the exception of the approach proposed by Besag & Gleaves, which
failed to reject this assumption. The generated 𝑝-values for this test
were close to the specified significance threshold. This result could
imply that the Besag & Gleaves test may not be appropriate to evaluate
the pipeline CSR assumption. Note that this test relates to the specific
class of T-square distance, which applies the nearest distance between
two events with an angle larger than 90◦ and the closest distance
between random events to an existing event (Fig. 3). In this work,
the unwrapped plane was used as the analysis’s window, which might
result in some additional edge problems for this specific test.

Concerning the results of the outer wall, Table 7 also shows a
prevalent cluster pattern, except from the test of Besag & Gleaves and
few segments for the Clark & Evans method. For segments with a low
number of defects, higher 𝑝-values for the Clark & Evans test were
achieved. Such segments could be affected by the sampling technique
that attempted to avoid reflexive nearest neighbors. It should be noted
that Thompson’s method essentially employs the same idea but applies
it to the second nearest neighbor. This method identified a clustered

pattern for each segment; hence, this result may not be definitive. Also,
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Fig. 7. Scheme of the three main analysis, using flanges to represent the welding joints.
Table 6
Summary results for the CSR tests for the inner wall of the new defects.

Soil S1 S2 S1 S3 S4 S5 S6 S5 S6 S7 S6 S7 S4 UZ S5 S4 S7 UZ

No. 1228 2335 1955 2686 2246 1700 919 2147 966 316 1344 19 692 663 1939 1240 1271 5419

CE 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 NA 0.025 0.025 0.025 0.025 0.025 0.025
TH 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 NA 0.025 0.025 0.025 0.025 0.025 0.025
BE 0.082 0.05 0.062 0.055 0.054 0.055 0.043 0.049 0.067 0.07 0.087 NA 0.05 0.039 0.062 0.046 0.073 0.046
BY 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 NA 0.025 0.025 0.025 0.025 0.025 0.025
DC 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 NA 0.025 0.025 0.025 0.025 0.025 0.025
MD 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 NA 0.025 0.025 0.025 0.025 0.025 0.025

S1: Soil 1, S2: Soil 2, S3: Sol 3, S4: Soil 4, S5: Soil 5, S6: Soil 6, S7: Soil 7, UZ: Urban Zone
CE: Clark & Evans test, TH: Thompson test, BE: Besag & Gleaves test, BY: Byth & Ripley test, MD: Maximum Deviation (MAD)
DC: Diggle–Cressie–Loosmore–Ford (DCLF) test
Green: Clustered distribution, Yellow: Random distribution, No.: Number of defects per category, NA: Not applicable.
Table 7
Summary results for the CSR tests for the outer wall of the new defects.

Soil S1 S2 S1 S3 S4 S5 S6 S5 S6 S7 S6 S7 S4 UZ S5 S4 S7 UZ

No. 202 0 47 49 2 4 24 5 1 0 1 0 5 132 26 52 1696 304

CE 0.025 NA 0.025 0.025 NA NA 0.025 NA NA NA NA NA NA 0.26 0.172 0.104 0.065 0.025
TH 0.025 NA 0.025 0.025 NA NA 0.025 NA NA NA NA NA NA 0.025 0.025 0.025 0.025 0.025
BE 0.112 NA 0.027 0.08 NA NA 0.027 NA NA NA NA NA NA 0.18 0.097 0.18 0.146 0.095
BY 0.025 NA 0.025 0.025 NA NA 0.025 NA NA NA NA NA NA 0.025 0.025 0.025 0.025 0.025
DC 0.025 NA 0.025 0.025 NA NA 0.025 NA NA NA NA NA NA 0.025 0.025 0.025 0.025 0.025
MD 0.025 NA 0.025 0.025 NA NA 0.025 NA NA NA NA NA NA 0.025 0.025 0.025 0.025 0.025

S1: Soil 1, S2: Soil 2, S3: Sol 3, S4: Soil 4, S5: Soil 5, S6: Soil 6, S7: Soil 7, UZ: Urban Zone
CE: Clark & Evans test, TH: Thompson test, BE: Besag & Gleaves test, BY: Byth & Ripley test,
DC: Diggle–Cressie–Loosmore–Ford (DCLF) test, MD: Maximum Deviation (MAD)
Green: Clustered distribution, Yellow: Random distribution, No.: Number of defects per category, NA: Not applicable.
the Besag & Gleaves was discarded because, again, it failed to reject
the CSR assumption, suggesting that this method has some possible
biases for this purpose. Instead of using the Euclidean distance in
the unwrapped plane, the Besag & Gleaves method might be used to
calculate the nearest neighbor distance considering a cylinder geodesic.
This case, however, was not taken into consideration in this work and
will be contemplated in subsequent works.

The following analyses centered on the mean behavior of the seg-
ments between contiguous welding joints. The segments without 1 m
10
apart from the weld joints were used for the first analysis, and the
segments 1 m apart on each side of the weld joints were used in the
second analysis (Table 8). The results shown in this table suggest some
exciting trends. On the one hand, Clark & Evans and the functional
methods (i.e., DCLF and MAD) suggested a random distribution for the
segments without the welds. The Thompson and the Byth & Ripley
(nearest distance-based) tests, on the other hand, revealed clustered
point patterns. Regarding the segment in the joint welds, clustered
and random distributions were obtained, with the former having a
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Table 8
Summary results for the CSR tests for the new defects between joints in the inner wall.

Set Soil S1 S2 S1 S3 S4 S5 S6 S5 S6 S7 S6 S7 S4 UZ S5 S4 S7 UZ

Se
g.

Jo
in

ts

CE 0.31 0.31 0.25 0.31 0.28 0.24 0.26 0.32 0.36 0.21 0.3 0.34 0.36 0.17 NA 0.31 0.235 0.27
TH 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 NA 0.03 0.03 0.03
BY 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 NA 0.03 0.03 0.03
DC 0.08 0.27 0.13 0.26 0.28 0.28 0.17 0.25 0.21 0.19 0.14 0.27 0.25 0.04 NA 0.22 0.19 0.20
MD 0.09 0.27 0.1 0.26 0.27 0.27 0.13 0.21 0.19 0.16 0.15 0.22 0.16 0.03 NA 0.22 0.231 0.19

1m
W

el
ds

CE 0.37 0.14 0.33 0.22 0.28 0.46 NA 0.37 0.16 0.03 NA NA 0.51 NA NA 0.08 0.1 0.14
TH 0.03 0.03 0.03 0.03 0.03 0.03 NA 0.03 0.03 0.03 NA NA 0.03 NA NA 0.03 0.025 0.03
BY 0.03 0.03 0.03 0.03 0.03 0.03 NA 0.03 0.03 0.03 NA NA 0.03 NA NA 0.03 0.025 0.03
DC 0.11 0.24 0.4 0.2 0.48 0.62 NA 0.06 0.1 0.05 NA NA 0.1 NA NA 0.24 0.05 0.08
MD 0.05 0.05 0.5 0.22 0.44 0.03 NA 0.23 0.14 0.04 NA NA 0.05 NA NA 0.09 0.08 0.06

S1: Soil 1, S2: Soil 2, S3: Sol 3, S4: Soil 4, S5: Soil 5, S6: Soil 6, S7: Soil 7, UZ: Urban Zone
CE: Clark & Evans test, TH: Thompson test, BE: Besag & Gleaves test, BY: Byth & Ripley test, MD: Maximum Deviation (MAD)
DC: Diggle–Cressie–Loosmore–Ford (DCLF) test
Green: Clustered distribution, Yellow: Random distribution, NA: Not applicable.
Table 9
Nearest neighbor ratio results for the deterministic and Binomial expected distances.

Analysis Data Deterministic ratio Binomial ratio

Pipe S1 S2 S3 S4 S5 S6 S7 UZ Pipe S1 S2 S3 S4 S5 S6 S7 UZ

Complete
set

ILI1Int 0.28 0.6 0.23 0.13 0.27 0.31 0.21 0.59 0.21 0.17 0.24 0.17 0.05 0.16 0.22 0.12 0.28 0.14
ILI2Int 0.61 0.78 0.44 0.49 0.55 0.47 0.6 0.65 0.35 0.45 0.47 0.37 0.40 0.42 0.39 0.45 0.37 0.26
ILI1Ext 1.35 3.42 NR* 0.83 3.68 0.06 29.8 20.3 0.91 0.25 0.58 NR 0.07 0.29 0.00 1.47 10.4 0.16
ILI2Ext 1.19 2.4 NR 1.7 6.64 0.18 0.03 0.3 1.57 0.28 0.50 NR 0.21 0.67 0.12 0.00 0.20 0.31

Segments-
without

1m welds

ILI1Int 1.08 1.6 0.96 0.95 1 1.02 1.01 1.17 0.94 0.83 0.78 0.87 0.87 0.87 0.87 0.84 0.79 0.81
ILI2Int 1.06 1.2 1.12 1.03 0.99 1.08 0.98 1.03 0.95 0.78 0.70 0.86 0.81 0.76 0.85 0.76 0.75 0.79
ILI1Ext 0.95 1.33 NR 0.97 0.85 1.26 1.41 0.74 0.68 0.53 0.60 NR 0.86 0.59 0.66 0.93 0.55 0.42
ILI2Ext 1.05 1.43 NR 1.01 1.25 1.26 0.58 0.83 0.58 0.55 0.61 NR 0.66 0.67 0.58 0.50 0.69 0.37

Welds
up to 1m

ILI1Int 0.73 0.71 0.69 0.77 0.74 0.78 0.67 0.73 0.72 0.58 0.57 0.55 0.61 0.57 0.63 0.53 0.60 0.56
ILI2Int 0.84 0.89 0.83 0.9 0.85 0.78 0.85 0.91 0.78 0.65 0.68 0.67 0.69 0.64 0.62 0.64 0.73 0.62
ILI1Ext 0.64 0.68 NR 0.88 1.25 0.15 0.45 0.72 0.57 0.46 0.47 NR 0.53 0.75 0.12 0.35 0.61 0.40
ILI2Ext 0.76 0.65 NR 0.87 0.77 1.32 0.39 0.81 0.76 0.56 0.46 NR 0.58 0.54 0.91 0.32 0.71 0.52

S1: Soil 1, S2: Soil 2, S3: Sol 3, S4: Soil 4, S5: Soil 5, S6: Soil 6, S7: Soil 7, UZ: Urban Zone
ILI1Int and ILI2Int are the first and second ILI runs datasets at the inner wall dataset, respectively.
ILI1Ext and ILI2Ext are the first and second ILI runs datasets at the outer wall dataset, respectively.
*NR: No defects reported.
S1: Soil 1, S2: Soil 2, S3: Soil 3, S4: Soil 4, S5: Soil 5, S6: Soil 6, S7: Soil 7, S8: Near urban zone.
Green: Clustered distribution, Yellow: Random distribution, Red: Dispersed distribution
c
s
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higher proportion. On the basis of the previously stated, it may also
be considered a random position between consecutive inspections and
higher clustering near the joint welds.

6.1.2. Results for CSR tests applied to defects with 𝑑 ≤ 15%𝑡
As previously stated, most corrosion depths fall between 10 and

2%t. This section presents the results for new defects with a depth
maller than 15%t. The statistic of Clark & Evans (nearest neighbor
atio) is calculated for the aforementioned cases solely for illustration.
his ratio was also calculated using a random binomial process, which
ompares the mean nearest distance under the CSR assumption by
mposing the number of random points. The results in Table 9 show pat-
erns consistent with those previously mentioned. The defects tend to
ave a cluster distribution, the results of the segments were close to the
andom mean nearest distance (i.e., statistic close to 1), and the defects
ear the welds tend to be more clustered (statistic < 1). Although some
ispersed distributions (ratio > 1) can be obtained in this situation, they
re only connected to a small number of defects, making it impossible
o predict the outcomes thoroughly. The findings suggest corrosion
efects do not follow a CSR distribution along the whole pipeline.
espite the possibility of them occurring randomly between weld joints,
efects close to the welding joints and the Heat-Affected-Zone (HAZ)
ould impact this assumption.

It should be noted that the Clark & Evans test was used to determine
he results in Table 9 and that the Monte Carlo method was not
ontemplated in this case. Following the Monte Carlo rank, the CSR was
ssessed, and again, the results showed a predominant cluster pattern in
hich none of the segments indicated a dispersed distribution. Similar
11
lassifications to those presented in Table 8 were obtained for the
egments between consecutive inspections.

.2. Interaction of new defects

The permutation test of the cross-K function with 𝑀 = 99 simula-
tions was implemented with a maximum distance lag of 0.42 m to avoid
edge effects in the circumferential direction (i.e., half the perimeter).
The second inspection is not contemplated because it includes addi-
tional defects that are not identified yet, requiring further matching
with another ILI measurement. The results for each of the registers at
the inner and outer walls are displayed in Fig. 8. This figure indicates
that both pipe walls exhibit repulsion for ℎ ≤ 5 mm, meaning that
old defects have fewer surrounding new defects than expected. Sections
with few old defects, such as isolated corrosion sites or previous clusters
of old points, can have an impact on the repulsion distance.

The results are comparable when Deep and Shallow defects are
taken into account. In this case, it is assumed that Deep defects have
a depth 𝑑 ≥ 25%𝑡 and Shallow defects have a depth of 𝑑 ≤ 25%𝑡
(Fig. 9). In contrast to the earlier findings, the repulsion is predicted
to occur after a separation of ℎ ≥ 20 mm in both pipe walls (instead
of ℎ ≥ 5 mm). This outcome is expected since the old dataset includes
several defects with depths under 25%𝑡 that cluster with both shallow
and deep corrosion points. This figure also depicts a more ‘‘random’’
or expected behavior for lags larger than 20 mm, which is primarily
represented by the amount and distribution of the shallow defects.
Since shallow defects account for over 90% of the reported data in
this case, deep defects would have a greater proportion of shallow
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Fig. 8. Permutation test results for the (a) inner and (b) outer walls.
Fig. 9. Permutation test results for deep vs shallow defects for the (a) inner and (b) outer walls.
f

eighbors. The indistinguishable behavior of the inner wall is explained
y the fact that these cross neighbors have shorter separations than in
he case of old and new records. Although shallow and deep defects
re separated in a similar way at the outer wall, comparable to that of
he inner wall, there are significantly fewer shallow points, promoting
solated deep defects and the repulsion influence.

The interaction of old and new defects was assessed for each type
f soil based on the permutation test; these findings are displayed in
able 10. According to this table, every soil type exhibits a predominant
epulsion interaction at the inner and outer walls. The exceptions
ccurred in soil S3, which exhibits an attraction (ℎ ≥ 300 mm), and
oil S6, with more random expected behavior at the outer wall. S3
s an extremely-to-strong acid soil with sandy clastic rocks and clay
ilt, which may adhere to the outer wall and facilitate attraction.
6 corresponds to terraces with poor to moderately drained soil and
xtremely-to-neutral acid soil. These varied conditions could explain
more random pattern. For the inner wall, the repulsion influence

istance ranges from 13 to 26 mm, and for the outer wall, it ranges from
.55 to 40 mm. Both populations have similar mean nearest-neighbor
istances of around 180 mm.

So far, the results have shown the full pipeline segment, but other
esults may occur on a lower evaluation scale. In this regard, the
nteraction test was used for every joint having at least ten corrosion
oints for each population. Although specific results were obtained for
ach pipe joint, the overall distribution of how the outcomes can be
lassified into Attraction, Repulsion, or Random interactions is shown
n Fig. 10. According to this figure, all joints initially interact randomly
ver shorter distances, and the proportion of repulsion increases after
12

0 mm. Also, according to this figure, less than 5% of joints show an f
attraction in different lags, but they mainly occur in the inner rather
than the outer wall. These results confirm that corrosion defects exhibit
a strong repulsion effect, which may be due to an initial electrochemical
inhibition from the old corrosion points. Note that this analysis consid-
ered only the center of the corrosion points and not their length and
width, as depicted in Fig. 1. According to many authors, the radio of
corrosion pits is expected to increase as corrosion progresses, possibly
leading to a coalescence that is also favored by nearby cracks [53–55].

6.3. Simulation of new defects

The bandwidth for the kernel smoothing was compared based
on different approaches. They include the Mean Square Error Cross-
validated method of Diggle [47], the likelihood Cross-validation
method of Loader [45], the non-parametric method of Cronie & Van
Lieshout [46], and the rule of thumb reported by Scott [48]. For
all cases, a Gaussian Kernel with the Diggle edge correction was
considered. Many authors commonly prefer the Gaussian Kernel, and
Baddeley [42] remarked that the Diggle correction had a better perfor-
mance. For the comparison, the intensity values are computed only at
the points using a leave-one-out approach, where all the points except
the one being estimated contribute to the kernel smoothing. Given
𝑥1,… , 𝑥𝑛 measurements, the intensity at each point is given by:

𝜆̃(𝑥𝑖) =
∑

𝑗≠𝑖

1
𝑒(𝑥𝑗 )

(𝑥𝑗 − 𝑥𝑖) (10)

Based on the above, standard errors were obtained and compared
or each case to provide an idea of the accuracy of the methods. It
ollowed the method implemented by Baddeley [42] in the package
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Table 10
Influence results by type of soil.

Soil category ILI1-Int ILI1-Ext Mean NN distance (m)

Influence Lag (m) Influence Lag (m) ILI1-Int ILI1-Ext

S1 Repulsion 0.0224 Repulsion 0.014 0.1771 0.1607
S2 Repulsion 0.0138 – NA 0.1850 NA
S3 Repulsion 0.0267 Attraction 0.301 0.1927 0.2342
S4 Repulsion 0.0181 Repulsion 0.040 0.1780 0.2413
S5 Repulsion 0.0138 – NA 0.1816 NA
S6 Repulsion 0.0224 Random 0.4 0.1729 0.1400
S7 Repulsion 0.0138 Repulsion 0.010 0.1478 0.1885
UZ Repulsion 0.0138 Repulsion 0.018 0.1671 0.1538

NN: Nearest Neighbor, NA: Non data available.
Fig. 10. Distribution of the permutation test for the (a) inner and (b) outer walls.
Table 11
Bandwidth results for different criteria for kernel fitting.

Dataset Criterion Min 𝑄1 𝑄2 Mean 𝑄3 Max

ILI1-Int

Diggle 0.00E+00 2.30E−04 2.03E+00 1.33E+01 2.34E+01 1.09E+02
Loader 0.00E+00 7.09E−02 8.57E−02 8.69E−02 9.91E−02 1.62E−01
Scott 2.73E−03 1.22E−02 1.42E−02 1.46E−02 1.69E−02 2.49E−02
CvL 0.00E+00 2.63E−01 3.25E−01 3.30E−01 3.86E−01 7.02E−01

ILI2-Int

Diggle 0.00E+00 1.89E−02 4.41E+00 1.41E+01 2.52E+01 1.18E+02
Loader 0.00E+00 1.34E−02 1.69E−02 1.66E−02 1.99E−02 2.70E−02
Scott 2.11E−03 2.71E−02 3.22E−02 3.29E−02 3.83E−02 7.01E−02
CvL 0.00E+00 6.23E−01 8.12E−01 8.08E−01 1.01E+00 1.65E+00

ILI1-Ext

Diggle 0.00E+00 5.00E−05 1.18E+01 2.34E+01 4.29E+01 1.06E+02
Loader 0.00E+00 3.06E−03 6.89E−03 9.11E−03 1.54E−02 1.60E−02
Scott 5.22E−04 3.99E−03 5.82E−03 6.31E−03 9.23E−03 1.04E−02
CvL 0.00E+00 4.65E−02 9.37E−02 9.88E−02 1.63E−01 2.02E−01

ILI2-Ext

Diggle 0.00E+00 1.61E−02 1.03E+01 1.83E+01 3.38E+01 1.04E+02
Loader 0.00E+00 1.66E−03 8.98E−03 6.26E−03 9.47E−03 9.61E−03
Scott 9.23E−04 7.53E−03 1.41E−02 1.35E−02 1.94E−02 2.14E−02
CvL 0.00E+00 1.05E−01 2.72E−01 2.28E−01 3.39E−01 3.98E−01

*𝑄1, 𝑄2, and 𝑄3 are the first, second and third quartiles of the data, respectively.
spatstat of R. According to Baddeley, the variance of 𝜆̃(𝑢) can be
obtained assuming a Poisson Process with isotropic Gaussian kernel.
The results for each bandwidth selection method are summarized in
Table 11. This table depicts the standard error’s minimum, mean, and
quartiles (i.e., 𝑄1−25%, 𝑄2−50%, 𝑄3−75%) measurements. The results
show that the Diggle selection method had higher errors, which could
be associated with the inherent assumption of a Cox Process, i.e., a
realization of a stochastic process. The lower errors were obtained for
the Loader’s approach and Scott’s rule of thumb, but as mentioned
before, this rule of thumb does not depend on the location, and an over-
smooth intensity is expected. Therefore, the likelihood cross-validation
method of Loader was selected.

The main idea behind the Inhomogeneous intensity is to simulate
the location of new defects more appropriately. Consider the 𝜆̃(𝑥)
obtained for the defects not matched in the first inspection and the
13
location of the new defects reported in the second one. The new defects
in the second inspection are expected to appear in a higher proportion
in those locations where 𝜆̃(𝑥) has high values. In this regard, both
results for the inner and the outer walls were compared in Figs. 11
and 12, considering a log-normal scale and white crosses for locations
of new points.

The results show an agreement in the predominant location of the
defects, as it can be easily identified for the outer wall near kilometers
10, 27, and 33. However, these figures also depict some locations that
were not very likely to appear at a corrosion point. However, these
figures display both inhomogeneous densities and are not associated
with a specific probability, so it cannot be affirmed how probable
these locations would be. Additional smoothing approaches can be
considered using an adaptive perspective to prevent low-intensity areas
from being under-smoothed and high values from having excessive



Reliability Engineering and System Safety 241 (2024) 109697R. Amaya-Gómez et al.
Fig. 11. Obtained 𝜆̃(𝑥) for ILI1-Int (a) without new defects in ILI2-Int and (b) including the new defects in ILI2-Int.
Fig. 12. Obtained 𝜆̃(𝑥) for ILI1-Ext (a) without new defects in ILI2-Ext and (b) including the new defects in ILI2-Ext.
over-smoothed results. For this purpose, adaptive estimators using the
Voronoi tessellation could be considered [42].

7. Conclusions

In the paper, a framework for analyzing and simulating new cor-
rosion defects is presented. Based on the test for Complete Spatial
Randomness (CSR) assumption, the framework includes an analysis of
the spatial distribution of the defects. This approach also assesses the
interaction between new and old defects that were initially identified
using a matching approach. Lastly, it suggests the Non-Homogeneous
Poisson Process (NHPP) as an alternative for simulating the location of
new defects appearing between inspections. The main findings are:

1. The CSR assumption was evaluated using six different methods.
The results suggested that the new defects follow a clustered
distribution for each type of soil and pipe wall. This pattern
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was also identified for the defects close to the welding joints.
However, after applying the test for segments between welding
joints (without the 1 m apart of the weld joints), some tests failed
to reject the CSR assumption (i.e., they accept the uniform ran-
dom distribution). The cluster pattern was expected considering
the formation of pitting and localized attack, for instance, near
the pipe welds in the Heat-Affected Zone. A bigger evaluation
window may lead to more dispersed areas failing the CSR tests.
However, as reported by Valor et al. [56], the corrosion patterns
focused almost entirely on a cluster and random patterns (in
a lower proportion). Lastly, comparing the six methods, it was
obtained that the Besag & Gleaves method may fail to identify
cluster point patterns, so it should be considered cautiously.
If a cylinder geodesic is considered to determine the nearest
neighbor distance, the Besag & Gleaves test results could obtain
better results based on how the T-square sampling is constructed.
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Fig. A.13. (a) Initial ILI data; (b) matches by the matching approach, and (c) obtained new and old datasets.
Source: Adapted from [23].
2. The random-permutation test was evaluated to determine if the
new and old defects can be considered indistinguishable or if
they tend to follow a repulsion or an attraction pattern. The
results showed a predominant repulsion between the two sets,
especially after a separation of 50 mm. This paper also analyzed
shallow (𝑑 ≤ 25%𝑡) and deep (𝑑 > 25%𝑡) defects, obtaining a
similar tendency.

3. Different methods to estimate bandwidth for the inhomoge-
neous smoothing kernel were compared. They included cross-
validation approaches, non-parametric methods, and the rule of
thumb reported by Scott [48]. This study considered the likeli-
hood cross-validation method reported by Loader [45] given its
low standard error in the estimate at the points. This paper illus-
trated how the distribution between the new defects in the first
and second inspections are closely located. Typically, a Homo-
geneous Poisson Process is implemented to simulate the random
location of new corrosion points. Still, the approach proposed
in this work suggests an interesting alternative that contem-
plates possible clusters and dispersed locations. This alternative
would help generate new defects in further reliability analysis
compared to those following a Complete Spatial Randomness.
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Fig. A.14. Obtained results for the repulsion and attraction test for the application
example.
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Appendix. Application example

To illustrate how the proposed framework can be applied, con-
sider the example reported in the matching approach of Amaya-Gómez
et al. [23]. This example contemplates 21 and 39 corrosion defects
in the first and second inspections, respectively, between 5654 and
5661 m of the pipe abscissa, as shown in Fig. A.13a. Following the
matching approach, eleven matches were determined that are depicted
in Fig. A.13b, which allow us to discriminate between new and old
corrosion points in the last ILI measurement in Fig. A.13c.

Considering the new dataset, it was implemented the CSR tests of
Clark & Evans, Thompson, Byth & Ripley, Diggle–Cressie–Loosmore–
Ford (DCLF), and Maximum Deviation (MAD). The obtained results are



Reliability Engineering and System Safety 241 (2024) 109697R. Amaya-Gómez et al.
Fig. A.15. Obtained 𝜆̃(𝑥) for the application example, including the location of new defects with white markers.
Table A.12
CSR test results for the application example.

Test p-value (Clustered)

Clark & Evans 0.25
Thompson 0.01

Byth & Ripley 0.01
Diggle–Cressie–Loosmore–Ford (DCLF) 0.05

Maximum Deviation (MAD) 0.07

Green: Clustered distribution, Yellow: Random distribution.

shown in Table A.12, after removing 1 m to the welds from each side,
i.e., the final segment starts from 5655 to 5660 m. These results suggest
that Clark & Evans and the MAD tests fail to reject the null hypothesis
of the CSR assumption and that the remaining suggest a more clustered
distribution. These p-values were determined following the equations
of Table 1 with 𝑛 = 28, contemplating the R-project functions of the
spatstat package clarkevans.test, dclf.test, and mad.test.

Let us take the Clark & Evans statistic and its significance test for
illustrative purposes. First, it is necessary to estimate the parameters
E𝑟 and 𝜎𝑟, considering the study area 𝐴 = 3.36 m2, the perimeter is
𝑃𝑒 = 9.56 m and 𝑛 = 28, which follows that E𝑟 = 0.222 and 𝜎𝑟 = 0.0278.
Then, using the mean nearest neighbor distance for each point in the
new dataset follows that 𝐶𝐸𝐷 = 0.90. Based on a Monte Carlo test
approach, with 99 equally-sized random point patterns under a ranking
perspective, as mentioned in Section 2, it was obtained a 𝑝-value of
0.25. This result indicates that the CSR assumption cannot be rejected
with a significance level of 0.05, which is confirmed by the statistic
close to the unity and the 𝑝-value greater than the rejection zone.

Considering both the new and old points (Fig. A.13c), the Smith [38]
approach first creates a function for computing a vector distinct pair-
wise distances, then the 𝐾𝑂𝑁 cross function using a permutation per-
spective using count point frequencies and a counting rule for finding
𝑑𝑂𝑁 (𝑖, 𝑗) in the vector of distances. Finally, this approach compares
the new and old defects using a random permutation for different lag
distances. Further details are explained in Ref. [38]. The results of this
approach are depicted in Fig. A.14, where it can be noted an attraction
of the new after 0.25 m, which makes sense taking into account the
clustered result of some CSR tests and the fact in Fig. A.13c they are
closely located to the old ones.

Finally, using the non-homogeneous kernel density estimation func-
tion of R-project density of the stats package, with the Loader’s band-
width criterion, it was obtained the results depicted in Fig. A.15. This
figure shows the areas of the segment where more simulated defects
would appear under an Inhomogeneous Poisson Point Process, which
aims to address the clustered (and attraction interaction) of the new
corrosion points given the previous results.
16
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