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Abstract

A six-dimensional reversible normal form system occurs in Bénard-
Rayleigh convection between parallel planes, when we look for domain
walls intersecting orthogonally (see Buffoni et al [1]). On the truncated
system, we prove analytically the existence, local uniqueness, and analyt-
icity in parameters, of a heteroclinic connection between two equilibria,
each corresponding to a system of convective rolls. We prove that the 3-
dimensional unstable manifold of one equilibrium, intersects transversally
the 3-dimensional stable manifold of the other equilibrium, both manifolds
lying on a 5-dimensional invariant manifold. We also study the linearized
operator along the heteroclinic, allowing to prove (in [7]) the persistence
under perturbation, of the heteroclinic obtained in [1].

Key words: Reversible dynamical systems, Invariant manifolds, Bifurcations,
Heteroclinic connection, Domain walls in convection

1 Introduction and Results
In this work we study the following 6th order reversible system

AW = A1 - A% —¢B?) (1)
B’ = &’B(-1+gA%+ B?),

where A and B are real functions of € R. This system occurs in the search for
domain walls intersecting orthogonally, in a fluid dynamic problem such as the
Bénard-Rayleigh convection between parallel horizontal plates (see subsection
1.1 and all details in [1]). The heteroclinic we are looking for, corresponds to
the connection between rolls on one side and rolls oriented orthogonally on the
other side. The system (1) has been also introduced by Manneville and Pomeau
n [12], obtained after formal physical considerations using symmetries.



We would like to find analytically a heteroclinic connection (g > 1, € small)
such that

Ai(z),Bi(z) > 0,

LI Rk

By a variational argument Boris Buffoni et al [1] prove the existence of such
an heteroclinic orbit, for any g > 1, and ¢ small enough. This type of elegant
proof does not unfortunately allow to prove the persistence of such heteroclinic
curve under reversible perturbations of the vector field. This is our motivation
for producing analytic arguments, proving such an existence, uniqueness and
smoothness in parameters (g, g) of this orbit, however for limited values 1 < g <
2, fortunately including physical interesting ones. Then we study the linearized
operator along the heteroclinic curve, allowing to attack the problem of existence
of orthogonal domain walls in convection (see [7] and Remark 22).

1.1 Origin of system (1)

The Bénard-Rayleigh convection problem is a classical problem in fluid me-
chanics. It concerns the flow of a three-dimensional viscous fluid layer situated
between two horizontal parallel plates and heated from below. Upon increasing
the difference of temperature between the two plates, the simple conduction
state looses stability at a critical value of the temperature difference corre-
sponding to a critical value R, of the Rayleigh number. Beyond the instability
threshold, a convective regime develops in which patterns are formed, such as
convective rolls, hexagons, or squares. Observed patterns are often accompanied
by defects.

We start with the Navier-Stokes-Boussinesq (N-S-B) steady system of PDE’s,
applying spatial dynamics with z as ”time” (as introduced by K.Kirchgéssner in
[11], adapted for N-S equations in [8], and more generally in [5]) and considering
solutions 27/k periodic in y (coordinate parallel to the wall). We show in [1]
that near criticality a 12-dimensional center manifold reduction to a reversible
system applies for (R, k) close to (R, k.), R being the Rayleigh number, and
k. the critical wave number. This high dimension of the center manifold may
be explained as follows. Due to the equivariance of the system under horizontal
shifts, the eigenvectors of the linearized problem are of the form expi(+tkiz +
koy), the factor being only function of k? = k? 4+ k3 (invariance under rotations).
It results that, for eigenvectors independent of x corresponding to a 0 eigenvalue
in the spatial dynamics formulation, the eigenvalue is double in general (make
+k; — 0). Now, at criticality, k = k. corresponds to two different values of
ko merging towards k., which double the dimension, making a quadruple 0
eigenvalue with complex and complex-conjugate eigenvectors. Hence we already
have a dimension 8 invariant subspace for the 0 eigenvalue, with two 4 x4 Jordan
blocks. This corresponds to convective rolls of amplitude A and 4 at 2 = —oc.
Now for eigenvectors independent of y corresponding to eigenvalues +ik in the



spatial dynamics formulation it is shown in [4] that they are simple, and give
double eigenvalues +ik, for k = k. with amplitudes B and B respectively. Hence
this adds 4 dimensions to the central space, so finally obtaining a 12-dimensional
central space. Now we restrict the study to solutions invariant under reflection
y — —y (the change y into —y changing A in A and not changing B), which
constitutes an invariant subspace for the full system. This restricts the study
to real amplitudes A and the full system reduces to a 8-dimensional sub-center
manifold, such that A € R and B € C are the amplitudes of the rolls respectively
at * = —oo, and & = +00. Moreover, for the full system, we keep
i) the reversibility symmetry:

(:EaAvB) — (_IaAvﬁ)v

ii) the equivariance under shifts by half of a period in y direction, leading to

the symmetry:

Now, in [1] we use a normal form reduction up to cubic order, and rewrite
the system as one 4th order real differential equation for A, and a second order
complex differential equation for B. In addition to the above symmetries, the
normal form commutes with the symmetry:

(A, B) — (A, Be'), for any ¢ € R.

Handling the full N-S-B equations, in [1] the authors show that the study
leads to a small perturbation of the reduced system of amplitude equations (1).
More precisely, after a suitable scaling (see [1]), and denoting by (£2Ay,£2By)
rescaled amplitudes (A, Be~*<*) and after a rescaling of the coordinate z, we
obtain the system

k% n
AP = k_Ag-l-Ao(l—I—A§_9|BO|2)+f’
B! = £2By(—1+ gA% +|Bol?) +7, (2)

where € is a rescaling proportional to R — R, the coefficient g > 1 is function
of the Prandt]l number and is the same as introduced and computed in ([4]), k—
comes from the freedom left to the wave number of the rolls at —oo, defined as

kE=k.(1+¢e%k.),

and fand g are perturbation terms, smooth functions of their arguments, com-
ing

i) from the rest of the cubic normal form, at least of order & for f, and at
least of order &3 for g;

ii) from higher order terms not in normal form, and not autonomous (because
of the introduction of Be~"<® rescaled as 2By in (2)), and of order &* for 7,
and of order €% for g. Without k_, f, and g, this is the system (1), with By € C



replacing B, and B? replaced by |By|?. The truncation leading to (1) allows to
take B real, since the phase of By does not play any role in the dynamics for
(1). The two different wave numbers of the rolls, close to the critical value k.
are left free for the full problem, however they do not appear in the present
proof of the heteroclinic, even though they are important for the final proof
of existence of the orthogonal domain walls (see Remark 22 in section 7). It
should be noticed that the system (2), without fA and g, was obtained a long
time ago by Pomeau-Manneville in [12], however they did not deal with the
full N-S-B system, and only considered cases with identical wave numbers at
infinities, while it is shown in [7] that some cubic terms, inexistent in [12], as
e2(A2Al — ApA2) in f and ie3ByAg A} in § are crucial for the determination of
the solutions of the full problem, with different wave numbers at infinities (see
Remark 22).

1.2 Sketch of the method and results

Let us now consider the system (1). The equilibrium (4, B) = (0,1) of the sys-
tem (1) gives an approximation of convection rolls parallel to the wall (periodic
in the z direction, with fixed phase) bifurcating for Rayleigh numbers R > R,
close to R., whereas the equilibrium (A, B) = (1,0) of the system (1) gives
the same convection rolls (periodic in the y direction) rotated by an angle 7/2
with the phase fixed by the imposed reflection symmetry. A heteroclinic orbit
connecting these two equilibria provides then an approximation of orthogonal
domain walls (see Figure 1).

We set § = (g — 1)Y/2. The idea here might be to use the arc of equilibria
A% + B? = 1, which exists for § = 0, connecting end points M_ = (1,0) and
My = (0,1), and to prove that for suitable values of 6 (> 0 but close to 0), the 3-
dimensional unstable manifold of M_ intersects transversally the 3-dimensional
stable manifold of M, both staying on a 5 dimensional invariant manifold Wis.
However, for § = 0 the situation in M, is very degenerated, with a quadruple
0 eigenvalue for the linearized operator, while it is only a double eigenvalue
in M_. Then for § close to 0, a 5-dimensional center-stable invariant manifold
starting from M needs to intersect a center-unstable manifold starting from
M_. Unfortunately, we are not able to prove this. Moreover, for ¢ close to 0,
we cannot prove that the 3-dimensional unstable manifold of M_ exists from
B = 0 until B reaches a value close enough to 1. In fact the physically interesting
values of ¢ are not close to 0. So that we prefer to play with €.

The strategy here consists to keep in mind that, after changing the coordi-
nate x in T = ez, we obtain the new system

LAt A

d®B
— = B(B? - 1),

and the limit ¢ — 0 of the system (1) is singular, and gives indeed a non C*
heteroclinic solution such that



(i) for 2 running from —oo to 0, then (A, B) varies from (1,0) to (0, %) on
the ellipse A% 4+ gB? = 1, while
(ii) for  running from 0 to +oo, then (A, B) varies from (0, \/_) o (0,1),
satisfying, in the original coordinate z, the differential equation (see the first
integral (5)).
€
B' = —(1-B%).
ﬁ( )
The major difficulty in the proof of Theorem 1 is to prove the existence of the
3-dim unstable manifold of M_ until Ay reaches a neighborhood of 0, and to
prove the existence of the 3-dim stable manifold of M until By reaches a neigh-

borhood of 1/,/g =1/v'1+ 6%, The usual proofs of existence of such invariant
manifolds give only local results, so we need to use here the additional property
that we have a first integral of the system, expressing that both invariant 3-dim
manifolds lie on a 5-dimensional invariant manifold. We are then able to extend
sufficiently the domain of existence of these manifolds, as graphs with respect
to B. Indeed we prove the following

Theorem 1 Let us choose 0 < 69 < 1/3, then for 69 < § < 1, ny such that
el/3 = [(146*)n2 —1]Y2, and for e small enough, the 3-dim unstable manifold of
M_ intersects transversally the 3-dim stable manifold of M, except maybe for
a finite number of values of 6. The connecting curve which is obtained is unique
(see Remark 3). Moreover its dependency in parameters (,0) is analytic. In
addition we have B(x) and B'(x) > 0 on (—00,+00), the principal part of B(x)
being given

i) for x € (—o0,0], by

1
Bo(z) = ,
(=) (1+ ﬁ)l/Q cosh(zg — edx)
coshxg = ;
Boo(1 + &)1/’
By = Bo(0) = (1 —156°)"/2,

ii) for x € [0, +00), by

tanh(ex/v/2) + Boo

Bole) = 1 4 Boo tanh(ex/v/2)

For x — —oo we have (A —1, A", A" A" B,B') — 0 at least as e*°®, while for

x — +oo, (A, A, A", A") = 0 at least as e—\/§17 and (B —1,B") = 0 at least
as e~ V2w,

In section 4 we prove at Lemma 9 the existence of the unstable manifold
(graph with respect to B) of M_ = (1,0) until a neighborhood of (A, B) =

(0,1/4/1 4 %) with no restriction on the choice of §, except § > &y > 0.



In section 5 we prove at Lemma 14 the existence of the stable manifold (graph
with respect to B) of M} = (0,1) until (backward direction) a neighborhood

of (0,1/v/1 + 6?). Here there is a restriction § < 1, for being able to reach the
end point.

In section 6 we prove the transverse intersection of the two manifolds, except
maybe for a finite set of values of §. This ends the proof of Theorem 1. We claim
that our proof uses only elementary analysis, as implicit function theorem in
various function spaces (see [2]), theory of differential equations as developped
in [3], and a classical property of analytic functions.

In section 7 we give in Lemma 21 the properties of the linearized operator
along the heteroclinic, which are necessary to prove a persistence result under
a reversible perturbation for the heteroclinic in the 8-dimensional space (with
B € C). This allows to prove the existence of orthogonal domain walls in
convection [7].

Remark 2 [t should be noticed that we show at Lemma 18 that, in the middle
of the heteroclinic, A(0) = O(v/e) and A(zx) oscillates, staying of this size very
close to 0 for x € (0,+00), while B(0) is very close to 1/\/g and B(x) grows
monotonically until 1.

Remark 3 Using symmetries of the system: Aw— £A, B — +B and reversibil-
ity symmetry: (A(x), B(x)) — (A(—z), B(—x)), we find 8 heteroclinics. Two
are connecting M_ to My with opposite dynamics, two others connect —M_ to
M, two connect M_ to —My, and two connect —M_ to —M. The one which
interests us is the only one connecting M_ to M, with the dynamics running
from M_ to M.

Remark 4 [t should be noticed that the study made in [12] on the heteroclinic
solution for the system (1) uses asymptotic analysis, suggesting the existence
of the heteroclinic, later proved mathematically in [1]. We think that our re-
sult on the size of A(0) is optimal (see Remark 2), since it results from exact
computations at section 6.

Remark 5 Values of § such that 0.476 < ¢§ include values obtained for ¢ in
the Bénard-Rayleigh convection problem where g = 1+ 6% is function of the
Prandtl number P (as computed in [{]). With rigid-rigid, rigid-free, or free-
free boundaries the minimum values of g are respectively (gmin = 1.227, 1.332,
1.423) corresponding to dmin = 0.476, 0.576, 0.650. The restriction in Theorem
1 corresponds to 1 < g < 2. The eligible values for the Prandtl number are then
respectively P > 0.5308, > 0.6222, > 0.8078.

Acknowledgement The author warmly thanks Mariana Haragus for her
help in section 7, and her constant encouragements.



Figure 1: Orthogonal domain wall

2 Global invariant manifold W;
The coordinates in R® are defined as
(Ao, A1, Aa, A, Bo, B1) = (A, A", A", A", B, B').
The first observation is that we have the first integral
2
E2(A?)" 324" B 4 %(AQ + B2 1)% 4 225242B2, (4)

as noticed in [12], where an Euler-Lagrange equation is used (as used later in
[1]). Then, our heteroclinic should satisfy

2
2e2 A, A5 — 2 A2 — B2 + %(A% + B2 1)+ 2524282 = 0. (5)

Since our purpose is to find By growing from 0 to 1, we extract the positive
square root (needs to be justified later):

2
By = {2624, Ay — 242 + %(A% + B2 1) +£252A2B2)1/2,
which defines a 5-dimensional invariant maniford W; valid for any § > 0, which

should contain the heteroclinic curve that we are looking for. The singular points
of this manifold are given by

Al == A2:A3=Blzo,
0 = Ag(A2+(1+6*B; -1),
0 = Bo((1+6)A2+BZ-1).

For 6 > 0, and since (Ao, Bo) = (0,0) or ((6* +2)~/2, +(6% + 2)~'/2) do not
belong to Ws, we only find the singular points
(Ao, Bo) = (0,£1), Ay=As=A3=B1=0



For § = 0, all singular points belong to a circle of singular points:
A2+ B2=1, Ay = Ay = A3 = B, = 0. (7)

Remark 6 We do not emphasize here on the hamiltonian structure of system
(1) since this does not help our understanding. On the contrary, the reversibility
property is inherited from the original physical problem and is still valid for the
perturbed system (2). Moreover, if we consider perturbation terms as e2(A3 Ay —
ApAR) in f and ie3 By Ao A} in g, we cannot find a new first integral as used in
(5), while the system is still reversible.

3 Linear study of the dynamics

3.1 Cased>0(g>1)
3.1.1 Neighborhood of M_ = (1,0)

The eigenvalues of the linearized operator at M_ are such that A* = —2 or
A2 = 2262, hence

+27 Y41 +4),
+ed.

This gives a 3-dimensional unstable manifold, and a 3-dimensional stable man-
ifold.

3.1.2 Neighborhood of M, = (0,1)

The eigenvalues of the linearized operator at M, are such that A* = —§% or
A = 262, hence defining &' = V0, the eigenvalues are

+271/2(1 +4)¥,
+ev/2.

This gives again a 3-dimensional unstable manifold and a 3-dimensional stable
manifold.

All this implies that the 3-dimensional unstable manifold starting at M_
and the 3-dimensional stable manifold starting at M which are both included
into the 5—dimensional manifold Wjs give a good hope for these two manifolds
to intersect along a heteroclinic curve...provided that they still exist as graphs
with repect to B, ”far” from the end points M, and M_. The idea is to show
that this occurs when ¢ is not too small.

The limit points M_ = (1,0) and My = (0,1) have a degenerate situation
for § = 0, because of the multiple 0 eigenvalue for the linearized operator. For
6 = 0, it is possible to build a family of 2-dim unstable invariant manifolds and
a family of 2-dim stable manifolds along the arc of equilibria A? + B? = 1. For
6 > 0 and small, the perturbation gives two new 3-dim invariant manifolds,



however their transversality is weaker and weaker as B — 1. A "serious” study
is then needed, for the object of our work. However the physical interest is for
values of 4 > 0 not too small.

4 Unstable manifold of M

4.1 Change of coordinates

Let us fix 0 < 09 < 1/3, and 41 > 1, we assume, from now on
1

1
0< By <\/1—120% ny> ———es = —,
0 Vit V9

and define

def , 2 2 1/2 g2
a = (n5(1+467) - 1) » 3 00 <8< a, (8)

and new coordinates
Z:(Z;+267A17A27A37307Bl)t (9)

where Ay = A, cancels Al = AW with

A% (14 6%)B2, A, > éa.

In the following « is a ”small parameter”, the relative size of which, with respect
to € is precized later.

Remark 7 A, is Just the first part of the "singular” heteroclinic found for the
system, singular for e =0 (3). The occurence of A, is also linked with a formal

computation of an expansion of the heteroclinic in powers of €, which gives A,
as the principal part of Ao, valid for By < (1 +6%)71/2 = 1//g. The hope is to
build the unstable manifold until this limit value.

Remark 8 We choose the conditions on §, 69 < § < 1 in the purpose to
include known computed values of the coefficient g = 1 + 82, in the convection
problems, with different boundary conditions (see [4]).

We prove below the main result of this section:
Lemma 9 For € small enough, 0 < dg < 1/3, and 61 arbitrary,

[60,01], @ =n2(1+46%) -1,

2 3

0 €
2 < dpa?, e=ad,

the 3-dimensional unstable manifold of M_ exists for

0 < Bo(z) < (1 —n26H)Y2, x € (—o0,0).



It sits in W, is analytic in (g,0), and for any §* < 6,

Ay = A, + ByO(al/251/255 7
Al = ByO(ade® ™)
Ay = ByO(ade? ™)
As = ByO(ade?'™),

where N N N
0<1—A, <cB?, Aipy=o =1, A, >éa.

Remark 10 We observe that Ag reaches a value close to 0 since ;1; reaches d«
which is close to 0, while By reaches (1—n26%)Y/? which is close to 1/(14+6%)Y/? =
1/4/g, not close to 1.

The system (1) becomes

— 1+ 46%)B
AO/ - A1+M31
A,
A = A
A = A (10)
, —2 ———2 3
Ay, = 24, Ay 34 Ay — Ag
B, = B
B, = £28°B.(A. — B2) +2e%(1 + 6*) A, BoAy + £2(1 + 6%) Bo Ay -

We expect that Z-(;,Al,AQ,A&Bl stay small enough for € (—o0,0], so we
introduce the linear operator

0 1 0 0 0 {f9B
A,
0 0100 0
0 0010 0

Ls = — 2 (11)

—24, 0000 0
0 0000 1
2e2(14+6%)A.By 0 0 0 0 0

The idea is to find new coordinates such that we are able to give nice estimates of
the monodromy operator. Don’t forget that the coefficients of Ls are functions
of Bo.

The operator Ls has a double eigenvalue 0, and is such that the non zero
eigenvalues satisfy

—2
M —2e2B2(1+ 67207 424, =0. (12)
The discriminant of (12) is

—~2
A =*Bi(1+6%)* — 24,

10



Our assumption By < /1 — 73d? and Z—Z < § < 61, in addition with the con-
straint
> (1+6%)% (13)

AR

implies
A > A7
Then we have two pairs of complex eigenvalues
M =e"Bj(1+6%) £ivV-A

We want to find new coordinates able to manage a new linear operator in the
form of two independent blocs

AN
(= 4) 1
for which the eigenvalues are
A £ A,
where
202 = V24, +2B3(1 + 6%)? (15)
202 = V24, —e2B2(1 +6%)?
A=A = B+ 67
N4 A2 = V24,
4NN = A

The form of the linear operator as (14) is such that we are able to have good
estimates for the monodromy operator associated with the linear operator, the

coefficients of which are functions of By € [0, /1 — n26%] (see Appendix A.1).

4.2 Estimates for the eigenvalues

First, notice that (15) and

a<(14+6%)72
imply .
A,
Ar)\i Z 5
2
—1/2 1/2
1747 1/2 A o
MATT 2N T > SV, (16)
1 —1/2 :4:1/2

while Z; varies from 1 to «f.

11



4.3 New coordinates

The eigenvector and generalized eigenvector for the eigenvalue 0 are :

0 0
0 —(14 %) By
0 0

Zy = 0 , 1= 0
A, 0
0 A,

Now we denote by
ViV VT RNV

the eigenvectors belonging respectively to the eigenvalues
A EiN,  — A 0N

then we define

_AT(A;:;D\?) _3,\3:,\3
24, 24,
1 0
A 1
V= 2 2 VT =
r AL — S Vg 2\, )
A=A 2y
(1+g2)320124* (1+52)23012*
__(g=AD) _ 220022
(1462)Bo A. (1462) By A,

and we define new coordinates in RS: (x1, 2,31, y2, Bo, 21) defined by

= Bo(z1V," + 2oV, + iV, + 2NV + 2020 + 2121).

We observe that after eliminating zp, we still have 6 coordinates, including By

as one of the new coordinates.

Remark 11 We notice that we put By in front of the new coordinates, as this

results from the analysis, and shorten the computations.

12



The coordinate change is non linear in By and given explicitely by:

— Ar(A7 = 3A7) Xi(3A7 = A7)

Ao = —Bo —— (71 —y1) — Bo (72 + y2)
24, 24,
A1 = Bo(z1+y1)— (1+6)Bizn
Ay = MBo(z1 —y1) + NiBo(wa + y2) (18)
As = (AJ=X)Bo(z1 +y1) + 2\ \iBo(22 — ¥2)
2_ )2 —
0 = _%AQ—FA*BOZO
(14 6%)BoA.
2 _ )2 —
Bl = _%AEX + A*Bozlu
(1+6%)BoA.
which needs to be inverted. We obtain
(A2 4 22) — 3A2 — 22
Bory = LA+ LA 19
o D P (19)
A 1+ 6%)B. 22—\
+_1+( +~) Bl+( TNQZ)AE),
2 24, .
A2+ 22— A2-3)2
\:B = TP Ay - L A 20
0%2 1 0 10200 2 (20)
2 2 2 2 242
— A; 1 B 1 — \;
LR 0EPB N 1 (e
4N, A, 4N, A
(24 22) — 3A2 — 22
B _ _\r i) Ay — r i A 21
oY1 o T Lo (21)
A 1+6%)B 22—\
A A+0) OBl+( TNQZ)A&
2 24, 2A.,
A2+ 0 — A2 -3)2
\iB = 2L Tt fy— == A 22
0Yy2 1 0 LS 2 (22)
2 _ 42 2 2 12)2
N R o1 PN B (R AP
4\, A, 4\, A,
PR 1 A 1
Boz = (T—l)NgA3 + =D =*By(1 +62)732 + =5B;.
(14 6%)ByA, A, A, A,

Let us now define

13



x = ()= ()
€2 Y2

RY 1| + |22l Y] = ly1] + |yo| (norms in R?).

Then, for £ small enough, we obtain the following useful estimates

—~1/2 1o 5
Lo o ol/Ag A &
57 < AN < 2VA T A*25a2a,
— By
40| < 3~—1/2(|X| + 1Y),
Al < Bo(IX] +[Y]) + 2B3 1],
—~1/2
|As] < 2BoA. " (|X]+ 1Y), (23)
[As| < 2BoA(IX]+ [Y]),

4.4 System with new coordinates

The system (10) writen in the new coordinates is computed in Appendix A.2. Tt
takes the following form (quadratic and higher order terms are not explicited)

T = f1+ Az + Nz (24)
-~ B 1
+B1 [flle 4+ c1As + di1 Az + elF; — Foxl]
_ 20 52)(3— *)By Al (1+6%)By i’
24, 9A.’ ’
- 1
I/Q = fQ - Alﬂfl + )\TIQ + Bl |:—CL2A0 + b2A1 + CQAQ + dQAg + 62B1 — B—I2:| (25)
0
1 —2 —~2 1 (A2 =292\ —3
(34, —2¢'"Bi1+0%)*) Ay - ——— (1 - ) A
AN M AL B, ( e Bl +07) ) O T InaB, e 0
i o= fi—= Ay Niya + (26)
-~ B 1
+B; [—ale — Ay +diAs + elg(l) — goyl}

o (1 + 52)(3— 62)30%2 o

2
(1 +£2)BQA 3

0 >

14



—~ 1
y/2 = —fQ — /\iyl — /\Tyz + B1 |:—CL2A0 — b2A1 + CQAQ — dQAg =+ 62B1 — B—y2:| (27)

1 —2 —2 1 (A2 =292\ 3
e (34 e Bl A+ ) Ay (1= W AT )
4)\T/\iA*B0( B A i )
with
2§2By(1 + 6%)(A, — B2
;o EPB1+ (L ~ BY)
24, ’
£y B0 - \)(A,” - BY)
? AN NA, ’

and coefficients a;, b;, ¢j, d;, e; are defined and estimated in Appendix A.2
n (90,91), (92,93,94), (95,96), (97,98). Here Ay, Ay, Ay, As, By should be re-
placed by their (linear) expressions (18) in coordinates (1, 2,y1, Y2, 21) with
coeflicients functions of By. The system above should be completed by the dif-
ferential equations for z{ and B{(= Bj). In fact we will replace the equation for
2} by the direct resolution of the first integral (5) with respect to z; (see below)
using

By =—*(1+ (52)30% + A, Bz (28)

*

4.5 Resolution of (5) with respect of z;(X,Y, By)

For extending the validity (as a graph with respect to Bp) for the existence of
the unstable manifold of M_ we need to replace the differential equation for z|
by the expression of zjgiven by the first integral (5). This leads to (see (28))

Bo(1 + +6%)

*

B? = {A,Byz —¢> A3} =2e?A A3 — 2 A2 +

2 —~— ~— — — —
= (=0%B3 + 24 Aq + A0)? + 26%(A, + Ao)?B2,

hence
., 5232 9:2 1+ 062 e?
A2 = £26%A, ( +—)+ i143(5171-l-y1) %AQ 2A§+
24,”  Bo A b
—~2
224, —2 224, ~3 &2 —
+ 0 Ao + AO ) (29)
B2 B? 2B2

where we may observe on the r.h.s., that

52 _ 1
2;4:2 20[2,
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hence
2

2
e26% < 5252(1 + —632) < 5252(1 +

L)
2A* 2(12 ’

which is independent of (X,Y"). Moreover there is no linear part in (X,Y). For
further estimates, we make a new scaling

(X,Y) =ad(X,Y), z; = 677 (30)

We notice that (23) implies (c is a generic constant, independent of (e, «))
|—A3($1 +y)| < e’ A(X| + V)

41 +62)

A2| < e8P (X |+ |Y))?

*

2
%/P < 22028 AL (X + |T7))2)

28214. - 2 252

Ay <ee AL (X[ +Y])?
0
2624, —3, _ c2a®8® 3
| B2 Ao | < T (X + Y1)
e2 —a  ce2046t
0 <———(XI+[Y]D?*
283 i
so that the factors in the estimates are such that
20252 A, < a?  ce2alst o? ce2a383 /2§34
. —35 XC=, —1 >C——35; SC——35
2524, A 2524 T A 282477 A,

¢ being independent of €, and § € [dy,d1]. Now defining Z1g such that

2 »2
. B 1
1<70(Bo) ™ (1 + 572)1/2 <=, fora<1/V2, (31)
24, o
It results that
. L o . ad/2 . a? .
=70+ 0| =(X|+ 1Y)+ == (X|+ V)’ + = (X +[Y])*
A A, A,
and using
—~2
, 1-A,
07 1462



we also have

1 94, 201 + 64, cA.
* <(+ )*<C*

00 94 422 o0 &

so that (taking the positive square root as for (5))

., 1/2
A, S — o S R

7= Zo(Bo) {1+ 50 ( = (X + V1) + S5 (K] + V) + < (] + 7))
s A, A, Ax

_ — — 1/2 — _
= Zio(Bo) {1+ Ol*(IX] + [Y])*]} 2 for [X| + [V] < p, p fixed,

and taking the square root, we obtain
71 = 710(Bo) + 2(X,Y, By) (32)
with, using (31), o L
Z(X7 Y7 BO) = O(Oé(|X| + |Y|)27
Z(X,Y, By) being defined in the ball

X[+ Y] <p,

provided that € is small enough and where p is of order 1, not necessarily small
with respect to a. Moreover Z is analytic in its arguments and is at least
quadratic in (X,Y).

Since z; contains Zip which is independent of (X,Y), the new system for
(X,Y) has new ” constant terms” and ”linear terms”, appearing as perturbations
of the former ones.

4.6 System where z; is eliminated

Now we stay on the 5-dimensional invariant manifold (5) and we need to express
the new differential system in terms of (X,Y, Bp). The new system is computed
in Appendix A.3. We obtain (notice that By is in factor of the ” constant” terms)

-/

X LoX + BoFo + Lo1(X,Y) + Bo1(X,Y)
—

Y = LY+ BoF +L11(X,Y)+ B (X,Y),

(33)

which should be completed by an equation for B (see (28) in terms of (X, Y, By)),

and where
AT Ai o _)\7‘ )\7,
LO‘(—AZ- Ar ) Ll—( S )

and with the following estimates, for terms independent of (X,Y)
ce?
|}—0|+|-7:1|§¥7 (34)

17



for terms which are linear in (X,Y)
— — [ —
[Lo1(X, Y[ + [L0a (X, V)] < e (IX] +[Y), (35)

and for terms at least quadratic in (X,Y’), choosing o small enough and for
+

X+

=

<p,

we obtain
2

— — € — —
|Bor (X, V)| + B (X, V)] < ea+ —5)(IX] + [V])*. (36)
We are now ready to formulate the search for the unstable manifold of M_.

4.7 Integral formulation for solutions bounded as ©+ — —

Let us introduce the monodromy operators associated with the linear operators
Lo, L; which have non constant coefficients (functions of By (see [3]):

—So(z,8) = LgSo(z,s), So(z,s1)So(s1,s2) = So(x,s2), So(z,z) =1,
—S1(x,s) = Li1Si(z,s), Si(x,s1)S1(s1,82) = S1(x, s2), Si(z,z) =1L

The coefficients of operators Ly, L; are functions of By, so we need the Lemma

26 in Appendix A.1, with the following estimates, valid for 0 < By < 4/1 — n%(52,
a<(1+6%)72:

|So(z,s)|| < €7@ —oo<z<s<0, (37)
1S1(z,8)]] < e 7)) —o<s<az<0, (38)
with
041/251/2

We are looking for solutions of (33) which stay bounded for z — —oo. Then,
thanks to estimates (37) (38), the system (33) may be formulated as

X(z) = So(x,O)YO—i—/OISO(x,s)GO(s)ds (39)
Y(z) = /_w Si(z, s)G1(s)ds

de - - -
Go(s) Y BoFo + Lo1(X,Y) + By (X, Y),
de - -
G1 (S) lef BoFi+ L11(X,Y) + Bi1 (X, Y)
where X,Y and By are bounded and continuous functions of s, By tending

towards 0 as s — —oo.

18



4.8 Strategy

The idea is

i) solve (39) with respect to (X,Y) in function of (X, Bo);

ii) solve the integro-differential equation for By, with Bglz—o = Bo(0),
Bo(—OO) =0.

Then the 3-dimensional unstable manifold of M_ is given (see [3]) by Y |z—0, 21|z=0
in terms of X, Bo(0). The result will be valid for an interval [0, /1 — n26%] for

By and it appears that Ag is then very close to 0 at this end point. The hope is
that this should allow to obtain an intersection with the 3-dim stable manifold

of My which computation should be valid for By in the interval [/1 — 7252, 1].

4.9 Resolution for (X,Y)
Let us define, for k > 0

C% = {X € C°(—00,0]; X (z)e"* is bounded }
equiped with the norm

X[« = sup [X(2)e"].

(=0,0

We observe that, provided that kK < o

eNJIJ

|/ S1(z,s)e™ds| <

kK+0o

|So(x, 0)e ™" < =7,z <0,

x enm
|/ So(z, s)e™ds| < , ©<0.
0 O — KR
Let us choose o
k< —,
-2
then
x eﬁw enw
|/ S1(z,s)eSds| < — = 24—
oo o al/2s1/?

eﬁw

¢ K 5/4
|/O So(x, s)e™ds| < 2 —agiE x<0

Let us assume that
[ Bollx <m (40)

holds with m independent of &, which needs to be proved at next subsection.
Hence, the analytic implicit function theorem (see [2]) applies for (X,Y) in a
neighborhood of 0 in the function space C?, provided that we can choose x < 3

19



and || X||. + Y|« < p. Using the above estimates for coefficients, we obtain for
x € (—00,0]

— — 5/4 _ _
| X (x)e " < |Xo| + WHBofo + Lo1(X,Y) + Bor (X, Y)||«,
hence
— — 5/4 — —
1 X1 < [Xol + WHBOJ:O + Lo1(X,Y) + Bor (X, Y)|[, (41)

and in the same way

21/4

1Yl < |BoF1 + L11(X,Y) + B (X, V). (42)

al/2g1/?

Remark 12 The choice of k is governed by the behavior of By(x) as x — —oo,
which is studied at next subsection.

For e small enough, estimates on F1, Bi1, (42) and || X||. + [|Y]]« < p, we

obtain, with S “ |[X||,. + |7

— g2 Se
S < [Xo| + [ &2 +

2
€
a%/2 " o5/2 + (a? + _a5/2)3p]

so that for g < 6 < §; and
e=a?, (43)
and e small enough and p (nor necessarily small), such that

(L+p+ pe)e'/6 < (1 +2p)et/®

we obtain o
S < (1+et/9)Xo| + c/?m,

which leads finally to X and Y in C?, depending analytically on (Xg, By) €
R? x CY, and such that

1Vl < e(me™? + V% [Xol), (44)

X || < (1 +ce'/%)Xo| 4 ce¥/?m, (45)

where c is a number independent of €, ¢ = o small enough, and we assume m

(see (40)) of order 1, S < p, where p is fixed arbitrarily, of order 1.

4.10 Resolution for B,
We intend to solve the part of our system for By with By(0) = Bg|z—o.

20



We notice from (28) and (23) that

B, — c0A.B, {z_lo(Bo)+Z(7,7,Bo)}—52046(14—52)%/1_3
A3 = Bo[®B3(1+6%)* (@ +71) + 2\ Mi(T2 — 1)),
As 4ea?s  —  — -

ca(1+6%) =2 < 22X+ 7)) < dea(|X] + 7)),

A, A,

so that it is clear that (see above estimates for Z)

By > 0 for By € (0,4/1 —138%),|X|+ Y] < p, (46)

which justifies to take the positive square root for B; in (5). This is coherent
with the study of the linearized system near M_ : Indeed the principal part of
the differential equation for By is

B} = 8By A, 715(By)
which may be integrated as

1
B2 = , 47
0 (1+ %) cosh?(z¢ — edx) (47)
1

Bo(0)(1 + &)1/

cosh zg

which satisfies By = 0 for z = —o0, and By = By(0) for z = 0. More precisely
the differential equation for By is now (after replacing (X,Y) by its expression
found at previous subsection)

By = 6 A, BoZi5(Bo)[1 + f (Bo)] (48)
where f(Bp) is a non local analytic function of By in C?, such that

1f(Bo)||x < ca’p.

Remark 13 We may notice that we might replace ca®p in the estimate above,
by
ca?pe® — 0 as x — —o0,

since X andY € 02.

We are looking for the solution such that By = 0 for z = —o0, and By(0) <

\/1 —n26% for x = 0. We can rewrite (48) as

2By B),
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‘We now introduce the variable v :

2
1—y/1—(1+%)B} B2 1 v

P 0o — 52 PR
1+4/1—(1+2)B2 1+ & (1+0)

v =

so that
(Inv)" = 2e8[1 + f(By)].

We observe that for x running from —oo to 0,
w = Inv is increasing from — oo to wy = Invg < 0.
Now let us define h continuous in its argument and such that
h(w) = f(Bo),
1 2ev/?

172 (1 + ev)’
52
(1+7)

By =

and let us find an a priori estimate for the solution By(z), for € (—o0,0]. We

obtain by simple integration
xT w/(S)
——————ds = 2edx.
/0 1+ h(w)(s)

For a small enough we have

1 —ca2p§ < 1+ca2p,

1
14 h(w)
hence (since w < wp, and = < 0)

(wo — w)(1 — ca’p) < —2e6x < (wo — w)(1 + ca®p)

so that

—2edx _ —2¢edx

exp( ) < e < exp( )

1+cep 1—-cep

and 266 266
€ €
Vo exp(mx) S ’U((E) S Vo QXP(TCQQPI)
It finally results that we obtain an a priori estimate for
Bo(z) = Bo(Xo, Bo(0))(z) € Cp,
— 1 2 /v(x
Bo(Ko, Bo(0)(@) — VU e (—o0,0),

(1+£) 7 OHE)

By <

1+ vo exp( 17252%33) -

2%6)@(%3}) _ < 52>1/2 Qmexp(Hi—isz)

14+ v exp(H2c—€O‘f2p:1:)

14 —
+2

1—4/1—(1+2)B2(0)
Vo = \/ 2 0 < 1.

1+ /1—(1+£)B3(0)

22
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It remains to notice that we can choose

ed
K=
1+ ca?p

in the proof for (X,Y’), which needs to satisfy

a1/2\/g

<O'
K,_2— 25/4.

We have already chosen € = o hence

1/2,/§
_s5.3c
KZSE(S—(SOA SW

for v small enough, and (52) is satisfied. The a priori estimate for By al-
lows to prove that there is a unique solution of the integro-differential equa-
tion (49) which satisfies the estimate (51) (see [3]). Since By is in factor in

1?0, Ay, As, Az, By the behavior for x — —oo of the coordinates of the unstable
manifold, is governed by the behavior of By. The estimates indicated in Lemma
9 results from (23), (30), (31), (45), (44), (52) with k = &d,. This ends the
proof of Lemma 9.

Let us define the hyperplane Hy

By = (1 —mp0*)"/2.

4.11 Intersection of the unstable manifold with H,

We need to give precisely the intersection of the unstable manifold with the

hyperplane By = /1 — 77(2)62. This gives a two-dimensional manifold lying in
the 4-dimensional manifold W, N Hy. Taking into account of

A, = da
51/2041/2 5
Ay Ai “oi/a E=a,
_ B \/72
7o ~ —X By =+/1- 126
10 a\/i 00 Mo
Y(0)] = O(a'?Xo|+ Booa®?),
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we obtain a two-dimensional intersection which is tangent to a plane (parameters
T1,Tz) with principal part given by

a1/261/2 .
Ay = da+ WBOO@_l—JT_ﬁ‘FO(O‘LXd + &®Byg)
_ - 04—2(5 3/21 % 5/2
Al = aéBooxl BOO + (’)(a |X0| + « BOQ)
V2
63/2 o
Ay = WBOOQB/Q(I_l-l-I_z) + O(a?|Xo| + o’ Byo) (53)
Az = V20°Bya’*T3 + O(a®?Xo| + a™/?By)

BOO ~ (1_"_52)71/27
with
71|+ [T2] < p, S0 <5 <61, e=a®, o =nf(1+5°)—1>0,

and where we do not write B; since we know that this manifold lies in the 5
dimensional manifold W;,.

5 Stable manifold of M,

We show the following

Lemma 14 For & small enough, , 09 < § < 1, the 3-dimensional stable mani-

fold of My is included in the 5-dimensional manifold Wy, it exists for Ao, A1, Az, A3

in a ball of small radius n (independent of €), is analytic in parameters (g,0),
and reaches By(0) = By = /1= 0362, with n3(1 + 6%) = 1+ &%/3. More-
over as x — 400, (Ao, A1, Az, A3) — 0 as ea:p(—\/gzzr), (Bo—1,B1) — 0 as
exp(—v/2¢ex),

def Bo(z) —1 (1 — By(0))(1 — tanh(ex/V/2)

v(z) = T = - 1+ By(0) tanh(é‘:l?/\/ﬁ) , >4

lvo] < 0.293.

The idea is first to adapt new coordinates (with a fixed basis in this section),
such that we are able to use monodromy operators with easy estimates in the
formulation of the search for the 3-dimensional stable manifold of M.

Let us define

5 = 51/27

24



and choose a new basis

1 0
_ o _ 9
V2 2
_ 0 _ 5"
V,« = ﬁ 9 V; = _ﬁ )
V2 V2
0 0
0 0
1 0
i o
V2 V2
0 5/2
‘/7‘+ = _ﬁ 9 V;'Jr = ﬁ )
V2 V2
0 0
0 0
0 0
0 0
_ 0 0
Wl = 0 5 W1+ = 0 5
1 1
—&V/2 V2

for defining new coordinates (x1, z2, y1, Y2, 20, 21) such that

Z=1(0,0,0,0,1,0)" +8"z1V,” + 82V, + 8y VT + 68"y Vit + 8" 20W + 8" 20 WiH

AO = 5I(I1 =+ yl)
12
A = —%(3@1—% +x2 —y2)
Ay = ®(z2+1y2) (55)
5/4
Ay = E(xl —y1 — T2+ Yy2)
By = 1+6(20+21)
Bl = —8\/55/(2’0 — 21).
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A simple inversion leads to

o Ao A . As
! 28" 2267 ' 226"
R
2 2\/55/2 25/3 2\/56/4
A n Ay As
T 9y Tays? T 20280
A A A
Y2 = 2\/55/2 2573 2\/55/4
By —1 By
20 = -
0 28 2:6'\/2
Bo—1, B
21 = )
! 20 2:0'V2
Let us define
1
u = r+ty= on
1
v = Zo—FZl:y(Bo—l),
then system (1) reads as
A/O = Al7
Al = Ay,
A, = Az,
Ay = =4 (0% +268%0 + du? + (1 + 6%)v?),
1
'U/ = yBl,
B = *(1+6v) (280 +6v* + (1 + 52)5u2) .

With variables (55) this leads to the new 6-dimensional system

8 ug(u,v)
2v2 7
6 §'ug(u,v)
o 2 _ + ) ,
Lo \/i(xl 1'2) 2\/5

Ty = ——=(r1+x2) -

6/
V2
!

§ §'ug(u,v)
U= =+ ye) F —
h VAR R,
, 5 8 ug(u,v)

Yo = _ﬁ(yl —y2) — oz

26
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!/
b= B o)

V2
2 = eV2z + E—(S/J“(u v)
1 — 1 2\/5 ) ’
g(u,v) = w4260+ (1+6%)v?
flu,v) = 302+ 603+ (1+0%)(1 + 0v)u?,

where the linear part is as expected.

For finding the stable manifold of M, we put the system in an integral form,
looking for solutions tending to 0 as x — +oc0. Defining

() =54 1)

X(z) = el*Xx,— 25—\/5/01 e L@y ()G u, v)(s)ds,

we obtain the system

5/ “+o0o
Y(z) = - M=) (8)G (u, v)(s)ds, 57
@ = 55/ (5)G(w,0)(6) 67
w0le) = Vg 0 [ V) () (s)ds,
2v2 Jo
55/ oo \/5( )
znr) = ——= eV fu, v)(s)ds, 58
@ = == (s 0)6) (5%)
We notice that 5 5
eLI _ 65’75 ( CO.S ?m Sin g ) 7 (59)
— Sin ﬁ COS ﬁ

L i
[le™™"|| <e vz, z >0.

The 3-dimensional stable manifold is obtained in expressing (Y(0), 21(0)) as
function of (Xo, zo0)-
Let us define for this section

CY = {X € C°0, +00); X (z)e"” is bounded}
equiped with the norm

1X|lx = sup [X(z)e™].
(0,+00)
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Using (59), the system (57,58) gives remarquably two scalar equations with
unknown functions (u,v). We obtain:

_da 8 [0 _dles Ve —s

= V2 - — vz el R , d&60

ua) = )= g [T o Tu(s)gtu ) ()0
! oo
v(z) = esﬂxzoo—;—jg ; eigﬂ‘”“s'f(u,v)(s)ds (61)
with
§'w .z
uo(x) = 10 COS —= — Tgp Sin

V2 V2

We may observe that we have the exzplicit solution of (61) for u = 0. Indeed

5/ o0
V2200 — 25—\/5 e=eVZa=5l £(0, 1) (s)ds
0

corresponds to look for v such that

Vo= (4 2) = —eV2(20 — 1)
5/
2 = —ev2u— 2 (302 4 80P ,
0 1 \/5( )
hence
v’ = 2e%0 4 20" (302 4 §'v3), v, = 0,
Tr—r+00
which gives
2
v'"? = E31;2(2 + 6'v)2.
It results that .
vV =——v(2+ v 62
7 ( ) (62)

since v grows for > 0 and v < 0 and |§'v| = 1 — By < 1 implies
24 0v > 1. (63)

Finally we obtain
voe_a‘/iw

v(x) = N .
(=) 1+v% (1 — e ev2r)

5.1 Using the first integral (5)

Assuming some estimates needing to be checked at the end, the strategy here
is to first solve with respect to v in using the first integral (5) and an implicit
function argument. Hence v becomes function of (X, Y, vg). Then, we solve the
scalar equation (60) with respect tu u using again the implicit function theorem
(section 5.2). This step imposes a restriction on the choice of § now in [dg, 1].
Finally in section 5.3, using (57) we obtain X,Y then function of Xy, zoo.
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Instead of the differential equations for zp and z; (or v) we use the first
integral (5), for extending the domain of validity for the stable manifold of M
as a graph with respect to By, and in using (56),

2
B = %[(Bg — 1)+ 26(1 + 6%)u (260 + §v?)
+6%ut + 853(961241 — Z2y2)].

Taking the square root gives the traces of the stable and the unstable manifolds
on Ws. The stable manifold needs satisfy By = B{, > 0 , since By < 1 for z = 0,
and By = 1 for £ = oco. Assuming that the sign of B; does not change in the
interval, we obtain

1/2
By

_ i(l (14 26" (1 + 6*)u?  Sut + 85%(21y1 — Toy2)
V2 0 (2v + 6'v2?) (2v + §'v2)?2

Remark 15 We notice that this implies that v < 0, v' > 0, and |v(z)|max =
|vo| = |z00 + 21(0)| is then O(a?) close to h(4), where

h(d) = = <1 - ﬁ) ~ %(1 — Boo).

(64)

We observe that

€
By =Bj=—[1- B}
1 0 \/5[ O]
may be easily integrated on (0, +00) with By(co) = 1), and moreover leads to
1

20— 21 = 51}(2 +4'v) (65)

ie.
& 9
z1 = —Z(ZO + 21) <0 (66)

which is the solution of (58) for u = 0. We notice that (65) is exactly (62). It
results that (64) may be written as

& 26’ (14 6%)u? | du* +85°(z1y1 — w2yp2) i
= —env/2(1+ Z0) (1 :
v E’U\/_( + 5 'U) ( + (2U+6/?}2) (2U+6/?}2)2 )

Let us assume that
X (2)], Y (2)], [u(z)| < ylv(z)|, = € [0,+00) (67)
with

1
0 —.
<”y<6(S

Using (63), this implies that for | X|, |Y| satisfying (67) we have

20" (1 + 6?)u? , )
LTI <oy (146
@vt+ov?) ) L+ &)
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Sut + 852(:101y1 — Toys2) 4
<$ 2,2 .
(2v + §'v?)2 =0y 9
It results that for y|u| such that

Ml < 5120146 + V2] (65)
then
26'(1+6%)u?  dut +88%(z1y1 — 2y2) 1
(2v + 6'v2?) (2v + 6'v2)?2 <9
and the square root is analytic in v with
5/
v = —eV2u(l+ SO+ ZX Y0, 2] <1/4 (69)

Then we can integrate the integro-differential equation, as in section 4.10. We
introduce the new variable w as
!

;o v
YT AT @2
1 —v
v I«1+wmw)
T

w decreases from wy to —oo for x € (0, c0), while v grows from vg < 0 to 0.

Z(X,Y,v) = h(X,Y,0),
h| < 1/4.

We then obtain, by simple integration
eV2x(1 — 1/4) < wy — w(x) < evV2x(1 + 1/4).
Remark 16 The constant 1/4 above may later be replaced by
ce= /Y2
: ‘i (0
since we show later that |X| and |Y] lie in C' I

We deduce the estimate

1- tanh(sx(li\;;/@) 1- tanh(&j;/@)

v <v(z)<wv (70)
I Bo(0) tanh(m(li\;;/@) L Bo(0) tanh(m(l\gm))
where
Bo(0) — 1
Vo = T < 0.

The a priori estimate for v obtained in (70) allows to prove (see [3]) the existence
and uniqueness of a solution for (69), provided that (67) is satisfied on the whole
interval z € [0, 00).

30



5.2 Estimate for u

Let us first show that for ¢ € (0,5), z € [0,+00) and for y|u| < ¢;(§) where ¢;
is defined in (74), then

glu,v) = w420+ (146 <0
lg(u,v)] < 26]v]. (71)

Using (67), we observe that (71) is valid as soon as
Yul + (1 +6%)|vo| < 26. (72)

We wish to reach vg = 6’71(300 — 1) where By is the value of By we have
reached with the unstable manifold of M_. So, next computations should be
valid for vy such that |vg| < [60"*(1 — Boo)|.
Using
1
1+6%

since « is as close to 0 as we wish, we obtain

b

1-Byo=1-(1-n26H)"?=1- —— +0(a?
V1+ 6
Then conditions (72) and (68) lead to
Yul < e1(9), (73)

with

: 1 2 7, 1 2 -1
¢1(8) = min{26 — %[(1—#5 )= V1446 ],Wg[u(ua )+ V2T (T4)

We observe that
c1(8) > 0 for 6 € (0,5), ¢1(d) ~ 2§ for ¢ close to 0.

Now the estimates (70) of v for z € [0, 4+00) lead to

—5e2x 7354\/51'
e 4 e
|U0| |’U 6/| —5e\2x S |’U(‘T| S |UO| "U 6/‘ —3e2x
1-=5 (I—e "2 ) -5 (I—e "2 )
so that 0l
—5:2x Vo —3eV2z
Joole ™5 < fu(a)] < ol TE (75)
1-=
and to reach Byy we need to satisfy
—5eV2z —3eV2x
h(8)e= 3 < |u(z)| < co(d)e ™7 (76)
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with
263/2

(V146 +1)2

Let us consider (??), then (71) and (75) lead to

co(8) =

eV2a 5ev2 55/ 0 =o' |z—s| M eV2s, — s\f
Ju(z)e ] < [ Xole' F+a )x—i-i()', e~ vz T lu(s)e T |e 1 ds.
[v0d’ |
1=
We have
[e'e] MJ’,M —3e/32s 2\/567354\/51
e V2 e 1 ds< Sl e —

0 8'(1—16¢2/9)

so that

2\/§5|1)0|
(1— 91— 162/5)

We notice that, for |vg| < (1 — Bgo)

2\/§5|’Uo|

]z < 1Xo] + [P

7 S C 5
(1 — [oTy(1 — 1622/4') 2(0)
with
e (8) = 2B
(1 —-16e2/¢")
and we observe that
4\/555/2

2v/20¢0(8) = <k < 1for é € [do, 1],

(V1+8+1)2

so that, since d¢ is arbitrarily fixed > 0, and ¢ small enough, for any v satisfying
(75) with |vg| < (1 — Boo), by a fixed point argument, we obtain a unique
ue C? 5e2 such that

2

el ez < 71Xl

Remark 17 Notice that we neglected terms of order o in the estimates leading
to the calculus of k which is stricly <1. However, because of the flexibility of
choice for §, we may check that for e (i.e. «) small enough the choice § € [dg, 1]
1s valid.
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5.3 End of the proof of Lemma 14

We may now estimate X and Y given by (57), and we need to check that (67)
is satisfied. Now, from (57) we obtain

Xllawz < 1o+ —20T0l___y,
seva S 0 208 5ev2
3 (6 —e)(1 — oy
!
< |XO| <1+ /66 |U0| [vod’ | )
(1— k)8 —e)(1 — Ly
o'k
< | Xol(1+ :
= |d< m@u_kxy—@)
66 |v
Wlees < ol x|
E: (1—k)(5+4s)(1—T)
ok
Xol.
2¢ﬂ1_kxy+4@|0
‘We observe that
&k 1

1+2\/§(1—k)(5’—5) STk

hence, using (75) for a lower bound for v(x) we see that for X such that
[ Xol < (1 = K)7lvol,

then conditions (67) are realized, and (73) is satisfied as soon as

This ends the proof of the existence, uniqueness and analyticity in parameters
of the solution of (57), (60) and (61). Then (58) allows to find zp, z; with

B+ (146 [° .
llzollcyz < l200] + Wi /0 02 (s)eV25ds
2
834 (14 6%y Vo
< Jzo00| + 5 )

2
sl < 83+ (1+ 0% v
Tlevz = 10 1— % :

‘We notice that

5B+ (L+6%7  cold)

|Zl(0)| S 10 1— I,UOQ‘(;/

|UO|7
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and for § € [0g, 1]

IB+ 1+ o(d)

< 0.0402[3 + 2+

which is < 1/4 for a good choice of v (still free choice). Hence

21(0)] < 3200l + [210))

leads to

1
|21(0)] < §|Zoo|,

4
lvo| = |ZOO+ZI(O)|§§|ZOO|-

This ends the proof of existence, uniqueness and analyticity in parameters of
the stable manifold of M. The exponential estimates declared in Lemma 14
follow from the linear study of section 3 as x — +00. The asymptotic expression
of v(x) follows from (70) after replacing 1/4 by the better estimate Ce V32,
The bound for vy comes from h(d) with 6 = 1. This ends the proof of Lemma
14.

5.4 Intersection of the stable manifold with H,

We need to compute the intersection of the 3-dimensional stable manifold of
My with the hyperplane Hy defined by

By = /1 —n26*. (77)

We then obtain a 2-dimensional sub-manifold living in the 4-dimensional man-
ifold Ws N Hy. We have by construction

Ay = 8"*(210 + y10),
1)

A = ——=(210 + 220 — Y10 — 78
1 \/5( 10 20 — Y10 y20) ( )
Ay = 8% (220 + y20)

52
As = —(z10— 290 — + ,
3 \/5( 10 20 — Y10 y20)

where y19 and yog are expressed in function of X = (z19, 220), with the restric-
tion
lz10] + |z20] < -
Below, we need to express the tangent plane to the intersection of the stable
manifold with the hyperplane Hy. This is given by (see (57))

vo— -2 [Ten (1)) untsias
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_8'z o §la=sl SNz —s|

= V2 — 551/ V2 — - d ;

u(z) e V2ug(z) ; e cos| 7 4] (s)v(s)ds
(x) cos &a si '
up(x) = = — — Tgpsin —
0 10 NG 20 Vol

—eV/2x 1
v(z) = e = —(Boo — 1),

d

so that
u(x) = l(vg, §, )Xo € Cgaﬁ
4

is linear in X, hence
Yo = L1(vo, 6) Xo, (79)

with a 2x2 matrix £; depending analytically of § € [dg, 1].

6 Intersection of the two manifolds
In this section we prove the following

Lemma 18 For ¢ small enough, and for 09 < § < 1, except maybe for a finite
number of values, the unstable manifold of M_ intersects the stable manifold of
My along the heteroclinic solution. Moreover for x = 0 we have the estimates

Ao(0) O(Booe'/?)
A1(0) = O(Byoe'?) (80)
A2 (0) = 0(30062/3)
A3(0) = 0(30055/6).

We need to study the intersection of the plane (53) tangent to the unstable
manifold of M_, with the plane tangent to the stable manifold of M given by
(78), satisfying (79).

We then find a linear system with 4 unknowns (77", 75", x§%)7 xé%)), with
the restrictions

oo |+ lo5e | < . (7] + 73] < .

‘We then have

(ng)) + yif}) = da+ 331—2300(71(”) - 73W)
(@88 2l — gl 8y = aaBeemr™ — a2 Bog (81)
(25 +u5) = (;13—//42B00($_1 ) 4 z5M)
() =28 — i) +5) = 202Boom™,
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where we need to express (y%), yég)

Let us define

(o) - () - (2
Taq Ys0 T2

then we have

) as a linear function of (xgso), xé%)) (see (79).

OtzB[)[)
1
with
o B a1/2BOO21/4 1_21/4a1/2 _1+23/4a3/2
= 4 —21/4a1/2+\/§a \/504—23/4a3/2 )
" B a1/2B0021/4 1+21/4al/2 _1_23/4a3/2
2 = 4— 21/4a1/2+\/§a \/5044—23/4@3/2

The matrix M, is invertible with

. 4 ( V2a + 23/403/2 1+23/4a3/2>

My = al/2Byp2t /4 det(M}) \ —24al/? —2a 14 2Y/4al/?

det(M3) = [V2a(1+2Y4a'?)? 4+ (1 — 2%/4a%/2)(2Y4a? + V20))]
24012 4 9v2a + O(a®/?).

It results that

1 14+ 0(a'/?) —24 0(a'/?)
]\4—11\42 ~ ( —23/2044—0(0[3/2) —1+O(a1/2)
x© [ 1+0@E) - =240(2) N ) O(a®?)
0 T\ =220+ 0(%?) —140(a'/?) 0 V26’ a? + O(a®/?)

(82)
Equation (82) represents a 2-dim affine plane expressing the 2 compatibility
conditions of the system (81) while solving with respect to (Z7*),Z5("), and
gives a condition on coordinates of the stable manifold. This affine plane needs
to intersect the tangent plane to the stable manifold given by (79) with YO(S)
expressed as a linear function of Xés).
We deduce that (79) combined with

X5 = Ly(v0, )Y + 0(a3/?)

leads to
Yo = L1(v0,8)La(v0,8)Yy " + O(a®?).
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‘We notice that

(Boo — 1),

Boo = \1-n38% ng(1+6%) =1+0”

so that the 2x2 matrix £1(vo, ") L2(vo, d) is a function of o (which is as small as
we wish), and depends analytically of § € [0, 1]. For ¢ small enough, the norm
of £1(vg, d) is small, which does not allow an eigenvalue 1 for £1(vg, §)L2(vo, d).
Due to the analyticity in §, the characteristic polynomial of this 2x2 matrix has
analytic coeflicients, and it is then clear that 1 might be an eigenvalue of this
matrix operator only for isolated values of 4. It then results for o small enough,
that for any § € [do, 1] except maybe for a finite set of values, we obtain a unique
solution

Vo =

5

¥y = 0(a?),

leading to
X5 = 0(a*?)

which is coherent with the condition |x§%)| + |xé%)| <.
Moreover adding the 3 first equation of (81) gives

al/?
0 = d'a—a’By+ 23/4300( 1 —z3™)
o3/2
+V2aBozr™ + + 5z Boo(z1™) +73")
hence
(u) - Il( W 27/4a1/2 4 23/2ax_1(u) N 23/4(a1/25/ _ QB/QBOO)
1—av?2 Boo(1 — av/2) ’
so that
al/?
a4+ 53/ Boo( () _ .%'2(“)) o~ —QCYBOQCC_l(u) = O(a3/2).

It results that
(@™, ;™) = 0(a'/?),

which then satisfies the condition |77 | + |72(")| < p. Finally, from (53) and
since /2 = /g, we obtain

N
o
=)

=
o
I

S

S
)
—~ o~~~
o
===
Il
S
—_~ o~ =~
o}
=
=}
)
o
~
w
N

Boov/e) (83)

&
o
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which are the estimates announced at Lemma 18. The uniqueness of the in-
tersection of the tangent planes between the unstable manifold of M_ and the
stable manifold of M proves that it is transverse while they both sit on W5 and
cross the hyperplane (77). Since it is the transverse intersection of two mani-
folds, depending analytically on parameters (g,0), the resulting curve depends
analytically on these parameters.

We observe that, along this intersection, and by construction, Bj(z) =
Bj(x) > 0. Its principal part on (—o0, 0] is given by (47) with By(0) = By =
\/1—n26%, and on [0, +00) by (54).

The Theorem 1 is then proved.

Moreover, for the heteroclinic solution, we can improve the a priori estimates

given at Lemma 9. Taking into account the size of variables for z = 0, we have
now

Corollary 19 For z € (—00,0] and choosing §* < §, there exists ¢ > 0 inde-
pendent of € small enough, such that the heteroclinic curve satisfies

| Ao(a)|
[As(@)], [ A2 ()], | A3 ()|

CEI/SBO(:E)esJ*z

<
< e ?By(z)ed ",

We also give estimates for > 0. Using (60) and playing on the flexibility
of choice for §, we can find x < 1 independent of ¢, such that for § € [dg, 1] we

have
ol 2y < o+ 220
with
M <k <1.
x(2—x)
Hence

1
||U||\%(1_X) < m|XO|
and as above we see that there exists C' > 0 such that

X sz

ﬂ(l_X) + ||Y||57l2(l—x) S C|X0|a

so that, using (55) and (83) we have the following

Corollary 20 For z € [0,4+00) and choosing §* < §, there exists ¢ > 0 inde-
pendent of € small enough, such that the heteroclinic curve satisfies

|Agm) ()] < 661/26_@17 m=20,1,2,3.
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7 Study of the linearized operator
Let us redefine the heteroclinic connection we found at Theorem 1 as
(A (x), B.(z)) C B2

with
1<146;<g=1+06%<1+(0.825)%

and where we know that, for € small enough

B.(z) > 0, Bl.(x) >0
(Au(@), Bu(2)) — {Eé(l)g

)

as r — —o0
as r — +00

)

at least as e®%® for x — —oo, and at least as e~V2eT for x — +oo.

The system (1) is now considered with By complex valued, so in (1) B? is
replaced by | B|2.

For being able to prove any persistence result under reversible perturbations
of system (1) in R* x C2 we need to study the linearized operator at the above
heteroclinic solution. We follow the lines of [4].

The linearized operator is given by

AW = (1-347-gB})A—gA.B.(B+B),
B" = &*(-1+gA2+2B3)B+2¢%gA.B.A+¢*BZB.

Taking real and imaginary parts for B :
B=C+1iD,

we then obtain the linearized system

—AW 4 (1 =342 — gB)A—29A.B,C = 0,
1
1
§D” +(1—-gA2-BHD = 0.

Notice that the equation for D decouples, so that we can split the linear operator
in an operator M, acting on (A, C) and an operator £, acting on D :

(AN 2 AW+ (1-347 - 9B A - 2gA.B.C
s\ ¢ )7\ 2o+ -ga2-3B5)C—294.B,4 )

1
L,D = §D” + (1 —gA?2 - BHD.
Let us define the Hilbert spaces

L} = {u;u(z)e’*! € LA(R)},
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_ 4 2, 4
Dy = {(A,C) S I’I?7 X HU’A S HU’C S Dl}
_ _ de
Dy = {CeH%e2C" s +e I Nl + 1112 < [[Cllp, < oo}
equiped with natural scalar products. Below, we prove the following

Lemma 21 Except maybe for a set of isolated values of g, the kernel of M in
L,% is one dimensional, span by (AL, B.), and its range has codimension 1, L*-
orthogonal to (Al, B.). My has a pseudo-inverse acting from Lfl to Dy for any
1n > 0 small enough, with bound independent of .

The operator Ly has a trivial kernel, and its range which has codimension 1,
is L?- orthogonal to B, (B« & L?). L, has a pseudo-inverse acting respectively

from L727 to Dy for n > 0 small enough, with bound independent of €.

Remark 22 The above Lemma is useful for proving the persistence under re-
versible perturbations, as indicated in (2), of our heteroclinic. This is done in [7]
and appears to be more difficult than the symmetric case solved in [4]. Indeed,
it is needed to introduce two different wave numbers for the two convective rolls
at £oo. In [7] it is shown that the component on the kernel of M, corresponds
to a phase shift of rolls parallel to the wall, while the codimension 2 of the range
implies that each wave number is function not only of the amplitude of rolls but
also of the above shift. This then leads to a one parameter family of domain
walls, for any fized small amplitude £2.

7.1 Asymptotic operators

Let us define the operators obtained when x = 00 :
e (8)= (e oM ),
(o) = (TR ).
LD = e°2D"—(9-1)D,

LD = ¢72D".

Notice that all these operators are negative. Furthermore, their spectra in L?(R)
are such that

<

Q

,—c_], c- =max{2,(¢g — 1)} >0,

(M) (o0
o(ML) = (—o0,—cy], ey =,
o(Ly) = (—o0,—(g—1)],
(L) (—00,0].
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Operators M, and L, are respectively relatively compact perturbations of the
corresponding asymptotic operators M, and L, defined as

M, <0 Ly, <0
MOO_{M;, x>0 " Eoo_{ﬁ*‘ x>0 "

Their essential spectrum, i.e. the set of A € C for which A — M (resp. A — L)
is not Fredholm with index 0, is equal to the essential spectrum of M, (resp.
L) (see [10]). The latter spectra are found from the spectra of M% and £L :

UBSS(MOO) = (_Ooa_CJr]v
Uess(ﬁoo) = (—O0,0]

In particular, this implies that 0 does not belong to the essential spectrum of
My, so that the operator M, is Fredholm with index 0. Moreover operators
Mo and L, are self adjoint negative operators in L2, and M, has a bounded
inverse [10].

_ 1
M2 < —.
C+

This last property remains valid in exponentially weighted spaces, with weights
el and 7 sufficiently small, since this acts as a small perturbation of the
differential operator (see [9] section 3.1).

We show at section 7.3.1 that the kernel of M is one-dimensional (except for

a finite set of values of g), spanned by (A%, B) © U, with a range orthogonal

to U, in L%. Let us define the projections Qg on U} and Py on U, , which are
orthogonal projections in L2, then we need to solve in Lf7
Mgu=f
in decomposing
u=2zU, +v, v=_Qu,
(Mo + Ag)v = Qof

and we need to satisfy the compatibility condition

<f,U*> =0,

while z is arbitrary and we obtain for v :
I+ MG A v = MLQof,

where the operator M7} A, is now a compact operator for which —1 is not an
eigenvalue, since v € U;. It results that there is a number ¢ independent of &
such that

lvllez < el fllzz-
From the form of operator M, and using interpolation properties, we obtain
for v = (4,0)
I(A, O)llp, < cllfllLz

with a certain ¢ independent of ¢.
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7.2 Properties of L,
Notice that £, is self adjoint in L?(R) and that
L,B. =0, but B, ¢ L*(R).

This property allows to solve explicitely the equation Lyu = f € L% with respect
tou € L% (using variation of constants method), and shows that it has a unique
solution, provided that

/ fBydx = 0.
R
We obtain
00 QB*
u(z) = / ET(S)C)F(S)ds
with F(s) = /OO f(7)Bi(7)dr for s >0

= - /S f(7)By(1)dr for s < 0.

By Fubini’s theorem we can write for z > 0

w(z) = 2B, (z) /m  r)BL() ( / ’ Bgfs)) dr

and, for z <0

w(z) = —e2B.(z) L ; F(r)B.(7) ( / ’ Bgfs)) dr
2B, () / ' F(r)Ba (1) ( / ' Bgfs)) dr.

The asymptotic properties of By (x) at +oo imply, for x > 0

oo

lu(x)]e" < Ce? / |f(T)e" (7 — x)e " dr,

x

and for z <0

Ce? [*
u(@)le™ < o= [ |f(@)e e dr
C 2 0
+—2§5 / |f(r)e= | =2) g

The bound
lullrz < eal|fllz2

42



follows from classical convolution results between functions in L2 and functions
in L', since

0 1
[
oo n—ed

& 1
/ Te dr 5 -
0 n

Then, we choose n = %55, so that the pseudo-inverse of £, has a bounded
inverse in L7 :

—~—1
I1Lg || <2,

where ¢y is independent of €. Using the form of £, we obtain easily
ullp, < esllfllez

with c3 independent of e.

Remark 23 The choice made for n is such that
n<ed, n<eV?,

for values of § for which Theorem 1 is valid. This means that as x — —oo

(A« — 1, B,), and, as x — 400 (As, B, — 1) tend exponentially to O faster than
ezl

In fact, £, has the same properties as the operator M; in the proof of Lemma
7.3 in [4], see also [6]: L, is Fredholm with index -1, when acting in L, for 5
small enough. £, has a trivial kernel, and its range is orthogonal to B, with
the scalar product of L?(R).

7.3 Properties of M,

We saw that M, is Fredholm with index 0. Furthermore the derivative of the
heteroclinic solution belongs to its kernel:

(A (AP £ AL (A3) - gB2AL — gAL(B2)
s\ B e 2B + B, — gA2B, — (B3) — gB.(A2)]

— <8> (84)

We show below (see section 7.3.1) that the kernel of Mg, is one dimensional,
then this implies that the range of M, needs satisfy the orthogonality with
only one element. In fact, because of selfadjointness in L?, the range of M, is
orthogonal in L?(R) to

(A,,B.,) e L.
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7.3.1 Dimension of ker M,

Any element ¢(z) in the kernel lies, by definition, in L7, hence ¢(z) tends towards
0 exponentially at +oo. Near z = too the vector ((z) ~ ¢, (x) should verify

Mi(i(x) =0

where there are only 2 possible good dimensions (on each side). This gives a
bound = 2 to the dimension of the kernel of M. Let us show that dimension 2 of
ker M, implies non uniqueness of the heteroclinic, which contradicts Theorem
1, hence the only possibility is that the dimension is one.

Let us choose arbitrarily go and assume that the kernel of M, consists in

Co(2),C1 ()

where ¢, = (A, B.)|4, and let us decompose a solution of (1) in the neighbor-
hood of gy as

U =Tu(UY +a1¢, +Y), (85)

where T, represents the shift x — x + a, where a, a1 € R, and Y belongs
to a subspace transverse to ker My,. Let us denote by Qo and Py = I — Qq,
projections, respectively on the range of M, and on a complementary subspace
(Qo may be built in using the eigenvectors (g, (] of the adjoint operator M ).
Let us denote by

F(U,9)=0
the system (1) where we look for an heteroclinic U for g # go. Then, we have
FUL,g0) = 0,
DUF(U*ggO)agO) = Mgoa

and since
Mgo<_j = 07 j = 07 17

using the equivariance under operator T, we obtain (denoting Fo = F(U. (g "),

and [..]®® the argument of a quadratic operator)

90)

1
0 = MyY + (9 - 90)0yFo + 5 D Folar¢, +Y]® +
+0(lg = golllg — gol + laa| + [V |} + [[Y]]).

The projection Qg of this equation allows to use the implicit function theorem
to solve with respect to Y and then obtain a unique solution

Y = y(a’la g)a
with
—_——1 1/—\/71 2 (2)
Y = —(9—90)Mgy, QodyFo— §Mgo QoDiyFolarq)'™ +

+0(lg = g0l(lg = gol + lax]) +[as[*)).
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Then projecting on the complementary space, (only one equation since we work
in the subspace orthogonal to (), we may observe (see the proof below) that
Py0y,Fo = 0 and then obtain the ”bifurcation” equation as

q(a1,9 — go) = O((lg — go| + |aa])?),

where the function ¢ is quadratic in its arguments and

1
Alg=goC1 = EPOD%JU}—O[CUCI](Q)'

This equation is just at main order a second degree equation in a; depending on
g — go- Provided that the discriminant is not 0, the generic number of solutions
is 2 or 0. If the discriminant is 0 for ¢ = go, we just go a little farther in g,
and obtain a non zero discriminant, since the discriminant cannot stay = 0,
because of the analyticity in g of the heteroclinic. This is true except for a
set of isolated values of g. We can then use the implicit function theorem for
finding corresponding solutions for the system with higher order terms. In fact
we already know a solution, corresponding to U =yl 4 (g — go)agU£9°> +
h.o.t. which corresponds to specific values for a; and Y, of order O(g — go). It
then results that there is at least another solution of order O(g — go), so that
there exists another heteroclinic, in the neighborhood of the known one (then
in contradiction with Theorem 1).

Remark 24 The above proof with only 1 dimension in the Kernel, provides

— -1
Y = (g — go)My, 0yF0 + O((g9 — go0)?), which gives a unique heteroclinic.
Since we found only one heteroclinic, this shows that the kernel is of dimension
1.

7.3.2 Proof of P40, Fy =0
Lemma 25 Any (u,v) in the kernel of Mg satisfies

/ AyBy(Bsu+ Aww)dx =0,
R

and 8,F0(Uy, g) = (A B2, A2 B,.) belongs to the range of M, hence PodyFo =
0.

Proof.
Differentiating with respect to g the system (1) verified by the heteroclinic,

we obtain 54 B2
B
g * . * * _
Mg( 0y B. > - ( A2B, ) = 0yFo(Ux.9),
hence (A,B2, A2B,) belongs to the range of M . When (u,v) € ker M, then

(u,v) € ker M} where My = M7, when the adjoint is computed with the scalar
product of L?, hence

/ AyB.(Bsu+ Awv)dr = 0. (86)
R
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Hence, the eigenvectors ¢, (] of the adjoint M (the orthogonal of this 2-
dimensional eigenspace is the range of M), are orthogonal to 9, Fy = (A. B2, A2B.)l4,
in L2

A Appendix

A.1 Monodromy operator

Let us prove the estimate for the monodromy operators. We prove the following

Lemma 26 Forn,d < A, <1, and a > (1+62)2 and the following estimates
hold

ISo(@,s)l| < €7 —co<z<s
1S1(z,5)[] < 707, —oo<s<u
with
Ql/251/2
0=~
We start with the system
ry = Axn+ Aive
Thy = —Nw+ AT

where A, and \; are functions of x. When 7,0 < A, <1, a1l > (1+ (52)2, we
have, for £ small enough (see (16))

a1/2(51/2

TZW:U-

Now we have
(21 + 23)" = 2X. (a7 + 23)

hence ’
(23 + 23) () = el 2 DI (23 4 22)(s),

which, for x < s, leads to
(o +a3)(x) < 77y /(af + 23)(s).

The proof is then done for the operator Sg. The estimate for S; is obtained in
the same way.

Remark 27 We have

[T (r)dr cos( : Ai(T)dr)  sin( Sw Xi(7)dT)
So(x,s) = efs Ar(T)d ( _Sin‘(ff: /\l(T)dT) COS(‘MI/:; )\i(T) ) .
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A.2 Computation of the system with new coordinates

Let us look for the system (10) writen in the new coordinates, first in forgetting
quadratic and higher orders terms

PRSP (1+6*)ByB; 3N2 N7
B / — ( T 7 (A + _Z ) + T 1 A
o X, ' A, DO
A 1+ 62 —~ — —
LB 2}5 ) g2e? (A7 = BR) + 201+ 8) A4 ) — (3 = X2) Ao
A7+ A7)
I,

As 1
B 24 A
o(x1 +y1) + 5 +4AT 3

A2+ X)) (1+ 52)BoBl> 22— 3)7
- 3

/\in/ = ——r [ A + _Z
o 4 (1 A 102 = a)

(A2 =\ <A N (1+ 6% B3e?
_e A [y, B0 )P0

2072 2

*

1
4N,

(A7 + A7) Ao

A2+ X))
4

(A2 +22)24,,

(A2 = X))

= XNBofs— ™

Bo(x1 +y1) — Ay

1
4N,

1
ZAa —
+43

with L,
5= €252 Bo(1 + 6*)(A.” — B?)
24, ’

£y B0 - A2 (A - B?)
: AN NA, ’

hence

1 = fi+ A+ Aize, (87)
Ty = fa— Nz + M2,

and in the same way

v o= f1— A+ Ay,
vy = —fa— Ny — Ay, (88)
2
S = 25252(/1i -B3) _ 2
Ay (1+0*)By’
2 \2 _
Bi = —()\Tzi/\Z),VA3 + A*Bozl.
(1+6%)ByA.
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We notice that the following estimates hold

306252 < 30625
Z; T«
452
BOE 0 < BQEZ(S.

——o =

| fal : (89)

IN

|f2]

IN

*

A.2.1 Full system in new coordinates

We intend to derive the full system (1) with coordinates (x1,x2,y1, Y2, Bo, 21).
Differentiating (19) and (20) we see that we respectively need to add to the
previous expressions (87) for z} and z,

— / ’ l ’
1 A, E)Jr(m’%_@) Ay 4 2 (14 6%)2B2 A3+<(1+§i)30> B
Bo | \2v2\, 42\, A, 9d.” 24,

)
1 62 QB —_ 2 3 B 2 1 62 2A B
—52(4_#[314*140 + Ay |+ 0e™( t )" Ao _=A .
2A., 24, By
and
—~ ! ’ , ,
1 A. -~ /\2—)\2 /\2—3)\2 201 52 33
51 {570 Ao—(i(T J) Al—(i(r ;)) A2+<M> B
Bo | \2vax Arki 1V2NA, INAA,
!
L(_1 (A7 = A9)’ 1 A2-22)2)  — o 3
+§0 <4/\T)\l. ll - :4:2 Az — SN 1- T*Q [BA. A0 + Ap |

_Bi +jz)4;1v02 _Bi
AN A Ax By

We then arrive to the system (24,25,26,27).
We observe that (using (13))

2.

~_ (1+6)By

A, = B,
A,
14+ 6)ByB —~
o2y = _1H9)BoB +j§%0 L(1 = 2V3(1 + 8%)A)
2
(A2) = _ (14 9)BoBy +j§§031 (14 2V2(1 + 62 A,)
o~ !
A, c
——— | =a1BoB1, |a1| < —, (90)
(m») A’
;4\/ !
* C
= a2BoB1, |as] < —, (91)
(2@&-) e
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.2
( 4/\ Y ) =02Bo By, b2 < —5, (92)

*

( (3, - ) BoBi, |ai| < —< (93)
- C ) C )
1V2N A, S e
(A2 — 3X“)> c
= c3ByB1, |co| < , 94
( IV2NA, 2B e i’ oy
!
1+ 6%)2B2 c
2 (bl# = dlBOBl, |d1| S —_—3> (95)
24, *
!
1 (A2 — A?)ZD c
- =d2BoB1, |d2| £ —, (96)
<4m1- l i’ N
1+6%)By\ c
<%) =e1By, e < —5 (97)
£2(1 4 6%)3 B2 ' c
(ﬁ) =e2BoB1, lea| £ —, (98)

*

with ¢ independent of ¢ and § € [Jg, J1].

A.3 Elimination of z;
A.3.1 System after scaling
After the scaling (30) our system (24,25,26,27) takes the form

==

= Loy + B()Fo + Bo: (7, 7) +Z1 Mo (7, 7)
+71°Bong + Co1 (X, Y),
= LY + BoFi +B1i(X,Y) +z1M11(X,Y)
+71°Bony + C11(X,Y),
where Fy, F}, ng, n; are two-dimensional vectors Mo, My, are linear operators

n (X,Y), Bo1, Bi1 are quadratic and Cg;, Cy; are cubic in (X, Y), all functions
of By. More precisely we have

o f1 . f1 _ e2
FO = a(}fo 9 Fl - _ozéio 9 |FJ| S C?a
adBg ad By

626 elA*
ng=— —~2 o T )
«a 6214* BO — bQ(l + 5 )A*Bg

mo1(X,Y)
() )

mOQ( )

IS
B
=
Il
om
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mo1 (Y, ?) = A BO <CL1A0 + ClAQ =+ (dl — 281(1 + 52)6 — )Ag — %10)
me2(X,Y) = A.Bo <_a2fo+czA_2+ (d> — 2es(1+0%) )A3 - %Z)
— B3 __
+ABbo (T +77) + (1 + 52)252A70b2A3,
_— bo1(X,Y)
BOl (Xv Y) =ad < bOQ(Y, 7) )
— — 1+ 6%)(2 — 6%)By=2 41+ 6%)2By——
bo1(X,Y) = ( +07)( ) ° 4, +elw/132
24, A,
1+6*)B
2 ) B e 4 T+ dy A — L,
A, Bg
2
bo2(X,Y) = S — (3A*2 — 2B (1 4 6%)* )Ao +e2(1+76)30,43
AN AL By .
1+6°)B 75
(A#A [~ aon + b2 Bo(T1 + U1) + c2As + do Az — B%)]

14+6%)B
_g2( +~)2 0

24,
1 1— e Bi(1+6%)*
X )i Bo 2.

*

_ =3
Coi(X,Y) = a*§% Ay

ni, M1, By, C1;1 are deduced respectively from ng, M1, Bo1, Co1 in chang-
ing (a1, c1,ba, da, e2) into their opposite.

A.3.2 System after elimination of z;

Let us replace z1 by Zig+ Z(X, Y, By) in the differential system for (X,Y). The
new system becomes (notice that By is in factor of the ”constant” terms)

X' = LoX + BoFo+ Lo (X,Y) + Bn(X,Y),

=

Y = L1?—|—Bof1 +£11(Y,?) +311(Y,?),

which is (33) with o
Fo = Fy +Z15°n0,

Lo1(X,Y) =zi0Moi1(X,Y),

801(7, ?) = B()l(y 7) + Z(X,?)M (
+22102(7 ?)Bono + Z(y

o “><|
v
+
> Q
B
=
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In using estimates (23), (90) to (98), it is straightforward to check that

2
ce

\Fol + 71| < —,
[0

_ S
|[Mo1(X,Y)] < CA:(IXI + 1Y),

*

hence

_ _ - _
|Lo1(X,Y)|+ [£11(X,Y)] < C$(|X| +1Y)).

For higher order terms we have

Boi(X,Y)| < ca(|X[+][Y])?
2
— o —
2HEX Vol < e 5 (K] + V)2,
ZX,Y)Mau(X,Y)| < ce(X]+ Y7,
|Z2(X,Y)’ng| < e(IX] + Y],
[Ca(X.Y)| < ca(IX|+ Y],
hence, choosing « small enough and for
X+ Y] <p, (99)
we obtain
2
— — e _ —
[Boy (X, )| +[Bu (X, Y)| < e(a+ —5)(|X] + Y)%.
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