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Abstract

A six-dimensional reversible normal form system occurs in Bénard-
Rayleigh convection between parallel planes, when we look for domain
walls intersecting orthogonally (see Buffoni et al [1]). On the truncated
system, we prove analytically the existence, local uniqueness, and analyt-
icity in parameters, of a heteroclinic connection between two equilibria,
each corresponding to a system of convective rolls. We prove that the 3-
dimensional unstable manifold of one equilibrium, intersects transversally
the 3-dimensional stable manifold of the other equilibrium, both manifolds
lying on a 5-dimensional invariant manifold. We also study the linearized
operator along the heteroclinic, allowing to prove (in [7]) the persistence
under perturbation, of the heteroclinic obtained in [1].

Key words: Reversible dynamical systems, Invariant manifolds, Bifurcations,
Heteroclinic connection, Domain walls in convection

1 Introduction and Results

In this work we study the following 6th order reversible system

A(4) = A(1−A2 − gB2) (1)

B′′ = ε2B(−1 + gA2 +B2),

where A and B are real functions of x ∈ R. This system occurs in the search for
domain walls intersecting orthogonally, in a fluid dynamic problem such as the
Bénard-Rayleigh convection between parallel horizontal plates (see subsection
1.1 and all details in [1]). The heteroclinic we are looking for, corresponds to
the connection between rolls on one side and rolls oriented orthogonally on the
other side. The system (1) has been also introduced by Manneville and Pomeau
in [12], obtained after formal physical considerations using symmetries.
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We would like to find analytically a heteroclinic connection (g > 1, ε small)
such that

A∗(x), B∗(x) > 0,

(A∗(x), B∗(x)) →
{

(1, 0) as x → −∞
(0, 1) as x → +∞ .

By a variational argument Boris Buffoni et al [1] prove the existence of such
an heteroclinic orbit, for any g > 1, and ε small enough. This type of elegant
proof does not unfortunately allow to prove the persistence of such heteroclinic
curve under reversible perturbations of the vector field. This is our motivation
for producing analytic arguments, proving such an existence, uniqueness and
smoothness in parameters (ε, g) of this orbit, however for limited values 1 < g ≤
2, fortunately including physical interesting ones. Then we study the linearized
operator along the heteroclinic curve, allowing to attack the problem of existence
of orthogonal domain walls in convection (see [7] and Remark 22).

1.1 Origin of system (1)

The Bénard-Rayleigh convection problem is a classical problem in fluid me-
chanics. It concerns the flow of a three-dimensional viscous fluid layer situated
between two horizontal parallel plates and heated from below. Upon increasing
the difference of temperature between the two plates, the simple conduction
state looses stability at a critical value of the temperature difference corre-
sponding to a critical value Rc of the Rayleigh number. Beyond the instability
threshold, a convective regime develops in which patterns are formed, such as
convective rolls, hexagons, or squares. Observed patterns are often accompanied
by defects.

We start with the Navier-Stokes-Boussinesq (N-S-B) steady system of PDE’s,
applying spatial dynamics with x as ”time” (as introduced by K.Kirchgässner in
[11], adapted for N-S equations in [8], and more generally in [5]) and considering
solutions 2π/k periodic in y (coordinate parallel to the wall). We show in [1]
that near criticality a 12-dimensional center manifold reduction to a reversible
system applies for (R, k) close to (Rc, kc), R being the Rayleigh number, and
kc the critical wave number. This high dimension of the center manifold may
be explained as follows. Due to the equivariance of the system under horizontal
shifts, the eigenvectors of the linearized problem are of the form exp i(±k1x ±
k2y), the factor being only function of k2 = k21+k22 (invariance under rotations).
It results that, for eigenvectors independent of x corresponding to a 0 eigenvalue
in the spatial dynamics formulation, the eigenvalue is double in general (make
±k1 → 0). Now, at criticality, k = kc corresponds to two different values of
k2 merging towards kc, which double the dimension, making a quadruple 0
eigenvalue with complex and complex-conjugate eigenvectors. Hence we already
have a dimension 8 invariant subspace for the 0 eigenvalue, with two 4×4 Jordan
blocks. This corresponds to convective rolls of amplitude A and A at x = −∞.
Now for eigenvectors independent of y corresponding to eigenvalues ±ik in the
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spatial dynamics formulation it is shown in [4] that they are simple, and give
double eigenvalues±ikc for k = kc with amplitudes B and B respectively. Hence
this adds 4 dimensions to the central space, so finally obtaining a 12-dimensional
central space. Now we restrict the study to solutions invariant under reflection
y → −y (the change y into −y changing A in A and not changing B), which
constitutes an invariant subspace for the full system. This restricts the study
to real amplitudes A and the full system reduces to a 8-dimensional sub-center
manifold, such that A ∈ R and B ∈ C are the amplitudes of the rolls respectively
at x = −∞, and x = +∞. Moreover, for the full system, we keep

i) the reversibility symmetry:

(x,A,B) → (−x,A,B),

ii) the equivariance under shifts by half of a period in y direction, leading to
the symmetry:

(A,B) → (−A,B).

Now, in [1] we use a normal form reduction up to cubic order, and rewrite
the system as one 4th order real differential equation for A, and a second order
complex differential equation for B. In addition to the above symmetries, the
normal form commutes with the symmetry:

(A,B) → (A,Beiφ), for any φ ∈ R.

Handling the full N-S-B equations, in [1] the authors show that the study
leads to a small perturbation of the reduced system of amplitude equations (1).
More precisely, after a suitable scaling (see [1]), and denoting by (ε2A0, ε

2B0)
rescaled amplitudes (A,Be−ikcx), and after a rescaling of the coordinate x, we
obtain the system

A
(4)
0 = k−A

′′
0 +A0(1−

k2−
4

−A2
0 − g|B0|2) + f̂ ,

B′′
0 = ε2B0(−1 + gA2

0 + |B0|2) + ĝ, (2)

where ε4 is a rescaling proportional to R−Rc, the coefficient g > 1 is function
of the Prandtl number and is the same as introduced and computed in ([4]), k−
comes from the freedom left to the wave number of the rolls at −∞, defined as

k = kc(1 + ε2k−),

and f̂ and ĝ are perturbation terms, smooth functions of their arguments, com-
ing

i) from the rest of the cubic normal form, at least of order ε2 for f̂ , and at
least of order ε3 for ĝ;

ii) from higher order terms not in normal form, and not autonomous (because

of the introduction of Be−ikcx rescaled as ε2B0 in (2)), and of order ε4 for f̂ ,

and of order ε6 for ĝ. Without k−, f̂ , and ĝ, this is the system (1), with B0 ∈ C
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replacing B, and B2 replaced by |B0|2. The truncation leading to (1) allows to
take B real, since the phase of B0 does not play any role in the dynamics for
(1). The two different wave numbers of the rolls, close to the critical value kc
are left free for the full problem, however they do not appear in the present
proof of the heteroclinic, even though they are important for the final proof
of existence of the orthogonal domain walls (see Remark 22 in section 7). It

should be noticed that the system (2), without f̂ and ĝ, was obtained a long
time ago by Pomeau-Manneville in [12], however they did not deal with the
full N-S-B system, and only considered cases with identical wave numbers at
infinities, while it is shown in [7] that some cubic terms, inexistent in [12], as

ε2(A2
0A

′′
0 −A0A

′2
0 ) in f̂ and iε3B0A0A

′
0 in ĝ are crucial for the determination of

the solutions of the full problem, with different wave numbers at infinities (see
Remark 22).

1.2 Sketch of the method and results

Let us now consider the system (1). The equilibrium (A,B) = (0, 1) of the sys-
tem (1) gives an approximation of convection rolls parallel to the wall (periodic
in the x direction, with fixed phase) bifurcating for Rayleigh numbers R > Rc

close to Rc, whereas the equilibrium (A,B) = (1, 0) of the system (1) gives
the same convection rolls (periodic in the y direction) rotated by an angle π/2
with the phase fixed by the imposed reflection symmetry. A heteroclinic orbit
connecting these two equilibria provides then an approximation of orthogonal
domain walls (see Figure 1).

We set δ = (g − 1)1/2. The idea here might be to use the arc of equilibria
A2 + B2 = 1, which exists for δ = 0, connecting end points M− = (1, 0) and
M+ = (0, 1), and to prove that for suitable values of δ (> 0 but close to 0), the 3-
dimensional unstable manifold of M− intersects transversally the 3-dimensional
stable manifold of M+, both staying on a 5 dimensional invariant manifold Wδ.
However, for δ = 0 the situation in M+ is very degenerated, with a quadruple
0 eigenvalue for the linearized operator, while it is only a double eigenvalue
in M−. Then for δ close to 0, a 5-dimensional center-stable invariant manifold
starting from M+ needs to intersect a center-unstable manifold starting from
M−. Unfortunately, we are not able to prove this. Moreover, for δ close to 0,
we cannot prove that the 3-dimensional unstable manifold of M− exists from
B = 0 until B reaches a value close enough to 1. In fact the physically interesting
values of δ are not close to 0. So that we prefer to play with ε.

The strategy here consists to keep in mind that, after changing the coordi-
nate x in x = εx, we obtain the new system

ε4
d4A

dx4 = A(1−A2 − gB2) (3)

d2B

dx2 = B(B2 − 1),

and the limit ε → 0 of the system (1) is singular, and gives indeed a non C1

heteroclinic solution such that

4



(i) for x running from −∞ to 0, then (A,B) varies from (1, 0) to (0, 1√
g ) on

the ellipse A2 + gB2 = 1, while
(ii) for x running from 0 to +∞, then (A,B) varies from (0, 1√

g ) to (0, 1),

satisfying, in the original coordinate x, the differential equation (see the first
integral (5)).

B′ =
ε√
2
(1− B2).

The major difficulty in the proof of Theorem 1 is to prove the existence of the
3-dim unstable manifold of M− until A0 reaches a neighborhood of 0, and to
prove the existence of the 3-dim stable manifold of M+ until B0 reaches a neigh-

borhood of 1/
√
g = 1/

√
1 + δ2. The usual proofs of existence of such invariant

manifolds give only local results, so we need to use here the additional property
that we have a first integral of the system, expressing that both invariant 3-dim
manifolds lie on a 5-dimensional invariant manifold. We are then able to extend
sufficiently the domain of existence of these manifolds, as graphs with respect
to B. Indeed we prove the following

Theorem 1 Let us choose 0 < δ0 < 1/3, then for δ0 ≤ δ ≤ 1, η0 such that
ε1/3 = [(1+δ2)η20−1]1/2, and for ε small enough, the 3-dim unstable manifold of
M− intersects transversally the 3-dim stable manifold of M+, except maybe for
a finite number of values of δ. The connecting curve which is obtained is unique
(see Remark 3). Moreover its dependency in parameters (ε, δ) is analytic. In
addition we have B(x) and B′(x) > 0 on (−∞,+∞), the principal part of B(x)
being given

i) for x ∈ (−∞, 0], by

B0(x) =
1

(1 + δ2

2 )
1/2 cosh(x0 − εδx)

,

coshx0 =
1

B00(1 +
δ2

2 )
1/2

,

B00 = B0(0) = (1 − η20δ
2)1/2,

ii) for x ∈ [0,+∞), by

B0(x) =
tanh(εx/

√
2) +B00

1 +B00 tanh(εx/
√
2)
.

For x → −∞ we have (A− 1, A′, A′′, A′′′, B,B′) → 0 at least as eεδx, while for

x → +∞, (A,A′, A′′, A′′′) → 0 at least as e−
√

δ
2x, and (B − 1, B′) → 0 at least

as e−
√
2εx.

In section 4 we prove at Lemma 9 the existence of the unstable manifold
(graph with respect to B) of M− = (1, 0) until a neighborhood of (A,B) =

(0, 1/
√
1 + δ2) with no restriction on the choice of δ, except δ ≥ δ0 > 0.
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In section 5 we prove at Lemma 14 the existence of the stable manifold (graph
with respect to B) of M+ = (0, 1) until (backward direction) a neighborhood

of (0, 1/
√
1 + δ2). Here there is a restriction δ ≤ 1, for being able to reach the

end point.
In section 6 we prove the transverse intersection of the two manifolds, except

maybe for a finite set of values of δ. This ends the proof of Theorem 1. We claim
that our proof uses only elementary analysis, as implicit function theorem in
various function spaces (see [2]), theory of differential equations as developped
in [3], and a classical property of analytic functions.

In section 7 we give in Lemma 21 the properties of the linearized operator
along the heteroclinic, which are necessary to prove a persistence result under
a reversible perturbation for the heteroclinic in the 8-dimensional space (with
B ∈ C). This allows to prove the existence of orthogonal domain walls in
convection [7].

Remark 2 It should be noticed that we show at Lemma 18 that, in the middle
of the heteroclinic, A(0) = O(

√
ε) and A(x) oscillates, staying of this size very

close to 0 for x ∈ (0,+∞), while B(0) is very close to 1/
√
g and B(x) grows

monotonically until 1.

Remark 3 Using symmetries of the system: A 7→ ±A, B 7→ ±B and reversibil-
ity symmetry: (A(x), B(x)) 7→ (A(−x), B(−x)), we find 8 heteroclinics. Two
are connecting M− to M+ with opposite dynamics, two others connect −M− to
M+, two connect M− to −M+, and two connect −M− to −M+. The one which
interests us is the only one connecting M− to M+ with the dynamics running
from M− to M+.

Remark 4 It should be noticed that the study made in [12] on the heteroclinic
solution for the system (1) uses asymptotic analysis, suggesting the existence
of the heteroclinic, later proved mathematically in [1]. We think that our re-
sult on the size of A(0) is optimal (see Remark 2), since it results from exact
computations at section 6.

Remark 5 Values of δ such that 0.476 ≤ δ include values obtained for δ in
the Bénard-Rayleigh convection problem where g = 1 + δ2 is function of the
Prandtl number P (as computed in [4]). With rigid-rigid, rigid-free, or free-
free boundaries the minimum values of g are respectively (gmin = 1.227, 1.332,
1.423) corresponding to δmin = 0.476, 0.576, 0.650. The restriction in Theorem
1 corresponds to 1 < g ≤ 2. The eligible values for the Prandtl number are then
respectively P > 0.5308, > 0.6222, > 0.8078.

Acknowledgement The author warmly thanks Mariana Haragus for her
help in section 7, and her constant encouragements.
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Figure 1: Orthogonal domain wall

2 Global invariant manifold Wδ

The coordinates in R6 are defined as

(A0, A1, A2, A3, B0, B1) = (A,A′, A′′, A′′′, B,B′).

The first observation is that we have the first integral

ε2(A′2)′′ − 3ε2A′′2 −B′2 +
ε2

2
(A2 +B2 − 1)2 + ε2δ2A2B2, (4)

as noticed in [12], where an Euler-Lagrange equation is used (as used later in
[1]). Then, our heteroclinic should satisfy

2ε2A1A3 − ε2A2
2 −B2

1 +
ε2

2
(A2

0 +B2
0 − 1)2 + ε2δ2A2

0B
2
0 = 0. (5)

Since our purpose is to find B0 growing from 0 to 1, we extract the positive
square root (needs to be justified later):

B1 = {2ε2A1A3 − ε2A2
2 +

ε2

2
(A2

0 +B2
0 − 1)2 + ε2δ2A2

0B
2
0}1/2,

which defines a 5-dimensional invariant maniford Wδ valid for any δ > 0, which
should contain the heteroclinic curve that we are looking for. The singular points
of this manifold are given by

A1 = A2 = A3 = B1 = 0,

0 = A0(A
2
0 + (1 + δ2)B2

0 − 1),

0 = B0((1 + δ2)A2
0 +B2

0 − 1).

For δ > 0, and since (A0, B0) = (0, 0) or (±(δ2 + 2)−1/2,±(δ2 + 2)−1/2) do not
belong to Wδ, we only find the singular points

(A0, B0) = (±1, 0), A1 = A2 = A3 = B1 = 0 (6)

(A0, B0) = (0,±1), A1 = A2 = A3 = B1 = 0.
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For δ = 0, all singular points belong to a circle of singular points:

A2
0 +B2

0 = 1, A1 = A2 = A3 = B1 = 0. (7)

Remark 6 We do not emphasize here on the hamiltonian structure of system
(1) since this does not help our understanding. On the contrary, the reversibility
property is inherited from the original physical problem and is still valid for the
perturbed system (2). Moreover, if we consider perturbation terms as ε2(A2

0A
′′
0−

A0A
′2
0 ) in f̂ and iε3B0A0A

′
0 in ĝ, we cannot find a new first integral as used in

(5), while the system is still reversible.

3 Linear study of the dynamics

3.1 Case δ > 0 (g > 1)

3.1.1 Neighborhood of M− = (1, 0)

The eigenvalues of the linearized operator at M− are such that λ4 = −2 or
λ2 = ε2δ2, hence

±2−1/4(1± i),

±εδ.

This gives a 3-dimensional unstable manifold, and a 3-dimensional stable man-
ifold.

3.1.2 Neighborhood of M+ = (0, 1)

The eigenvalues of the linearized operator at M+ are such that λ4 = −δ2 or
λ2 = 2ε2, hence defining δ′ =

√
δ, the eigenvalues are

±2−1/2(1± i)δ′,

±ε
√
2.

This gives again a 3-dimensional unstable manifold and a 3-dimensional stable
manifold.

All this implies that the 3-dimensional unstable manifold starting at M−
and the 3-dimensional stable manifold starting at M+ which are both included
into the 5−dimensional manifold Wδ give a good hope for these two manifolds
to intersect along a heteroclinic curve...provided that they still exist as graphs
with repect to B, ”far” from the end points M+ and M−. The idea is to show
that this occurs when δ is not too small.

The limit points M− = (1, 0) and M+ = (0, 1) have a degenerate situation
for δ = 0, because of the multiple 0 eigenvalue for the linearized operator. For
δ = 0, it is possible to build a family of 2-dim unstable invariant manifolds and
a family of 2-dim stable manifolds along the arc of equilibria A2 +B2 = 1. For
δ > 0 and small, the perturbation gives two new 3-dim invariant manifolds,
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however their transversality is weaker and weaker as B → 1. A ”serious” study
is then needed, for the object of our work. However the physical interest is for
values of δ > 0 not too small.

4 Unstable manifold of M

4.1 Change of coordinates

Let us fix 0 < δ0 ≤ 1/3, and δ1 > 1, we assume, from now on

0 ≤ B0 ≤
√
1− η20δ

2, η0 >
1√

1 + δ2
=

1√
g
,

and define

α
def
= (η20(1 + δ2)− 1)1/2,

ε2

α2
≤ δ0 ≤ δ ≤ δ1, (8)

and new coordinates

Z = (Ã∗ + Ã0, A1, A2, A3, B0, B1)
t (9)

where A0 = Ã∗ cancels A′
3 = A(4) with

Ã∗
2 def
= 1− (1 + δ2)B2

0 , Ã∗ ≥ δα.

In the following α is a ”small parameter”, the relative size of which, with respect
to ε is precized later.

Remark 7 Ã∗ is just the first part of the ”singular” heteroclinic found for the
system, singular for ε = 0 (3). The occurence of Ã∗ is also linked with a formal

computation of an expansion of the heteroclinic in powers of ε, which gives Ã∗
as the principal part of A0, valid for B0 < (1 + δ2)−1/2 = 1/

√
g. The hope is to

build the unstable manifold until this limit value.

Remark 8 We choose the conditions on δ, δ0 ≤ δ ≤ δ1 in the purpose to
include known computed values of the coefficient g = 1 + δ2, in the convection
problems, with different boundary conditions (see [4]).

We prove below the main result of this section:

Lemma 9 For ε small enough, 0 < δ0 < 1/3, and δ1 arbitrary,

δ ∈ [δ0, δ1], α2 = η20(1 + δ2)− 1,

ε2 ≤ δ0α
2, ε = α3,

the 3-dimensional unstable manifold of M− exists for

0 ≤ B0(x) ≤ (1− η20δ
2)1/2, x ∈ (−∞, 0].
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It sits in Wδ, is analytic in (ε, δ), and for any δ∗ < δ,

A0 = Ã∗ +B0O(α1/2δ1/2eεδ
∗x)

A1 = B0O(αδeεδ
∗x)

A2 = B0O(αδeεδ
∗x)

A3 = B0O(αδeεδ
∗x),

where
0 ≤ 1− Ã∗ ≤ cB2

0 , Ã∗|B0=0 = 1, Ã∗ ≥ δα.

Remark 10 We observe that A0 reaches a value close to 0 since Ã∗ reaches δα
which is close to 0, while B0 reaches (1−η20δ

2)1/2 which is close to 1/(1+δ2)1/2 =
1/

√
g, not close to 1.

The system (1) becomes

Ã0

′
= A1 +

(1 + δ2)B0

Ã∗
B1

A′
1 = A2

A′
2 = A3 (10)

A′
3 = −2Ã∗

2
Ã0 − 3Ã∗Ã0

2
− Ã0

3

B′
0 = B1

B′
1 = ε2δ2B∗(Ã∗

2
−B2

0) + 2ε2(1 + δ2)Ã∗B0Ã0 + ε2(1 + δ2)B0Ã0

2
.

We expect that Ã0, A1, A2, A3, B1 stay small enough for x ∈ (−∞, 0], so we
introduce the linear operator

Lδ =




0 1 0 0 0 (1+δ2)B0

Ã∗
0 0 1 0 0 0
0 0 0 1 0 0

−2Ã∗
2

0 0 0 0 0
0 0 0 0 0 1

2ε2(1 + δ2)Ã∗B0 0 0 0 0 0




. (11)

The idea is to find new coordinates such that we are able to give nice estimates of
the monodromy operator. Don’t forget that the coefficients of Lδ are functions
of B0.

The operator Lδ has a double eigenvalue 0, and is such that the non zero
eigenvalues satisfy

λ4 − 2ε2B2
0(1 + δ2)2λ2 + 2Ã∗

2
= 0. (12)

The discriminant of (12) is

∆′ = ε4B4
0(1 + δ2)4 − 2Ã∗

2
.
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Our assumption B0 ≤
√
1− η20δ

2 and ε2

α2 ≤ δ ≤ δ1, in addition with the con-

straint
1

α
≥ (1 + δ2)2. (13)

implies

−∆′ ≥ Ã∗
2
.

Then we have two pairs of complex eigenvalues

λ2
± = ε2B2

0(1 + δ2)2 ± i
√
−∆′.

We want to find new coordinates able to manage a new linear operator in the
form of two independent blocs

(
±λr λi

−λi ±λr

)
(14)

for which the eigenvalues are
±λr ± iλi,

where

2λ2
r =

√
2Ã∗ + ε2B2

0(1 + δ2)2 (15)

2λ2
i =

√
2Ã∗ − ε2B2

0(1 + δ2)2

λ2
r − λ2

i = ε2B2
0(1 + δ2)2

λ2
r + λ2

i =
√
2Ã∗

4λ2
rλ

2
i = −∆′.

The form of the linear operator as (14) is such that we are able to have good
estimates for the monodromy operator associated with the linear operator, the

coefficients of which are functions of B0 ∈ [0,
√
1− η20δ

2] (see Appendix A.1).

4.2 Estimates for the eigenvalues

First, notice that (15) and
α ≤ (1 + δ2)−2

imply

λrλi ≥
Ã∗
2
,

21/4Ã∗
1/2 ≥ λr ≥ Ã∗

1/2

21/4
≥ α1/2

21/4

√
δ, (16)

1

23/4
Ã∗

1/2
≤ λi ≤

Ã∗
1/2

21/4
, (17)

while Ã∗ varies from 1 to αδ.
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4.3 New coordinates

The eigenvector and generalized eigenvector for the eigenvalue 0 are :

Z0 =




0
0
0
0

Ã∗
0




, Z1 =




0

−(1 + δ2)B0

0
0
0

Ã∗




.

Now we denote by
V +
r ± iλiV

+
i , V −

r ± iλiV
−
i

the eigenvectors belonging respectively to the eigenvalues

λr ± iλi, − λr ± iλi

then we define

V +
r =




−λr(λ
2
r−3λ2

i )

2Ã∗
2

1
λr

λ2
r − λ2

i

− λr(λ
2
r−λ2

i )

(1+δ2)B0Ã∗

− (λ2
r−λ2

i )
2

(1+δ2)B0Ã∗




, V +
i =




− 3λ2
r−λ2

i

2Ã∗
2

0
1

2λr

− (λ2
r−λ2

i )

(1+δ2)B0Ã∗

− 2λr(λ
2
r−λ2

i )

(1+δ2)B0Ã∗




,

and we define new coordinates in R6: (x1, x2, y1, y2, B0, z1) defined by




Ã0

A1

A2

A3

0
B1




= B0(x1V
+
r + x2λiV

+
i + y1V

−
r + y2λiV

−
i + z0Z0 + z1Z1).

We observe that after eliminating z0, we still have 6 coordinates, including B0

as one of the new coordinates.

Remark 11 We notice that we put B0 in front of the new coordinates, as this
results from the analysis, and shorten the computations.
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The coordinate change is non linear in B0 and given explicitely by:

Ã0 = −B0
λr(λ

2
r − 3λ2

i )

2Ã∗
2 (x1 − y1)−B0

λi(3λ
2
r − λ2

i )

2Ã∗
2 (x2 + y2)

A1 = B0(x1 + y1)− (1 + δ2)B2
0z1

A2 = λrB0(x1 − y1) + λiB0(x2 + y2) (18)

A3 = (λ2
r − λ2

i )B0(x1 + y1) + 2λrλiB0(x2 − y2)

0 = − (λ2
r − λ2

i )

(1 + δ2)B0Ã∗
A2 + Ã∗B0z0

B1 = − (λ2
r − λ2

i )

(1 + δ2)B0Ã∗
A3 + Ã∗B0z1,

which needs to be inverted. We obtain

B0x1 =
(λ2

r + λ2
i )

4λr
Ã0 +

3λ2
r − λ2

i

4λr(λ
2
r + λ2

i )
A2 (19)

+
A1

2
+

(1 + δ2)B∗

2Ã∗
B1 +

(λ2
r − λ2

i )

2Ã∗
2 A3,

λiB0x2 = − (λ2
r + λ2

i )

4
Ã0 −

λ2
r − 3λ2

i

4(λ2
r + λ2

i )
A2 (20)

− (λ2
r − λ2

i )

4λr

(
A1 +

(1 + δ2)B0

Ã∗
B1

)
+

1

4λr

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
A3,

B0y1 = − (λ2
r + λ2

i )

4λr
Ã0 −

3λ2
r − λ2

i

4λr(λ
2
r + λ2

i )
A2 (21)

+
A1

2
+

(1 + δ2)B0

2Ã∗
B1 +

(λ2
r − λ2

i )

2Ã∗
2 A3,

λiB0y2 = − (λ2
r + λ2

i )

4
Ã0 −

λ2
r − 3λ2

i

4(λ2
r + λ2

i )
A2 (22)

+
(λ2

r − λ2
i )

4λr

(
A1 +

(1 + δ2)B0

Ã∗
B1

)
− 1

4λr

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
A3,

B0z1 =
(λ2

r − λ2
i )

(1 + δ2)B0Ã∗
2A3 +

1

Ã∗
B1 = ε2B0(1 + δ2)

A3

Ã∗
2 +

1

Ã∗
B1.

Let us now define

13



X =

(
x1

x2

)
, Y = X =

(
y1
y2

)
,

|X | = |x1|+ |x2|, |Y | = |y1|+ |y2| (norms in R2).

Then, for ε small enough, we obtain the following useful estimates

Ã∗
1/2

23/4
≤ λr, λi < 21/4Ã∗

1/2
, Ã∗ ≥ δα ≥ ε2

α
,

|Ã0| ≤ 3
B0

Ã∗
1/2

(|X |+ |Y |),

|A1| ≤ B0(|X |+ |Y |) + 2B2
0 |z1|,

|A2| ≤ 2B0Ã∗
1/2

(|X |+ |Y |), (23)

|A3| ≤ 2B0Ã∗(|X |+ |Y |),
|B1| ≤ 3ε2B2

0(|X |+ |Y |) + Ã∗B0|z1|.

4.4 System with new coordinates

The system (10) writen in the new coordinates is computed in Appendix A.2. It
takes the following form (quadratic and higher order terms are not explicited)

x′
1 = f1 + λrx1 + λix2 (24)

+B1

[
a1Ã0 + c1A2 + d1A3 + e1

B1

B0
− 1

B0
x1

]

−ε2
(1 + δ2)(2 − δ2)B0

2Ã∗
Ã0

2
− ε2

(1 + δ2)B0

2Ã∗
2 Ã0

3
,

x′
2 = f2 − λix1 + λrx2 +B1

[
−a2Ã0 + b2A1 + c2A2 + d2A3 + e2B1 −

1

B0
x2

]
(25)

− 1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2
− 1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
Ã0

3
.

y′1 = f1 − λry1 + λiy2 + (26)

+B1

[
−a1Ã0 − c1A2 + d1A3 + e1

B1

B0
− 1

B0
y1

]

−ε2
(1 + δ2)(2− δ2)B0

2Ã∗
Ã0

2
− ε2

(1 + δ2)B0

2Ã∗
2 Ã0

3
,

14



y′2 = −f2 − λiy1 − λry2 +B1

[
−a2Ã0 − b2A1 + c2A2 − d2A3 + e2B1 −

1

B0
y2

]
(27)

+
1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2
+

1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
Ã0

3
,

with

f1 =
ε2δ2B0(1 + δ2)(Ã∗

2
−B2

0)

2Ã∗
,

f2 = −ε2δ2B0(1 + δ2)(λ2
r − λ2

i )(Ã∗
2
−B2

0)

4λrλiÃ∗
,

and coefficients aj , bj, cj , dj , ej are defined and estimated in Appendix A.2

in (90,91), (92,93,94), (95,96), (97,98). Here Ã0, A1, A2, A3, B1 should be re-
placed by their (linear) expressions (18) in coordinates (x1, x2, y1, y2, z1) with
coefficients functions of B0. The system above should be completed by the dif-
ferential equations for z′1 and B′

0(= B1). In fact we will replace the equation for
z′1 by the direct resolution of the first integral (5) with respect to z1 (see below)
using

B1 = −ε2(1 + δ2)B0
A3

Ã∗
+ Ã∗B0z1. (28)

4.5 Resolution of (5) with respect of z1(X, Y,B0)

For extending the validity (as a graph with respect to B0) for the existence of
the unstable manifold of M− we need to replace the differential equation for z′1
by the expression of z1given by the first integral (5). This leads to (see (28))

B2
1 = {Ã∗B0z1 − ε2

B0(1 + δ2)

Ã∗
A3}2 = 2ε2A1A3 − ε2A2

2 +

ε2

2
(−δ2B2

0 + 2Ã∗Ã0 + Ã0

2
)2 + ε2δ2(Ã∗ + Ã0)

2B2
0 ,

hence

Ã∗
2
z21 = ε2δ2Ã∗

2
(1 +

δ2B2
0

2Ã∗
2 ) +

2ε2

B0
A3(x1 + y1)−

ε4(1 + δ2)2

Ã∗
2 A2

3 −
ε2

B2
0

A2
2 +

+
2ε2Ã∗

2

B2
0

Ã0

2
+

2ε2Ã∗
B2

0

Ã0

3
+

ε2

2B2
0

Ã0

4
, (29)

where we may observe on the r.h.s., that

δ2

2Ã∗
2 <

1

2α2
,
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hence

ε2δ2 ≤ ε2δ2(1 +
δ2B2

0

2Ã∗
2 ) ≤ ε2δ2(1 +

1

2α2
),

which is independent of (X,Y ). Moreover there is no linear part in (X,Y ). For
further estimates, we make a new scaling

(X,Y ) = αδ(X,Y ), z1 = εδz1. (30)

We notice that (23) implies (c is a generic constant, independent of (ε, α))

|2ε
2

B0
A3(x1 + y1)| ≤ cε2α2δ2Ã∗(|X |+ |Y |)2

|ε
4(1 + δ2)2

Ã∗
2 A2

3| ≤ cε4α2δ2(|X |+ |Y |)2

ε2

B2
0

A2
2 ≤ cε2α2δ2Ã∗(|X |+ |Y |)2)

2ε2Ã∗
2

B2
0

Ã0

2
≤ cε2α2δ2Ã∗(|X|+ |Y |)2

|2ε
2Ã∗
B2

0

Ã0

3
| ≤ cε2α3δ3

Ã∗
1/2

(|X|+ |Y |)3

ε2

2B2
0

Ã0

4
≤ cε2α4δ4

Ã∗
2 (|X |+ |Y |)4,

so that the factors in the estimates are such that

cε2α2δ2Ã∗

ε2δ2Ã∗
2 ≤ c

α2

Ã∗
,
cε2α4δ4

ε2δ2Ã∗
4 ≤ c

α2

Ã∗
2 ,

cε2α3δ3

ε2δ2Ã∗
5/2

≤ c
α5/2δ3/4

Ã∗
2 ,

c being independent of ε, α and δ ∈ [δ0, δ1]. Now defining z10 such that

1 ≤ z10(B0)
def
= (1 +

δ2B2
0

2Ã∗
2 )

1/2 ≤ 1

α
, for α ≤ 1/

√
2, (31)

It results that

z1
2 = z10

2 +O
(
α2

Ã∗
(|X|+ |Y |)2 + α5/2

Ã∗
2 (|X |+ |Y |)3 + α2

Ã∗
2 (|X|+ |Y |)4

)

and using

B2
0 =

1− Ã∗
2

1 + δ2

16



we also have

1

z10
2 =

2Ã∗
2

2Ã∗
2
+ δ2B2

0

≤ 2(1 + δ2)Ã∗
2

δ2
≤ cÃ∗

2

δ2
,

so that (taking the positive square root as for (5))

z1 = z10(B0)

{
1 +

Ã∗
2

δ2
O
(
α2

Ã∗
(|X|+ |Y |)2 + α5/2

Ã∗
2 (|X |+ |Y |)3 + α2

Ã∗
2 (|X|+ |Y |)4

)}1/2

= z10(B0)
{
1 +O[α2(|X |+ |Y |)2]

}1/2
, for |X|+ |Y | ≤ ρ, ρ fixed,

and taking the square root, we obtain

z1 = z10(B0) + Z(X,Y ,B0) (32)

with, using (31),
Z(X,Y ,B0) = O(α(|X|+ |Y |)2,

Z(X,Y ,B0) being defined in the ball

|X|+ |Y | ≤ ρ,

provided that ε is small enough and where ρ is of order 1, not necessarily small
with respect to α. Moreover Z is analytic in its arguments and is at least
quadratic in (X,Y ).

Since z1 contains z10 which is independent of (X,Y ), the new system for
(X,Y ) has new ”constant terms” and ”linear terms”, appearing as perturbations
of the former ones.

4.6 System where z1 is eliminated

Now we stay on the 5-dimensional invariant manifold (5) and we need to express
the new differential system in terms of (X,Y ,B0). The new system is computed
in Appendix A.3. We obtain (notice that B0 is in factor of the ”constant” terms)

X
′

= L0X +B0F0 + L01(X,Y ) + B01(X,Y ), (33)

Y
′

= L1Y +B0F1 + L11(X,Y ) + B11(X,Y ),

which should be completed by an equation forB′
0 (see (28) in terms of (X,Y ,B0)),

and where

L0 =

(
λr λi

−λi λr

)
, L1 =

(
−λr λi

−λi −λr

)
,

and with the following estimates, for terms independent of (X,Y )

|F0|+ |F1| ≤
cε2

α4
, (34)
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for terms which are linear in (X,Y )

|L01(X,Y )|+ |L11(X,Y )| ≤ c
ε

α2
(|X|+ |Y |), (35)

and for terms at least quadratic in (X,Y ), choosing α small enough and for

|X|+ |Y | ≤ ρ,

we obtain

|B01(X,Y )|+ |B11(X,Y )| ≤ c(α+
ε2

α2
)(|X |+ |Y |)2. (36)

We are now ready to formulate the search for the unstable manifold of M−.

4.7 Integral formulation for solutions bounded as x → −∞
Let us introduce the monodromy operators associated with the linear operators
L0,L1 which have non constant coefficients (functions of B0 (see [3]):

∂

∂x
S0(x, s) = L0S0(x, s), S0(x, s1)S0(s1, s2) = S0(x, s2), S0(x, x) = I,

∂

∂x
S1(x, s) = L1S1(x, s), S1(x, s1)S1(s1, s2) = S1(x, s2), S1(x, x) = I.

The coefficients of operators L0,L1 are functions of B0, so we need the Lemma

26 in Appendix A.1, with the following estimates, valid for 0 ≤ B0 ≤
√
1− η20δ

2,

α ≤ (1 + δ2)−2 :

||S0(x, s)|| ≤ eσ(x−s), −∞ < x < s ≤ 0, (37)

||S1(x, s)|| ≤ e−σ(x−s), −∞ < s < x ≤ 0, (38)

with

σ =
α1/2δ1/2

21/4
.

We are looking for solutions of (33) which stay bounded for x → −∞. Then,
thanks to estimates (37) (38), the system (33) may be formulated as

X(x) = S0(x, 0)X0 +

∫ x

0

S0(x, s)G0(s)ds (39)

Y (x) =

∫ x

−∞
S1(x, s)G1(s)ds

G0(s)
def
= B0F0 + L01(X,Y ) + B01(X,Y ),

G1(s)
def
= B0F1 + L11(X,Y ) + B11(X,Y )

where X,Y and B0 are bounded and continuous functions of s, B0 tending
towards 0 as s → −∞.
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4.8 Strategy

The idea is
i) solve (39) with respect to (X,Y ) in function of (X0, B0);
ii) solve the integro-differential equation for B0, with B0|x=0 = B0(0),

B0(−∞) = 0.
Then the 3-dimensional unstable manifold ofM− is given (see [3]) by Y |x=0, z1|x=0

in terms of X0, B0(0). The result will be valid for an interval [0,
√
1− η20δ

2] for

B0 and it appears that A0 is then very close to 0 at this end point. The hope is
that this should allow to obtain an intersection with the 3-dim stable manifold

of M+ which computation should be valid for B0 in the interval [
√
1− η20δ

2, 1].

4.9 Resolution for (X, Y )

Let us define, for κ > 0

C0
κ = {X ∈ C0(−∞, 0];X(x)e−κx is bounded}

equiped with the norm

||X||κ = sup
(−∞,0)

|X(x)e−κx|.

We observe that, provided that κ < σ

|
∫ x

−∞
S1(x, s)e

κsds| ≤ eκx

κ+ σ

|S0(x, 0)e
−κx| ≤ e(σ−κ)x, x ≤ 0,

|
∫ x

0

S0(x, s)e
κsds| ≤ eκx

σ − κ
, x ≤ 0.

Let us choose
κ ≤ σ

2
,

then

|
∫ x

−∞
S1(x, s)e

κsds| ≤ eκx

σ
= 21/4

eκx

α1/2δ1/2
,

|
∫ x

0

S0(x, s)e
κsds| ≤ 25/4

eκx

α1/2δ1/2
, x ≤ 0.

Let us assume that
||B0||κ ≤ m (40)

holds with m independent of ε, which needs to be proved at next subsection.
Hence, the analytic implicit function theorem (see [2]) applies for (X,Y ) in a
neighborhood of 0 in the function space C0

κ, provided that we can choose κ ≤ σ
2
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and ||X ||κ+ ||Y ||κ ≤ ρ. Using the above estimates for coefficients, we obtain for
x ∈ (−∞, 0]

|X(x)e−κx| ≤ |X0|+
25/4

α1/2δ1/2
||B0F0 + L01(X,Y ) + B01(X,Y )||κ,

hence

||X ||κ ≤ |X0|+
25/4

α1/2δ1/2
||B0F0 + L01(X,Y ) + B01(X,Y )||κ, (41)

and in the same way

||Y ||κ ≤ 21/4

α1/2δ1/2
||B0F1 + L11(X,Y ) + B11(X,Y )||κ. (42)

Remark 12 The choice of κ is governed by the behavior of B0(x) as x → −∞,
which is studied at next subsection.

For ε small enough, estimates on F1, B11, (42) and ||X||κ + ||Y ||κ ≤ ρ, we

obtain, with S
def
= ||X||κ + ||Y ||κ

S ≤ |X0|+ c[
ε2m

α9/2
+

Sε

α5/2
+ (α1/2 +

ε2

α5/2
)Sρ]

so that for δ0 ≤ δ ≤ δ1 and
ε = α3, (43)

and ε small enough and ρ (nor necessarily small), such that

(1 + ρ+ ρε)ε1/6 ≤ (1 + 2ρ)ε1/6

we obtain
S ≤ (1 + c′ε1/6)|X0|+ cε1/2m,

which leads finally to X and Y in C0
κ, depending analytically on (X0, B0) ∈

R2 × C0
κ, and such that

||Y ||κ ≤ c(mε1/2 + ε1/6|X0|), (44)

||X ||κ ≤ (1 + cε1/6)|X0|+ cε1/2m, (45)

where c is a number independent of ε, ε = α3 small enough, and we assume m
(see (40)) of order 1, S ≤ ρ, where ρ is fixed arbitrarily, of order 1.

4.10 Resolution for B0

We intend to solve the part of our system for B0 with B0(0) = B0|x=0.
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We notice from (28) and (23) that

B1 = εδÃ∗B0

{
z10(B0) + Z(X,Y ,B0)

}
− ε2αδ(1 + δ2)

B0

Ã∗
A3

A3 = B0[ε
2B2

0(1 + δ2)2(x1 + y1) + 2λrλi(x2 − y2)],

εα(1 + δ2)
A3

Ã∗
2 ≤ 4εα2δ

Ã∗
(|X |+ |Y |) ≤ 4εα(|X|+ |Y |),

so that it is clear that (see above estimates for Z)

B1 > 0 for B0 ∈ (0,

√
1− η20δ

2), |X |+ |Y | ≤ ρ, (46)

which justifies to take the positive square root for B1 in (5). This is coherent
with the study of the linearized system near M− : Indeed the principal part of
the differential equation for B0 is

B′
0 = εδB0Ã∗z10(B0)

which may be integrated as

B2
0 =

1

(1 + δ2

2 ) cosh
2(x0 − εδx)

, (47)

coshx0 =
1

B0(0)(1 +
δ2

2 )
1/2

,

which satisfies B0 = 0 for x = −∞, and B0 = B0(0) for x = 0. More precisely
the differential equation for B0 is now (after replacing (X,Y ) by its expression
found at previous subsection)

B′
0 = εδÃ∗B0z10(B0)[1 + f(B0)] (48)

where f(B0) is a non local analytic function of B0 in C0
κ, such that

||f(B0)||κ ≤ cα2ρ.

Remark 13 We may notice that we might replace cα2ρ in the estimate above,
by

cα2ρeκx → 0 as x → −∞,

since X and Y ∈ C0
κ.

We are looking for the solution such that B0 = 0 for x = −∞, and B0(0) ≤√
1− η20δ

2 for x = 0. We can rewrite (48) as

2B0B
′
0

B2
0Ã∗z10(B0)

= 2εδ[1 + f(B0)]. (49)
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We now introduce the variable v :

v =
1−

√
1− (1 + δ2

2 )B
2
0

1 +
√
1− (1 + δ2

2 )B
2
0

, B2
0 =

1

1 + δ2

2

4v

(1 + v)2
,

so that
(ln v)′ = 2εδ[1 + f(B0)].

We observe that for x running from −∞ to 0,

w = ln v is increasing from −∞ to w0 = ln v0 < 0.

Now let us define h continuous in its argument and such that

h(w) = f(B0),

B0 =
1

(
1 + δ2

2

)1/2
2ew/2

(1 + ew)
,

and let us find an a priori estimate for the solution B0(x), for x ∈ (−∞, 0]. We
obtain by simple integration

∫ x

0

w′(s)

1 + h(w)(s)
ds = 2εδx.

For α small enough we have

1− cα2ρ ≤ 1

1 + h(w)
≤ 1 + cα2ρ,

hence (since w < w0, and x < 0)

(w0 − w)(1 − cα2ρ) ≤ −2εδx ≤ (w0 − w)(1 + cα2ρ)

so that

exp(
−2εδx

1 + cερ
) ≤ ew0−w ≤ exp(

−2εδx

1− cερ
)

and

v0 exp(
2εδ

1− cα2ρ
x) ≤ v(x) ≤ v0 exp(

2εδ

1 + cα2ρ
x).

It finally results that we obtain an a priori estimate for

B0(x) = B0(X0, B0(0))(x) ∈ C0
κ, (50)

B0(X0, B0(0))(x) =
1

(
1 + δ2

2

)1/2
2
√
v(x)

(1 + v(x))
, x ∈ (−∞, 0),

2
√
v0 exp(

εδ
1−cα2ρx)

1 + v0 exp(
2εδ

1−cα2ρx)
≤

(
1 +

δ2

2

)1/2

B0 ≤
2
√
v0 exp(

εδ
1+cα2ρx)

1 + v0 exp(
2εδ

1+cα2ρx)
, (51)

v0 =
1−

√
1− (1 + δ2

2 )B
2
0(0)

1 +
√
1− (1 + δ2

2 )B
2
0(0)

< 1.
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It remains to notice that we can choose

κ =
εδ

1 + cα2ρ

in the proof for (X,Y ), which needs to satisfy

κ ≤ σ

2
=

α1/2
√
δ

25/4
. (52)

We have already chosen ε = α3 hence

κ ≤ εδ = δα3 ≤ α1/2
√
δ

25/4

for α small enough, and (52) is satisfied. The a priori estimate for B0 al-
lows to prove that there is a unique solution of the integro-differential equa-
tion (49) which satisfies the estimate (51) (see [3]). Since B0 is in factor in

Ã0, A1, A2, A3, B1 the behavior for x → −∞ of the coordinates of the unstable
manifold, is governed by the behavior of B0. The estimates indicated in Lemma
9 results from (23), (30), (31), (45), (44), (52) with κ = εδ∗. This ends the
proof of Lemma 9.

Let us define the hyperplane H0

B0 = (1 − η20δ
2)1/2.

4.11 Intersection of the unstable manifold with H0

We need to give precisely the intersection of the unstable manifold with the

hyperplane B0 =
√
1− η20δ

2. This gives a two-dimensional manifold lying in

the 4-dimensional manifold Wg ∩H0. Taking into account of

Ã∗ = δα

λr, λi ∼ δ1/2α1/2

21/4
, ε = α3,

z10 ∼ B00

α
√
2
, B00 =

√
1− η20δ

2,

|Y (0)| = O(α1/2|X0|+B00α
3/2),
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we obtain a two-dimensional intersection which is tangent to a plane (parameters
x1, x2) with principal part given by

A0 = δα+
α1/2δ1/2

23/4
B00(x1 − x2) +O(α|X0|+ α2B00)

A1 = αδB00x1 −
α2δ√
2
B00 +O(α3/2|X0|+ α5/2B00)

A2 =
δ3/2

21/4
B00α

3/2(x1 + x2) +O(α2|X0|+ α3B00) (53)

A3 =
√
2δ2B00α

2x2 +O(α5/2|X0|+ α7/2B00)

B00 ∼ (1 + δ2)−1/2,

with

|x1|+ |x2| ≤ ρ, δ0 ≤ δ ≤ δ1, ε = α3, α2 = η20(1 + δ2)− 1 > 0,

and where we do not write B1 since we know that this manifold lies in the 5
dimensional manifold Wg.

5 Stable manifold of M+

We show the following

Lemma 14 For ε small enough, , δ0 ≤ δ ≤ 1, the 3-dimensional stable mani-
fold of M+ is included in the 5-dimensional manifold Wg, it exists for A0, A1, A2, A3

in a ball of small radius η (independent of ε), is analytic in parameters (ε, δ),

and reaches B0(0) = B00
def
=
√
1− η20δ

2, with η20(1 + δ2) = 1 + ε2/3. More-

over as x → +∞, (A0, A1, A2, A3) → 0 as exp(−
√

δ
2x), (B0 − 1, B1) → 0 as

exp(−
√
2εx),

v(x)
def
=

B0(x)− 1

δ1/2
≃ − (1−B0(0))(1 − tanh(εx/

√
2)

1 +B0(0) tanh(εx/
√
2)

, (54)

|v0| ≤ 0.293.

The idea is first to adapt new coordinates (with a fixed basis in this section),
such that we are able to use monodromy operators with easy estimates in the
formulation of the search for the 3-dimensional stable manifold of M+.

Let us define
δ′ = δ1/2,
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and choose a new basis

V −
r =




1

− δ′√
2

0
δ′3√
2

0
0




, V −
i =




0

− δ′√
2

δ′2

− δ′3√
2

0
0




,

V +
r =




1
δ′√
2

0

− δ′3√
2

0
0




, V +
i =




0
δ′√
2

δ′2

δ′3√
2

0
0




,

W−
1 =




0
0
0
0
1

−ε
√
2




, W+
1 =




0
0
0
0
1

ε
√
2




,

for defining new coordinates (x1, x2, y1, y2, z0, z1) such that

Z = (0, 0, 0, 0, 1, 0)t+ δ′x1V
−
r + δ′x2V

−
i + δ′y1V

+
r + δ′y2V

+
i + δ′z0W

−
1 + δ′z1W

+
1

A0 = δ′(x1 + y1)

A1 = − δ′2√
2
(x1 − y1 + x2 − y2)

A2 = δ′3(x2 + y2) (55)

A3 =
δ′4√
2
(x1 − y1 − x2 + y2)

B0 = 1 + δ′(z0 + z1)

B1 = −ε
√
2δ′(z0 − z1).
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A simple inversion leads to

x1 =
A0

2δ′
− A1

2
√
2δ′2

+
A3

2
√
2δ′4

x2 = − A1

2
√
2δ′2

+
A2

2δ′3
− A3

2
√
2δ′4

y1 =
A0

2δ′
+

A1

2
√
2δ′2

− A3

2
√
2δ′4

y2 =
A1

2
√
2δ′2

+
A2

2δ′3
+

A3

2
√
2δ′4

z0 =
B0 − 1

2δ′
− B1

2εδ′
√
2

z1 =
B0 − 1

2δ′
+

B1

2εδ′
√
2
.

Let us define

u = x1 + y1 =
1

δ′
A0 (56)

v = z0 + z1 =
1

δ′
(B0 − 1),

then system (1) reads as

A′
0 = A1,

A′
1 = A2,

A′
2 = A3,

A′
3 = −A0

(
δ2 + 2δ2v + δu2 + (1 + δ2)v2

)
,

v′ =
1

δ′
B1,

B′
1 = ε2(1 + δ′v)

(
2δ′v + δv2 + (1 + δ2)δu2

)
.

With variables (55) this leads to the new 6-dimensional system

x′
1 = − δ′√

2
(x1 + x2)−

δ′ug(u, v)

2
√
2

,

x′
2 =

δ′√
2
(x1 − x2) +

δ′ug(u, v)

2
√
2

,

y′1 =
δ′√
2
(y1 + y2) +

δ′ug(u, v)

2
√
2

,

y′2 = − δ′√
2
(y1 − y2)−

δ′ug(u, v)

2
√
2

,
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z′0 = −ε
√
2z0 −

εδ′

2
√
2
f(u, v),

z′1 = ε
√
2z1 +

εδ′

2
√
2
f(u, v),

g(u, v) = u2 + 2δv + (1 + δ2)v2

f(u, v) = 3v2 + δ′v3 + (1 + δ2)(1 + δ′v)u2,

where the linear part is as expected.
For finding the stable manifold of M+ we put the system in an integral form,

looking for solutions tending to 0 as x → +∞. Defining

G =

(
g

−g

)
, L =

δ′√
2

(
1 1
−1 1

)
,

we obtain the system

X(x) = e−LxX0 −
δ′

2
√
2

∫ x

0

e−L(x−s)u(s)G(u, v)(s)ds,

Y (x) = − δ′

2
√
2

∫ +∞

x

eL(x−s)u(s)G(u, v)(s)ds, (57)

z0(x) = e−ε
√
2xz00 −

εδ′

2
√
2

∫ x

0

e−ε
√
2(x−s)f(u, v)(s)ds,

z1(x) = − εδ′

2
√
2

∫ +∞

x

eε
√
2(x−s)f(u, v)(s)ds, (58)

We notice that

eLx = e
δ′x√

2

(
cos δ′x√

2
sin δ′x√

2

− sin δ′x√
2

cos δ′x√
2

)
, (59)

||e−Lx|| ≤ e
− δ′x√

2 , x ≥ 0.

The 3-dimensional stable manifold is obtained in expressing (Y (0), z1(0)) as
function of (X0, z00).

Let us define for this section

C0
κ = {X ∈ C0[0,+∞);X(x)eκx is bounded}

equiped with the norm

||X ||κ = sup
(0,+∞)

|X(x)eκx|.

27



Using (59), the system (57,58) gives remarquably two scalar equations with
unknown functions (u, v). We obtain:

u(x) = e
− δ′x√

2 u0(x)−
δ′

2

∫ ∞

0

e
− δ′|x−s|√

2 cos[
δ′|x− s|√

2
− π

4
]u(s)g(u, v)(s)ds,(60)

v(x) = e−ε
√
2xz00 −

εδ′

2
√
2

∫ ∞

0

e−ε
√
2|x−s|f(u, v)(s)ds (61)

with

u0(x) = x10 cos
δ′x√
2
− x20 sin

δ′x√
2
.

We may observe that we have the explicit solution of (61) for u ≡ 0. Indeed

v(x) = e−ε
√
2xz00 −

εδ′

2
√
2

∫ ∞

0

e−ε
√
2|x−s|f(0, v)(s)ds

corresponds to look for v such that

v′ = (z′0 + z′1) = −ε
√
2(z0 − z1)

z′0 − z′1 = −ε
√
2v − εδ′√

2
(3v2 + δ′v3),

hence
v′′ = 2ε2v + ε2δ′(3v2 + δ′v3), v, v′ →

x→+∞
0,

which gives

v′2 =
ε2

2
v2(2 + δ′v)2.

It results that
v′ = − ε√

2
v(2 + δ′v) (62)

since v grows for x > 0 and v < 0 and |δ′v| = 1−B0 < 1 implies

2 + δ′v > 1. (63)

Finally we obtain

v(x) =
v0e

−ε
√
2x

1 + v0
δ′

2 (1 − e−ε
√
2x)

.

5.1 Using the first integral (5)

Assuming some estimates needing to be checked at the end, the strategy here
is to first solve with respect to v in using the first integral (5) and an implicit
function argument. Hence v becomes function of (X,Y, v0). Then, we solve the
scalar equation (60) with respect tu u using again the implicit function theorem
(section 5.2). This step imposes a restriction on the choice of δ now in [δ0, 1].
Finally in section 5.3, using (57) we obtain X,Y then function of X0, z00.
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Instead of the differential equations for z0 and z1 (or v) we use the first
integral (5), for extending the domain of validity for the stable manifold of M+

as a graph with respect to B0, and in using (56),

B2
1 =

ε2

2
[(B2

0 − 1)2 + 2δ(1 + δ2)u2(2δ′v + δv2)

+δ2u4 + 8δ3(x1y1 − x2y2)].

Taking the square root gives the traces of the stable and the unstable manifolds
on Wδ. The stable manifold needs satisfy B1 = B′

0 > 0 , since B0 < 1 for x = 0,
and B0 = 1 for x = ∞. Assuming that the sign of B1 does not change in the
interval, we obtain

B1 =
ε√
2
(1−B2

0)

(
1 +

2δ′(1 + δ2)u2

(2v + δ′v2)
+

δu4 + 8δ2(x1y1 − x2y2)

(2v + δ′v2)2

)1/2

(64)

Remark 15 We notice that this implies that v < 0, v′ > 0, and |v(x)|max =
|v0| = |z00 + z1(0)| is then O(α2) close to h(δ), where

h(δ) =
1√
δ

(
1− 1√

1 + δ2

)
∼ 1√

δ
(1−B00).

We observe that
B1 = B′

0 =
ε√
2
[1−B2

0 ]

may be easily integrated on (0,+∞) with B0(∞) = 1), and moreover leads to

z0 − z1 =
1

2
v(2 + δ′v) (65)

i.e.

z1 = −δ′

4
(z0 + z1)

2 < 0 (66)

which is the solution of (58) for u = 0. We notice that (65) is exactly (62). It
results that (64) may be written as

v′ = −εv
√
2(1 +

δ′

2
v)

(
1 +

2δ′(1 + δ2)u2

(2v + δ′v2)
+

δu4 + 8δ2(x1y1 − x2y2)

(2v + δ′v2)2

)1/2

.

Let us assume that

|X(x)|, |Y (x)|, |u(x)| ≤ γ|v(x)|, x ∈ [0,+∞) (67)

with

0 < γ <
1

6δ
.

Using (63), this implies that for |X |, |Y | satisfying (67) we have

2δ′(1 + δ2)u2

(2v + δ′v2)
≤ 2γδ′(1 + δ2)|u|,
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δu4 + 8δ2(x1y1 − x2y2)

(2v + δ′v2)2
≤ δγ2u2 +

4

9
.

It results that for γ|u| such that

γ|u| ≤ 1

3δ′
[12(1 + δ2) +

√
2]−1 (68)

then
2δ′(1 + δ2)u2

(2v + δ′v2)
+

δu4 + 8δ2(x1y1 − x2y2)

(2v + δ′v2)2
<

1

2
,

and the square root is analytic in v with

v′ = −ε
√
2v(1 +

δ′

2
v)[1 + Z(X,Y, v)], |Z| ≤ 1/4. (69)

Then we can integrate the integro-differential equation, as in section 4.10. We
introduce the new variable w as

w′ =
v′

v(1 + (δ′/2)v)
,

w = ln

( −v

1 + (δ′/2)v

)
,

v = − ew

1 + δ′

2 e
w
;

w decreases from w0 to −∞ for x ∈ (0,∞), while v grows from v0 < 0 to 0.

Z(X,Y, v) = h(X,Y,w),

|h| ≤ 1/4.

We then obtain, by simple integration

ε
√
2x(1 − 1/4) ≤ w0 − w(x) ≤ ε

√
2x(1 + 1/4).

Remark 16 The constant 1/4 above may later be replaced by

ce−δ′x/
√
2

since we show later that |X | and |Y | lie in C0
δ′/

√
2
.

We deduce the estimate

v0
1− tanh( εx(1−1/4)√

2
)

1 +B0(0) tanh(
εx(1−1/4)√

2
)
≤ v(x) ≤ v0

1− tanh( εx(1+1/4)√
2

)

1 +B0(0) tanh(
εx(1+1/4)√

2
)

(70)

where

v0 =
B0(0)− 1

δ′
< 0.

The a priori estimate for v obtained in (70) allows to prove (see [3]) the existence
and uniqueness of a solution for (69), provided that (67) is satisfied on the whole
interval x ∈ [0,∞).
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5.2 Estimate for u

Let us first show that for δ ∈ (0, 5), x ∈ [0,+∞) and for γ|u| ≤ c1(δ) where c1
is defined in (74), then

g(u, v) = u2 + v[2δ + (1 + δ2)v] < 0

|g(u, v)| ≤ 2δ|v|. (71)

Using (67), we observe that (71) is valid as soon as

γ|u|+ (1 + δ2)|v0| ≤ 2δ. (72)

We wish to reach v0 = δ′−1(B00 − 1) where B00 is the value of B0 we have
reached with the unstable manifold of M−. So, next computations should be
valid for v0 such that |v0| ≤ |δ′−1(1 −B00)|.

Using

η20 ∼ 1

1 + δ2
,

since α is as close to 0 as we wish, we obtain

1−B00 = 1− (1− η20δ
2)1/2 = 1− 1√

1 + δ2
+O(α2).

Then conditions (72) and (68) lead to

γ|u| ≤ c1(δ), (73)

with

c1(δ) = min{2δ − 1√
δ
[(1 + δ2)−

√
1 + δ2],

1

3
√
δ
[12(1 + δ2) +

√
2]−1}. (74)

We observe that

c1(δ) > 0 for δ ∈ (0, 5), c1(δ) ∼ 2δ for δ close to 0.

Now the estimates (70) of v for x ∈ [0,+∞) lead to

|v0|
e

−5ε
√

2x
4

1− |v0δ′|
2 (1− e

−5ε
√

2x
4 )

≤ |v(x| ≤ |v0|
e

−3ε
√

2x
4

1− |v0δ′|
2 (1− e

−3ε
√

2x
4 )

,

so that

|v0|e
−5ε

√
2x

4 ≤ |v(x)| ≤ |v0|
1− |v0δ′|

2

e
−3ε

√
2x

4 (75)

and to reach B00 we need to satisfy

h(δ)e
−5ε

√
2x

4 ≤ |v(x)| ≤ c0(δ)e
−3ε

√
2x

4 (76)
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with

c0(δ) =
2δ3/2

(
√
1 + δ2 + 1)2

.

Let us consider (??), then (71) and (75) lead to

|u(x)e 5ε
√

2x
4 | ≤ |X0|e(

−δ′√
2
+ 5ε

√
2

4 )x
+

δδ′|v0|
1− |v0δ′|

2

∫ ∞

0

e
−δ′|x−s|√

2
+ 5ε

√
2(x−s)
4 |u(s)e 5ε

√
2s

4 |e−3ε
√

2s
4 ds.

We have ∫ ∞

0

e
−δ′|x−s|√

2
+

5ε
√

2(x−s)
4 e

−3ε
√

2s
4 ds ≤ 2

√
2e

−3ε
√

2x
4

δ′(1− 16ε2/δ′)
,

so that

||u|| 5ε√2
4

≤ |X0|+
2
√
2δ|v0|

(1− |v0δ′|
2 )(1 − 16ε2/δ′)

||u|| 5ε√2
4

.

We notice that, for |v0| ≤ 1
δ′ (1−B00)

2
√
2δ|v0|

(1 − |v0δ′|
2 )(1 − 16ε2/δ′)

≤ c2(δ)

with

c2(δ) =
2
√
2δc0(δ)

(1− 16ε2/δ′)
,

and we observe that

2
√
2δc0(δ) =

4
√
2δ5/2

(
√

1 + δ2 + 1)2
< k < 1 for δ ∈ [δ0, 1],

so that, since δ0 is arbitrarily fixed > 0, and ε small enough, for any v satisfying
(75) with |v0| ≤ 1

δ′ (1 − B00), by a fixed point argument, we obtain a unique
u ∈ C0

5ε
√

2
4

such that

||u|| 5ε√2
4

≤ 1

1− k
|X0|.

Remark 17 Notice that we neglected terms of order α2 in the estimates leading
to the calculus of k which is stricly <1. However, because of the flexibility of
choice for δ, we may check that for ε (i.e. α) small enough the choice δ ∈ [δ0, 1]
is valid.
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5.3 End of the proof of Lemma 14

We may now estimate X and Y given by (57), and we need to check that (67)
is satisfied. Now, from (57) we obtain

||X || 5ε√2
4

≤ |X0|+
δδ′|v0|

(δ′ − ε)(1− |v0δ′|
2 )

||u|| 5ε√2
4

≤ |X0|
(
1 +

δδ′|v0|
(1− k)(δ′ − ε)(1 − |v0δ′|

2 )

)

≤ |X0|
(
1 +

δ′k

2
√
2(1− k)(δ′ − ε)

)
,

||Y || 5ε√2
4

≤ δδ′|v0|
(1− k)(δ + 4ε)(1− |v0δ′|

2 )
|X0|

≤ δ′k

2
√
2(1 − k)(δ′ + 4ε)

|X0|.

We observe that

1 +
δ′k

2
√
2(1 − k)(δ′ − ε)

<
1

1− k
,

hence, using (75) for a lower bound for v(x) we see that for X0 such that

|X0| ≤ (1 − k)γ|v0|,

then conditions (67) are realized, and (73) is satisfied as soon as

|X0| ≤
(1− k)

γ
c1(δ).

This ends the proof of the existence, uniqueness and analyticity in parameters
of the solution of (57), (60) and (61). Then (58) allows to find z0, z1 with

||z0||ε√2 ≤ |z00|+
εδ′[3 + (1 + δ2)γ2]

2
√
2

∫ x

0

v2(s)eε
√
2sds

≤ |z00|+
δ′[3 + (1 + δ2)γ2]

2

(
v0

1− |v0|δ′
2

)2

,

||z1||ε√2 ≤ δ′[3 + (1 + δ2)γ2]

10

(
v0

1− |v0|δ′
2

)2

.

We notice that

|z1(0)| ≤
δ′[3 + (1 + δ2)γ2]

10

c0(δ)

1− |v0|δ′
2

|v0|,
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and for δ ∈ [δ0, 1]

δ′[3 + (1 + δ2)γ2]

10

c0(δ)

1− |v0|δ′
2

≤ 0.0402[3 + 2γ2]

which is < 1/4 for a good choice of γ (still free choice). Hence

|z1(0)| ≤
1

4
(|z00|+ |z1(0)|)

leads to

|z1(0)| ≤ 1

3
|z00|,

|v0| = |z00 + z1(0)| ≤
4

3
|z00|.

This ends the proof of existence, uniqueness and analyticity in parameters of
the stable manifold of M+. The exponential estimates declared in Lemma 14
follow from the linear study of section 3 as x → +∞. The asymptotic expression

of v(x) follows from (70) after replacing 1/4 by the better estimate Ce−
√

δ
2x.

The bound for v0 comes from h(δ) with δ = 1. This ends the proof of Lemma
14.

5.4 Intersection of the stable manifold with H0

We need to compute the intersection of the 3-dimensional stable manifold of
M+ with the hyperplane H0 defined by

B0 =

√
1− η20δ

2. (77)

We then obtain a 2-dimensional sub-manifold living in the 4-dimensional man-
ifold Wδ ∩H0. We have by construction

A0 = δ1/2(x10 + y10),

A1 = − δ√
2
(x10 + x20 − y10 − y20) (78)

A2 = δ3/2(x20 + y20)

A3 =
δ2√
2
(x10 − x20 − y10 + y20),

where y10 and y20 are expressed in function of X0 = (x10, x20), with the restric-
tion

|x10|+ |x20| ≤ η.

Below, we need to express the tangent plane to the intersection of the stable
manifold with the hyperplane H0. This is given by (see (57))

Y0 = − δδ′√
2

∫ ∞

0

e−Ls

(
1
−1

)
u(s)v(s)ds,
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with

u(x) = e
− δ′x√

2 u0(x) − δδ′
∫ ∞

0

e
− δ′|x−s|√

2 cos[
δ′|x− s|√

2
− π

4
]u(s)v(s)ds,

u0(x) = x10 cos
δ′x√
2
− x20 sin

δ′x√
2
,

v(x) =
v0e

−ε
√
2x

1 + v0
δ′

2 (1− e−ε
√
2x)

, v0 =
1

δ′
(B00 − 1),

so that
u(x) = l(v0, δ, x)X0 ∈ C0

5ε
√

2
4

is linear in X0, hence
Y0 = L1(v0, δ)X0, (79)

with a 2x2 matrix L1 depending analytically of δ ∈ [δ0, 1].

6 Intersection of the two manifolds

In this section we prove the following

Lemma 18 For ε small enough, and for δ0 ≤ δ ≤ 1, except maybe for a finite
number of values, the unstable manifold of M− intersects the stable manifold of
M+ along the heteroclinic solution. Moreover for x = 0 we have the estimates

A0(0) = O(B00ε
1/2)

A1(0) = O(B00ε
1/2) (80)

A2(0) = O(B00ε
2/3)

A3(0) = O(B00ε
5/6).

We need to study the intersection of the plane (53) tangent to the unstable
manifold of M−, with the plane tangent to the stable manifold of M+ given by
(78), satisfying (79).

We then find a linear system with 4 unknowns (x1
(u), x2

(u), x
(s)
10 , x

(s)
20 ), with

the restrictions
|x(s)

10 |+ |x(s)
20 | ≤ η, |x1

(u)|+ |x2
(u)| ≤ ρ.

We then have

(x
(s)
10 + y

(s)
10 ) = δ′α+

α1/2

23/4
B00(x1

(u) − x2
(u))

−(x
(s)
10 + x

(s)
20 − y

(s)
10 − y

(s)
20 ) =

√
2αB00x1

(u) − α2B00 (81)

(x
(s)
20 + y

(s)
20 ) =

α3/2

21/4
B00(x1

(u) + x2
(u))

(x
(s)
10 − x

(s)
20 − y

(s)
10 + y

(s)
20 ) = 2α2B00x2

(u),
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where we need to express (y
(s)
10 , y

(s)
20 ) as a linear function of (x

(s)
10 , x

(s)
20 ) (see (79).

Let us define

X
(s)
0 =

(
x
(s)
10

x
(s)
20

)
, Y

(s)
0 =

(
y
(s)
10

y
(s)
20

)
, X

(u)
=

(
x1

(u)

x2
(u)

)
,

then we have

X
(s)
0 =

(
δ′

2 α+ α2B00

4
α2B00

4

)
+M1X

(u)
,

Y
(s)
0 =

(
δ′

2 α− α2B00

4

−α2B00

4

)
+M2X

(u)
,

with

M 1 =
α1/2B002

1/4

4

(
1− 21/4α1/2 −1 + 23/4α3/2

−21/4α1/2 +
√
2α

√
2α− 23/4α3/2

)
,

M 2 =
α1/2B002

1/4

4

(
1 + 21/4α1/2 −1− 23/4α3/2

21/4α1/2 +
√
2α

√
2α+ 23/4α3/2

)
.

The matrix M 2 is invertible with

M−1
2 =

4

α1/2B0021/4 det(M ′
2)

( √
2α+ 23/4α3/2 1 + 23/4α3/2

−21/4α1/2 −
√
2α 1 + 21/4α1/2

)

det(M ′
2) = [

√
2α(1 + 21/4α1/2)2 + (1− 23/4α3/2)(21/4α1/2 +

√
2α)]

= 21/4α1/2 + 2
√
2α+O(α3/2).

It results that

M1M
−1
2 ∼

(
1 +O(α1/2) −2 +O(α1/2)

−23/2α+O(α3/2) −1 +O(α1/2)

)

X
(s)
0 =

(
1 +O(α1/2) −2 +O(α1/2)

−23/2α+O(α3/2) −1 +O(α1/2)

)
Y

(s)
0 +

(
O(α3/2)√

2δ′α2 +O(α5/2)

)
.

(82)
Equation (82) represents a 2-dim affine plane expressing the 2 compatibility
conditions of the system (81) while solving with respect to (x1

(u), x2
(u)), and

gives a condition on coordinates of the stable manifold. This affine plane needs

to intersect the tangent plane to the stable manifold given by (79) with Y
(s)
0

expressed as a linear function of X
(s)
0 .

We deduce that (79) combined with

X
(s)
0 = L2(v0, δ)Y

(s)
0 +O(α3/2)

leads to
Y

(s)
0 = L1(v0, δ)L2(v0, δ)Y

(s)
0 +O(α3/2).
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We notice that

v0 =
1√
δ
(B00 − 1),

B00 =

√
1− η20δ

2, η20(1 + δ2) = 1 + α2,

so that the 2x2 matrix L1(v0, δ
′)L2(v0, δ) is a function of α (which is as small as

we wish), and depends analytically of δ ∈ [δ0, 1]. For δ small enough, the norm
of L1(v0, δ) is small, which does not allow an eigenvalue 1 for L1(v0, δ)L2(v0, δ).
Due to the analyticity in δ, the characteristic polynomial of this 2x2 matrix has
analytic coefficients, and it is then clear that 1 might be an eigenvalue of this
matrix operator only for isolated values of δ. It then results for α small enough,
that for any δ ∈ [δ0, 1] except maybe for a finite set of values, we obtain a unique
solution

Y
(s)
0 = O(α3/2),

leading to

X
(s)
0 = O(α3/2)

which is coherent with the condition |x(s)
10 |+ |x(s)

20 | ≤ η.
Moreover adding the 3 first equation of (81) gives

0 = δ′α− α2B00 +
α1/2

23/4
B00(x1

(u) − x2
(u))

+
√
2αB00x1

(u) +
α3/2

21/4
B00(x1

(u) + x2
(u))

hence

x2
(u) = x1

(u) − 27/4α1/2 + 23/2α

1− α
√
2

x1
(u) +

23/4(α1/2δ′ − α3/2B00)

B00(1− α
√
2)

,

so that

δ′α+
α1/2

23/4
B00(x1

(u) − x2
(u)) ≃ −2αB00x1

(u) = O(α3/2).

It results that
(x1

(u), x2
(u)) = O(α1/2),

which then satisfies the condition |x1
(u)| + |x2

(u)| ≤ ρ. Finally, from (53) and
since α3/2 =

√
ε, we obtain

A0(0) = O(B00

√
ε)

A1(0) = O(B00

√
ε) (83)

A2(0) = O(B00ε
2/3)

A3(0) = O(B00ε
5/6)
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which are the estimates announced at Lemma 18. The uniqueness of the in-
tersection of the tangent planes between the unstable manifold of M− and the
stable manifold of M+ proves that it is transverse while they both sit on Wδ and
cross the hyperplane (77). Since it is the transverse intersection of two mani-
folds, depending analytically on parameters (ε, δ), the resulting curve depends
analytically on these parameters.

We observe that, along this intersection, and by construction, B1(x) =
B′

0(x) > 0. Its principal part on (−∞, 0] is given by (47) with B0(0) = B00 =√
1− η20δ

2, and on [0,+∞) by (54).

The Theorem 1 is then proved.
Moreover, for the heteroclinic solution, we can improve the a priori estimates

given at Lemma 9. Taking into account the size of variables for x = 0, we have
now

Corollary 19 For x ∈ (−∞, 0] and choosing δ∗ < δ, there exists c > 0 inde-
pendent of ε small enough, such that the heteroclinic curve satisfies

|Ã0(x)| ≤ cε1/3B0(x)e
εδ∗x

|A1(x)|, |A2(x)|, |A3(x)| ≤ cε1/2B0(x)e
εδ∗x.

We also give estimates for x > 0. Using (60) and playing on the flexibility
of choice for δ, we can find χ < 1 independent of ε, such that for δ ∈ [δ0, 1] we
have

||u|| δ′√
2
(1−χ) ≤ |X0|+

2
√
2δc0(δ)

χ(2− χ)
||u|| δ′√

2
(1−χ),

with
2
√
2δc0(δ)

χ(2− χ)
< k′ < 1.

Hence

||u|| δ′√
2
(1−χ) ≤

1

1− k′
|X0|

and as above we see that there exists C > 0 such that

||X || δ′√
2
(1−χ) + ||Y || δ′√

2
(1−χ) ≤ C|X0|,

so that, using (55) and (83) we have the following

Corollary 20 For x ∈ [0,+∞) and choosing δ∗ < δ, there exists c > 0 inde-
pendent of ε small enough, such that the heteroclinic curve satisfies

|A(m)
0 (x)| ≤ cε1/2e−

√
δ∗
2 x, m = 0, 1, 2, 3.
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7 Study of the linearized operator

Let us redefine the heteroclinic connection we found at Theorem 1 as

(A∗(x), B∗(x)) ⊂ R2

with
1 < 1 + δ20 ≤ g = 1 + δ2 ≤ 1 + (0.825)2,

and where we know that, for ε small enough

B∗(x) > 0, B′
∗(x) > 0

(A∗(x), B∗(x)) →
{

(1, 0) as x → −∞
(0, 1) as x → +∞ ,

at least as eεδx for x → −∞, and at least as e−
√
2εx for x → +∞.

The system (1) is now considered with B0 complex valued, so in (1) B2 is
replaced by |B|2.

For being able to prove any persistence result under reversible perturbations
of system (1) in R4 ×C2 we need to study the linearized operator at the above
heteroclinic solution. We follow the lines of [4].

The linearized operator is given by

A(4) = (1 − 3A2
∗ − gB2

∗)A− gA∗B∗(B +B),

B′′ = ε2(−1 + gA2
∗ + 2B2

∗)B + 2ε2gA∗B∗A+ ε2B2
∗B.

Taking real and imaginary parts for B :

B = C + iD,

we then obtain the linearized system

−A(4) + (1− 3A2
∗ − gB2

∗)A− 2gA∗B∗C = 0,

1

ε2
C′′ + (1− gA2

∗ − 3B2
∗)C − 2gA∗B∗A = 0,

1

ε2
D′′ + (1− gA2

∗ −B2
∗)D = 0.

Notice that the equation forD decouples, so that we can split the linear operator
in an operator Mg acting on (A,C) and an operator Lg acting on D :

Mg

(
A
C

)
=

(
−A(4) + (1− 3A2

∗ − gB2
∗)A− 2gA∗B∗C

1
ε2C

′′ + (1− gA2
∗ − 3B2

∗)C − 2gA∗B∗A

)
,

LgD =
1

ε2
D′′ + (1− gA2

∗ −B2
∗)D.

Let us define the Hilbert spaces

L2
η = {u;u(x)eη|x| ∈ L2(R)},

39



D0 = {(A,C) ∈ H4
η ×H2

η ;A ∈ H4
η , C ∈ D1}

D1 = {C ∈ H2
η ; ε

−2||C′′||L2
η
+ ε−1||C′||L2

η
+ ||C||L2

η

def
= ||C||D1 < ∞}

equiped with natural scalar products. Below, we prove the following

Lemma 21 Except maybe for a set of isolated values of g, the kernel of Mg in
L2
η is one dimensional, span by (A′

∗, B
′
∗), and its range has codimension 1, L2-

orthogonal to (A′
∗, B

′
∗). Mg has a pseudo-inverse acting from L2

η to D0 for any
η > 0 small enough, with bound independent of ε.

The operator Lg has a trivial kernel, and its range which has codimension 1,
is L2- orthogonal to B∗ (B∗ /∈ L2). Lg has a pseudo-inverse acting respectively
from L2

η to D1 for η > 0 small enough, with bound independent of ε.

Remark 22 The above Lemma is useful for proving the persistence under re-
versible perturbations, as indicated in (2), of our heteroclinic. This is done in [7]
and appears to be more difficult than the symmetric case solved in [4]. Indeed,
it is needed to introduce two different wave numbers for the two convective rolls
at ±∞. In [7] it is shown that the component on the kernel of Mg corresponds
to a phase shift of rolls parallel to the wall, while the codimension 2 of the range
implies that each wave number is function not only of the amplitude of rolls but
also of the above shift. This then leads to a one parameter family of domain
walls, for any fixed small amplitude ε2.

7.1 Asymptotic operators

Let us define the operators obtained when x = ±∞ :

M−
∞

(
A
C

)
=

(
−A(4) − 2A

ε−2C′′ − (g − 1)C

)
,

M+
∞

(
A
C

)
=

(
−A(4) − (g − 1)A

ε−2C′′ − 2C

)
,

L−
∞D = ε−2D′′ − (g − 1)D,

L+
∞D = ε−2D′′.

Notice that all these operators are negative. Furthermore, their spectra in L2(R)
are such that

σ(M−
∞) = (−∞,−c−], c− = max{2, (g − 1)} > 0,

σ(M+
∞) = (−∞,−c+], c+ = c−,

σ(L−
∞) = (−∞,−(g − 1)],

σ(L+
∞) = (−∞, 0].
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Operators Mg and Lg are respectively relatively compact perturbations of the
corresponding asymptotic operators M∞ and L∞ defined as

M∞ =

{
M−

∞, x < 0
M+

∞, x > 0
, L∞ =

{
L−
∞, x < 0

L+
∞, x > 0

,

Their essential spectrum, i.e. the set of λ ∈ C for which λ−Mg (resp. λ−Lg)
is not Fredholm with index 0, is equal to the essential spectrum of M∞ (resp.
L∞) (see [10]). The latter spectra are found from the spectra of M±

∞ and L±
∞ :

σess(M∞) = (−∞,−c+],

σess(L∞) = (−∞, 0].

In particular, this implies that 0 does not belong to the essential spectrum of
Mg, so that the operator Mg is Fredholm with index 0. Moreover operators
M∞ and L∞ are self adjoint negative operators in L2, and M∞ has a bounded
inverse [10].

||M−1
∞ ||L2 ≤ 1

c+
.

This last property remains valid in exponentially weighted spaces, with weights
eη|x|, and η sufficiently small, since this acts as a small perturbation of the
differential operator (see [9] section 3.1).

We show at section 7.3.1 that the kernel ofMg is one-dimensional (except for

a finite set of values of g), spanned by (A′
∗, B

′
∗)

def
= U∗ with a range orthogonal

to U∗ in L2. Let us define the projections Q0 on U⊥
∗ and P0 on U∗ , which are

orthogonal projections in L2, then we need to solve in L2
η

Mgu = f

in decomposing
u = zU∗ + v, v = Q0u,

(M∞ +Ag)v = Q0f

and we need to satisfy the compatibility condition

〈f, U∗〉 = 0,

while z is arbitrary and we obtain for v :

(I+M−1
∞ Ag)v = M−1

∞ Q0f,

where the operator M−1
∞ Ag is now a compact operator for which −1 is not an

eigenvalue, since v ∈ U⊥
∗ . It results that there is a number c independent of ε

such that
||v||L2

η
≤ c||f ||L2

η
.

From the form of operator Mg and using interpolation properties, we obtain
for v = (A,C)

||(A,C)||D0 ≤ c||f ||L2
η

with a certain c independent of ε.
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7.2 Properties of Lg

Notice that Lg is self adjoint in L2(R) and that

LgB∗ = 0, but B∗ /∈ L2(R).

This property allows to solve explicitely the equation Lgu = f ∈ L2
η with respect

to u ∈ L2
η (using variation of constants method), and shows that it has a unique

solution, provided that ∫

R

fB∗dx = 0.

We obtain

u(x) =

∫ ∞

x

ε2B∗(x)

B2
∗(s)

F (s)ds

with F (s) =

∫ ∞

s

f(τ )B∗(τ )dτ for s ≥ 0

= −
∫ s

−∞
f(τ)B∗(τ )dτ for s ≤ 0.

By Fubini’s theorem we can write for x ≥ 0

u(x) = ε2B∗(x)

∫ ∞

x

f(τ )B∗(τ )

(∫ τ

x

ds

B2
∗(s)

)
dτ

and, for x ≤ 0

u(x) = −ε2B∗(x)

∫ x

−∞
f(τ)B∗(τ )

(∫ 0

x

ds

B2
∗(s)

)
dτ

−ε2B∗(x)

∫ 0

x

f(τ)B∗(τ )

(∫ 0

τ

ds

B2
∗(s)

)
dτ .

The asymptotic properties of B∗(x) at ±∞ imply, for x ≥ 0

|u(x)|eηx ≤ Cε2
∫ ∞

x

|f(τ )eητ |(τ − x)e−η(τ−x)dτ ,

and for x ≤ 0

|u(x)|e−ηx ≤ Cε2

2εδ

∫ x

−∞
|f(τ )e−ητ |e−(η+εδ)(x−τ)dτ

+
Cε2

2εδ

∫ 0

x

|f(τ)e−ητ |e(η−εδ)(τ−x)dτ .

The bound
||u||L2

η
≤ c2||f ||L2

η
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follows from classical convolution results between functions in L2 and functions
in L1, since

∫ 0

−∞
e(η−εδ)τdτ =

1

η − εδ
,

∫ ∞

0

τe−ητdτ =
1

η2
.

Then, we choose η = 1
2εδ, so that the pseudo-inverse of Lg has a bounded

inverse in L2
η :

||L̃g

−1|| ≤ c2,

where c2 is independent of ε. Using the form of Lg we obtain easily

||u||D1 ≤ c3||f ||L2
η

with c3 independent of ε.

Remark 23 The choice made for η is such that

η < εδ, η < ε
√
2,

for values of δ for which Theorem 1 is valid. This means that as x → −∞
(A∗ − 1, B∗), and, as x → +∞ (A∗, B∗ − 1) tend exponentially to 0 faster than
e−η|x|.

In fact, Lg has the same properties as the operatorMi in the proof of Lemma
7.3 in [4], see also [6]: Lg is Fredholm with index -1, when acting in L2

η, for η
small enough. Lg has a trivial kernel, and its range is orthogonal to B∗, with
the scalar product of L2(R).

7.3 Properties of Mg

We saw that Mg is Fredholm with index 0. Furthermore the derivative of the
heteroclinic solution belongs to its kernel:

Mg

(
A′

∗
B′

∗

)
=

(
−A

(5)
∗ +A′

∗ − (A3
∗)

′ − gB2
∗A

′
∗ − gA∗(B2

∗)
′

ε−2B′′′
∗ + [B′

∗ − gA2
∗B

′
∗ − (B3

∗)
′ − gB∗(A2

∗)
′]

)

=

(
0
0

)
. (84)

We show below (see section 7.3.1) that the kernel of Mg, is one dimensional,
then this implies that the range of Mg needs satisfy the orthogonality with
only one element. In fact, because of selfadjointness in L2, the range of Mg is
orthogonal in L2(R) to

(A′
∗, B

′
∗) ∈ L2

η.
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7.3.1 Dimension of kerMg

Any element ζ(x) in the kernel lies, by definition, in L2
η, hence ζ(x) tends towards

0 exponentially at ±∞. Near x = ±∞ the vector ζ(x) ∼ ζ±(x) should verify

M±
∞ζ±(x) = 0

where there are only 2 possible good dimensions (on each side). This gives a
bound = 2 to the dimension of the kernel ofMg. Let us show that dimension 2 of
kerMg implies non uniqueness of the heteroclinic, which contradicts Theorem
1, hence the only possibility is that the dimension is one.

Let us choose arbitrarily g0 and assume that the kernel of Mg0 consists in

ζ0(x), ζ1(x)

where ζ0 = (A′
∗, B

′
∗)|g0 and let us decompose a solution of (1) in the neighbor-

hood of g0 as

U = Ta(U
(g0)
∗ + a1ζ1 + Y ), (85)

where Ta represents the shift x 7→ x + a, where a, a1 ∈ R, and Y belongs
to a subspace transverse to kerMg0 . Let us denote by Q0 and P0 = I − Q0,
projections, respectively on the range ofMg0 , and on a complementary subspace
(Q0 may be built in using the eigenvectors ζ∗0, ζ

∗
1 of the adjoint operator M∗

g0).
Let us denote by

F(U, g) = 0

the system (1) where we look for an heteroclinic U for g 6= g0. Then, we have

F(U
(g0)
∗ , g0) = 0,

DUF(U
(g0)
∗ , g0) = Mg0 ,

and since
Mg0ζj = 0, j = 0, 1,

using the equivariance under operatorTa, we obtain (denoting F0 = F(U
(g0)
∗ , g0)

and [..](2) the argument of a quadratic operator)

0 = Mg0Y + (g − g0)∂gF0 +
1

2
D2

UUF0[a1ζ1 + Y ](2) +

+O(|g − g0|[|g − g0|+ |a1|+ ||Y ||] + ||Y ||3).

The projection Q0 of this equation allows to use the implicit function theorem
to solve with respect to Y and then obtain a unique solution

Y = Y(a1, g),

with

Y = −(g − g0)M̃g0

−1
Q0∂gF0 −

1

2
M̃g0

−1
Q0D

2
UUF0[a1ζ1]

(2) +

+O(|g − g0|(|g − g0|+ |a1|) + |a1|3)).
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Then projecting on the complementary space, (only one equation since we work
in the subspace orthogonal to ζ∗0), we may observe (see the proof below) that
P0∂g0F0 = 0 and then obtain the ”bifurcation” equation as

q(a1, g − g0) = O((|g − g0|+ |a1|)3),

where the function q is quadratic in its arguments and

q|g=g0ζ1 =
1

2
P0D

2
UUF0[a1ζ1]

(2).

This equation is just at main order a second degree equation in a1 depending on
g− g0. Provided that the discriminant is not 0, the generic number of solutions
is 2 or 0. If the discriminant is 0 for g = g0, we just go a little farther in g,
and obtain a non zero discriminant, since the discriminant cannot stay = 0,
because of the analyticity in g of the heteroclinic. This is true except for a
set of isolated values of g. We can then use the implicit function theorem for
finding corresponding solutions for the system with higher order terms. In fact

we already know a solution, corresponding to U
(g)
∗ = U

(g0)
∗ + (g − g0)∂gU

(g0)
∗ +

h.o.t. which corresponds to specific values for a1 and Y, of order O(g − g0). It
then results that there is at least another solution of order O(g − g0), so that
there exists another heteroclinic, in the neighborhood of the known one (then
in contradiction with Theorem 1).

Remark 24 The above proof with only 1 dimension in the Kernel, provides

Y = −(g − g0)M̃g0

−1
∂gF0 + O((g − g0)

2), which gives a unique heteroclinic.
Since we found only one heteroclinic, this shows that the kernel is of dimension
1.

7.3.2 Proof of P0∂gF0 = 0

Lemma 25 Any (u, v) in the kernel of Mg satisfies
∫

R

A∗B∗(B∗u+A∗v)dx = 0,

and ∂gF0(U∗, g) = (A∗B2
∗ , A

2
∗B∗) belongs to the range of Mg, hence P0∂gF0 =

0.

Proof.
Differentiating with respect to g the system (1) verified by the heteroclinic,

we obtain

Mg

(
∂gA∗
∂gB∗

)
=

(
A∗B2

∗
A2

∗B∗

)
= ∂gF0(U∗, g),

hence (A∗B2
∗ , A

2
∗B∗) belongs to the range of Mg. When (u, v) ∈ kerMg, then

(u, v) ∈ kerM∗
g where Mg = M∗

g, when the adjoint is computed with the scalar
product of L2, hence

∫

R

A∗B∗(B∗u+A∗v)dx = 0. (86)
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Hence, the eigenvectors ζ∗0, ζ
∗
1 of the adjoint M∗

g (the orthogonal of this 2-
dimensional eigenspace is the range ofMg), are orthogonal to ∂gF0 = (A∗B2

∗ , A
2
∗B∗)|g0

in L2.

A Appendix

A.1 Monodromy operator

Let us prove the estimate for the monodromy operators. We prove the following

Lemma 26 For η0δ ≤ A∗ ≤ 1, and α−1 ≥ (1+δ2)2 and the following estimates
hold

||S0(x, s)|| ≤ eσ(x−s), −∞ < x < s

||S1(x, s)|| ≤ e−σ(x−s), −∞ < s < x

with

σ =
α1/2δ1/2

21/4
.

We start with the system

x′
1 = λrx1 + λix2

x′
2 = −λix1 + λrx2

where λr and λi are functions of x. When η0δ ≤ A∗ ≤ 1, α−1 ≥ (1 + δ2)2, we
have, for ε small enough (see (16))

λr ≥ α1/2δ1/2

21/4
= σ.

Now we have
(x2

1 + x2
2)

′ = 2λr(x
2
1 + x2

2)

hence
(x2

1 + x2
2)(x) = e

∫
x
s

2λr(τ)dτ (x2
1 + x2

2)(s),

which, for x < s, leads to

√
(x2

1 + x2
2)(x) ≤ eσ(x−s)

√
(x2

1 + x2
2)(s).

The proof is then done for the operator S0. The estimate for S1 is obtained in
the same way.

Remark 27 We have

S0(x, s) = e
∫

x

s
λr(τ)dτ

(
cos(

∫ x

s
λi(τ )dτ ) sin(

∫ x

s
λi(τ )dτ )

− sin(
∫ x

s λi(τ )dτ ) cos(
∫ x

s λi(τ )dτ )

)
.
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A.2 Computation of the system with new coordinates

Let us look for the system (10) writen in the new coordinates, first in forgetting
quadratic and higher orders terms

B0x
′
1 =

(λ2
r + λ2

i )

4λr

(
A1 +

(1 + δ2)B0B1

Ã∗

)
+

3λ2
r − λ2

i

4λr(λ
2
r + λ2

i )
A3

+
A2

2
+

(1 + δ2)

2Ã∗
B2

0ε
2
(
δ2(Ã∗

2
−B2

0) + 2(1 + δ2)Ã∗Ã0

)
− (λ2

r − λ2
i )Ã0

= B0f1 +
(λ2

r + λ2
i )

4λr
B0(x1 + y1) +

A2

2
+

1

4λr
A3,

λiB0x
′
2 = − (λ2

r + λ2
i )

4

(
A1 +

(1 + δ2)B0B1

Ã∗

)
− λ2

r − 3λ2
i

4(λ2
r − α)

A3

− (λ2
r − λ2

i )

4λr

(
A2 +

(1 + δ2)B2
0ε

2

Ã∗
δ2(Ã∗

2
−B2

0)

)

− 1

4λr
(λ2

r + λ2
i )

2Ã0

= λiB0f2 −
(λ2

r + λ2
i )

4
B0(x1 + y1)−

(λ2
r − λ2

i )

4λr
A2

+
1

4
A3 −

1

4λr
(λ2

r + λ2
i )

2Ã0,

with

f1 =
ε2δ2B0(1 + δ2)(Ã∗

2
−B2

0)

2Ã∗
,

f2 = −ε2δ2B0(1 + δ2)(λ2
r − λ2

i )(Ã∗
2 −B2

∗)

4λrλiÃ∗
,

hence

x′
1 = f1 + λrx1 + λix2, (87)

x′
2 = f2 − λix1 + λrx2,

and in the same way

y′1 = f1 − λry1 + λiy2,

y′2 = −f2 − λiy1 − λry2, (88)

z′1 =
2ε2δ2(Ã∗

2
−B2

0)

Ã∗
=

2f1

(1 + δ2)B0

,

B′
∗ = − (λ2

r − λ2
i )

(1 + δ2)B0Ã∗
A3 + Ã∗B0z1.
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We notice that the following estimates hold

|f1| ≤ B0ε
2δ2

Ã∗
≤ B0ε

2δ

α
, (89)

|f2| ≤ B0ε
4δ2

Ã∗
2 ≤ B0ε

2δ.

A.2.1 Full system in new coordinates

We intend to derive the full system (1) with coordinates (x1, x2, y1, y2, B0, z1).
Differentiating (19) and (20) we see that we respectively need to add to the
previous expressions (87) for x′

1 and x′
2

1

B0

{(
Ã∗

2
√
2λr

)′

Ã0 +

(
(3λ2

r − λ2
i )

4
√
2λrÃ∗

)′

A2 + ε2

(
(1 + δ2)2B2

0

2Ã∗
2

)′

A3 +

(
(1 + δ2)B0

2Ã∗

)′

B1

}

−ε2
(1 + δ2)2B0

2Ã∗
2 [3Ã∗Ã0

2
+ Ã0

3
] +

B0ε
2(1 + δ2)2Ã0

2

2Ã∗
− B1

B0
x1.

and

1

B0

{
−
(

Ã∗

2
√
2λi

)′

Ã0 −
(
(λ2

r − λ2
i )

4λrλi

)′

A1 −
(
(λ2

r − 3λ2
i )

4
√
2λiÃ∗

)′

A2 +

(
ε2(1 + δ2)3B3

0

4λrλiÃ∗

)′

B1

}

+
1

B0

(
1

4λrλi

[
1− (λ2

r − λ2
i )

2

Ã∗
2

])′

A3 −
1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
[3Ã∗Ã0

2
+ Ã0

3
]

−ε4B3
0(1 + δ2)4

4λrλiÃ∗
Ã0

2 − B1

B0
x2.

We then arrive to the system (24,25,26,27).
We observe that (using (13))

Ã∗
′
= − (1 + δ2)B0

Ã∗
B1

(λ2
r)

′ = − (1 + δ2)B0B1√
2Ã∗

(1− ε2
√
2(1 + δ2)Ã∗)

(λ2
i )

′ = − (1 + δ2)B0B1√
2Ã∗

(1 + ε2
√
2(1 + δ2)Ã∗)

(
Ã∗

2
√
2λr

)′

= a1B0B1, |a1| ≤
c

Ã∗
3/2

, (90)

(
Ã∗

2
√
2λi

)′

= a2B0B1, |a2| ≤
c

Ã∗
3/2

, (91)
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(
− (λ2

r − λ2
i )

4λrλi

)′

= b2B0B1, |b2| ≤
cε2

Ã∗
3 , (92)

(
(3λ2

r − λ2
i )

4
√
2λrÃ∗

)′

= c1B0B1, |c1| ≤
c

Ã∗
5/2

, (93)

(
− (λ2

r − 3λ2
i )

4
√
2λiÃ∗

)′

= c2B0B1, |c2| ≤
c

Ã∗
5/2

, (94)

ε2

(
(1 + δ2)2B2

0

2Ã∗
2

)′

= d1B0B1, |d1| ≤
c

Ã∗
3 , (95)

(
1

4λrλi

[
1− (λ2

r − λ2
i )

2

Ã∗
2

])′

= d2B0B1, |d2| ≤
c

Ã∗
3 , (96)

(
(1 + δ2)B0

2Ã∗

)′

= e1B1, |e1| ≤
c

Ã∗
3 (97)

(
ε2(1 + δ2)3B2

0

4λrλiÃ∗

)′

= e2B0B1, |e2| ≤
c

Ã∗
3 , (98)

with c independent of ε and δ ∈ [δ0, δ1].

A.3 Elimination of z1

A.3.1 System after scaling

After the scaling (30) our system (24,25,26,27) takes the form

X
′

= L0X + B0F0 +B01(X,Y ) + z1M01(X,Y )

+z1
2B0n0 +C01(X,Y ),

Y
′

= L1Y +B0F1 +B11(X,Y ) + z1M11(X,Y )

+z1
2B0n1 +C11(X,Y ),

where F0, F1,n0,n1 are two-dimensional vectors M01,M11 are linear operators
in (X,Y ), B01,B11 are quadratic and C01,C11 are cubic in (X,Y ), all functions
of B0. More precisely we have

F0 =

(
f1

αδB0
f2

αδB0

)
, F1 =

(
f1

αδB0

− f2
αδB0

)
, |Fj | ≤ c

ε2

α2
,

n0 =
ε2δ

α

(
e1Ã∗

2

e2Ã∗
2
B0 − b2(1 + δ2)Ã∗B2

0

)
,

M01(X,Y ) = εδ

(
m01(X,Y )
m02(X,Y )

)
,
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m01(X,Y ) = Ã∗B0

(
a1Ã0 + c1A2 + (d1 − 2e1(1 + δ2)ε2

B0

Ã∗
)A3 −

x1

B0

)
,

m02(X,Y ) = Ã∗B0

(
−a2Ã0 + c2A2 + (d2 − 2e2(1 + δ2)ε2

B2
0

A∗
)A3 −

x2

B0

)

+Ã∗B
2
0b2(x1 + y1) + (1 + δ2)2ε2

B3
0

Ã∗
b2A3,

B01(X,Y ) = αδ

(
b01(X,Y )
b02(X,Y )

)
,

b01(X,Y ) = −ε2
(1 + δ2)(2 − δ2)B0

2Ã∗
Ã0

2

+ e1
ε4(1 + δ2)2B0

Ã∗
2 A3

2

−ε2
(1 + δ2)B0

Ã∗
A3[a1Ã0 + c1A2 + d1A3 −

x1

B0
],

b02(X,Y ) = − 1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2

+ e2
ε4(1 + δ2)B2

0

Ã∗
2 A3

2

−ε2
(1 + δ2)B0

Ã∗
A3[−a2Ã0 + b2B0(x1 + y1) + c2A2 + d2A3 −

x2

B0
],

C01(X,Y ) = α2δ2Ã0

3


 −ε2 (1+δ2)B0

2Ã∗
2

− 1
4λrλiB0

(
1− ε4B4

0(1+δ2)4

Ã∗
2

)

 .

n1, M11, B11, C11 are deduced respectively from n0, M01,B01, C01 in chang-
ing (a1, c1, b2, d2, e2) into their opposite.

A.3.2 System after elimination of z1

Let us replace z1 by z10+Z(X,Y ,B0) in the differential system for (X,Y ). The
new system becomes (notice that B0 is in factor of the ”constant” terms)

X
′

= L0X +B0F0 + L01(X,Y ) + B01(X,Y ),

Y
′

= L1Y +B0F1 + L11(X,Y ) + B11(X,Y ),

which is (33) with
F0 = F0 + z10

2
n0,

L01(X,Y ) = z10M01(X,Y ),

B01(X,Y ) = B01(X,Y ) + Z(X,Y )M 01(X,Y ) +C01(X,Y )

+2z10Z(X,Y )B0n0 + Z(X,Y )2B0n0.
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In using estimates (23), (90) to (98), it is straightforward to check that

|F0|+ |F1| ≤
cε2

α4
,

|M01(X,Y )| ≤ c
εδ

Ã∗
(|X|+ |Y |),

hence
|L01(X,Y )|+ |L11(X,Y )| ≤ c

ε

α2
(|X|+ |Y |).

For higher order terms we have

|B01(X,Y )| ≤ cα(|X |+ |Y |)2,

|2z10Z(X,Y )n0| ≤ c
ε2

α2
(|X |+ |Y |)2,

|Z(X,Y )M01(X,Y )| ≤ cε(|X|+ |Y |)3,
|Z(X,Y )2n0| ≤ cε2(|X|+ |Y |)4,
|C01(X,Y )| ≤ cα(|X |+ |Y |)3,

hence, choosing α small enough and for

|X|+ |Y | ≤ ρ, (99)

we obtain

|B01(X,Y )|+ |B11(X,Y )| ≤ c(α+
ε2

α2
)(|X |+ |Y |)2.
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