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Abstract

A six-dimensional reversible normal form system occurs in Bénard-
Rayleigh convection between parallel planes, when we look for domain
walls intersecting orthogonally (see Buffoni et al [1]). This leads to study
analytically the system

d4A

dx4
= A(1− A

2
− gB

2)

d2B

dx2
= ε

2
B(−1 + gA

2 +B
2),

for x ∈ R, and looking for a heteroclinic connection between the two
equilibria M− : (A,B) = (1, 0) and M+ : (A,B) = (0, 1), each corre-
sponding to a system of convective rolls. In [1] such a heteroclinic is
shown to exist, on which 0 ≤ B ≤ 1, with no uniqueness result and no
possibility to use it for a persistence result under a reversible perturba-
tion. The lack of normal hyperbolicity of equilibria obtained at the limit
ε = 0, is the main problem. The 3-dimensional unstable manifold of M−

is built for 0 ≤ B ≤
1−cε

4/5
√

g
, while the stable manifold of M+ is built

for 1+cε
4/5

√
g

≤ B ≤ 1. For proving that the two manifold intersect, we

need to admit a result on the solution of a 4th order differential equation
independent of ε, also mentioned in [14], and [2]:

d4A

dz4
= −A(A

2
+ z), − a < z < +a

now on a bounded interval, with boundary conditions, independent of ε,
depending on 4 parameters coming from the invariant manifolds arriv-
ing on each side. Admitting this, then the two 3-dimensional manifolds
intersect transversally, leading to the existence, uniqueness and analytic-
ity in (ε, g) of the heteroclinic, for which we give estimates of A(x),B(x)
and their derivatives. We finally study the properties of the linearized
operator along the heteroclinic, allowing to prove (in [9]) the persistence
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of the heteroclinic under perturbation, corresponding to the existence of
orthogonal domain walls in the Bénard-Rayleigh convection problem.

Key words: Reversible dynamical systems, Invariant manifolds, Bifurcations,
Heteroclinic connection, Domain walls in convection

1 Introduction and Results

In this work we study the following 6th order reversible system

A(4) = A(1−A2 − gB2) (1)

B′′ = ε2B(−1 + gA2 +B2),

where A and B are real functions of x ∈ R. This system occurs in the search for
domain walls intersecting orthogonally, in a fluid dynamic problem such as the
Bénard-Rayleigh convection between parallel horizontal plates (see subsection
1.1 and all details in [1]). The heteroclinic we are looking for, corresponds to
the connection between rolls on one side and rolls oriented orthogonally on the
other side. The system (1) has been also introduced by Manneville and Pomeau
in [14], obtained after formal physical considerations using symmetries.

We would like to find analytically a heteroclinic connection (g > 1, ε small)
such that

A∗(x), B∗(x) > 0,

(A∗(x), B∗(x)) →
{

(1, 0) as x → −∞
(0, 1) as x → +∞ .

By a variational argument Boris Buffoni et al [1] prove the existence of such
an heteroclinic orbit, for any g > 1, and ε small enough. This type of elegant
proof does not unfortunately allow to prove the persistence of such heteroclinic
curve under reversible perturbations of the vector field. This is our motivation
for producing analytic arguments, proving such an existence, uniqueness and
smoothness in parameters (ε, g) of this orbit, however for limited values 1 < g ≤
2, fortunately including physical interesting ones. Then we study the linearized
operator along the heteroclinic curve, allowing to attack the problem of existence
of orthogonal domain walls in convection (see [9] and Remark 33).

1.1 Origin of system (1)

The Bénard-Rayleigh convection problem is a classical problem in fluid me-
chanics. It concerns the flow of a three-dimensional viscous fluid layer situated
between two horizontal parallel plates and heated from below. Upon increasing
the difference of temperature between the two plates, the simple conduction
state looses stability at a critical value of the temperature difference corre-
sponding to a critical value Rc of the Rayleigh number. Beyond the instability
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threshold, a convective regime develops in which patterns are formed, such as
convective rolls, hexagons, or squares. Observed patterns are often accompanied
by defects.

We start with the Navier-Stokes-Boussinesq (N-S-B) steady system of PDE’s,
applying spatial dynamics with x as ”time” (as introduced by K.Kirchgässner in
[13], adapted for N-S equations in [10], and more generally in [7]) and considering
solutions 2π/k periodic in y (coordinate parallel to the wall). We show in [1]
that near criticality a 12-dimensional center manifold reduction to a reversible
system applies for (R, k) close to (Rc, kc), R being the Rayleigh number, and
kc the critical wave number. This high dimension of the center manifold may
be explained as follows. Due to the equivariance of the system under horizontal
shifts, the eigenvectors of the linearized problem are of the form exp i(±k1x ±
k2y), the factor being only function of k2 = k21+k22 (invariance under rotations).
It results that, for eigenvectors independent of x corresponding to a 0 eigenvalue
in the spatial dynamics formulation, the eigenvalue is double in general (make
±k1 → 0). Now, at criticality, k = kc corresponds to two different values of
k2 merging towards kc, which doubles the dimension, making a quadruple 0
eigenvalue with complex and complex-conjugate eigenvectors. Hence we already
have a dimension 8 invariant subspace for the 0 eigenvalue, with two 4×4 Jordan
blocks. This corresponds to convective rolls of amplitude A and A at x = −∞.
Now for eigenvectors independent of y corresponding to eigenvalues ±ik in the
spatial dynamics formulation it is shown in [6] that they are simple, and give
double eigenvalues±ikc for k = kc with amplitudes B and B respectively. Hence
this adds 4 dimensions to the central space, so finally obtaining a 12-dimensional
central space. Now we restrict the study to solutions invariant under reflection
y → −y (the change y into −y changing A in A and not changing B), which
constitutes an invariant subspace for the full system. This restricts the study
to real amplitudes A and the full system reduces to a 8-dimensional sub-center
manifold, such that A ∈ R and B ∈ C are the amplitudes of the rolls respectively
at x = −∞, and x = +∞. Moreover, for the full system, we keep

i) the reversibility symmetry: (x,A,B) → (−x,A,B),
ii) the equivariance under shifts by half of a period in y direction, leading to

the symmetry: (A,B) → (−A,B).
Now, in [1] we use a normal form reduction up to cubic order, and rewrite

the system as one real 4th order differential equation for A, and a second order
complex differential equation for B. In addition to the above symmetries, the
normal form commutes in particular with the symmetry: (A,B) → (A,Beiφ),
for any φ ∈ R.

Handling the full N-S-B equations, in [1] the authors show that the study
leads to a small perturbation of the reduced system of amplitude equations
(1). More precisely, after a suitable scaling (see [1] and more details in [9]), and
denoting by (ε2A0, ε

2B0) rescaled amplitudes (A,Be−ikcx), and after a rescaling
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of the coordinate x, we obtain the system

A
(4)
0 = k−A

′′
0 +A0(1−

k2−
4

−A2
0 − g|B0|2) + f̂ ,

B′′
0 = ε2B0(−1 + gA2

0 + |B0|2) + ĝ, (2)

where ε4 is proportional to R − Rc, the coefficient g > 1 is function of the
Prandtl number and is the same as introduced and computed in [6], k− comes
from the freedom left to the wave number of the rolls at −∞, defined as

k = kc(1 + ε2k−),

and f̂ and ĝ are perturbation terms, smooth functions of their arguments, com-
ing

i) from the rest of the cubic normal form, at least of order ε2 for f̂ , and at
least of order ε3 for ĝ;

ii) from higher order terms not in normal form, and not autonomous (because

of the introduction of Be−ikcx rescaled as ε2B0 in (2)), and of order ε4 for f̂ ,

and of order ε6 for ĝ. Without k−, f̂ , and ĝ, this is the system (1), with B0 ∈ C

replacing B, and |B0|2 replacing B2. The truncation leading to (1) allows to
take B real, since the phase of B0 does not play any role in the dynamics for
(1). The two different wave numbers of the rolls, close to the critical value kc
are left free for the full problem, however they do not appear in the present
proof of the heteroclinic, even though they are important for the final proof
of existence of the orthogonal domain walls (see Remark 33 in section 6). It

should be noticed that the system (2), without f̂ and ĝ, was obtained a long
time ago by Pomeau-Manneville in [14], however they did not deal with the
full N-S-B system, and only considered cases with identical wave numbers at
infinities, while it is shown in [9] that some cubic terms, not existent in [14], as

ε2(A2
0A

′′
0 −A0A

′2
0 ) in f̂ and iε3B0A0A

′
0 in ĝ are crucial for the determination of

the solutions of the full problem, with different wave numbers at infinities (see
Remark 33).

1.2 Sketch of the method and results

From now on let us consider the system (1). The equilibrium (A,B) = (0, 1)
of the system (1) gives an approximation of convection rolls parallel to the wall
(periodic in the x direction, with fixed phase) bifurcating for Rayleigh numbers
R > Rc close to Rc, whereas the equilibrium (A,B) = (1, 0) of the system
(1) gives the same convection rolls (periodic in the y direction) rotated by an
angle π/2 with the phase fixed by the imposed reflection symmetry. A hetero-
clinic orbit connecting these two equilibria provides then an approximation of
orthogonal domain walls (see Figure 1).

We set δ = (g − 1)1/2. The idea here might be to use the arc of equilibria
A2 + B2 = 1, which exists for δ = 0, connecting end points M− = (1, 0) and
M+ = (0, 1), and to prove that for suitable values of δ (> 0 but close to 0), the 3-
dimensional unstable manifold of M− intersects transversally the 3-dimensional
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stable manifold ofM+, both staying on a 5 dimensional invariant manifold Wε,δ.
However, for δ = 0 the situation in M+ is very degenerated, with a quadruple
0 eigenvalue for the linearized operator, while it is a double eigenvalue for M−.
Then for δ close to 0, a 5-dimensional center-stable invariant manifold starting
fromM+ needs to intersect a four-dimensional center-unstable manifold starting
from M−. We are not able to prove this. Moreover, for δ 6= 0 but close to 0,
we cannot prove that the 3-dimensional unstable manifold of M− exists from
B = 0 until B reaches a value close enough to 1. In fact, we may fortunately
notice that the physically interesting values of δ are not close to 0. So that we
prefer to play with ε.

The strategy here consists to keep in mind that, after changing the coordi-
nate x in x = εx, we obtain the new system

ε4
d4A

dx4 = A(1−A2 − gB2) (3)

d2B

dx2 = B(B2 − 1),

where the limit ε → 0 is singular, and gives indeed a non smooth heteroclinic
solution such that

(i) for x running from −∞ to 0, then (A,B) varies from (1, 0) to (0, 1√
g ) on

the ellipse A2 + gB2 = 1, while
(ii) for x running from 0 to +∞, then (A,B) varies from (0, 1√

g ) to (0, 1),

satisfying, in the original coordinate x, the differential equation

B′ =
ε√
2
(1− B2).

We might then think to use Fenichel’s theorems [4] on the system (1) for ε close
to 0. For the part (i) of the curve, where x ∈ (−∞, 0], the set of equilibria, here
A2 + gB2 = 1, is not normally hyperbolic at the end point (A,B) = (0, 1/

√
g)

(see in section 3 eigenvalues of the linear operator Lδ corresponding to Ã∗ = 0).
For the second part (ii) of the curve, where x ∈ [0,+∞), the set of equilibria
(A,B) = (0, B) is also not normally hyperbolic for B = 1/

√
g (the 4 remaining

eigenvalues are such that λ4 = 1−gB2 which cancel for B = 1/
√
g). The normal

hyperbolicity is essential in Fenichel’s theorems, so we cannot use them directly.
In section 2.2 we see that there are 3 unstable eigendirections starting from

M− = (1, 0), and 3 stable eigendirections in M+ = (0, 1). The difficulty in the
proof of Theorem 1 is to prove the existence of the 3-dim unstable manifold
of M− until A reaches a neighborhood of 0, and B a neighborhood of 1/

√
g,

and to prove the existence of the 3-dim stable manifold of M+ until B reaches
(backwards) a neighborhood of 1/

√
g = 1/

√
1 + δ2, while A stays close to 0.

For approaching the closest possible to B = 1/
√
g, we use the first integral of

(1), which implies that both invariant manifolds are included in a 5-dimensional
invariant manifold. We are able to obtain the unstable manifold of M− for

0 ≤ B ≤ 1−cε4/5√
g , while we obtain the stable manifold ofM+ for 1+cε4/5√

g ≤ B ≤ 1.
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For extending the existence of the stable manifold in the gap of size of order
ε4/5, we need to admit (see Conjecture 28) a result on the solution of a 4th order
differential equation, independent of ε, also found in [14] and [2], after rescaling:

d4A

dz4
= −A(A

2
+ z), z ∈ [−a,+a], (4)

where the boundary conditions are also independent of ε, and come from the 2
times 2 parameters introduced by each invariant manifolds arriving in ±a.

We are then able to extend sufficiently the domain of existence of both
manifolds, as graphs with respect to B in such a way that they can interesect,
in fact using the result of [1] for finishing the proof of the connection. We prove
the following

Theorem 1 Let us choose 1/3 ≤ δ ≤ 1, and admitting the conjecture 28, then
for ε small enough, the 3-dim unstable manifold of M− intersects transversally
the 3-dim stable manifold of M+, except maybe for a finite set of values of δ.
The connecting curve which is obtained is unique (see Remark 5). Moreover its
dependency in parameters (ε, δ) is analytic. In addition we have B(x) > 0 and
B′(x) > 0 on (−∞,+∞). For x → −∞ we have (A− 1, A′, A′′, A′′′, B,B′) → 0

at least as eεδx, while for x → +∞, (A,A′, A′′, A′′′) → 0 at least as e−
√

δ
2x, and

(B − 1, B′) → 0 at least as e−
√
2εx.

Moreover we also have important estimates as follows, extensively used in
[9].

Corollary 2 For x ∈ (−∞, 0] and choosing δ∗ < δ, there exists c > 0 indepen-
dent of ε small enough, such that the heteroclinic curve satisfies

|A(x) −
√
1− (1 + δ2)B(x)| ≤ cε2/5B(x)eεδ

∗x

|A(m)(x)| ≤ cε3/5B(x)eεδ
∗x, m = 1, 2, 3.

Corollary 3 For x ∈ [0,+∞) and δ∗ = 2
5δ

2/5, there exists c > 0 independent
of ε small enough, such that the heteroclinic curve satisfies

|A(m)(x)| ≤ cε2/5e−δ∗ε
1/5x, m = 0, 1, 2, 3.

Remark 4 It should be noticed that we show at Lemma 30 that, in the middle of
the heteroclinic, A(0) = O(ε2/5) and for x ∈ (0,+∞), A(x) oscillates, staying of
order O(ε2/5), while B(0) is very close to 1/

√
g and B(x) grows monotonically

until 1.

Remark 5 Using symmetries of the system: A 7→ ±A, B 7→ ±B and reversibil-
ity symmetry: (A(x), B(x)) 7→ (A(−x), B(−x)), we find 8 heteroclinics. Two
are connecting M− to M+ with opposite dynamics, two others connect −M− to
M+, two connect M− to −M+, and two connect −M− to −M+. The one which
interests us is the only one connecting M− to M+ with the dynamics running
from M− to M+.
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Remark 6 It should be noticed that the study made in [14] on the heteroclinic
solution for the system (1) uses asymptotic analysis, suggesting the existence of
the heteroclinic, later proved mathematically in [1].

Remark 7 Values of δ such that 0.476 ≤ δ include values obtained for δ in
the Bénard-Rayleigh convection problem where g = 1 + δ2 is function of the
Prandtl number P (as computed in [6]). With rigid-rigid, rigid-free, or free-
free boundaries the minimum values of g are respectively (gmin = 1.227, 1.332,
1.423) corresponding to δmin = 0.476, 0.576, 0.650. The restriction in Theorem
1 corresponds to 1 < g ≤ 2. Then, the eligible values for the Prandtl number are
respectively P > 0.5308, > 0.6222, > 0.8078.

x

y

Figure 1: Orthogonal domain wall

The Schedule of the paper is as follows: in section 3 we prove at Lemma 11
the existence of the unstable manifold (graph with respect to B) of M− = (1, 0)
until (A,B) = (O(α), (1−α2δ2)/

√
1 + δ2) with ε = να5/2, ν being independent

of ε.
In section 4 we prove at Lemma 25 the existence of the stable manifold

(graph with respect to B) of M+ = (0, 1) until (backward direction) (O(α), (1+
α2δ2)/

√
1 + δ2).

In section 5, we need to use the conjecture 28 on the solution of a certain
differential equation, independent of ε, so that we extend the existence of the
stable manifold for B ∈ [(1 − α2δ2)/

√
1 + δ2), (1 + α2δ2)/

√
1 + δ2)], A0 still of

orderO(α). Then we use results of [1] to control the existence of the intersection,
we then prove the transverse intersection of the two manifolds. This ends the
proof of Theorem 1.

In section 6 we give, in Lemma 32, properties of the linearized operator
along the heteroclinic, which are necessary to prove a persistence result under
a reversible perturbation for the heteroclinic in the 8-dimensional space (with
B ∈ C). This allows to prove the existence of orthogonal domain walls in
convection as made in [9].

In summary, what is new in this paper?
i) Existence as graphs in coordinate B which is an increasing function on

(−∞,+∞), of the unstable manifold of M−, and of the stable manifold of M+

until a neighborhood of B = 1/
√
g of size O(ε4/5).
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ii) Complete justification of the intermediate 4th order differential equation
(4) independent of ε, already introduced in [14] and [2], but now on a bounded
interval with boundary conditions independent of ε.

iii) Estimates for coordinates in R6 for the heteroclinic, which are essential
for a further study on its persistence under perturbations, as for the Bénard-
Rayleigh convection problem.

Acknowledgement The author warmly thanks Mariana Haragus for her
help in section 6, and her constant encouragements.

2 General properties of the system

2.1 Global invariant manifold Wε,δ

Let us define coordinates in R6 as

(A0, A1, A2, A3, B0, B1) = (A,A′, A′′, A′′′, B,B′).

The first observation is that we have the first integral

W = ε2(A′2)′′ − 3ε2A′′2 −B′2 +
ε2

2
(A2 +B2 − 1)2 + ε2δ2A2B2, (5)

as noticed in [14], where W is used in an energy functional, used later in [1].
Then, for containing the end points M±, our heteroclinic should satisfy

2ε2A1A3 − ε2A2
2 −B2

1 +
ε2

2
(A2

0 +B2
0 − 1)2 + ε2δ2A2

0B
2
0 = 0. (6)

Since our purpose is to find B0 growing from 0 to 1, we extract the positive
square root (needs to be justified later):

B1 = {2ε2A1A3 − ε2A2
2 +

ε2

2
(A2

0 +B2
0 − 1)2 + ε2δ2A2

0B
2
0}1/2,

which defines a 5-dimensional invariant maniford Wε,δ valid for any δ > 0,
which should contain the heteroclinic curve that we are looking for.

For δ > 0, we find the singular points (where a tangent hyperplane is not
defined)

(A0, B0) = (±1, 0), A1 = A2 = A3 = B1 = 0 (7)

(A0, B0) = (0,±1), A1 = A2 = A3 = B1 = 0.

For δ = 0, singular points constitute the circle

A2
0 +B2

0 = 1, A1 = A2 = A3 = B1 = 0. (8)

Remark 8 We do not emphasize here on the hamiltonian structure of system
(1) since this does not help our understanding. On the contrary, the reversibility
property is inherited from the original physical problem and is still valid for the
perturbed system (2). Moreover, if we consider perturbation terms as ε2(A2

0A
′′
0−

A0A
′2
0 ) in f̂ and iε3B0A0A

′
0 in ĝ, we cannot find a new first integral analogue

to (6), while the system is still reversible.
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2.2 Linear study of the dynamics

2.2.1 Neighborhood of M− = (1, 0)

The eigenvalues of the linearized operator at M− are such that λ4 = −2 or
λ2 = ε2δ2, hence they are ±2−1/4(1 ± i) and ±εδ. This gives a 3-dimensional
unstable manifold, and a 3-dimensional stable manifold, originating from M−.

2.2.2 Neighborhood of M+ = (0, 1)

The eigenvalues of the linearized operator at M+ are such that λ4 = −δ2 or
λ2 = 2ε2, hence defining δ′ =

√
δ, the eigenvalues are ±2−1/2(1 ± i)δ′, and

±ε
√
2. This gives again a 3-dimensional unstable manifold and a 3-dimensional

stable manifold originating from M+.
All this implies that the 3-dimensional unstable manifold starting at M−

and the 3-dimensional stable manifold starting at M+ which are both included
into the 5−dimensional manifold Wε,δ, give a good hope for these two manifolds
to intersect along a heteroclinic curve...provided that they still exist as graphs
with respect to B, ”far” from the end points M+ and M−. The idea is to show
that this occurs when δ is not too small and at most 1.

The limit pointsM− = (1, 0) andM+ = (0, 1) have a degenerate situation for
δ = 0, because of the multiple 0 eigenvalue for the linearized operator. For δ = 0,
it is possible to build a family of 2-dim unstable invariant manifolds and a family
of 2-dim stable manifolds along the arc of equilibria A2 + B2 = 1. For δ > 0
and small, the perturbation gives two new 3-dim invariant manifolds, however
their transversality is weaker and weaker as B → 1 (so that Fenichel’s theorem
cannot apply). A more ”serious” study would then be needed. However the
physical interest is for values of δ > 0 not too small, which cancels the physical
interest of such a difficult question.

3 Unstable manifold of M

3.1 Choice of coordinates

Let us assume in this section 1/3 ≤ δ ≤ 1 and define η0 and α such that

0 ≤ B0 ≤
√
1− η20δ

2 =

(
1− α2δ2

1 + δ2

)1/2

, η20 =
1 + α2

1 + δ2
,

1√
g

=
1√

1 + δ2
< η0 <

1

δ
, αδ < 1.

α will be determined later, as a power of ε. Now, we define

Ã∗
2 def
= 1− (1 + δ2)B2

0 , (9)

then
αδ ≤ Ã∗ ≤ 1. (10)
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Let us define the following coordinates in R6 :

Z = (Ã∗ + Ã0, A1, A2, A3, B0, B1)
t. (11)

Remark 9 Ã∗ is just the first part of the ”singular” heteroclinic found for the
system singular for ε = 0 (3). The occurence of Ã∗ is also linked with a formal

computation of an expansion of the heteroclinic in powers of ε, which gives Ã∗
as the principal part of A0, valid for B0 < (1 + δ2)−1/2 = 1/

√
g. We expect to

build the unstable manifold until this limit value.

Remark 10 We put a condition 1/3 ≤ δ in the purpose to have not too small
values for δ, and to include known computed values of the coefficient g = 1+ δ2,
in the convection problems, with different boundary conditions (see Remark 7
and [6]). The restriction δ ≤ 1 made in this section simplifies few estimates,
and is not really useful.

We prove below the main result of this section:

Lemma 11 For 1/3 ≤ δ ≤ 1, and ε small enough, the 3-dimensional unstable

manifold W(u)
ε,δ of M− exists for

0 ≤ B0(x) ≤ (1− η20δ
2)1/2 =

(
1− α2δ2

1 + δ2

)1/2

, x ∈ (−∞,−x∗],

where x∗ ≥ 0 is arbitrary, and there exists ν > 0 such that η0 and α satisfy

(1 + δ2)η20 = 1 + α2, ε = να5/2.

The manifold W(u)
ε,δ sits in Wε,δ, is analytic in (ε, δ), parametrized by (X(−x∗), B0)

where X(x) is a 2-dimensional coordinate on the B0−dependent unstable direc-
tions defined by (13). Moreover, for any δ∗ < δ, there exist a number k0 > 0
independent of ε, ν such that for

B0(−x∗) =
√
1− η20δ

2, Ã∗(x) ≥ αδ, |X(−x∗)| ≤ k0δα
3/2 =

k0
ν3/5

δε3/5,

we have

A0(x) = Ã∗(x) +B0(x)O
(
|X(−x∗)|
Ã∗(x)1/2

eεδ
∗x

)

A1(x) = B0(x)e
εδ∗xO(ν2/5ε3/5 + |X(−x∗)|)

A2(x) = B0(x)Ã∗(x)
1/2O(|X(−x∗)|eεδ

∗x)

A3(x) = B0(x)Ã∗(x)O(|X(−x∗)|eεδ
∗x),

0 ≤ 1− Ã∗ ≤ cB2
0 , Ã∗|B0=0 = 1.
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Remark 12 We observe that when x → −x∗, A0 reaches a value close to 0
since Ã∗ reaches O(ε2/5) which is close to 0, while B0 reaches (1 − η20δ

2)1/2

which is expected as close as possible to 1/(1 + δ2)1/2 = 1/
√
g. The numbers k0

and ν will later be imposed, small enough, independently of ε. Later x∗ will be
chosen of order ε−1/5 (see section 4.2).

The system (1) becomes

Ã0

′
= A1 +

(1 + δ2)B0

Ã∗
B1

A′
1 = A2

A′
2 = A3 (12)

A′
3 = −2Ã∗

2
Ã0 − 3Ã∗Ã0

2
− Ã0

3

B′
0 = B1

B′
1 = ε2δ2B0(Ã∗

2 −B2
0) + 2ε2(1 + δ2)Ã∗B0Ã0 + ε2(1 + δ2)B0Ã0

2
.

We expect that Ã0, A1, A2, A3, B1 stay small enough for x ∈ (−∞, 0], so we
introduce the B0−dependent linear operator (not really a linearization at some
equilibrium)

Lδ =




0 1 0 0 0 (1+δ2)B0

Ã∗

0 0 1 0 0 0
0 0 0 1 0 0

−2Ã∗
2

0 0 0 0 0
0 0 0 0 0 1

2ε2(1 + δ2)Ã∗B0 0 0 0 0 0




. (13)

The idea is to find new coordinates such that we are able to give nice estimates of
the monodromy operator not forgetting that the coefficients of Lδ are functions
of B0.

The operator Lδ has a double eigenvalue 0, and is such that the non zero
eigenvalues satisfy

λ4 − 2ε2B2
0(1 + δ2)2λ2 + 2Ã∗

2
= 0, (14)

with a discriminant such as

∆′ = ε4B4
0(1 + δ2)4 − 2Ã∗

2
.

We have the following

Lemma 13 For B0 ≤
√
1− η20δ

2, α ≥ 10
3 ε2, and ε small enough, we have

−∆′ ≥ Ã∗
2
.

11



Proof. −∆′ ≥ Ã∗
2
is equivalent to

ε2B2
0(1 + δ2)2 ≤ Ã∗, (15)

hence

B2
0(1 + δ2) ≤ [1 + 4ε4(1 + δ2)2]1/2 − 1

2ε4(1 + δ2)2
,

which is satisfied when

B2
0(1 + δ2) ≤ 1− ε4(1 + δ2)2,

provided that ε4(1 + δ2)2 < 2 which is true for ε small enough. Now, since
B0 ≤

√
1− η20δ

2, the above inequality is satisfied a soon as we have

1− δ2α2 < 1− ε4(1 + δ2)2,

which is realized when α ≥ 10
3 ε

2.
Then we have two pairs of complex eigenvalues

λ2
± = ε2B2

0(1 + δ2)2 ± i
√
−∆′.

We intend to find new coordinates able to manage a new linear operator in the
form of two independent blocs

(
±λr λi

−λi ±λr

)
(16)

for which the eigenvalues are
±λr ± iλi,

where

2λ2
r =

√
2Ã∗ + ε2B2

0(1 + δ2)2 (17)

2λ2
i =

√
2Ã∗ − ε2B2

0(1 + δ2)2

λ2
r − λ2

i = ε2B2
0(1 + δ2)2

λ2
r + λ2

i =
√
2Ã∗

4λ2
rλ

2
i = −∆′.

A form of the linear operator as (16) is such that we are able to have good
estimates for the monodromy operator associated with the linear operator Lδ,
the coefficients of which are functions of B0 ∈ [0,

√
1− η20δ

2] (see Appendix
A.1). Then we have the following

Lemma 14 For B0 ≤
√
1− η20δ

2, α ≥ 10
3 ε2, and for ε small enough, we have

λrλi ≥
Ã∗
2
,

12



21/4Ã∗
1/2 ≥ λr ≥ Ã∗

1/2

21/4
, (18)

1

25/4
Ã∗

1/2
≤ λi ≤

Ã∗
1/2

21/4
, (19)

while Ã∗ varies from 1 to αδ and B0 varies from 0 to
√
1− η20δ

2.

Proof. All these inequalities follow from (17) and (15).

3.2 New coordinates

The eigenvector and generalized eigenvector for the eigenvalue 0 of Lδ are :

Z0 =




0
0
0
0

Ã∗
0




, Z1 =




0
−(1 + δ2)B0

0
0
0

Ã∗




.

Now we denote by
V +
r ± iλiV

+
i , V −

r ± iλiV
−
i

the eigenvectors belonging respectively to the eigenvalues

λr ± iλi, − λr ± iλi

then we define

V ±
r =




∓λr(λ
2
r−3λ2

i )

2Ã∗
2

1
±λr

λ2
r − λ2

i

∓ λr(λ
2
r−λ2

i )

(1+δ2)B0Ã∗

− (λ2
r−λ2

i )
2

(1+δ2)B0Ã∗




, V ±
i =




− 3λ2
r−λ2

i

2Ã∗
2

0
1

±2λr

− (λ2
r−λ2

i )

(1+δ2)B0Ã∗

∓ 2λr(λ
2
r−λ2

i )

(1+δ2)B0Ã∗




,

and we define new coordinates in R6: (x1, x2, y1, y2, B0, z1) such that




Ã0

A1

A2

A3

0
B1




= B0(x1V
+
r + x2λiV

+
i + y1V

−
r + y2λiV

−
i + z0Z0 + z1Z1).

We observe that after eliminating z0, we still have 6 coordinates, including B0

as one of the new coordinates.

13



Remark 15 We notice that we put B0 in front of the new coordinates, as this
results from the analysis, and shorten the computations.

The coordinate change is non linear in B0, given explicitely by:

Ã0 = −B0
λr(λ

2
r − 3λ2

i )

2Ã∗
2 (x1 − y1)− B0

λi(3λ
2
r − λ2

i )

2Ã∗
2 (x2 + y2)

A1 = B0(x1 + y1)− (1 + δ2)B2
0z1

A2 = λrB0(x1 − y1) + λiB0(x2 + y2) (20)

A3 = (λ2
r − λ2

i )B0(x1 + y1) + 2λrλiB0(x2 − y2)

0 = − (λ2
r − λ2

i )

(1 + δ2)B0Ã∗
A2 + Ã∗B0z0,

B1 = −ε2(1 + δ2)B0
A3

Ã∗
+ Ã∗B0z1, (21)

which needs to be inverted. We obtain

B0x1 =
(λ2

r + λ2
i )

4λr
Ã0 +

3λ2
r − λ2

i

4λr(λ2
r + λ2

i )
A2 (22)

+
A1

2
+

(1 + δ2)B0

2Ã∗
B1 +

(λ2
r − λ2

i )

2Ã∗
2 A3,

λiB0x2 = − (λ2
r + λ2

i )

4
Ã0 −

λ2
r − 3λ2

i

4(λ2
r + λ2

i )
A2 (23)

− (λ2
r − λ2

i )

4λr

(
A1 +

(1 + δ2)B0

Ã∗
B1

)
+

1

4λr

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
A3,

B0y1 = − (λ2
r + λ2

i )

4λr
Ã0 −

3λ2
r − λ2

i

4λr(λ2
r + λ2

i )
A2 (24)

+
A1

2
+

(1 + δ2)B0

2Ã∗
B1 +

(λ2
r − λ2

i )

2Ã∗
2 A3,

λiB0y2 = − (λ2
r + λ2

i )

4
Ã0 −

λ2
r − 3λ2

i

4(λ2
r + λ2

i )
A2 (25)

+
(λ2

r − λ2
i )

4λr

(
A1 +

(1 + δ2)B0

Ã∗
B1

)
− 1

4λr

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
A3,

B0z1 =
(λ2

r − λ2
i )

(1 + δ2)B0Ã∗
2A3 +

1

Ã∗
B1 = ε2B0(1 + δ2)

A3

Ã∗
2 +

1

Ã∗
B1.

14



Let us now define

X =

(
x1

x2

)
, Y =

(
y1
y2

)
,

|X | =
√
x2
1 + x2

2, |Y | =
√
y21 + y22 (norms in R2).

Then, for ε small enough, and using (17), we obtain the following useful esti-
mates

Lemma 16 For B0 ≤
√
1− η20δ

2, ε2 ≤ 3α
10 , ε small enough we have

Ã∗
1/2

25/4
≤ λr , λi < 21/4Ã∗

1/2
, Ã∗ ≥ αδ,

|Ã0| ≤ 3
B0

Ã∗
1/2

(|X |+ |Y |),

|A1| ≤ B0(|X |+ |Y |) + (1 + δ2)B2
0 |z1|,

|A2| ≤ 2B0Ã∗
1/2

(|X |+ |Y |), (26)

|A3| ≤ 2B0Ã∗(|X |+ |Y |),
|B1| ≤ 2ε2(1 + δ2)B2

0(|X |+ |Y |) + Ã∗B0|z1|.

3.3 System with new coordinates

The system (12) writen in the new coordinates is computed in Appendix A.2. It
takes the following form (quadratic and higher order terms are not explicited)

x′
1 = f1 + λrx1 + λix2 (27)

+B1

[
a1Ã0 + c1A2 + d1A3 + e1

B1

B0
− 1

B0
x1

]

−ε2
(1 + δ2)(2 − δ2)B0

2Ã∗
Ã0

2
− ε2

(1 + δ2)B0

2Ã∗
2 Ã0

3
,

x′
2 = f2 − λix1 + λrx2 +B1

[
−a2Ã0 + b2A1 + c2A2 + d2A3 + e2B1 −

1

B0
x2

]
(28)

− 1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2
− 1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
Ã0

3
.

y′1 = f1 − λry1 + λiy2 + (29)

+B1

[
−a1Ã0 − c1A2 + d1A3 + e1

B1

B0
− 1

B0
y1

]

−ε2
(1 + δ2)(2− δ2)B0

2Ã∗
Ã0

2 − ε2
(1 + δ2)B0

2Ã∗
2 Ã0

3
,
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y′2 = −f2 − λiy1 − λry2 +B1

[
−a2Ã0 − b2A1 + c2A2 − d2A3 + e2B1 −

1

B0
y2

]
(30)

+
1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2
+

1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
Ã0

3
,

with

f1 =
ε2δ2B0(1 + δ2)(Ã∗

2
−B2

0)

2Ã∗
,

f2 = −ε2δ2B0(1 + δ2)(λ2
r − λ2

i )(Ã∗
2
−B2

0)

4λrλiÃ∗
.

Using Lemma 14 and (15) we see that we have the estimates

|fj | ≤
B0ε

2δ

α
, j = 1, 2.

The coefficients aj , bj, cj , dj , ej are defined and estimated in Appendix A.2

in (90,91), (92,93,94), (95,96), (97,98). Here Ã0, A1, A2, A3, B1 should be re-
placed by their (linear) expressions (20) in coordinates (x1, x2, y1, y2, z1) with
coefficients functions of B0. The system above should be completed by the dif-
ferential equations for z′1 and B′

0(= B1). In fact we replace the equation for
z′1 by the direct resolution of the first integral (6) with respect to z1 using the
expression of B1 in (21).

3.4 Resolution of (6) with respect of z1(X, Y,B0)

For extending the validity (as a graph with respect to B0) for the existence of
the unstable manifold of M− we need to replace the differential equation for z′1
by the expression of z1 given by the first integral (6). This leads to the following

Lemma 17 For B0 ≤
√
1− η20δ

2, ε2 ≤ 3α
10 . Then choose ρ > 0 such that for ε

and α small enough, and for

|X|+ |Y | ≤ ρ, α3ρ4 << 1, (31)

with the scaling
(X,Y ) = α3/2δ(X,Y ), z1 = εδz1, (32)

we have
z1 = z10(B0, δ)[1 + Z(X,Y ,B0, ε, α, δ)] (33)

where the function Z(X,Y ,B0, ε, δ) is analytic in its arguments. with

z10(B0, δ)
def
= (1 +

δ2B2
0

2Ã∗
2 )

1/2 ≤ 1

α
, (34)

and
|Z(X,Y ,B0, ε, α, δ)| ≤ cα3(1 + ρ2)(|X |+ |Y |)2, (35)

with c independent of (ε, α, ρ).
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Remark 18 In the Lemma above, we introduce the number ρ which may be
large. Precise constraints are given later.

Proof. Using (21) and (6) we have

B2
1 = {Ã∗B0z1 − ε2

B0(1 + δ2)

Ã∗
A3}2 = 2ε2A1A3 − ε2A2

2 +

ε2

2
(−δ2B2

0 + 2Ã∗Ã0 + Ã0

2
)2 + ε2δ2(Ã∗ + Ã0)

2B2
0 ,

hence

Ã∗
2
z21 = ε2δ2Ã∗

2
(1 +

δ2B2
0

2Ã∗
2 ) +

2ε2

B0
A3(x1 + y1)−

ε4(1 + δ2)2

Ã∗
2 A2

3 −
ε2

B2
0

A2
2 +

+
2ε2Ã∗

2

B2
0

Ã0

2
+

2ε2Ã∗
B2

0

Ã0

3
+

ε2

2B2
0

Ã0

4
, (36)

where we may observe on the r.h.s., that

ε2δ2 ≤ ε2δ2(1 +
δ2B2

0

2Ã∗
2 ) ≤ ε2δ2(1 +

1

2α2
),

which is independent of (X,Y ). Moreover there is no linear part in (X,Y ) in
(36). The scaling (32), Lemma 13 and Lemma 16 imply (c is a generic constant,
independent of (ε,K))

|2ε
2

B0
A3(x1 + y1)| ≤ cε2α3Ã∗(|X|+ |Y |)2

|ε
4(1 + δ2)2

Ã∗
2 A2

3| ≤ cε4α3(|X |+ |Y |)2 ≤ cε2α3Ã∗(|X|+ |Y |)2,

ε2

B2
0

A2
2 ≤ cε2α3Ã∗(|X|+ |Y |)2)

2ε2Ã∗
2

B2
0

Ã0

2
≤ cε2α3Ã∗(|X |+ |Y |)2

|2ε
2Ã∗
B2

0

Ã0

3
| ≤ cε2α3Ã∗(|X |+ |Y |)3

ε2

2B2
0

Ã0

4
≤ cε2α3Ã∗(|X|+ |Y |)4,

so that the factors in the estimates are such that

cε2α3Ã∗

ε2δ2Ã∗
2 ≤ c

α3

Ã∗
,
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c being independent of ε, α and δ ∈ [1/3, 1]. Now defining z10 such that

1 ≤ z10(B0, δ)
def
= (1 +

δ2B2
0

2Ã∗
2 )

1/2 ≤ 1

α
, for α ≤ 1/

√
2, (37)

we notice that we have

1

z10
2 =

2Ã∗
2

2Ã∗
2
+ δ2B2

0

≤ 2(1 + δ2)Ã∗
2

δ2
≤ 20Ã∗

2
.

It results that, for |X|+ |Y | ≤ ρ

z1
2 = z10

2 +O
(
α3(1 + ρ2)

Ã∗
(|X|+ |Y |)2

)
,

so that (positive square root as for (6))

z1 = z10(B0)
{
1 +O[α3(1 + ρ2)(|X |+ |Y |)2]

}1/2
, for |X|+ |Y | ≤ ρ,

and taking the square root, we obtain (33) with estimate (35), Z(X,Y ,B0, ε, α, δ)
being defined in the ball |X |+ |Y | ≤ ρ, c independent of ε, α provided that ε, α
are small enough and ρ satisfies (31). Moreover Z is analytic in its arguments
and is at least quadratic in (X,Y ). Notice that, in using (37), we also have

z10|Z(X,Y ,B0, ε, δ)| ≤ c(1 + ρ2)α2(|X|+ |Y |)2. (38)

Since z1 contains z10 which is independent of (X,Y ), the new system for
(X,Y ) has new ”constant terms” and ”linear terms”, appearing as perturbations
of the former ones.

3.5 System where z1 is eliminated

Now we stay on the 5-dimensional invariant manifold (6) and we need to express
the new differential system in terms of the 5 coordinates (X,Y ,B0). The new
system is computed in Appendix A.3. We obtain (notice that B0 is in factor of
the ”constant” terms, and all operators are B0− dependent)

X
′

= L0X +B0F0 + L01(X,Y ) + B01(X,Y ), (39)

Y
′

= L1Y +B0F1 + L11(X,Y ) + B11(X,Y ),

which should be completed by an equation forB′
0 (see (21) in terms of (X,Y ,B0)),

and where

L0 =

(
λr λi

−λi λr

)
, L1 =

(
−λr λi

−λi −λr

)
,

with the following estimates, for terms independent of (X,Y )

|F0|+ |F1| ≤
cε2

α9/2
, (40)
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for terms which are linear in (X,Y )

|L01(X,Y )|+ |L11(X,Y )| ≤ c
ε

α2
(|X|+ |Y |), (41)

and for terms at least quadratic in (X,Y ), and for

|X |+ |Y | ≤ ρ, ρ << α−3/4,

we obtain

|B01(X,Y )|+ |B11(X,Y )| ≤ α1/2(9/2 + c
ε2

α7/2
)(|X |+ |Y |)2 (42)

+α1/2(
27

2
+ c

ε

α
)(|X |+ |Y |)3 + α1/2(c

ε2

α2
)(|X |+ |Y |)4.

We are now ready to formulate the search for the unstable manifold of M−.

3.6 Integral formulation for solutions bounded as x → −∞
Let us introduce the monodromy operators associated with the linear operators
L0,L1 which have non constant coefficients:

∂

∂x
S0(x, s) = L0S0(x, s), S0(x, s1)S0(s1, s2) = S0(x, s2), S0(x, x) = I,

∂

∂x
S1(x, s) = L1S1(x, s), S1(x, s1)S1(s1, s2) = S1(x, s2), S1(x, x) = I.

The coefficients of operators L0,L1 are functions of B0, so we need Lemma 36
in Appendix A.1, with the following estimates, valid for 0 ≤ B0 ≤

√
1− η20δ

2,
ε2 ≤ 3α

10 , ε small enough:

||S0(x, s)|| ≤ eσ(x−s), −∞ < x < s ≤ −x∗ ≤ 0, (43)

||S1(x, s)|| ≤ e−σ(x−s), −∞ < s < x ≤ −x∗ ≤ 0, (44)

with

σ =
α1/2δ1/2

21/4
.

We are looking for solutions of (39) which stay bounded for x → −∞. Then,
thanks to estimates (43) (44), the system (39) may be formulated for −∞ <
x ≤ −x∗ ≤ 0 as

X(x) = S0(x,−x∗)X0 −
∫ −x∗

x

S0(x, s)G0(s)ds (45)

Y (x) =

∫ x

−∞
S1(x, s)G1(s)ds

G0(s)
def
= B0F0 + L01(X,Y ) + B01(X,Y ),

G1(s)
def
= B0F1 + L11(X,Y ) + B11(X,Y )

where X,Y and B0 are bounded and continuous functions of s, B0 tending
towards 0 as s → −∞.
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3.7 Strategy

The 3-dimensional unstable manifold of M− is such that (X(x), Y (x), B0(x))
should be expressed in terms of X0, B0(−x∗). The idea is then

i) solve (45) with respect to (X,Y ) in function of (X0, B0);
ii) solve the differential equation forB0(x) satisfyingB0(−x∗) = B00, B0(−∞) =

0.
The result will be valid for B0(x), and B00 in the interval [0,

√
1− η20δ

2] and
it appears that A0(x) is then very close to 0 at the end point x = −x∗. The
hope is that this should allow to obtain an intersection with the 3-dim stable
manifold of M+ which computation should be valid for B0(x) in the interval
[
√
1− η20δ

2, 1].

3.8 Resolution with respect to (X, Y )

Let us define, for κ > 0 the function space

C0
κ = {X ∈ C0(−∞,−x∗];X(x)e−κx is bounded}

equiped with the norm

||X ||κ = sup
(−∞,−x∗)

|X(x)e−κx|.

In this subsection we prove the following

Lemma 19 Given M > 0, for ε = να5/2, with ν small enough, there exists
k0 > 0, independent of ν, such that for ||X0|| ≤ k0, there is a unique solution
(X,Y ) in (C0

κ)
2 such that, for ||B||κ ≤ M, we have

||X ||κ ≤ |X0|(1 + cν) + cν, X(−x∗) = X0,

||Y ||κ ≤ cν + c(ν|X0|+ |X0|2),

where c is independent of ε, ν, k0.

Remark 20 The choice of κ will be in agreement with the behavior of B0(x)
as x → −∞, which is studied at next subsection.

Proof. First we observe that, provided that κ < σ

|
∫ x

−∞
S1(x, s)e

κsds| ≤ eκx

κ+ σ
, x ≤ −x∗,

|S0(x,−x∗)e
−κ(x+x∗)| ≤ e(σ−κ)(x+x∗), x ≤ −x∗,

|
∫ x

−x∗

S0(x, s)e
κsds| ≤ eκx

σ − κ
, x ≤ −x∗.

Let us choose
κ ≤ σ

2
,
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then

|
∫ x

−∞
S1(x, s)e

κsds| ≤ eκx

σ
= 21/4

eκx

α1/2δ1/2
,

|
∫ x

−x∗

S0(x, s)e
κsds| ≤ 25/4

eκx

α1/2δ1/2
, x ≤ −x∗.

Let us assume that
||B0||κ ≤ M (46)

holds (needs to be proved at next subsection). We wish to use the analytic
implicit function theorem (see [3] section X.2) for (X,Y ) in a neighborhood of
(X0, 0) in the function space (C0

κ)
2, provided that we can choose κ ≤ σ

2 and

||X||κ+ ||Y ||κ ≤ ρ. Indeed, using the above estimates for coefficients, we obtain
for x ∈ (−∞,−x∗]

|X(x)e−κx| ≤ |X(−x∗)|eκx∗ +
25/4

α1/2δ1/2
||B0F0 + L01(X,Y ) + B01(X,Y )||κ,

hence

||X||κ ≤ |X(−x∗)|eκx∗ +
25/4

α1/2δ1/2
||B0F0 + L01(X,Y ) + B01(X,Y )||κ, (47)

and in the same way

||Y ||κ ≤ 21/4

α1/2δ1/2
||B0F1 + L11(X,Y ) + B11(X,Y )||κ. (48)

Using estimates (40) for Fj, (41) for Lj1, (42) for B01, B11, (47), (48), we obtain,

for S
def
= ||X||κ + ||Y ||κ ≤ ρ

S ≤ |X(−x∗)|eκx∗ + c
ε2M

α5
+ c

Sε

α5/2
+

27

23/4δ1/2
(1 + c

ε2

α7/2
)S2

+(
81

23/4δ1/2
+ c

ε

α
)S3 + c

ε2

α2
S4,

so that choosing
ε = να5/2, ν < 1/M, (49)

S(1− cν) ≤ |X(−x∗)|+ cν +
27

23/4δ1/2
(1 + cν2α3/2)S2

+
81

23/4δ1/2
(1 + cνα3/2)S3 + cν2α3S4.

Let us choose k0 such that

27k0 + 81k20 < 23/4δ1/2(1 − cν),

which is satisfied for
k0 < 0.13δ1/2(1− cν).
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Then the estimate above shows that for 0 < k0 small enough, we can apply
the implicit function theorem (its analytic version) with respect to(X,Y ) (for
|X(−x∗)| ≤ k0(1 − c1ν), and for ε and ν small enough). We find a unique
(X,Y ) ∈ (C0

κ)
2 such that ||X||κ + ||Y ||κ is close to |X(−x∗)|. Moreover for ε

and ν small enough

S ≤ |X(−x∗)|(1 + cν) + c|X(−x∗)|2 + cν,

with c independent of (ε, ν, k0). This leads finally to X and Y in C0
κ, depending

analytically on (X0, B0) ∈ R2 × C0
κ, and such that

||Y ||κ ≤ cν + c(ν|X(−x∗)|+ |X(−x∗)|2), (50)

||X ||κ ≤ |X(−x∗)|(1 + cν) + cν, (51)

where c is a number independent of (ε, ν, k0), ε small enough, S ≤ k0, and
k0 < ρ, which is compatible with (31). Lemma 19 is proved.

3.9 Resolution for B0

In this subsection we finish the proof of Lemma 11. It remains to solve the last
part of the system (39) for B0 with B0(−x∗) = B00.

We notice from (21), (33) and (26) that

B1 = εδÃ∗B0z10(B0)

(
1 + Z(X,Y ,B0, ε, δ)−

ε3/2

z10

(1 + δ2)

Ã∗
2 A3

)

A3 = B0[ε
2B2

0(1 + δ2)2(x1 + y1) + 2λrλi(x2 − y2)],

ε3/2

z10
(1 + δ2)

A3

Ã∗
2 ≤ 4ε7/6(|X |+ |Y |),

so that it is clear that (see above estimates for Z)

B1 > 0 for B0 ∈ (0,
√
1− η20δ

2), |X |+ |Y | ≤ ρ, (52)

This is coherent with the study of the linearized system near M− : Indeed the
principal part of the differential equation for B0 is

B′
0 = εδB0Ã∗z10(B0)

which may be integrated as

B2
0(x) =

1

(1 + δ2

2 ) cosh
2(x0 − εδ(x+ x∗))

, (53)

coshx0 =
1

B0(−x∗)(1 +
δ2

2 )
1/2

,
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which satisfies B0 = 0 for x = −∞. More precisely the differential equation for
B0 is now (after replacing (X,Y ) by the expression found at previous subsection)

B′
0 = εδÃ∗B0z10(B0)[1 + f(B0)] (54)

where f(B0) is a non local analytic function of B0 in C0
κ, such that, for ε small

enough, and using ||X ||κ + ||Y ||κ ≤ k0, (31) and (49),

||f(B0)||κ ≤ c(α3(1 + ρ2)S2 + ε7/6S) ≤ cεk0.

Remark 21 We may notice that we might replace cεk0 in the estimate above,
by

εk0e
κx → 0 as x → −∞,

since X and Y ∈ C0
κ.

We are looking for the solution such thatB0 = 0 for x = −∞, andB0(−x∗) ≤√
1− η20δ

2 for x = 0. We can rewrite (54) as

2B0B
′
0

B2
0Ã∗z10(B0)

= 2εδ[1 + f(B0)]. (55)

We now introduce the variable v :

v =
1−

√
1− (1 + δ2

2 )B
2
0

1 +
√
1− (1 + δ2

2 )B
2
0

, B2
0 =

1

1 + δ2

2

4v

(1 + v)2
,

so that
(ln v)′ = 2εδ[1 + f(B0)].

We observe that for x running from −∞ to 0,

w = ln v is increasing from −∞ to w0 = ln v0 < 0.

Now let us define h continuous in its argument and such that

h(w) = f(B0),

B0 =
1

(
1 + δ2

2

)1/2
2ew/2

(1 + ew)
,

and let us find an a priori estimate for the solution B0(x), for x ∈ (−∞,−x∗].
We obtain by simple integration

∫ x

−x∗

w′(s)

1 + h(w)(s)
ds = 2εδ(x+ x∗).

For α small enough we have

1− cεk0 ≤ 1

1 + h(w)
≤ 1 + cεk0,
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hence (since w < w0, and x < 0)

(w0 − w)(1 − cεk0) ≤ −2εδ(x+ x∗) ≤ (w0 − w)(1 + cεk0)

so that

exp(
−2εδ(x+ x∗)

1 + cεk0
) ≤ ew0−w ≤ exp(

−2εδ(x+ x∗)

1− cεk0
)

and

v0 exp(
2εδ

1 − cεk0
(x+ x∗)) ≤ v(x) ≤ v0 exp(

2εδ

1 + cεk0
(x+ x∗)).

It finally results that we obtain an a priori estimate for

B0(x) = B0(X0, B0(−x∗))(x) ∈ C0
κ, (56)

B0(X0, B0(−x∗))(x) =
1

(
1 + δ2

2

)1/2
2
√
v(x)

(1 + v(x))
, x ∈ (−∞,−x∗),

2
√
v0 exp(

εδ
1−cεk0

(x+ x∗))

1 + v0 exp(
2εδ

1−cεk0
(x+ x∗))

≤
(
1 +

δ2

2

)1/2

B0 (57)

≤
2
√
v0 exp(

εδ
1+cεk0

(x+ x∗))

1 + v0 exp(
2εδ

1+cεk0
(x+ x∗))

,

v0 =
1−

√
1− (1 + δ2

2 )B
2
0(−x∗)

1 +
√
1− (1 + δ2

2 )B
2
0(−x∗)

< 1,

(
1 +

δ2

2

)1/2

B0(−x∗) =
2
√
v0

1 + v0
.

It remains to notice that we can choose in the proof for (X,Y )

κ =
εδ

1 + cε1/2k0
, (58)

which needs to satisfy

κ ≤ σ

2
=

α1/2
√
δ

25/4
. (59)

We have already chosen ε = να
5
2 hence, for α small enough, the choice (58)

leads to

κ ≤ εδ = δνα
5
2 ≤ α1/2

√
δ

25/4

and (59) is satisfied. The a priori estimate (57) for B0 allows to prove that there
is a unique solution of the differential equation (55) which may be extended
on the whole interval (−∞,−x∗], and which satisfies the estimate (57) (see

for example [5]). Since B0 is in factor in Ã0, A1, A2, A3, B1 the behavior for
x → −∞ of the coordinates of the unstable manifold, is governed by the behavior
of B0. The estimates indicated in Lemma 11 results from (26), (32), (37), (51),
(50), (59) with κ = εδ∗. This ends the proof of Lemma 11. The part of Corollary
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2 corresponding to x ∈ (−∞,−x∗] follows from the estimates found at Lemma
11.

Let us define the hyperplane H0

B0 = B00 = (1 − η20δ
2)1/2.

3.10 Intersection of the unstable manifold with H0

We need to give precisely the intersection of the unstable manifold with the
hyperplane B0 =

√
1− η20δ

2. This gives a two-dimensional manifold lying in
the 4-dimensional manifold Wε,δ ∩H0. Taking into account of

Ã∗ = δα

λr , λi ∼ δ1/2α1/2

21/4
, ε = να

5
2 , ν <

1

B00
,

z10 ∼ B00

α
√
2
, B00 =

√
1− η20δ

2 ∼ 1√
1 + δ2

,

|Y (−x∗)| = O(|X0|2 + ν|X0|+ ν2B00), |X0| ≤ k0, , X0 = X(−x∗),

we obtain a two-dimensional intersection which is tangent to a plane (parameters
x1, x2), given by the following (using (20) and Lemma 17)

Lemma 22 For 1/3 ≤ δ ≤ 1, ε small enough, ε = να
5
2 , the 2-dimensional

intersection of the 3-dimensional plane tangent to the unstable manifold with the
5-dimensional hyperplane H0 satisfies the system (parameters are (x1, x2) = X0

with |X0| ≤ k0)

A0 = δα+
αδ1/2

23/4
B00(x1 − x2) +O(αν|(x1, x2)|+ αν2)

A1 = α3/2δB00x1 −
α2δ√
2
B00 +O(α3/2ν|(x1, x2)|+ α3/2ν2)

A2 =
δ3/2

21/4
B00α

2(x1 + x2) +O(α2ν|(x1, x2)|+ α2ν2) (60)

A3 =
√
2δ2B00α

5/2x2 +O(α5/2ν|(x1, x2)|+ α5/2ν2)

B00 ∼ (1 + δ2)−1/2,

with

(|x1|2 + |x2|2)1/2 ≤ k0, 1/3 ≤ δ ≤ 1, ε = να5/2,

α2δ2 = 1−B2
00(1 + δ2) > 0,

and where we do not write B1 since we know that we sit on the 5 dimensional
manifold Wε,δ.
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4 Stable manifold of M+

Assuming some estimates which need to be checked at the end, the strategy here
is to first solve with respect to B0 in using the first integral (6), and an implicit
function argument. Hence B0 becomes function of (Aj , B0(−x∗)) defined on
(−x∗,+∞). Afterwards we need to solve a 4-dimensional system, with variable
coefficients.

4.1 Using the first integral (6)

The first integral (6) is solved with respect to B0(x). Since it is shown in [1]
that B0(x) ∈ [0, 1] and B0(+∞) = 1 for the heteroclinic solution of (1) we take
the positive square-root:

B′
0 =

ε√
2
[(1−B2

0)
2 +A2

0(A
2
0 + 2δ2B2

0 + 2(B2
0 − 1))− 2A2

2 + 4A1A3]
1/2,

which shows that B0 is growing as soon as the bracket does not cancel. Let us
define

−1 ≤ v = B0 − 1 ≤ 0, (61)

then we obtain

v′ =
−εv√

2
(2+v)

(
1 +

A2
0(A

2
0 + 2δ2B2

0 + 2(B2
0 − 1))− 2A2

2 + 4A1A3

(1−B2
0)

2

)1/2

. (62)

For any κ ≥ 0 let us introduce a function space adapted for this section

C0
κ = {X ∈ C0(−x∗,+∞);X(x)eκx bounded},

equiped with the norm

||X ||κ = sup
(−x∗,∞)

|X(x)eκx|.

For the connection with previous section, we take

B2
0(−x∗) =

1− α2δ2

1 + δ2
, ε = να5/2. (63)

Then we prove the following

Lemma 23 For 1/3 ≤ δ ≤ 1, κ ≥ 0, assume (63) holds and assume that there
exists γ such that

|Aj(x)| ≤ γ|v(x)|, j = 0, 1, 2, 3, (64)

x ∈ (−x∗,+∞), γ ≤ 1/5.
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Then there exists a unique solution v = V(A0, A1, A2, A3) ∈ C1(−x∗,+∞) of
(62). V depends analytically on Aj ∈ C0

κ, j = 0, 1, 2, 3, with

V(A0, A1, A2, A3) = V0 +H(A0, A1, A2, A3), B0 = 1 + V ,
||H(A0, A1, A2, A3)||κ ≤ c

ε

κ
||(A0, A1, A2, A3)||2κ, (65)

V0(x) =
(1 −

√
1 + δ2)[1 − tanh(ε

√
2x)]√

1 + δ2 + tanh(ε
√
2x)

< 0,

1 + V0(0) =
1√

1 + δ2
, V0(−x∗) = B0(−x∗)− 1 < 0,

and x∗ defined in (69), is such that B0|x=0 = (1 + δ2)−1/2. Moreover we have

v(−x∗)[1− tanh(3ε(x+x∗)

4
√
2

)]

1 +B0(−x∗) tanh(
3ε(x+x∗)

4
√
2

)
≤ v(x) ≤

v(−x∗)[1− tanh(5ε(x+x∗)

4
√
2

)]

1 +B0(−x∗) tanh(
5ε(x+x∗)

4
√
2

)
. (66)

Remark 24 Later we need to check that (64) is indeed satisfied for the stable
manifold.

Proof. Let us assume that (64) holds, and using (63) for ε small enough, we
have

A2
0 + 2δ2B2

0 + 2(B2
0 − 1) < 3,

so that

|A2
0(A

2
0 + 2δ2B2

0 + 2(B2
0 − 1))− 2A2

2 + 4A1A3| ≤ 9γ2|v|2.

Now
(1−B2

0) = |v|(2 + v) > |v|,
hence

∣∣∣∣
A2

0(A
2
0 + 2δ2B2

0 + 2(B2
0 − 1))− 2A2

2 + 4A1A3

(1−B2
0)

2

∣∣∣∣ ≤ 9γ2 <
1

2
,

and the square root is analytic in (v,A0, A1, A2, A3) leading to

v′ = −ε
√
2v(1 +

1

2
v)[1 + Z(v,A0, A1, A2, A3)], ||Z||κ ≤ 1/4, (67)

with
||Z(v,A0, A1, A2, A3)||κ ≤ c||(A0, A1, A2, A3)||2κ. (68)

Then we can integrate the differential equation, as in section 3.9. We introduce
the new variable w as

w′ =
2v′

v(2 + v)
,

w = ln

( −v

1 + v/2

)
,

v = − ew

1 + 1
2e

w
;
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w decreases from w0 to −∞ for x ∈ (−x∗,∞), while v grows from v0 = v(−x∗) <

0 to 0. Then, defining h(w,A0, A1, A2, A3)
def
= Z(v,A0, A1, A2, A3), we obtain,

by simple integration

ε
√
2(x+ x∗)(1 − 1/4) ≤ w0 − w(x) ≤ ε

√
2(x + x∗)(1 + 1/4),

from which we deduce the estimate (66). This a priori estimate for v allows to
prove (see for example [5]) the existence and uniqueness of a solution for (67)
on the whole interval x ∈ [−x∗,∞). We define x∗ in choosing to satisfy

B0(0) =
1√

1 + δ2
,

which gives the expression of V0(x) given in (65) and

x∗ ∼
√
1 + δ2

2
√
2

α2

ε
=

√
1 + δ2

2ν
√
2

α−1/2 =

√
1 + δ2

2ν4/5
√
2
ε−1/5. (69)

The estimate in (65) results from (68). Lemma 23 is proved.

4.2 About the interval (−x∗, x
+
∗
)

For the first part of the proof for the stable manifold, we do not start from
x = −x∗, but from x = x+

∗ for which B0(x
+
∗ ) satisfies

B2
0(x

+
∗ ) =

1 + α2δ2

1 + δ2
. (70)

For finding the heteroclinic we need to connect B0(x) found for the unstable
manifold until the upper limit

B0(−x∗) =

(
1− α2δ2

1 + δ2

)1/2

,

with B0(x) found at Lemma 23 valid until the same limit of B0(−x∗) (now the
lower limit). Then we have

B0(x
+
∗ ) ∼

1 +
√
1 + δ2 tanh(ε

√
2x+

∗ )√
1 + δ2 + tanh(ε

√
2x+

∗ )

which gives

x+
∗ ∼

√
(1 + δ2)

2
√
2

α2

ε
∼ x∗, (71)

where x+
∗ is a priori slightly different from x∗ since B0(x) is not invariant under

the change x 7→ −x.
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4.3 Formulation with new coordinates

As in section 3, the idea is first to adapt new coordinates, such that we are
able to use monodromy operators with easy estimates in the formulation of the
search for the 3-dimensional stable manifold of M+.

For
(1 + δ2)B2

0 − 1 ≥ α2δ2, ε = να5/2, ν > 0,

let us define
δ̃ = {(1 + δ2)B2

0 − 1}1/4 ≥ (αδ)1/2, (72)

and choose a new basis (function of B0)

V ±
r =




1

± δ̃√
2

0

∓ δ̃3√
2

0
0




, V ±
i =




0

± δ̃√
2

δ̃2

± δ̃3√
2

0
0




,

W−
1 =




0
0
0
0
1

−ε
√
2




, W+
1 =




0
0
0
0
1

ε
√
2




,

for defining new coordinates (x1, x2, y1, y2, z0, z1) such that

Z = (0, 0, 0, 0, 1, 0)t (73)

+x1V
−
r + x2V

−
i + y1V

+
r + y2V

+
i + z0W

−
1 + z1W

+
1

hence

A0 = x1 + y1

A1 = − δ̃√
2
(x1 − y1 + x2 − y2)

A2 = δ̃2(x2 + y2) (74)

A3 =
δ̃3√
2
(x1 − y1 − x2 + y2)

B0 = 1 + v

which is easy to invert, where v is given by Lemma 23, and coordinates z0, z1
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are not used, replaced by the use of v. Now the system (1) reads as

A′
0 = A1,

A′
1 = A2,

A′
2 = A3, (75)

A′
3 = −A0[A

2
0 + δ̃4(v)],

v′ = −ε
√
2v(1 +

1

2
v)[1 + Z(v,A0, A1, A2, A3)].

With new variables defined in (74) this leads to the new 4-dimensional system

X ′ = −LX +G0(ε, v,X, Y ),

Y ′ = LY +G1(ε, v,X, Y ),

X =

(
x1

x2

)
, Y =

(
y1
y2

)
, L =

δ̃(v)√
2

(
1 1
−1 1

)
,

G0(ε, v,X, Y ) =
(x1 + y1)

3

2
√
2δ̃3

V0 +
ε

δ̃4

(1 + v)(δ2 − δ̃4)

4
√
2

[1 + Z(v,X, Y )](M 1X +M 2Y ),

G1(ε, v,X, Y ) = − (x1 + y1)
3

2
√
2δ̃3

V0 +
ε

δ̃4

(1 + v)(δ2 − δ̃4)

4
√
2

[1 + Z(v,X, Y )](M 1Y +M 2X),

V0 =

(
−1
1

)
, M1 =

(
−2 1
1 −4

)
, M2 =

(
2 −1
−1 0

)
,

where Z(v,X, Y ) is defined in (67), and where we used

δ̃′ =
(1 + v)(δ2 − δ̃4)

2δ̃3

ε√
2
(1 + Z).

The above system is completed by the expression of v given by Lemma 23.
Notice that the coefficients of the linear part in (X,Y ) are functions of v, where

the expected part, which has the factor δ̃(v)√
2
, is perturbed by a linear part

bounded by O( ε
α2 ) = O(ν1/2α1/2). Below we choose ν such that the perturbed

part is really a perturbation, not forgetting that ν is already taken small enough
in Lemma 11.

For finding the stable manifold of M+ we put the system in an integral form,
looking for solutions tending to 0 as x → +∞. With x ≥ x+

∗ , we obtain the
system

X(x) = S0(x, x
+
∗ )X0 +

∫ x

x+
∗

S0(x, s)G0[ε, v(s), X(s), Y (s)]ds,

Y (x) = −
∫ +∞

x

S1(x, s)G1[ε, v(s), X(s), Y (s)]ds, (76)
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where we notice that

S0(x, s) = e
−

∫ x
s

δ̃(v(τ))dτ
√

2

(
cos
∫ x

s
δ̃dτ√

2
− sin

∫ x

s
δ̃dτ√

2

sin
∫ x

s
δ̃dτ√

2
cos
∫ x

s
δ̃dτ√

2

)
, (77)

S1(x, s) = e
∫

x
s

δ̃(v(τ))dτ
√

2

(
cos
∫ x

s
δ̃dτ√

2
sin
∫ x

s
δ̃dτ√

2

− sin
∫ x

s
δ̃dτ√

2
cos
∫ x

s
δ̃dτ√

2

)
, (78)

and, using (72)

||S0(x, s)|| ≤ e−
√

αδ
2 (x−s), x+

∗ ≤ s ≤ x < ∞,

||S1(x, s)|| ≤ e−
√

αδ
2 (s−x), x+

∗ ≤ x ≤ s < ∞.

The 3-dimensional stable manifold is obtained in expressing (X(x), Y (x), B0(x))
as a function of (X0, B0(x

+
∗ )) solving (76), where B0 = 1+v is given by Lemma

23 and B0(x
+
∗ ) has the lower bound (70).

4.4 The stable manifold for x ∈ [x+
∗
,+∞)

We show the following

Lemma 25 For 1/3 ≤ δ ≤ 1, 0 < k1 < 1√
2
, ν > 0 small enough, and for ε small

enough, the 3-dimensional stable manifold of M+ exists for x ∈ [x+
∗ ,+∞), is

included in the 5-dimensional manifold Wε,δ, is analytic in (ε, δ), parameterized
by (X0, B0) where X(x) is a 2-dimensional coordinate defined in (73), and X0 =
X(x+

∗ ). Moreover choosing δ∗such that

δ∗ =
2

5
δ2/5

we have

(
1 + α2δ2

1 + δ2

)1/2

≤ B0(x
+
∗ ) ≤ B0(x) ≤ 1, B′

0(x) > 0, x ∈ [x+
∗ ,+∞),

Aj(x) = O(|X0|e−δ∗ε
1/5x), j = 0, 1, 2, 3, ε = να5/2,

where |X0| ≤ k1αδ. As x → +∞, (A0, A1, A2, A3) → 0 as exp(−
√

δ
2x), (1 −

B0, B1) → 0 as exp(−
√
2εx).

Proof. Let us solve (76) with respect to (X,Y ) ∈ C0
κ for |X0| small enough

and choose

κ =
2

5
δ2/5ε1/5 =

2
√
2

5

(
ν√
δ

)1/5
√

αδ

2
,

ν ≤
√
δ

6
√
2
,
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then

κ ≤ (2
√
2)4/5

5.31/5

√
αδ

2
≤ 1

2

√
αδ

2
.

Let us define

σ0α
1/2 =

√
αδ

2
− κ ≥ 1

2

√
αδ

2
,

where σ0 is independent of ε, then (76) implies (below, the space C0
κ is built on

[x+
∗ ,+∞) instead of [−x∗,+∞))

||X ||κ ≤ |X0|+
1

α1/2σ0
||G0||κ,

||Y ||κ ≤ 1

3α1/2σ0
||G1||κ.

Moreover we have for j = 0, 1 (see the expressions of Gj), using ||Mj || ≤
√
18,

||Gj ||κ ≤ (1 + cα2)

2
√
2δ3/2α3/2

(||X ||κ + ||Y ||κ)3 +
3να1/2

4
(||X ||κ + ||Y ||κ)

with c independent of ε. Now making the scaling

(X,Y ) = α(X,Y ),

we obtain

||X||κ ≤ |X0|+
3ν√
2δ

(||X ||κ + ||Y ||κ) +
(1 + cα2)

δ2
(||X ||κ + ||Y ||κ)3,

||Y ||κ ≤ ν√
2δ

(||X||κ + ||Y ||κ) +
(1 + cα2)

3δ2
(||X||κ + ||Y ||κ)3.

It is then clear that, for ν <
√
2δ
4 small enough (here we chose ν ≤

√
2δ
12 ), we can

appy the implicit function theorem (in the analytic frame as in [3] section X.2)
for |X0| ≤ k1δ with k1 < 1/

√
2 (independent of ε) and for ε small enough, so

that we obtain a unique solution (X,Y ) in C0
κ satisfying

||X ||κ ≤ (1 + cν)|X0|,
||Y ||κ ≤ cν|X0|+ c|X0|3,

with c independent of ε, ν small enough, and provided that

|X0| ≤ k1δ, k1 < 1/
√
2,

since we notice that we need to satisfy

k21 ≤ 1

2
≤ 3

4
(1− 4ν√

2δ
).
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By construction (see (74)) of (X,Y ) we obtain the estimates on Aj(x) indicated
at Lemma 25. It then remains to check the validity of condition (64). Indeed
estimates (66) of v imply

|v0|e
−5ε

√
2x

4 ≤ |v(x)| ≤ |v0|
1− |v0|

2

e
−3ε

√
2x

4 ,

where

|v0| = 1−B0(−x∗) ∼ 1− 1√
1 + δ2

.

Moreover, for j = 0, 1, 2, 3 and ε small enough

|Aj(x)| ≤ 2|X0|e−κx ≤ 2k1αδe
−κx, x > x+

∗ .

Since we have κ = O( εν )
1/5, then for ε small enough

e−κx ≤ e
−5ε

√
2x

4 , x > x+
∗ > 0,

the required condition (64) is realized as soon as

2k1αδ ≤ 1−B0(−x∗)

which holds true for ε small enough. The exponential bohavior declared in
Lemma 25 follow from the linear study of section 2.2 as x → +∞. This ends
the proof of Lemma 25, and of Corollary 3 for the part x ∈ [x+

∗ ,+∞).

4.5 Intersection of the stable manifold with H1

We need to compute the intersection of the 3-dimensional stable manifold of
M+ with the hyperplane H1 defined by

B0 = B01
def
=

√
1 + α2δ2

1 + δ2
. (79)

We then obtain a 2-dimensional sub-manifold living in the 4-dimensional man-
ifold Wδ ∩H1. We have the following

Lemma 26 For 1/3 ≤ δ ≤ 1, ε = να5/2, ε and ν small enough, the two-
dimensional intersection of the 3-dimensional plane, tangent to the stable man-
ifold of M+, with the 5-dimensional hyperplane H1, satisfies a linear system with

parameters (x10, x20) = X0 and, by construction δ̃|B01 = (αδ)1/2,

A0 = α(x10 + y10),

A1 = −α3/2

√
δ

2
(x10 + x20 − y10 − y20) (80)

A2 = α2δ(x20 + y20)

A3 =
α5/2δ3/2√

2
(x10 − x20 − y10 + y20),

where Y0 is function of X0 such that |Y0| ≤ cν|X0|, with the restriction

(|x10|2 + |x20|2)1/2 ≤ k1δ <
δ√
2
.
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5 Extension and Intersection of the two mani-
folds

5.1 Extension of the stable manifold of M+ for x ∈ [−x∗, x
+
∗
]

We need to extend the definition of the stable manifold of M+ to the region
where

1− α2δ2

1 + δ2
≤ B2

0(x) ≤
1 + α2δ2

1 + δ2
,

i.e where
−x∗ ≤ x ≤ x+

∗ ,

and where
A

(4)
0 = −A0[A

2
0 + (1 + δ2)B2

0 − 1]. (81)

We would like to prove the following ideal result

Lemma 27 For 1/3 ≤ δ ≤ 1, and ε small enough, the 3-dimensional stable

manifold of M+ still exists for B2
0 ∈ [ 1−α2δ2

1+δ2 , 1+α2δ2

1+δ2 ], is analytic in ε, δ, pa-

rameterized by (X0, B0(x
+
∗ )), where X0 is the same as in Lemma 25. Moreover

B0(−x∗) ≤ B0(x) ≤ B0(x
+
∗ ), B

′
0(x) > 0 where B0 is given by Lemma 23, and

A0 and it derivatives solve the differential equation (81). The sizes of A0 and
it derivatives keep the same order of magnitude on the interval −x∗ ≤ x ≤ x+

∗ .

We observe that Lemma 23 is valid, provided that (64) holds, hence

(1 + δ2)B2
0 − 1 =

2
√
2δ2√

1 + δ2
[εx+O(εx)2 +

ε

κ
O(|(A0, A1, A2, A3)|2)],

−εx∗ = −α2

√
1 + δ2

2
√
2

≤ εx ≤ α2

√
1 + δ2

2
√
2

= εx+
∗ ,

where, from lemma 25

|Aj(x
+
∗ )| ≤ ck1δα

(1+j/2), j = 0, 1, 2, 3,

with k1 < 1√
2
, independent of ε and ε

κ = ε
δ∗ε1/5

= O(ε4/5).

Let us first consider the principal part of (81) and rescale as

z = Kε1/5x, A0(x) = K2ε2/5A0(z)

K =

(
2
√
2δ2√

1 + δ2

)1/5

,

Now

z ∈ [−a, a] with a =

(
(1 + δ2)δ2

8ν2

)2/5

independent of ε,
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and the principal part of the differential equation for A0 reads now as

d4A0

dz4
= −A0(A0

2
+ z), (82)

with boundary conditions coming from the intersection of the unstable manifold
of M− with H0 for z = −a, and from the intersection of the stable manifold of
M+ with H1 for z = +a.

More precisely, we obtain for the principal part of the intersection with H0,
for z = −a (see (60))

A0 =
δ

K2
1

+
δ1/2

23/4K2
1

√
1 + δ2

(x1
u − x2

u)

dA0

dz
=

δ

K3
1

√
1 + δ2

x1
u

d2A0

dz2
=

δ3/2

21/4K4
1

√
1 + δ2

(x1
u + x2

u) (83)

d3A0

dz3
=

√
2δ2

K5
1

√
1 + δ2

x2
u

with
K1 = Kν1/5

where (x1
u, x2

u) is a 2-dimensional parameter of size k0 assumed to be small
enough and ν is also small enough, independent of ε, k0.

We also obtain the principal part of the intersection with H1, for z = +a
(see (80)) as

A0 =
1

K2
1

x10
s,

dA0

dz
= − 1

K3
1

√
δ

2
(x10

s + x20
s) (84)

d2A0

dz2
=

δ

K4
1

x20
s

d3A0

dz3
=

δ3/2

K5
1

√
2
(x10

s − x20
s),

where (x10
s, x20

s) is a 2-dimensional parameter assumed to be bounded by k1δ
(k1 < 2−1/2). For (82), the heteroclinic curve is obtained when we find a solution
A0 satisfying the boundary conditions above in z = ±a. We observe that ε has
completely disappeared from this formulation, and that we have 4 parameters
for this 4th order differential equation on the interval [−a,+a]. It is clear that
in satisfying the boundary conditions at z = +a, we obtain a two-parameter
family of solutions of (82) which needs to exist until z = −a, where ε does not
play any role. To prove such a result in a usual way, we need to have quite a
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small interval [−a,+a]. and a not too big initial data in +a. We cannot prove
this directly, so the hole in our proof needs to be filled by the following

Conjecture 28 For the initial conditions (84) in z = +a, the differential equa-
tion (82) has a 2-dimensional (parameter (x10

s, x20
s)) family of solutions for

z ∈ [−a,+a]. These solutions depend analytically of δ ∈ [1/3, 1].

Now, the complete system (81), which depends on ε, is a small regular per-
turbation of size O(ε4/5) of (81), as well for the perturbed boundary conditions,
so that the solution of (81) with its given boundary conditions at z = +a, exists
until z = −a, and is a small perturbation of the solution of (82) satisfying the
principal part of the boundary condition at z = +a.

Remark 29 The differential equation (82) is mentionned in [14], where a match-
ing asymptotic method is used, it also appears in [2] where a variational method
is used. Both studies are for an infinite interval. Here we have the advantage
to deal with a finite interval.

5.2 Intersection of the two manifolds

In this section we prove the following, after admitting Conjecture 28:

Lemma 30 For ε small enough, and for 1/3 ≤ δ ≤ 1, let us admit Conjecture
28. Then, except maybe for a finite number of values, the unstable manifold
of M− intersects transversally the stable manifold of M+ along the heteroclinic
solution. Moreover, for x = 0, we have the estimates Aj(0) = O(ε(2+j)/5),
j = 0, 1, 2, 3.

Proof. For proving the intersection it is sufficient to prove that the manifolds
intersect in the hyperplane H0.

For the differential equation (82), A0(−a) and its 3 first derivatives should
satisfy (83). Considering the 2-dimensional tangent plane to the 2-parameter
family of solutions coming from the solution satisfying the conditions in z = +a,
we then obtain a linear system in R4 for the 4 unknowns (x10

s, x20
s, x1

u, x2
u).

Looking at the system we see that the solution should be of order 1 with respect
to ε.

Ignoring the relationship coming from the differential equation (82) and
equating both sides, we obtain the unique solution

x1
u = −δ

√
δ

1 + δ2
(25/4 − 2), (85)

x2
u = δ

√
δ

1 + δ2
(2− 23/4),

x10
s = (2−

√
2)δ,

x20
s = (27/4 − 2−

√
2)δ,
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where we observe that the condition required at Lemma 25 on the norm of
(x10

s, x20
s) is satisfied:

|(x10
s, x20

s)| ≃ 0.586δ <
δ√
2
.

Now the action of the differential equation (82) on [−a,+a] rotates the 2-
dimensional tangent plane, starting from the plane (84) in z = +a, giving
a system different from the above, hence with a solution different from (85).
However the 2-parameter family of solutions depends analytically of δ, and the
solution of the 4-dimensional linear system is unique, except maybe for a finite
number of values of δ.

It remains to consider the full equation (81) which is a regular perturbation
of (82), of order ε4/5 including the bounds of the finite interval. It is then clear
that the same result holds true, i.e the existence of a unique solution, meaning
the transversality of the two manifolds, except maybe for a finite number of
values of δ. Now we observe that the conditions on the norms of x10

s, x20
s

and on x1
u, x2

u cannot be checked directly, even though they all are of order
1, as expected. Here, we may use the result of [1] which asserts the existence
of a heteroclinic where B0 starts from 0 for x = −∞, arriving at B0 = 1 for
x = +∞, and where B0 ∈ [0, 1]. Indeed, such a heteroclinic necessarily belongs
to the stable manifold of M− which is constructed here for x ∈ (−∞,−x∗],
and also belongs to the stable manifold of M+ which we have contructed for
x ∈ [−x∗,+∞). This means that the intersection of tangent planes, given by
the above mentioned 4-dimensional system has a solution. Such a solution is
unique, from the proof made above, except maybe for a finite number of values
of δ.

Remark 31 Since the size of Aj(x) with respect to ε is not modified on [−x∗, x+
∗ ],

the result above implies the validity of the parts of Corollaries 2 and 3 for
−x∗ ≤ x ≤ 0 and 0 ≤ x ≤ x+

∗ respectively.

6 Study of the linearized operator

Let us redefine the heteroclinic connection we found at Theorem 1 as

(A∗(x), B∗(x)) ⊂ R2

with
1 < 1 + δ20 ≤ g = 1 + δ2 ≤ 2,

and where we know that, for ε small enough

B∗(x) > 0, B′
∗(x) > 0

(A∗(x), B∗(x)) →
{

(1, 0) as x → −∞
(0, 1) as x → +∞ ,
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at least as eεδx for x → −∞, and at least as e−
√
2εx for x → +∞.

At section 1.1 we show that the perturbed system (2) leading to system (1)
is now considered with B0 complex valued, so in (1) B2 is replaced by |B|2.

For being able to prove any persistence result under reversible perturbations
of system (1) in R4 × C2, as it appears in (2), we need to study the linearized
operator at the above heteroclinic solution. We follow the lines of [6].

The linearized operator is given by

A(4) = (1 − 3A2
∗ − gB2

∗)A− gA∗B∗(B +B),

B′′ = ε2(−1 + gA2
∗ + 2B2

∗)B + 2ε2gA∗B∗A+ ε2B2
∗B.

Taking real and imaginary parts for B :

B = C + iD,

we then obtain the linearized system

−A(4) + (1− 3A2
∗ − gB2

∗)A− 2gA∗B∗C = 0,

1

ε2
C′′ + (1− gA2

∗ − 3B2
∗)C − 2gA∗B∗A = 0,

1

ε2
D′′ + (1− gA2

∗ −B2
∗)D = 0.

Notice that the equation forD decouples, so that we can split the linear operator
in an operator Mg acting on (A,C) and an operator Lg acting on D :

Mg

(
A
C

)
=

(
−A(4) + (1− 3A2

∗ − gB2
∗)A− 2gA∗B∗C

1
ε2C

′′ + (1− gA2
∗ − 3B2

∗)C − 2gA∗B∗A

)
,

LgD =
1

ε2
D′′ + (1− gA2

∗ −B2
∗)D.

Let us define the Hilbert spaces

L2
η = {u;u(x)eη|x| ∈ L2(R)},

D0 = {(A,C) ∈ H4
η ×H2

η ;A ∈ H4
η , C ∈ D1}

D1 = {C ∈ H2
η ; ε

−2||C′′||L2
η
+ ε−1||C′||L2

η
+ ||C||L2

η

def
= ||C||D1 < ∞}

equiped with natural scalar products. Below, we prove the following

Lemma 32 Except maybe for a set of isolated values of g, the kernel of Mg in
L2
η is one dimensional, span by (A′

∗, B
′
∗), and its range has codimension 1, L2-

orthogonal to (A′
∗, B

′
∗). Mg has a pseudo-inverse acting from L2

η to D0 for any
η > 0 small enough, with bound independent of ε.

The operator Lg has a trivial kernel, and its range which has codimension
1, is L2- orthogonal to B∗ (B∗ /∈ L2). Lg has a pseudo-inverse acting from L2

η

to D1 for η > 0 small enough, with bound independent of ε.
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Remark 33 The above Lemma is useful for proving the persistence under re-
versible perturbations, as indicated in (2), of our heteroclinic. This is done in
[9] and appears to be more difficult than the symmetric case solved in [6]. In-
deed, it is needed to introduce two different wave numbers for the two systems
of convective rolls at ±∞. In [9] it is shown that the component on the kernel
of Mg corresponds to a sort of adapted phase shift of rolls parallel to the wall,
while the codimension 2 of the range implies that each wave number is function
not only of the amplitude of rolls but also of the above shift. This then leads to
a one parameter family of domain walls, for any fixed small amplitude ε2.

6.1 Asymptotic operators

Let us define the operators obtained when x = ±∞ :

M−
∞

(
A
C

)
=

(
−A(4) − 2A

ε−2C′′ − (g − 1)C

)
,

M+
∞

(
A
C

)
=

(
−A(4) − (g − 1)A

ε−2C′′ − 2C

)
,

L−
∞D = ε−2D′′ − (g − 1)D,

L+
∞D = ε−2D′′.

Notice that all these operators are negative. Furthermore, their spectra in L2(R)
are such that

σ(M−
∞) = (−∞,−c−], c− = max{2, (g − 1)} > 0,

σ(M+
∞) = (−∞,−c+], c+ = c−,

σ(L−
∞) = (−∞,−(g − 1)],

σ(L+
∞) = (−∞, 0].

Operators Mg and Lg are respectively relatively compact perturbations of the
corresponding asymptotic operators M∞ and L∞ defined as

M∞ =

{
M−

∞, x < 0
M+

∞, x > 0
, L∞ =

{
L−
∞, x < 0

L+
∞, x > 0

,

Their essential spectrum, i.e. the set of λ ∈ C for which λ−Mg (resp. λ−Lg)
is not Fredholm with index 0, is equal to the essential spectrum of M∞ (resp.
L∞) (see [12]). The latter spectra are found from the spectra of M±

∞ and L±
∞ :

σess(M∞) = (−∞,−c+],

σess(L∞) = (−∞, 0].

In particular, this implies that 0 does not belong to the essential spectrum of
Mg, so that the operator Mg is Fredholm with index 0. Moreover operators
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M∞ and L∞ are self adjoint negative operators in L2, and M∞ has a bounded
inverse [12].

||M−1
∞ ||L2 ≤ 1

c+
.

This last property remains valid in exponentially weighted spaces, with weights
eη|x|, and η sufficiently small, since this acts as a small perturbation of the
differential operator (see [11] section 3.1).

6.2 Properties of Lg

Notice that Lg is self adjoint in L2(R) and that

LgB∗ = 0, but B∗ /∈ L2(R).

This property allows to solve explicitely the equation Lgu = f ∈ L2
η with respect

to u ∈ L2
η (using variation of constants method), and shows that it has a unique

solution, provided that ∫

R

fB∗dx = 0.

We obtain

u(x) =

∫ ∞

x

ε2B∗(x)

B2
∗(s)

F (s)ds

with F (s) =

∫ ∞

s

f(τ)B∗(τ)dτ for s ≥ 0

= −
∫ s

−∞
f(τ)B∗(τ)dτ for s ≤ 0.

By Fubini’s theorem we can write for x ≥ 0

u(x) = ε2B∗(x)

∫ ∞

x

f(τ)B∗(τ)

(∫ τ

x

ds

B2
∗(s)

)
dτ

and, for x ≤ 0

u(x) = −ε2B∗(x)

∫ x

−∞
f(τ)B∗(τ)

(∫ 0

x

ds

B2
∗(s)

)
dτ

−ε2B∗(x)

∫ 0

x

f(τ)B∗(τ)

(∫ 0

τ

ds

B2
∗(s)

)
dτ.

The asymptotic properties of B∗(x) at ±∞ imply, for x ≥ 0

|u(x)|eηx ≤ Cε2
∫ ∞

x

|f(τ)eητ |(τ − x)e−η(τ−x)dτ,
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and for x ≤ 0

|u(x)|e−ηx ≤ Cε2

2εδ

∫ x

−∞
|f(τ)e−ητ |e−(η+εδ)(x−τ)dτ

+
Cε2

2εδ

∫ 0

x

|f(τ)e−ητ |e(η−εδ)(τ−x)dτ.

The bound
||u||L2

η
≤ c2||f ||L2

η

follows from classical convolution results between functions in L2 and functions
in L1, since

∫ 0

−∞
e(η−εδ)τdτ =

1

η − εδ
,

∫ ∞

0

τe−ητdτ =
1

η2
.

Then, we choose η = 1
2εδ, so that the pseudo-inverse of Lg has a bounded inverse

in L2
η :

||L̃g

−1
|| ≤ c2,

where c2 is independent of ε. Using the form of Lg we obtain easily

||u||D1 ≤ c3||f ||L2
η

with c3 independent of ε.

Remark 34 The choice made for η is such that

η < εδ, η < ε
√
2,

for values of δ for which Theorem 1 is valid. This means that as x → −∞
(A∗ − 1, B∗), and, as x → +∞ (A∗, B∗ − 1) tend exponentially to 0 faster than
e−η|x|.

In fact, Lg has the same properties as the operatorMi in the proof of Lemma
7.3 in [6], see also [8]: Lg is Fredholm with index -1, when acting in L2

η, for η
small enough. Lg has a trivial kernel, and its range is orthogonal to B∗, with
the scalar product of L2(R).

6.3 Properties of Mg

We saw that Mg is Fredholm with index 0. Furthermore the derivative of the
heteroclinic solution belongs to its kernel:

Mg

(
A′

∗
B′

∗

)
=

(
−A

(5)
∗ +A′

∗ − (A3
∗)

′ − gB2
∗A

′
∗ − gA∗(B2

∗)
′

ε−2B′′′
∗ + [B′

∗ − gA2
∗B

′
∗ − (B3

∗)
′ − gB∗(A2

∗)
′]

)

=

(
0
0

)
. (86)
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The part of the proof which differs from the proof made in [6], where the sym-
metry play an essential role, consists in showing at section 6.3.1 that the kernel
of Mg is one-dimensional (except for a finite set of values of g), spanned by

(A′
∗, B

′
∗)

def
= U∗ with a range orthogonal to U∗ in L2. Let us admit this result

for the moment, and define the projections Q0 on U⊥
∗ and P0 on U∗ , which are

orthogonal projections in L2, then we need to solve in L2
η

Mgu = f

in decomposing
u = zU∗ + v, v = Q0u,

Mgv = (M∞ +Ag)v = Q0f

and we need to satisfy the compatibility condition

〈f, U∗〉 = 0,

while z is arbitrary and we obtain for v :

(I+M−1
∞ Ag)v = M−1

∞ Q0f,

where the operator M−1
∞ Ag is now a compact operator for which −1 is not an

eigenvalue, since v ∈ U⊥
∗ . It results that there is a number c independent of ε

such that
||v||L2

η
≤ c||f ||L2

η
.

From the form of operator Mg and using interpolation properties, we obtain
for v = (A,C)

||(A,C)||D0 ≤ c||f ||L2
η

with a certain c independent of ε.
We show below (see section 6.3.1) that the kernel of Mg, is one dimensional,

then this implies that the range of Mg needs satisfy the orthogonality with
only one element. In fact, because of selfadjointness in L2, the range of Mg is
orthogonal in L2(R) to

(A′
∗, B

′
∗) ∈ L2

η.

6.3.1 Dimension of kerMg

Any element ζ(x) in the kernel lies, by definition, in L2
η, hence ζ(x) tends towards

0 exponentially at ±∞. Near x = ±∞ the vector ζ(x) ∼ ζ±(x) should verify

M±
∞ζ±(x) = 0

where there are only 2 possible good dimensions (on each side). This gives a
bound = 2 to the dimension of the kernel ofMg. Let us show that dimension 2 of
kerMg implies non uniqueness of the heteroclinic, which contradicts Theorem
1, hence the only possibility is that the dimension is one.
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Let us choose arbitrarily g0 and assume that the kernel of Mg0 consists in

ζ0(x), ζ1(x)

where ζ0 = (A′
∗, B

′
∗)|g0 and let us decompose a solution of (1) in the neighbor-

hood of g0 as

U = Ta(U
(g0)
∗ + a1ζ1 + Y ), (87)

where Ta represents the shift x 7→ x + a, where a, a1 ∈ R, and Y belongs
to a subspace transverse to kerMg0 . Let us denote by Q0 and P0 = I − Q0,
projections, respectively on the range ofMg0 , and on a complementary subspace
(Q0 may be built in using the eigenvectors ζ∗0 , ζ

∗
1 of the adjoint operator M∗

g0).
Let us denote by

F(U, g) = 0

the system (1) where we look for an heteroclinic U for g 6= g0. Then, we have

F(U
(g0)
∗ , g0) = 0,

DUF(U
(g0)
∗ , g0) = Mg0 ,

and since
Mg0ζj = 0, j = 0, 1,

using the equivariance under operatorTa, we obtain (denoting F0 = F(U
(g0)
∗ , g0)

and [..](2) the argument of a quadratic operator)

0 = Mg0Y + (g − g0)∂gF0 +
1

2
D2

UUF0[a1ζ1 + Y ](2) +

+O(|g − g0|[|g − g0|+ |a1|+ ||Y ||] + ||Y ||3).

The projection Q0 of this equation allows to use the implicit function theorem
to solve with respect to Y and then obtain a unique solution

Y = Y(a1, g),

with

Y = −(g − g0)M̃g0

−1
Q0∂gF0 −

1

2
M̃g0

−1
Q0D

2
UUF0[a1ζ1]

(2) +

+O(|g − g0|(|g − g0|+ |a1|) + |a1|3)).

Then projecting on the complementary space, (only one equation since we work
in the subspace orthogonal to ζ∗0 ), we may observe (see the proof in Appendix
A.3.3) that P0∂g0F0 = 0 and then obtain the ”bifurcation” equation as

q(a1, g − g0) = O((|g − g0|+ |a1|)3),

where the function q is quadratic in its arguments and

q|g=g0ζ1 =
1

2
P0D

2
UUF0[a1ζ1]

(2).
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This equation is just at main order a second degree equation in a1 depending on
g− g0. Provided that the discriminant is not 0, the generic number of solutions
is 2 or 0. If the discriminant is 0 for g = g0, we just go a little farther in g,
and obtain a non zero discriminant, since the discriminant cannot stay = 0.
Indeed the heteroclinic is analytic in g and if the discriminant were identically
0, this would mean that we have a double root for any g, contradicting the
transversality for all g, except a finite number, of the intersection of the two
manifolds (unstable one of M−, stable one of M+). Hence, this is true except
for a set of isolated values of g.We can then use the implicit function theorem for
finding corresponding solutions for the system with higher order terms. In fact

we already know a solution, corresponding to U
(g)
∗ = U

(g0)
∗ + (g − g0)∂gU

(g0)
∗ +

h.o.t. which corresponds to specific values for a1 and Y, of order O(g − g0). It
then results that there is at least another solution of order O(g − g0), so that
there exists another heteroclinic, in the neighborhood of the known one (then
in contradiction with Theorem 1).

Remark 35 The above proof with only 1 dimension in the Kernel, provides

Y = −(g − g0)M̃g0

−1
∂gF0 + O((g − g0)

2), which gives a unique heteroclinic.
Since we found only one heteroclinic, this shows that the kernel is of dimension
1.

A Appendix

A.1 Monodromy operator

Let us prove the estimate for the monodromy operators. We prove the following

Lemma 36 For B0 ≤
√
1− η20δ

2, α ≥ 10
3 ε2, and for ε small enough, the fol-

lowing estimates hold

||S0(x, s)|| ≤ eσ(x−s), −∞ < x < s

||S1(x, s)|| ≤ e−σ(x−s), −∞ < s < x

with

σ =
(αδ)1/2

21/4
.

Proof. We start with the system

x′
1 = λrx1 + λix2

x′
2 = −λix1 + λrx2

where λr and λi are functions of x. From Lemma 14 we have, for ε small enough

λr ≥ (αδ)1/2

21/4
= σ.
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Now we obtain
(x2

1 + x2
2)

′ = 2λr(x
2
1 + x2

2)

hence
(x2

1 + x2
2)(x) = e

∫ x
s

2λr(τ)dτ(x2
1 + x2

2)(s),

which, for x < s, leads to

√
(x2

1 + x2
2)(x) ≤ eσ(x−s)

√
(x2

1 + x2
2)(s).

The proof is then done for the operator S0. The estimate for S1 is obtained in
the same way.

Remark 37 We have

S0(x, s) = e
∫ x
s

λr(τ)dτ

(
cos(

∫ x

s
λi(τ)dτ) sin(

∫ x

s
λi(τ)dτ)

− sin(
∫ x

s λi(τ)dτ) cos(
∫ x

s λi(τ)dτ)

)
.

A.2 Computation of the system with new coordinates

Let us look for the system (12) writen in the new coordinates, first in forgetting
quadratic and higher orders terms

B0x
′
1 =

Ã∗

2
√
2λr

(
A1 +

(1 + δ2)B0B1

Ã∗

)
+

3λ2
r − λ2

i

4
√
2λrÃ∗

A3

+
A2

2
+

(1 + δ2)

2Ã∗
B2

0ε
2
(
δ2(Ã∗

2 −B2
0) + 2(1 + δ2)Ã∗Ã0

)
− (λ2

r − λ2
i )Ã0

= B0f1 +
Ã∗

2
√
2λr

B0(x1 + y1) +
A2

2
+

1

4λr
A3,

λiB0x
′
2 = − Ã∗

2
√
2

(
A1 +

(1 + δ2)B0B1

Ã∗

)
− λ2

r − 3λ2
i

4(λ2
r − α)

A3

− (λ2
r − λ2

i )

4λr

(
A2 +

(1 + δ2)B2
0ε

2

Ã∗
δ2(Ã∗

2
−B2

0)

)

− 1

4λr
2Ã∗

2
Ã0

= λiB0f2 −
Ã∗

2
√
2
B0(x1 + y1)−

(λ2
r − λ2

i )

4λr
A2

+
1

4
A3 −

1

4λr
2Ã∗

2
Ã0,

with

f1 =
ε2δ2B0(1 + δ2)(Ã∗

2
−B2

0)

2Ã∗
,
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f2 = −ε2δ2B0(1 + δ2)(λ2
r − λ2

i )(Ã∗
2
−B2

∗)

4λrλiÃ∗
,

hence

x′
1 = f1 + λrx1 + λix2, (88)

x′
2 = f2 − λix1 + λrx2,

as expected. In the same way we obtain

y′1 = f1 − λry1 + λiy2,

y′2 = −f2 − λiy1 − λry2, (89)

z′1 =
2ε2δ2(Ã∗

2 −B2
0)

Ã∗
=

2f1
(1 + δ2)B0

,

B′
∗ = − (λ2

r − λ2
i )

(1 + δ2)B0Ã∗
A3 + Ã∗B0z1.

We notice that the following estimates hold (using (15) and Lemma 14)

|f1|, |f2| ≤
B0ε

2δ2

Ã∗
≤ B0ε

2δ

α
,

A.2.1 Full system in new coordinates

We intend to derive the full system (1) with coordinates (x1, x2, y1, y2, B0, z1).
Differentiating (22) and (23) we see that we respectively need to add to the
previous expressions (88) for x′

1 and x′
2

1

B0

{(
Ã∗

2
√
2λr

)′

Ã0 +

(
(3λ2

r − λ2
i )

4
√
2λrÃ∗

)′
A2 + ε2

(
(1 + δ2)2B2

0

2Ã∗
2

)′

A3 +

(
(1 + δ2)B0

2Ã∗

)′
B1

}

−ε2
(1 + δ2)2B0

2Ã∗
2 [3Ã∗Ã0

2
+ Ã0

3
] +

B0ε
2(1 + δ2)2Ã0

2

2Ã∗
− B1

B0
x1.

and

1

B0

{
−
(

Ã∗

2
√
2λi

)′

Ã0 −
(
(λ2

r − λ2
i )

4λrλi

)′
A1 −

(
(λ2

r − 3λ2
i )

4
√
2λiÃ∗

)′
A2 +

(
ε2(1 + δ2)3B3

0

4λrλiÃ∗

)′
B1

}

+
1

B0

(
1

4λrλi

[
1− (λ2

r − λ2
i )

2

Ã∗
2

])′

A3 −
1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
[3Ã∗Ã0

2
+ Ã0

3
]

−ε4B3
0(1 + δ2)4

4λrλiÃ∗
Ã0

2
− B1

B0
x2.

We then arrive to the system (27,28,29,30).
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Using Lemma 14 and Lemma 13 we obtain

Ã∗
′
= − (1 + δ2)B0

Ã∗
B1

(λ2
r)

′ = − (1 + δ2)B0B1√
2Ã∗

(1− ε2
√
2(1 + δ2)Ã∗)

(λ2
i )

′ = − (1 + δ2)B0B1√
2Ã∗

(1 + ε2
√
2(1 + δ2)Ã∗)

(
Ã∗

2
√
2λr

)′

= a1B0B1, |a1| ≤
c

Ã∗
3/2

, (90)

(
Ã∗

2
√
2λi

)′

= a2B0B1, |a2| ≤
c

Ã∗
3/2

, (91)

(
− (λ2

r − λ2
i )

4λrλi

)′
= b2B0B1, |b2| ≤

cε2

Ã∗
2 , (92)

(
(3λ2

r − λ2
i )

4
√
2λrÃ∗

)′
= c1B0B1, |c1| ≤

c

Ã∗
5/2

, (93)

(
− (λ2

r − 3λ2
i )

4
√
2λiÃ∗

)′
= c2B0B1, |c2| ≤

c

Ã∗
5/2

, (94)

ε2

(
(1 + δ2)2B2

0

2Ã∗
2

)′

= d1B0B1, |d1| ≤
c

Ã∗
3 , (95)

(
1

4λrλi

[
1− (λ2

r − λ2
i )

2

Ã∗
2

])′

= d2B0B1, |d2| ≤
c

Ã∗
3 , (96)

(
(1 + δ2)B0

2Ã∗

)′
= e1B1, |e1| ≤

c

Ã∗
3 (97)

(
ε2(1 + δ2)3B2

0

4λrλiÃ∗

)′
= e2B0B1, |e2| ≤

c

Ã∗
3 , (98)

with c independent of ε, α and δ ∈ [1/3, 1].
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A.3 Elimination of z1

A.3.1 System after scaling

After the scaling (32) our system (27,28,29,30) takes the form

X
′

= L0X + B0F0 +B01(X,Y ) + z1M01(X,Y )

+z1
2B0n0 +C01(X,Y ),

Y
′

= L1Y +B0F1 +B11(X,Y ) + z1M11(X,Y )

+z1
2B0n1 +C11(X,Y ),

where F0, F1,n0,n1 are two-dimensional vectors M01,M11 are linear operators
in (X,Y ), B01,B11 are quadratic and C01,C11 are cubic in (X,Y ), all functions
of B0. More precisely we have

F0 =

(
f1

α3/2δB0
f2

α3/2δB0

)
, F1 =

(
f1

α3/2δB0

− f2
α3/2δB0

)
, |Fj | ≤ c

ε2

α5/2
,

n0 =
ε2δ

α3/2

(
e1Ã∗

2

e2Ã∗
2
B0 − b2(1 + δ2)Ã∗B2

0

)
,

M01(X,Y ) = εδ

(
m01(X,Y )
m02(X,Y )

)
,

m01(X,Y ) = Ã∗B0

(
a1Ã0 + c1A2 + (d1 − 2e1(1 + δ2)ε2

B0

Ã∗
)A3 −

x1

B0

)
,

m02(X,Y ) = Ã∗B0

(
−a2Ã0 + c2A2 + (d2 − 2e2(1 + δ2)ε2

B2
0

A∗
)A3 −

x2

B0

)

+Ã∗B
2
0b2(x1 + y1) + (1 + δ2)2ε2

B3
0

Ã∗
b2A3,

B01(X,Y ) = α3/2δ

(
b01(X,Y )
b02(X,Y )

)
,

b01(X,Y ) = −ε2
(1 + δ2)(2 − δ2)B0

2Ã∗
Ã0

2

+ e1
ε4(1 + δ2)2B0

Ã∗
2 A3

2

−ε2
(1 + δ2)B0

Ã∗
A3[a1Ã0 + c1A2 + d1A3 −

x1

B0
],

b02(X,Y ) = − 1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2

+ e2
ε4(1 + δ2)B2

0

Ã∗
2 A3

2

−ε2
(1 + δ2)B0

Ã∗
A3[−a2Ã0 + b2B0(x1 + y1) + c2A2 + d2A3 −

x2

B0
],
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C01(X,Y ) = α3δ2Ã0

3


 −ε2 (1+δ2)B0

2Ã∗
2

− 1
4λrλiB0

(
1− ε4B4

0(1+δ2)4

Ã∗
2

)

 .

n1, M11, B11, C11 are deduced respectively from n0, M01,B01, C01 in chang-
ing (a1, c1, b2, d2, e2) into their opposite.

A.3.2 System after elimination of z1

Let us replace z1 by z10[1 + Z(X,Y ,B0, ε, α, δ)] in the differential system for
(X,Y ). The new system becomes (notice that B0 is in factor of the ”constant”
terms)

X
′

= L0X +B0F0 + L01(X,Y ) + B01(X,Y ),

Y
′

= L1Y +B0F1 + L11(X,Y ) + B11(X,Y ),

which is (39) with
F0 = F0 + z10

2
n0,

L01(X,Y ) = z10M01(X,Y ),

B01(X,Y ) = B01(X,Y ) + z10Z(X,Y )M01(X,Y ) +C01(X,Y )

+2z10
2Z(X,Y )B0n0 + z10

2Z(X,Y )2B0n0.

In using estimates (26), (90) to (98), it is straightforward to check that

|F0|+ |F1| ≤
cε2

α9/2
,

|M01(X,Y )| ≤ c
εδ

Ã∗
(|X |+ |Y |),

|n0| ≤ c
ε2

α5/2
, |b01| ≤ c

ε2

α2
, |b02| ≤

9

2α
+ c

ε2

α2
,

hence
|L01(X,Y )|+ |L11(X,Y )| ≤ c

ε

α2
(|X|+ |Y |).

For higher order terms we have

|B01(X,Y )| ≤ α1/2[
9

2
+ c

ε2

α
](|X |+ |Y |)2,

|2z102Z(X,Y )n0| ≤ c
ε2(1 + ρ2)

α3/2
(|X |+ |Y |)2,

|z10Z(X,Y )M 01(X,Y )| ≤ cαε(1 + ρ2)(|X |+ |Y |)3,
z10

2|Z(X,Y )2n0| ≤ cα3/2ε2(1 + ρ4)(|X |+ |Y |)4,

|C01(X,Y )| ≤ 27α1/2

2
(|X|+ |Y |)3,
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hence for
|X|+ |Y | ≤ ρ,

we obtain (with c independent of ε, α, δ)

|B01(X,Y )|+ |B11(X,Y )| ≤ α1/2[9/2 + c
ε2

α
+ c

ε2

α2
(1 + ρ2)](|X |+ |Y |)2

+[
27α1/2

2
+ cαε(1 + ρ2)](|X |+ |Y |)3 + cα3/2ε2(1 + ρ4)(|X |+ |Y |)4,

and in using the constraint (31)

|B01(X,Y )|+ |B11(X,Y )| ≤ α1/2(9/2 + c
ε2

α7/2
)(|X |+ |Y |)2

+α1/2(
27

2
+ c

ε

α
)(|X |+ |Y |)3 + α1/2(c

ε2

α2
)(|X |+ |Y |)4.

A.3.3 Proof of P0∂gF0 = 0

Lemma 38 Any (u, v) in the kernel of Mg satisfies

∫

R

A∗B∗(B∗u+A∗v)dx = 0,

and ∂gF0(U∗, g) = (A∗B2
∗ , A

2
∗B∗) belongs to the range of Mg, hence P0∂gF0 =

0.

Proof.
Differentiating with respect to g the system (1) verified by the heteroclinic,

we obtain

Mg

(
∂gA∗
∂gB∗

)
=

(
A∗B2

∗
A2

∗B∗

)
= ∂gF0(U∗, g),

hence (A∗B2
∗ , A

2
∗B∗) belongs to the range of Mg. When (u, v) ∈ kerMg, then

(u, v) ∈ kerM∗
g where Mg = M∗

g, when the adjoint is computed with the scalar
product of L2, hence

∫

R

A∗B∗(B∗u+A∗v)dx = 0. (99)

Hence, the eigenvectors ζ∗0 , ζ
∗
1 of the adjoint M∗

g (the orthogonal of this 2-
dimensional eigenspace is the range ofMg), are orthogonal to ∂gF0 = (A∗B2

∗ , A
2
∗B∗)|g0

in L2.
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