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Parc Valrose, 06108 Nice cedex 2, France

iooss.gerard@orange.fr

Abstract

A six-dimensional reversible normal form system occurs in Bénard-
Rayleigh convection between parallel planes, when we look for domain
walls intersecting orthogonally (see Buffoni et al [1]). We prove analyt-
ically the existence, local uniqueness, and analyticity in parameters, of
a heteroclinic connection between two equilibria, each corresponding to
a system of convective rolls. We prove that the 3-dimensional unstable
manifold of one equilibrium, intersects transversally the 3-dimensional
stable manifold of the other equilibrium, both manifolds lying on a 5-
dimensional invariant manifold. We also study the linearized operator
along the heteroclinic, allowing to prove (in another paper) the persis-
tence under perturbation, of the heteroclinic obtained in [1].

Key words: Reversible dynamical systems, Invariant manifolds, Bifurcations,
Heteroclinic connection, Domain walls in convection

1 Introduction and Results
Let us study the following reversible system in R®

AW = A1 - A% —¢B?) (1)
B’ = &B(-1+gA%+ B?),

where the coordinates in RS are Z = (Ag, A1, Az, A3, B, B1) = (A4, A’ A", A" B, B').
This system occurs in the search for domain walls intersecting orthogonally, in a

fluid dynamic problem such as the Bénard-Rayleigh convection between parallel
horizontal plates (see subsection 1.1 and all details in [1]). The heteroclinic we

are looking for, corresponds to the connection between rolls on one side and

rolls oriented orthogonally on the other side.



We would like to find analytically a heteroclinic connection (g > 1, € small)
such that

Ai(z),Bi(z) > 0,

LI Rk

By a variational argument Boris Buffoni et al [1] prove the existence of such
an heteroclinic orbit, for any g > 1, and ¢ small enough. This type of elegant
proof does not unfortunately allow to prove the persistence of such heteroclinic
curve under reversible perturbations of the vector field. This is our motivation
for producing analytic arguments, proving such an existence, uniqueness and
smoothness in parameters (e, g) of this orbit, however for limited values of g,
fortunately including physical interesting ones. Then we study the linearized
operator along the heteroclinic curve, allowing to attack the problem of existence
of orthogonal domain walls in convection (forthcoming paper).

After some basic consideration on the system, a first part of the paper (sec-
tions 4, 5, 6) is devoted to the proof of Theorem 1. Then section 7, is devoted
to the study of the linearized operator along the heteroclinic, some properties of
which are necessary for the forthcoming proof of existence of orthogonal domain
walls in convection.

We set § = (g—1)'/2. The idea here might be to use the arc of equilibria A%+
B? = 1, which exists for § = 0, connecting end points M_ = (1,0) and M, =
(0,1), and to prove that for suitable values of §, the 3-dimensional unstable
manifold of M_ intersects transversally the 3-dimensional stable manifold of
M, both staying on a 5 dimensional invariant manifold Ws. However, for § = 0
the situation in M is very degenerated, with a quadruple 0 eigenvalue for the
linearized operator, while it is only a double eigenvalue in M_. Then we are not
able to prove, for ¢ close to 0, that the 3-dimensional unstable manifold of M_
exists from B = 0 until B reaches a value close enough to 1.

The strategy here consists to keep in mind that, after changing the coordi-
nate x in T = ez, the limit € — 0 of the system (1) gives a non C! heteroclinic
solution such that (i) for z running from —oo to 0, then (A, By) varies from

(1,0) to (0, %) on the ellipse A% + gB2 = 1, while (ii) for z running from 0
to +oo, then (A, By) varies from (0, ﬁ) to (0,1) in satisfying the differential
equation (see the first integral (3)).

By =—(1-B?).

"=

The major difficulty in the proof of Theorem 1 is to prove the existence of
the 3-dim unstable manifold of M_ until Ay reaches a neighborhood of 0, and
to prove the existence of the 3-dim stable manifold of M, until By reaches

a neighborhood of 1/,/g = 1/V1+ 6%. The usual proofs of existence of such
invariant manifolds give only local results, so we need to use here a first integral
of the system, expressing that both manifolds lie on a 5-dimensional invariant



manifold, and then we are able to extend sufficiently the domain of existence of
these manifolds. Indeed we prove the following

Theorem 1 Let us choose 0 < 69 < 1/3, then for dop < § < 0.825, n, such that
for € small enough with o = €2/, where 0 < o = [(1 4 6%)n — 1]*/2, the 3-dim
unstable manifold of M_ intersects transversally the 3-dim stable manifold of
M. The connecting curve which is obtained is locally unique (it is the only
curve for this intersection). Moreover its dependency in parameters (€,6) is
analytic. In addition we have B(x) and B'(x) > 0 on (—o0, +00), the principal
part of B(x) being given

i) for © € (—00,0], by

1
Bo(z - )
(=) (14 £)1/2 cosh(zg — edz)
1
coshzg = ————m—0y
Boo(1+ % )1/2
Boo = Bo(0) = (1—ngs*)"/2,

ii) for x € [0,+00), by

B (:17) - tanh(ax/ﬁ) + BOO
"7 1+ Boo tanh(ez/v2)

For x — —oo we have (Ag — 1, A1, As, A3, By, By) — 0 at least as %%, while
for x — +o0o, (Ao, A1, As, As) — 0 at least as _\/gw, and (Bg — 1,B1) — 0 at
least as e V2%,

Remark 2 From the form of system (1) and Lemma 10 it should be noticed
that

2edx

Ag—1—=0ase while By — 0 as €°°® for x — —o0.

In section 4 we prove at Lemma 10 the existence of the unstable manifold
of M_ = (1,0) until a neighborhood of (Ag, By) = (0,1/v/1 + 6?). Here there
is no restriction on the choice of §, except § > §g > 0.

In section 5 we prove at Lemma 17 the existence of the stable manifold of
M, = (0,1) until (backward direction) a neighborhood of (0,1/v/1 + §°). Here
there is a restriction § < 0.95, for being able to reach the end point.

In section 6 we need the restriction § < 0.825 for saving a transverse inter-
section of the two manifolds. This ends the proof of Theorem 1.

In section 7 we give in Lemma 23 the properties of the linearized operator
along the heteroclinic, which are necessary to prove a persistence result under

a reversible perturbation for the heteroclinic in the 8-dimension space (with
Be ).

Remark 3 It should be noticed that we show that, in the middle of the hetero-
clinic, Ag(0) ~ ad which is very close to 0. The choice of o = €*/7 results from



the proof of Theorem 1. If, one day, we are able to choose a much smaller a
for example o = /e this would imply important improvements for the proof of
orthogonal domain walls (however see Remark 16).

Remark 4 Using symmetries of the system: A — +A, B — +B and reversibil-
ity symmetry: (A(z), B(x)) — (A(—z), B(—x)), we find 8 heteroclinics. Two
are connecting M_ to My with opposite dynamics, two others connect —M_ to
My, two connect M_ to —My, and two connect —M_ to —M,. The one which
interests us is the only one connecting M_ to M, with the dynamics running
from M_ to M.

1.1 Origin of system (1)

The Bénard-Rayleigh convection problem is a classical problem in fluid me-
chanics. It concerns the flow of a three-dimensional viscous fluid layer situated
between two horizontal parallel plates and heated from below. Upon increasing
the difference of temperature between the two plates, the simple conduction
state looses stability at a critical value of the temperature difference corre-
sponding to a critical value R, of the Rayleigh number. Beyond the instability
threshold, a convective regime develops in which patterns are formed, such as
convective rolls, hexagons, or squares. Observed patterns are often accompanied
by defects.

Mathematically, the governing equations are the Navier-Stokes equations
coupled with an equation for the temperature, and completed by boundary
conditions at the two plates. Observed patterns are then found as particular
steady solutions of these equations. Very recently, the existence of orthogonal
domain walls has been studied by [1], where the authors handle the full governing
equations, showing that the study leads to a small perturbation of the reduced
system of amplitude equations (1).

Starting from a formulation of the steady governing equations as an infinite-
dimensional dynamical system in which the horizontal coordinate x plays the
role of evolutionary variable (spatial dynamics), a center manifold reduction
is performed, which leads to a 12-dimensional reduced reversible dynamical
system (reducing to 8-dimensional after restricting to solutions with reflection
symmetry y — —y). A normal form for this reduced system is obtained, for
which, after an appropriate rescaling of the normal form, the principal part is
the system (1), with B € C, and B? replaced by |B|?. The truncation leading
to (1) allows to take B real, since its phase does not play any role at this level.
Solutions of the system (1) provide leading order approximations of solutions of
the full governing equations. In particular, the equilibrium (A4g, By) = (0, 1) of
the system (1) gives an approximation of convection rolls (in the x direction)
bifurcating for Rayleigh numbers R > R, close to R, whereas the equilibrium
(Ao, Bo) = (1,0) of the system (1) gives the same convection rolls (in the y
direction) rotated by an angle 7 /2 with the phase fixed by the imposed reflection
symmetry. A heteroclinic orbit connecting these two equilibria provides then an
approximation of orthogonal domain walls (see Figure 1). The parameter € in



(1) is such that * is proportional to R'/? — R+/?. The parameter g > 1 in (1)
is function of the Prandtl number, while other parameters, which only appear
in higher orders, are the wave numbers of the rolls, close to the critical value.

Remark 5 Values of 0 such that 0.476 < ¢ include values obtained for § in the
Bénard-Rayleigh convection problem where g is function of the Prandtl number P
(see [3]). With rigid-rigid, rigid-free, or free-free boundaries the minimum values
of g are respectively (gmin = 1.227, 1.332, 1.423) corresponding to §min = 0.476,
0.576, 0.650. The restriction in Theorem 1 corresponds to 1 < g < 1.680. The
eligible values for the Prandtl number are respectively P > 0.7404, > 0.9125, >
1.332.

Figure 1: Orthogonal domain wall
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2 Global invariant manifold W;
The first observation is that we have the first integral
2
€2(A?)" — 324" — B 4 %(A2 + B2 1)+ 2524282 = 0, (2)
ie. )
2e2 A4, A — €2 A2 — B2 + %(A% + B2 —1)2 4262 A2B2 = 0 (3)

This defines a 5-dimensional invariant maniford Ws valid for any ¢ > 0, which
contains the heteroclinic curve that we are looking for. The singular points of
this manifold are given by

Ar = Ay=A3=DB; =0,
0 = Ag(A2+(1+6*B2-1),
0 = Bo((1+6)A24+B2-1).



For 6 > 0, and since (Ag, Bo) = (0,0) or ((6* +2)~/2,+(6* +2)~'/2) do not
belong to Ws, we only find the singular points

(AOuBO) = (:l:l,O), (4)
(Ag,By) = (0,£1).

For § = 0, all singular points belong to a circle of singular points:

A3+ Bj =1. (5)

3 Linear study of the dynamics

3.1 Cased>0(g>1)
3.1.1 Neighborhood of M_ = (1,0)

The eigenvalues of the linearized operator at M_ are such that M= —2o0r
M = 252 hence

+271/4(1 +4),

+ed.

This gives a 3-dimensional unstable manifold, and a 3-dimensional stable man-
ifold.

3.1.2 Neighborhood of M, = (0,1)

The eigenvalues of the linearized operator at M, are such that M= 5% or
A\ = 2¢2, hence

+271/2(1 +4)8,
+ev/2, § = V6.

This gives again a 3-dimensional unstable manifold and a 3-dimensional stable
manifold.

All this implies that the 3-dimensional unstable manifold starting at M_
is included into the 5—dimensional manifold Ws, as well as the 3-dimensional
stable manifold starting at M is included into the 5—dimensional manifold Wis.
This gives a good hope that these two manifolds intersect along a heteroclinic
curve...provided that they still exist "far” from the end points M, and M_.
The idea is to show that this occurs when ¢ is not too small.

3.2 Linear dynamics near the arc of equilibria for § =0

Let us denote the family of fixed points as

A2+ B?=1, B, >0,



which is an arc of circle of equilibria in the (Ag, By) plane. The linearized
operator along this family is

0 1 00 0 0

0 01 0 0 0

L. — 0 0 0 1 0 0

T —-242 0 0 0 —24,B, 0 |’
0 0 00 0 1
2¢2A,B, 0 0 0 22B%2 0
and its eigenvalues are
0 double,

and A such that
M —2e2B%0% 4242 = 0.
The discriminant is
A=¢e*B—24A% =*BY 4+ 2B? — 2,
it results that ,
i)for0< B2 < B?=4(-1+V1+2%) ~1-¢"/2,ie. A, > A, ~ =5, we
have A < 0 and 4 complex eigenvalues

)\07 )\_07 _)\07 _)‘_07

while
ii) for B, < B, < 1, i.e. A, < A., we have A > 0 and 4 real eigenvalues

N = €2B24+\/efBi 242 >0,
two > 0, two <O,
and
iii) for B, = B, i.e. Ax = A., A =0 and two double eigenvalues

A\ = *eB,.

In all cases there are two stable directions and two well determined unstable
directions, depending smoothly on (A, B.). The eigenvector belonging to the
eigenvalue 0 is tangent to the family of equilibria.

Let us sum up the situation for the system (1) with § = 0, linearized along
the arc of equilibria:

for 0 < B, < B, we have a two-dimensional invariant subspace, associated
with two eigenvalues g, Ao, and a two-dimensional invariant subspace associated
with =g and —)\g.

When B, reaches B, the eigenvalues Ao and Ao merge in a double eigenvalue
e B, which splits in two real positive eigenvalues A, A\_ when B, < B, < 1. The
same phenomenon occurs for eigenvalues —\g and —\g which merge in —£B, and
then split in —A;, —A_. The smooth dependence in B, of the two-dimensional
invariant spaces (general result of perturbation theory of linear operators [6])
shows that these two-dimensional subspaces stay transverse to each other all
along the curve A2 + B2 = 1. We sum up these properties in the following



Lemma 6 The system (1) admits, for 6 = 0 an arc of equilibria (Ao, By) =
(A, B.), A%2 + B2 = 1. Along this arc of equilibria, the family of 2-dimensional
stable manifolds and the family of 2 -dimensional unstable manifolds belong to
the 5-dimensional manifold Wy (singular along the arc of equilibria). These fam-
ilies constitute two 3-dimensional manifolds intersecting each other transversally
along the open arc (without end point M.).

Remark 7 Notice that the limit points M_ = (1,0) and My = (0,1) have a
degenerate situation, because of the multiple 0 eigenvalue. The above transver-
sality is weaker and weaker as (Ax, Bx) — (0,1) A 7serious” study is needed
since it is not obvious, for example, that the 3-dim stable manifold of M, is
obtained for  # 0 by a simple perturbation of the family of 2-dimensional stable
manifolds along the arc A2+ B2 =1, for A, > 0.

4 Unstable manifold of M

4.1 Change of coordinates

Let us fix 0 < §p < 1/3, and §; > 1, we assume, from now on

1 1
0< By <\/1-120%, 1y > ——e = —,
0 Vit V9

. 2
o S (B1+0%) ~ 1), 5 <d<a<a, ©)

and let us define new coordinates
Z:(Z;+267A17A27A37307Bl)t (7)

where Ag = E; cancels A} with

—9 —

A Y1 +62)B2, A, > éa.
In the following « is a ”small parameter”, the relative size of which, with respect
to € is precized later.

Remark 8 The occurence of A, s linked with a formal computation of an
expansion of the heteroclinic in powers of €, which gives A, as the principal part
of Ao, walid for By < (1+6*)7Y/2 = 1/,/g. The hope is to build the unstable

manifold until this limit value.

Remark 9 We choose the conditions on 6, g < § < 01 in the purpose to
include known computed values of the coefficient g = 1+ 62, in the convection
problems, with different boundary conditions (see [3]).

We prove below the main result of this section:



Lemma 10 For e small enough, o small enough and for 0 < 69 < 1/3, and

§ € [60,01], a2 =n2(1+46%) -1,

2 < 50a2,5:a7/2,

the 3-dimensional unstable manifold of M_ exists for
0 < Bo(x) < (1 —n26*)Y?, z € (—00,0].
It sits in Wy, is analytic in (g,9), and
ed

AO = Z; + BQO(N—l/zesém)
Al = Bo(’)(;&ea&”)
A,
A2 = B00(55656m)
Ag = B00(55656x),

where ~ ~ ~
0<1—A,<cBZ A.0)=1, A, >éa.

Moreover, as x — —oo0, Ag — :4:,14171427143 are bounded by cede*9*, and By,

resp. By by ce®%®, resp. ceeO, where ¢ is a constant independent of €, 6.

Remark 11 We observe that Ag reaches a value close to 0 since ;1; reaches da
which is close to 0, while By reaches (1—136%)'/? which is close to 1/(1+6%)Y/? =
1/\/g, not close to 1.

The system (1) becomes

—~ 1+6*)B
AO/ = Al—l—wBl
A,
Al = A
Ay = Az (8)
, ~2 ~—2 3
Ay = —24, Ay —3A, Ay — Ay
B, = B
B, = 26?B.(A. — B2) +283(1+ 6%) A, BoAg + £2(1 + 62)Bo Ay

Now, we define the linear operator

0 1 0 0 0 (9B
A
0 0100 0
0 0010 0

LJZ —~2 ) (9)

—2A, 0000 0
0 0000 1
2e2(14+6%)A.By 0 0 0 0 0



for which 0 is a double eigenvalue, and such that the non zero eigenvalues satisfy
—~2
M —2e2B2(1+6%)2\2 + 24, =0. (10)

The discriminant is )
A =*Bi(1+6%)* — 24,

Our assumption By < /1 — 17352 and Z—i < § < 61, in addition with the con-
straint ]
— > (1462 (11)
o

implies
A > A
Then we have two pairs of complex eigenvalues
M =2B2(1+ 632 +iv—A

The idea is to find new coordinates able to manage a new linear operator in the
form of two independent blocs

) VDY
( N AN ) (12)
for which the eigenvalues are
A £ A,
where
202 = V24, +2B2(1 + 6%)? (13)
202 = V24, - 2B3(1 4 §2)?
N—A = EBj(1+6%)?
N+ = V24,
40202 = A

We choose a form of the linear operator as (12) for being able to have good
estimates for the monodromy operator associated with the linear operator, the

coefficients of which are functions of By € [0, /1 — 126%] (see Appendix A.1).

4.2 Estimates for the eigenvalues

First, notice that (13) and
a<(1+6%)72
imply .
A,
)\r)\i > 5
2

10



1/2
1/a 7 1/2 A o
MATT 2 N> T > SV, (14)
1 1/2 :4v1/2
93/4 7 =Ais o1/4 (15)

4.3 New coordinates

The eigenvector and generalized eigenvector for the eigenvalue 0 are :

Now we denote by
ViV VT RNV

the eigenvectors belonging respectively to the eigenvalues
Ar i, — A RN

then we define

0234 Iy,
24.° 24.°
1 0
N Ar N 1
V.h = A2 -\ s Vit = 2\, ;
_ A=) _ (2D
(1462)Bo A, (14+62)By A,
IR ESGE 2N
(1462)Bo A (1462)Bo A

and we define new coordinates as

= Bo(@1V;" + 22\ VT + Vo + 12V, + 2020 + 2121).

We observe that after eliminating zp, we still have 6 coordinates, including By
as one of the new coordinates.

Remark 12 We notice that we put By in front of the new coordinates, as this
results from the analysis, and shorten the computations.

11



We have now

— Ar(A7 = 3A7) Xi(3A7 = A7)

Ao = —Bo —3 (r1 —y1) —BoTl(iﬂz-i-yz)
2A, 2A,
A = Bo(Il + yl) — (1 + 52)3321
Ay = MNBo(z1 —y1) + NiBo(wa + y2) (16)
As = (N =A)Bo(x1 + 1) + 20N Bo (2 — y2)
2 _ )2 —
0 = _%AQ + A*B()ZO
(14 6%)BoA.
2 _ )2 —
Bl = _MAEX + A*Bozlu

1+ 62)3014*
which needs to be inverted. We obtain

(24 o, B2

B = — — Tt A 17
01 4A7« 0 4)\T(A$ —i—A?) 2 ( )
A 1+ 6B, A2 —\?
+_1+( +~) Bl+( TN27,)A3,
2 24, .
A2+ 20)— A2—-3X2
/\lB — _ T ] _ T 7 A 18
02 4 0 4()\3 +/\§) 2 ( )

A=\ 1+46*)B 1 A2 —P)?
_( 7‘4/\ z) <A1+( Av) 0B1>+4)\ 1_( r;lv2z) 1437

* *

(A2 + /\?)Z 3A2 — 22

B, = — — A 19
oY1 o T Lo (19)
A 1+6%)B 22—\
_1+( +07) OBl+( TNQZ)A&
2 24, .
A2+ — A2—3)2
\:B = - TP Ay - L ~A 20
0Y2 1 0 102509 2 (20)
2 _ 42 2 2 _ 4232
+(AT47AAZ) (A1+7(1 Jlé,)BoBl) —41 (1—7(’\TN;\1) )Ag,
T A* T A*
2 2
BQZl = (/\T—/\l)wA3 + :Bl.
(14 6%)BoA. A,

Let us now define

12



w-(2)rer-(3)
T2 Y2

then, for € small enough, we obtain the following useful estimates

—~1/2 12 9
ek o ol/a g A £
57 < AN\ <274, ,A*Z&lza,
~ By
Aol < 35 (IX[+[Y]),
/
A,
[ Al < Bo(IX|+[Y]) + 2B§ ],
—~1/2
[A2| < 2BoA. (IX[+[Y]), (21)
[A3] < 2BoAL(IX|+ YY),

4.4 System with new coordinates

The system (8) writen in the new coordinates is computed in Appendix A.2. It
takes the following form

I/ = fl + )\Txl + A»L'IQ (22)
+B Ag + 1Ay +dyAg + By L
1 |a1A4p T C1A2 143 elBo BOI1
N B
0P P)By g (4B
24, 2A*
—~ 1
zy = fo— Nz + M2+ By {—ang + b2A1 4+ coAs + da2As + e By — 3#302} (23)
0
1 —~2 —2 1 (A2 =232\ —s
(34, —2&*B*1+6H*) Ay - ——— (1= ) A,
AN AA, By ( By +8') Ay 4X\,AiBo i’ ’
v = fi— Ay Ny + (24)
By 1
+By |:_Q1AO —c1As +di1As + elB—O - B_Oy1:|
N N N
—52(1+5 )(i g )BOA()?_E 2(1+0 )BOAO37
2A, QA*
—~ 1
Yo = —fo—Xiy1 — A\y2 + By [—%Ao —boA1 + oAy — doAs + €281 — B#yz} (25)
1 2 —2 1 (A2 =222\ —3
——(3A, —2e*B4(1 24) A (1 - A
+4)\TAZA*BO (3 3 0( + 5 ) ) 0 + 4)\T)\iBO Z;Q 0 >

13



By = —e2(1+ 52)30% + A, Boz,
with
252 2y 72 2
 e26°By(1+ 6%) (A, — BR)

fl 21

)

[y 0B ) — A, - B3
AN N AL

coefficients a;, bj, ¢;, d;, e; are defined and estimated in Appendix A.2 in (78,79),
(80,81,82), (83,84), (85,86). Here 1?0, Ay, As, Az, By should be replaced by their
(linear) expressions (16) in coordinates (z1,x2,y1, Y2, z1) with coefficients func-
tions of By. The system above should be completed by the differential equation
for z;. In fact we replace the equation for z{ by the direct resolution of the first
integral (3) with respect to z1 (see below).

4.5 Resolution of (3) with respect of z;(X,Y, By)

For extending the validity for the existence of the unstable manifold of M_ we

need to replace the differential equation for z; in using instead the first integral
(3). This leads to

2
B} = {A.Byz — 82@1‘13}2 =2e2A1 A3 — 2 A2 +

2 —~—~ o~ — — —~
%(_5233 4 2AL Ay + Ay )? + €262 (A, + Ao)?B2,

hence
9 —2 6°B2 2¢2 e4(1 4 6%)2 e
i = il I8 e - S - S
2A* 0 A* 0
25214* —~2 25214* -3 52 -4
+ AO Ao —AO ; (26)
B? B? 283

where we may observe on the r.h.s., that

1
2;1:2 2@2,
hence -
6°B 1
8252 S 8252(1 + T(Q)) S 8262(1 + —2),

which is independent of (X,Y"). Moreover there is no linear part in (X,Y). For
further estimates, we make a new scaling

(vazl) = E(S(Y,?,Z_l) (27)

14



We notice that (21) implies
2¢? 4527 (I L IV 2
|5 As(@r +yn)] < ce"0" AL(IX] + [Y])

et(1+ 62)2
|———
A,

23.2

B

Af| < e=°3*(IX| +[Y])?

A} < " A(X] +7]))

so that the factors in the estimates are such that

ce26% A, ce? e85t €26, 583 £5/2§3/4
NQST; — 4 §C~27 —5/2 SC ——2

£25% A, A 22524, A 2624, A,

¢ being independent of € and 0. Now defining Z1g such that

S def 5233 1/2 1
1 S Z]_O(BQ) = (1 + TQ) S —y for « S 1/\/5, (28)
24, @
It results that
2 2 e = 1\ 2 /253 1\3 e = 7\4
zi =70 + O | =(X|+|Y])" + ———( X[+ [Y])” + — (X[ + [Y])
and using
—~2
s 11— A,
07 14462
we also have
1 24, 214 624, A,
7100 94, +6°B2 52 -8
so that
—9 1/2
o L A, 2 . £5/253/4 - 2 .
Z1 = Zi(Bo) {1 + 52 @ (A:OX' +Y))? + e (IX]+[Y])* + ?(|X| + (Y]

— — 1/2 — —
— =0(Bo) {1+ O[(X| +[T)2}*, for [X] + V] < p, p fixed,

15



and taking the square root, we obtain (using % < evdo)
with L L

Z(X,Y,By) = O((|X] +[Y])%,
Z(X,Y, By) being defined in the ball

X[+ Y] < p,

provided that € is small enough and where p is of order 1, not necessarily small
with respect to € and . Moreover Z is analytic in its arguments and is at least
quadratic in (X,Y).

Since 2 contains Zz7g which is independent of (X,Y), the new system has
new ”constant terms” and ”linear terms”, appearing as perturbations of the
former ones.

4.6 System where 2, is eliminated

The new system is computed in Appendix A.3. We obtain (notice that By is in
factor of the ”constant” terms)

-/

X LQY + BoFo + Lo1 (7, 7) + Bo1 (7, 7), (30)
—

Y = L1?—|—Bof1 +£11(Y,?) +311(Y,?),

/\r /\i _)\7‘ )\z
w5 3) e (%)

and with the following estimates, for terms independent of (X,Y)

where

ce
ol +17 < 5, 1)
for terms which are linear in (X,Y)
. — R —
Lot (X, V)] + [£21(X, V)| < e (|X] +[Y]), (32)

and for terms at least quadratic in (X,Y), choosing o small enough and for
+

X]+|

sl
IN

P,

we obtain

— — — — e
1Bor (X, V)| + B (X, V)| < —

< 7 (IXI+ V)™ (33)
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4.7 Integral formulation for solutions bounded as ©+ — —o©

Let us introduce the monodromy operators associated with the linear operators
Lo, L; which have non constant coefficients (functions of By (see [2]):

0
%So(x,s) = LoSo(z,s), So(x,s1)S0(s1,82) = So(x,s2), Sol(z,z) =1,

0
%Sl(x,s) = L;Si(x,s), Si(x,s1)S1(s1,82) = S1(w, s2), S1(z,z) =1.

The coeflicients of operators Lo, Li; are functions of By, so we need the Lemma

28 in Appendix A.1, with the following estimates, valid for 0 < By < 4/1 — n(2)62,
a<(1+06%)72:

ISo(z )l < @9, —oo<z<s<0, (34)
1S1(z,s)|| < e 79 —so<s<a<O, (35)
with
a1/261/2
UZW

We are looking for solutions of (30) which stay bounded for z — —oo. Then,
thanks to estimates (34) (35), the system (30) may be formulated as

X(z) = So(x,O)YO—i—/OISO(x,s)GO(s)ds (36)
Y(z) = /_w Si(z, s)G1(s)ds

GO(S) déf BoFo + £01(Y, ?) + BOl(Y, ?),
Gy (S) déf BoF1 + Ell(Y, ?) + Bll(Y, ?)

where X,Y and By are bounded and continuous functions of s, By tending
towards 0 as s — —o0.

4.8 Strategy

The idea is

i) solve (36) with respect to (X,Y) in function of (Xo, Bo);

ii) solve the integro-differential equation for By, with Bg|z=0 = Bo(0).

Then the unstable manifold of M_ is given (see [2]) by Y|.—0, 21|z=0 in terms
of Xo, Bo(0). The result will be valid for an interval [0, 1/1 — 526%] for By and
it appears that Ag is then very close to 0 at this end point. The hope is that
this should allow to compute its intersection with the 3-dim stable manifold of

M, which computation should be valid for By in the interval [y/1 — 5362, 1].

17



4.9 Resolution for (X,Y)

Let us define, for k > 0
C? = {X € C°(~00,0); X(z)e "* is bounded}
equiped with the norm

X[« = sup [X(z)e ™.

(_OO)O)

We observe that, provided that kK < o

RT

|/ S1(z,s)e™ds| <

K+o
|So(z,0)e | < elo™mz 4 <0,

K/I
z < 0.

|/Soxs”5ds|< <

O'—H

Let us choose
Kk <

ol 9

then .
e/‘ﬁ?l eK/I
K < _9l/4
|/_OO S1(z, s)e™ds| < . 2 gl
e/‘ﬁ?l

¢ K 5/4
|/O So(x, s)e™ds| < 2 gl x<0

Let us assume that
[[Bollx <m

holds with m independent of €, which needs to be proved at next subsection.
Hence, the implicit function theorem applies for (X,Y) in the function space
C?, provided that we can choose k < Z and ||X||,. +||Y||« < p. Using the above
estimates for coeflicients, we obtain

_ _ 5/4 _ _
|X($)67Kz| < |X0| + WHBofo —I—E()l(X,Y) +BOI(X;Y)||;<7
hence
_ _ 5/4 _ _
[ X < [Xo| + WHBO}'O + Lo1(X,Y) + Bo1 (X, Y)|[, (37)
«

and in the same way

21/4

1Yl < 1BoF1 + L11(X,Y) + Biu(X,Y) |- (38)

al/25l/2

18



Remark 13 The choice of k is governed by the behavior of By(x) as x — —oo,
which is studied at next subsection.

For € small enough, estimates on F1, Bi1, (38) and || X||, + [|Y]]x < p, we
def

obtain, with S = || X||x + |||«
em Se eSp
/25172 * ab/2§1/2 * ast/?

]

S < |Xo| + [

so that (using 6 > §p > 0) for
e=a"/?, (39)

€ Ep 2/7
/2512 + s /2 < et

S(1 — ey < |Xo| + em,
which implies
S < (14Xl +m,
which leads finally to o o
1Y]],s < e(m + T Xo)), (40)
X < (14 c®T)[Xo| + em, (41)
where ¢ is a number independent of &, and |Xo| < p/2, € = a7/? small enough,

and we assume m bounded by a certain M of order 1, S < p, where p is fixed
arbitrarily, of order 1.

4.10 Resolution for B

We intend to solve the part of our system for By with By(0) = Bo|g=0.
We notice from (16) and (21) that

~ _ By——
By = edA.Bo{zio(Bo) + Z(X,Y,By)} — *6(1 + 52)70,43
A_3 - BO[5233(1+62)2(«/E_1+E)+2)\7‘)\1($_2_E)]7
As 4e2 .

2(1+8)= < —(X|+7]) < 4ev/b0(|X| + 7)),

*

so that it is clear that (see above estimates for Z)

By > 0 for By € (0,1/1—n36%),[X| + Y] < p. (42)

This is coherent with the study of the linearized system near M_ : Indeed the
principal part of the differential equation for By is

B), = £§ By A, Z15(Bo)
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which may be integrated as

1
B2 = , 43
0 (1+ %) cosh?(z¢ — edx) (43)
1

Bo(0)(1 + &)1/2°

coshzg =

which satisfies By = 0 for z = —o0, and By = By(0) for z = 0. More precisely
the differential equation for By is now (after replacing (X,Y) by its expression
found at previous subsection)

B} = 5(5211302_10(30)[1 + f(Bo)] (44)
where f(Bp) is a non local analytic function of By in C?, such that
|1 (Bo)llx < cep.
Remark 14 We may notice that we might replace cep in the estimate above,

by
cepe™ — 0 as x — —o0,

since X and Y € CY.

We are looking for the solution such that By = 0 for z = —o0, and By(0) <

\/1—n26% for x = 0. We can rewrite (44) as

2By B}
———0— = 2:4[1 + (Bo)]. (45)
BOA*Zlo (Bo)
‘We now introduce the variable v :
_ _ 2yp2
vzl 1—(1+ %5)Bj B2 1 4v

) 02—2727
14 /11— (1+2)B2 1+ & (1+0)

(Inv) = 28[1 + £(Bo))-

We observe that for  runing from —oo to 0,

so that

w = Inv is increasing from — oo to wy = Inwvg < 0.

Now let us define A continuous in its argument and such that

h(’LU) = f(BO)u
1 2ew/2

(1+5) " @Fe)

By =

20



and let us find an a priori estimate for the solution By(z), for € (—o0,0]. We
obtain by simple integration

A O
/01+h<w><s>d 220

For o small enough we have

1—cep < <1+ cep,

1
14 h(w)
hence (since w < wy, and = < 0)

(wo — w)(1 — cep) < —2edz < (wo — w)(1 + cep)

so that 9cs 9cs

—2edx —2edx

< eV L
XP(1+CEp) _exp(l_cgp)
and 26 96
vg exp( 1 —Ecapx) <w(z) <w exp(1 +€cspx)'
It finally results that we obtain an a priori estimate for
Bo(x) = Bo(Xo, Bo(0))(x) € Cy., (46)
- 1 2¢/v(x
Bo(Xo. Bo(0)(2) = )

(1+ &)1/2 1+ o))

2

2\/%exp(lfgspx) _ <1 . 52>1/2 5 < Qmexp(%x) (47)
14+ vg exp(lzac‘ipx) - 2 =7 + vg exp( 1iiipx) ’
1— /1 (1+2)B3(0)
vy = < 1.
2
L4+ /1—(1+£)B3(0)
It remains to notice that we can choose
€d
KR =
14 cep
in the proof for (X,Y’), which needs to satisfy
o 011/2\/3

We have already chosen ¢ = /2 hence

k<ed=3da"?< al/?v/5
- - -  95/4
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for a small enough, and (48) is satisfied. The a priori estimate for By al-
lows to prove that there is a unique solution of the integro-differential equa-
tion (45) which satisfies the estimate (47) (see [2]). Since By is in factor in

1716, A1, As, Az, By the behavior for x — —oo of the coordinates of the unstable
manifold, is governed by the behavior of By. The estimates indicated in Lemma
10 results from (21), (27) and(28). This ends the proof of Lemma 10. In addition
we have the following result (useful for the forthcoming persistence proof):

Corollary 15 On the unstable manifold described in Lemma 10 we have the
estimates
| Ao As
Bj(x)

cee® x € (—o0,0],

<
< (B2, + ce)e®e,

The first estimate is better than the one directly obtained with Lemma 10.
For proving it, we notice that

AoAr = LA, + AgA, + AL A, + A Ay,
and from (21) we have
A ALl < Bo(IX|+ |Y]) +2B5 A2
1/2

. 522
< Byped + 2Byed <A*2 + 0 230) + 0O(e)

< cgett?,

We also have directly
4.4, 2(1+ 6% By B},

08626(%,

IN

and from Lemma 10

—_ —
|[ApgAs | + 404 < 66251%5 < cee®0?,
aw

The second estimate results from (45), which implies for a certain ¢ > 0
|(BZ(z)e™22°%)| < ce®6e™®, with k ~ 6.

This leads to (z < 0)

0
B2(z)e 2" — B, < 0525/ e"Tdr
x

ce?d

R

Corollary 15 is proved.
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Remark 16 The above corollary allows to improve the estimates for the mon-
odromy operators So(x,s) and S1(z,s) as shown in Appendiz A.1. This allows
to avoid the division by \/a in the estimates in subsection 4.9, and finally al-
lows a better choice a = €'/3 instead of €*/7. Since this does not lead to magjor
changes in the sequel, we keep o = /7 for simplicity.

Let us define the hyperplane Hy

By = (1 - 13%).

4.11 Intersection of the stable manifold with H,

We need to give precisely the intersection of the unstable manifold with the
hyperplane By = /1 — 77362. This gives a two-dimensional manifold lying in
the 4-dimensional manifold W, N Hy. Taking into account of

A, = da
51/2 1/2
/\ra)\i ~ T%’ 5:(17/2,
—~_ 1)
AZig ~ EBOOa
Y (0)] = OE"Xo| + Boo),

we obtain a two-dimensional intersection which is tangent to a plane (parameters
T1,T3) with principal part given by

551/2
Ay = da+ WBOO(UC_l —T2)
. (146%) 5 &0
Al = E(SBOO.Il — (7\/5) 805
63/2
A2 = WBQOQ1/2E($_1 + JJ_2) + (’)(al/2€) (49)
As = V20°Byeazz 4+ O(ae)

BOO = \/1—7’]852 ~ (1+52)71/2,

Til+ 72| <p, G0<8<d1, e=a? o =ni(1+6%)—1>0,

with

and where we do not write B; since we know that this manifold lies in the 5
dimensional manifold W,.

5 Stable manifold of M,

We show the following
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Lemma 17 For e small enough, a = [nZ(1+6) — 1]/ small enough, 5o < 6 <
0.95, the 3-dimensional stable manifold of My is included in the 5-dimensional
manifold Wy, it exists for Ao, A1, A2, As in a ball of small radius n (indepen-

dent of €,a), is analytic in parameters (g,0), and reaches Bo(0) = By def

\/1-— 17352. Moreover as x — +00, (Ag, A1, Aa, A3, Bo—1, B1) — 0 as exp(—v/2ex),

ef Bg—1 1-B 1 — tanh 2
20+ 21 def 01 e _( 00)( an (ax/\/_)7 (50)
5t/ 1 + Byo tanh(ex/+/2)

|ZQ+2’1| < 0.282.

Let us define

5/ _ 51/2
and choose a new basis
1 0
_9 _9
6/5 5/2
‘/ri = ﬁ ) ‘/1_ = _ﬁ 3
V2 V2
0 0
0 0
1 0
o s
‘/7‘+ = _ﬁ 9 V;'Jr = ﬁ )
V2 V2
0 0
0 0
0 0
0 0
_ 0 0
Wl = 0 5 VvlJr = 0 5
1 1
—£v/2 V2

for defining new coordinates (x1, z2, y1, Y2, 20, 21) such that

Z=1(0,0,0,0,1,0)" + 821 V,” + 822V, + 8"y V,F + 8"y VT + 8 20W + 0 20 W,
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Ao
Ay
Ay
As

By
By

A simple resolution leads to

Z1
T2
n
Y2
20

Z1

Let us define

Ao
By
then system (1) reads as
Ay, = A,
All = A27
Ay = As,
Al —Ay
1
'U/ = yBl
B, =

With variables (51) this gives
)

5

8 (z1 + 1)
12

—7(171 —y1 + 72— y2)

2
5" (9 + y2) (51)
6/4
ﬁ(«fcl —y1 — 22+ Y2)
1+ 6/(20 + Zl)
—eV28' (29 — 21).
Ao Ay A3
2 2v25” | 225"
Aq Ao Az
T2v3? 258 2yt
Ag Ay A3
2% 2v207  2v25"
Aq As As
225?258 T 2y2s"
By —1 By
25 2¢6'\/2
Bo—1 B
28’ + 2e6'V/2'
= §(x1+y)="0u (52)

146w,

(6% + 20%v + 6u® + (1 + 6°)v?)

)

e2(1+0'v) (20"v + 60* + (1 + 6%)ou?) .

! 8 ug(u,v)
—%(961 +r2) — 27\/57
& §'ug(u,v)
E(«Tl —x2) + 72\/5 )
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6/
Y1 = ﬁ
po_ § (11 — o) — §'ug(u,v)
y2 - \/§ Y1 Y2 2\/5 )

§'ug(u,v)

+y2) + :
(yl y2) 2\/§

ed’
zh = —eV2z— 2—\/§f(u,v),

ed’
21 ev2z1 + 2—\/§f(u, v),

glu,v) = w4200+ (14 6%)0?
flu,v) = 3024804+ (1 +06%)(1+ 6'v)u?,

where the linear part is as expected.

For finding the stable manifold of M, we put the system in an integral form,

looking for solutions tending to 0 as © — +o0 :

X(z) = el*Xx,— 25—\/5/01 e*L(z*S)u(s)G(u,v)(s)ds,

/ “+o0o
Y(z) = —2(3/5/ ey (5)G(u, v)(s)ds,

! x
2o(e) = f—% [ o2 ) s,
ed’ +

z1(x) = —2\/§ Ooea\/i(m_s)f(um)(s)d&

where

‘We notice that

hence, we have the estimates (for > 0)

T xr ’_ (z—s
esm\/iH/ e*L(mfs)efssﬂdSH < / 6—7(6 2\/)5( )ds< V2
0

o
|
5%
2
|
)
™

o8] oo ! 42e)(z—s
eszﬂn/ eL(mfs)efssﬂdS” < / e%ds _ \/§
x z

26
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We need a precise estimate on |zgo|, for being able to obtain an intersection of the
stable manifold of M with the unstable manifold of M_ computed previously
at Lemma 10. We need to reach values of (X, zo0) such that

a?8?
200+ 2100 = —h(®)+ ——+0(H <0
00 + 21(0) (9) 20 (110 (a®)
| Xo| close to 0,
with
1 52
h(5)zm(1— 1‘@%
and where
1 o?
Mo

Vies®  2/1+46%
We notice that |zo0 + 21(0)] is very closely below h(d). Moreover, we notice that
the maximum of h(d) obtained for § = %5 ~ 1.618, is such that

1+5
+2\f)—2 ~ 0.382.

hmax = (

Remark 18 The strategy is to first solve (53) with respect to (X,Y) in function
of (Xo,v) € R? x Cgﬂ (defined below) and then to solve the first integral (3)
with respect to (zo—21) in function of (Xo,v), which gives an integro differential
equation for v. It is then possible to solve this integro-differential equation for
v(x) in Cgﬁ in function of (Xo, z00). The stable manifold of M is then obtained
with (X, Y, 20, 21) as a function of (Xo, z00)-

Let us define for this section
0% = {X € C°0,+00); X ()e"* is bounded}
equiped with the norm

X[« = sup [X(z)e".
(0,+00)

Using (55), the system (53,54) gives two scalar equations with unknown func-
tions (u,v). We obtain for u(z) :

(@) = e~ Fug(x) — %/OOO o cos[% _ %]u(s)g(u,v}(s)ds, (56)

8z 0z
uo(x) = x10 €08 — — Tgp sin —.

V2 V2
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Hence, we obtain the following estimate in Cg Ve

_s's V26
l[ull.yz < 1| Xoe™ V2|, 5 + mHUHEﬁHQHO-

Moreover we have

llgllo < ull? 5+ 26[[vl|. 5 + (1 +6%)[[0]2 5,
< l2 5+ 3l ys (57)
which, for
0 <0.95
[oll.yz < h(3) = 0.282,
gives

V228 [v]l. 5 + (1 + )|l 5] < 0.972 < 1.
It results that for [|v|[_ 5 < 0.282 we can bound [[u][,, 5 as

V26

_
0.028][ull.yz < l1Xoe™ % lleva + =y lullZ s

which, for
| Xo| < 0.0015
and e small enough, leads to
_ 8
lull.yz < 50| Xoe v2]l.,5 < 50| Xol, (58)
0.98

AN

llgllo < 7

Remark 19 The fact that (x1 + y1) is in factor of g(x1 + y1, 20 + 21) for the
estimates of || X||_ 5 and ||Y||, sz is essential here, since this leaves a freedom
on |20 + 21|l /5. This is the main difference with section 4, and this allows to
use the direct method for the stable manifold of My, contrary to what we did
for the computation of the unstable manifold of M_. In fact, using the direct
method for the unstable manifold would give a too small bound for By, with no
possibility of connection with the stable manifold of M, .

Then we obtain
!

_ix )
lzilleyz < 11 Xoe ﬁ||5ﬂ+m||u||s\/§||g||

_ e 1
< | Xoe VE|. 5+ 2—\/5”“”5\5 (59)
25 _&x _ oz
< (1+ﬁ)”XO€ V2 ||z = 18.7|[Xoe V2| /5
1
lyilleys < §||U||5ﬂ(||u||§¢§+3||U||sﬁ) (60)

25 _¢z _&x
< EHXO6 V2| .z = 17.7|[Xoe V2 || 3,
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which is valid, as soon as € is small enough and
| Xo| < 0.0015, dp <6 <0.95, [|z0 + 21][, /5 < 0.282

holds.

5.1 Using the first integral (3)

For extending the domain of validity for the stable manifold of M, instead of
using the differential equations for zy and z; we use the first integral (3):

2
B? = %(Bg — 14 A2)2 4+ £26%AZB2 + 267 A Ay — 2 A2,

hence

e
2
+52U4 + 853($1y1 — $2y2)].

Bf = —[(B}—1)%+25(1+6)u?28'v+ v?)

Taking the square root gives the traces of the stable and of the unstable mani-
folds on W,. The stable manifold needs satisfy By = Bj > 0 , since By < 1 for
x =0, By =1 for x = 00, and the sign of By does not change in the interval.
Hence

1/2

€

V2

and the estimates we found for || X||. 57 and [|Y[|, 5 may be used.

B,

26" (1 + 62)u2 Sut + 852(5513/1 - 5523/2)) (61)

_ 2
(1= 5) (1 * (2v + 6'v2?) (2v + §'v2)?2

Remark 20 We notice that this implies that v < 0, v' > 0, and |v(2)|max =
|z00 + 21(0)| is then O(a?) close to h(4).

We observe that .

V2

may be easily integrated (Bo(0) = /1 — n26%), Bo(co) = 1), and moreover leads
to

By = B) = —=[1 — B{]

1
20— 21 = 51}(2 +0'v)
ie.
!

)
z21 = _Z(ZQ + 21)2 <0 (62)

which is the solution of (54) for u = 0. Let us show that the expression above
for By, is valid. Using [[v]|.,5 < 0.282, and ¢ < 0.95, we obtain

1-B} = [0'0|(2—6"])
> 1.7250|v|
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so that
20" (1 +6%)u?  du* + 86%(x1y1 — Tay2)

(20 + 0'v2) (20 + 0'v2)2
4u? 4+ 0.24u|  u* 4 0.02u?
= T 1725 (1.725)202

In using (59,60)

IN

160|Xolla] |uf? + 3]o])

1
180Xl (g5l + Il

1
0.72|u] <E|u| + |v|> ,

|852($1y1 - x2y2)|

IN

IN

and we also have
8% (@151 — w2y2)| < 81X ||u](0.075|u| + 3Ju).
We now assume that for z € (0, 00)
lu(z)] < 0.9|v(z)], (63)
which has to be checked at the end. Then

20" (1+ 6%)u?  dut + 86%(x1y1 — 22y2)
(2v + §'v2?) (2v + 0'v2)2

< 0.68,

and also

, 2\ 9 4 2 —
}26 (14 6)u du +85” (z1y1 — w2y2) <9.383(| X+ |Y])

(20 + §'v2) (20 + §'v2)2

implying a smooth function for the square root, provided that we check a pos-
teriori (63) and that |X |+ |Y| is small enough. It follows from (61) that zg — 23
is a smooth function of (v, X,Y") for & small enough,

§ < 0.95, |v] <0.282,
[ X|+ Y] < 09|v|, | X|+ Y] small enough,

so that
1
Zo—21 = 51}(2 + 801+ Z(X,Y)],
IZ(X,Y)| < 10(|X[+[Y]).
It results that
!
—eV2(20 — 21) = v = —eV20(1 + %’U)[l + Z(X,Y)], (64)
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where X,Y are expressed in function of (Xp,v) (non local expression in v).
Then we can integrate the integro-differential equation, as in section 4.10. We

introduce the new variable w as
!
, v

YT AT @2

! —v
w = In|——5—
L+ (8/2)v)’
L
1+ %ew’
w decreases from wg to —oo for € (0, 00), while v grows from vy < 0 to 0. We
observe now that we have
Z(X (Xo,0), Y (Xo,0))| < 10(1X] + [Y]) < 20(18.7+ 17.7) [ Xo|

<
< 74‘0|X0|7
so that, expressed in term of w, we have

Z(X(Xo,v(w)),Y (Xo,v(w))) h(w),
[h(w)] < | Xo| <1/2

for | Xg| small enough. We then obtain, by simple integration
evV2z(1 — ¢| Xo|) < wo — w(z) < ev2z(1 + ¢/ Xo|).

Remark 21 The constant ¢ above may be replaced by

cemEV2e
since | X| and |Y| lie in Cgﬂ.
We deduce the estimate
1-— tanh(im(l_clxol)) 1-— tanh(im(lﬂlxo‘))
v2 <ola) < V2 (65)

Vo = Vo
14 By tanh(=£—gell) 1+ Boo tanh( =200l

where

;|

Vo= Boo = By(0).

The a priori estimate for v obtained in (65) allows to prove (see [2]) the existence
and uniqueness of a solution for (64), provided that (63) is satisfied on the whole
interval x € [0, 00). For checking this, we notice from (65) that

[o(@)] > vole ™Y, Ju(x)| < 50|Xole™ V%,
where the last estimate results from the bound for ||g||o and an estimate for

u(m)e% from (56). Hence (63) is satisfied as soon as
50|X0| S 0.9|’UQ|7
which is OK for | Xy| small enough. Lemma 17 is proved.

31



5.2 Intersection of the stable manifold with H

We need to compute the intersection of the 3-dimensional stable manifold of
M with the hyperplane Hy defined by

By =y/1 —n3d*. (66)

We then obtain a 2-dimensional sub-manifold living in the 4-dimensional man-
ifold W, N Hy. We have by construction

Ay = Y3 (x10 + y10),
)
1 \/5( 10 20 — Y10 yzo) ( )
Ay = 53/2(:1720 + Y20)
52
Ay = E(ch — T20 — Y10 + Y20),

where y19 and yog are expressed in function of X = (z19, 220), with the restric-
tion
|z10] + |z20[ < 1.

6 Intersection of the two manifolds

We need to see the intersection of the plane (49) tangent to the unstable manifold
of M_, with the plane tangent to the stable manifold of M, given by (67).
We then find a linear system with 4 unknowns (z7("), 75", xgz), xéf))), with
the restrictions
23| +laso| < n [700] + (7] < p.
We then have

S s € —(u —(u
(wgo) + y§0>) = da+ WBOO(JH( ) — 15
s s s s —(u 13
—( go) + xéo) - y§0) - yéo)) = V2eBoomr™ — (1+ 52)3005 (68)
S s a1/28 —(u —(u
(a5 +us) = 21/ Bo(@m™ +73™)
(@ff) — 5y — vl +u5) = 20eBozz™),

where we need to express (yif)), yéf))) as a linear function of (:v%),:vg%)). Let us

define ) “
s x\e s Yio —(w) (W)
xp = () v = () w0 o (T,
Ty Y20 T2

then we have (with ¢ = #Boo)

8 e —(u
X = ( zac+0a )+M1X( g
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& —(u
Yo(s) = ( 274 o )+M2X( )7

0
with
eBy21/4 1 2l/441/2 14 93/443/2
M, = 4al/? ( 914012 L /B /2o — 23/403/2 ) ;
M. — eBy2t/4 < 14 21/441/2 1 _93/4,3/2 )
2 = dal/2 2U/401/2 1\ 20y 20+ 23/403/2 )

The matrix M5 is invertible with

M—l 40&1/2 \/50[_'_ 23/4a3/2 1+ 23/4043/2
27 eBo2V4det(My) \ —2Y%al/? —V2a 1+ 21/4q1/2

det(M3) V2o (1 + 2140 /2)2 4 (1 — 23/403/2) (21402 + V/24)]
24012 4 9v2a + O(a®/?).

It results that

1 1 23/2¢y
MM, ~ ( _93/2, _q
s 1 23/2¢, s LN
X(§>N<_23/QQ . )YJM(@Q . (69)
2

Equation (69) represents a 2-dim affine plane resulting from the 4-dim linear
system expressing the intersection of the two manifolds. This gives a condition
on coordinates of the stable manifold, and shows that this affine plane needs
to intersect the tangent plane to the stable manifold given by (67) with YO(S)

expressed as a linear function of Xés).

Let us show below (subsection 6.0.1) that in restricting a little §, and for «
small enough, then, for the tangent plane to the stable manifold at the inter-
section with Hy, we have

Yy < kX)), k< L (70)

This gives bounds for the slope of the tangent plane to this intersection which
passes through the origin in (X (), Y(®)): using (69), we see that

1X$7| < KIXSY| + O(),

hence this tangent plane intersects transversally the affine plane (69), and defines
a unique point (X¥,Y{*) = O(a). This satisfies the constraint of order 7 on
(Xés), YO(S)). Then X is uniquely determined in using (68). Finally, from (49)
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we obtain

AQ(O) ~ b

14630 4 ¢
A1(0) ~ _%BSOE
A3(0) = O(Bgea'’?)
A3(0) = O(Byeal’?).

This proves that the intersection between the unstable manifold of M_ and the
stable manifold of M, is transverse while they both sit on W, and cross the
hyperplane (66). Since it is the transverse intersection of two manifolds, depend-
ing analytically on parameters (e,d), the resulting curve depends analytically
on these parameters.

We observe that, along this intersection, and by construction, Bi(xz) =
Bj(x) > 0. Its principal part on (—o0,0] is given by (43) with By(0) = Bgy =
\/1—n36%, and on [0, +-00)by (50).

The Theorem 1 is then proved. Moreover, since (51), (59), (60) hold we also
have the following

Corollary 22 For z € [0,400) there exists ¢ > 0 independent of €,§ such that
for the heteroclinic curve

|A(()m)(:1:)| < coz567673, m=20,1,2,3.

6.0.1 Proof of (70)

The tangent plane to the stable manifold is given by Yy expressed with (53) for
x =0, u(z) (function of Xy) given by (56), where u is replaced by 0 in g(u,v)
and G(u,v). Then we obtain the estimates

1
Yol < Sllullollgllo,
llullo < |Xo| + V2] |ullollgllo,
hence ) ol
gllo
[Yo| < - —F%—1Xol,
21 —v2||gllo
where

llgllo < 26llvllo + (1 +82)J]3.
Observing that ||v||g is bounded by h(d), it is easy to check that for

0 <0.825,
we obtain h(d) = 0.2779, so that

llgllo < 0.5218,
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and

1 llgllo
21— v2llgllo
with k= 0.9956.

k<1,

7 Study of the linearized operator

Let us redefine the heteroclinic connection we found at Theorem 1 as
(Ax(x), B.(x)) C R?

with
1<1+4+6<g=1+6 <1+ (0.825)2

and where we know that, for e small enough

B.(z) > 0, Bl.(x) >0
(A.(@), Bu(2)) — {Eé(l)g

)

as r — —o0
as r — +00

)

at least as e2® for x — —o0, and at least as e V2T for o — +oo0.

The system (1) is now considered with By complex valued, so in (1) B? is
replaced by | B|2.

For being able to prove any persistence result under reversible perturbations
of system (1) in R* x C2 we need to study the linearized operator at the above
heteroclinic solution. We follow the lines of [3].

The linearized operator is given by

AW = (1-347-gB})A—gA.B.(B+B),
B" = &*(-1+gA2+2B3)B+2¢%gA.B. A+ ¢*BZB.

Taking real and imaginary parts for B :
B=C+1iD,

we then obtain the linearized system

—AW 4 (1 -342 - gB)A—-29A.B,C = 0,
1
5_20” +(1—gA2 —3B})C —29A.B.,A = 0,
1
;D” +(1-gA2-B)HD = o.

Notice that the equation for D decouples, so that we can split the linear operator
in an operator M, acting on (A, C) and an operator £, acting on D :

m (AN —A®W 4+ (1 -342 — gB%)A - 29A.B.C
s\ © =C"+(1—gA? - 3B})C - 29AB.A )’
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1
LyD = D"+ (1—gAI - B:)D.
€
Let us define the Hilbert spaces

L} = {usu(z)e"™ € L*(R)},

_ 4 2, 4
Dy = {(A,C) S H77 X HW’A S HW’C S Dl}
_ _ de
Dy = {CeH%e2C" s +e I Nl + 111 < [[Cllp, < oo}
equiped with natural scalar products. Below, we prove the following

Lemma 23 Except maybe for a set of isolated values of g, the kernel of Mg in
L,27 is one dimensional, span by (AL, B.), and its range has codimension 1, L*-
orthogonal to (A, B.). My has a pseudo-inverse acting from Lfl to Dy for any
1n > 0 small enough, with bound independent of .

The operator Ly has a trivial kernel, and its range which has codimension 1,
is L*- orthogonal to B, (B. & L?). L, has a pseudo-inverse acting respectively

from L727 to Dy for n > 0 small enough, with bound independent of €.

Remark 24 The above Lemma is useful for proving the persistence under re-
versible perturbations of our heteroclinic. This is done in a forthcoming paper
and appears to be more difficult than the symmetric case solved in [3].

7.1 Asymptotic operators

Let us define the operators obtained when x = 00 :
M (8)= (et M ).
M (8) = (TG,
LoD = £72D"—(9-1)D,

LD = &72D".

Notice that all these operators are negative. Furthermore, their spectra in L?(R)
are such that

o(Mz) = (—o0,—c_], c- =max{2,(g—1)} >0,
S(ML) = (~o0,—ci), er=c,

o(L) (=00, —(g = 1)},

o(LL) = (—o0,0].
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Operators M, and L, are respectively relatively compact perturbations of the
corresponding asymptotic operators M, and L, defined as

M, <0 Ly, <0
MOO_{M;, x>0 " Eoo_{ﬁ*‘ x>0 "

Their essential spectrum, i.e. the set of A € C for which A — M (resp. A — L)
is not Fredholm with index 0, is equal to the essential spectrum of M, (resp.
L) (see [6]). The latter spectra are found from the spectra of ME and £L :

UBSS(MOO) = (_Ooa_CJr]v
Uess(ﬁoo) = (—O0,0]

In particular, this implies that 0 does not belong to the essential spectrum of
My, so that the operator M, is Fredholm with index 0. Moreover operators
Mo and L, are self adjoint negative operators in L2, and M, has a bounded
inverse [6].

_ 1
M2 < —.
C+

This last property remains valid in exponentially weighted spaces, with weights
el and 7 sufficiently small, since this acts as a small perturbation of the
differential operator (see [5] section 3.1).

We show at section 7.3.1 that the kernel of M is one-dimensional (except for

a finite set of values of g), spanned by (A%, B) © U, with a range orthogonal

to U, in L%. Let us define the projections Qg on U} and Py on U, , which are
orthogonal projections in L2, then we need to solve in Lf7
Mgu=f
in decomposing
u=2zU, +v, v=_Qu,
(Mo + Ag)v = Qof

and we need to satisfy the compatibility condition

<f,U*> =0,

while z is arbitrary and we obtain for v :
I+ MG A v = MLQof,

where the operator M7} A, is now a compact operator for which —1 is not an
eigenvalue, since v € U;. It results that there is a number ¢ independent of &
such that

lvllez < el fllzz-
From the form of operator M, and using interpolation properties, we obtain
for v = (4,0)
I(A, O)llp, < cllfllLz

with a certain ¢ independent of ¢.
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7.2 Properties of L,
Notice that £, is self adjoint in L?(R) and that
L,B. =0, but B, ¢ L*(R).

This property allows to solve explicitely the equation Lyu = f € L% with respect
tou € L% (using variation of constants method), and shows that it has a unique
solution, provided that

/ fBydx = 0.
R
We obtain
00 QB*
u(z) = / ET(S)C)F(S)ds
with F(s) = /OO f(7)Bi(7)dr for s >0

= - /S f(7)By(1)dr for s < 0.

By Fubini’s theorem we can write for z > 0

w(z) = 2B, (z) /m  r)BL() ( / ’ Bgfs)) dr

and, for z <0

w(z) = —e2B.(z) L ; F(r)B.(7) ( / ’ Bgfs)) dr
2B, () / ' F(r)Ba (1) ( / ' Bgfs)) dr.

The asymptotic properties of By (x) at +oo imply, for x > 0

oo

lu(x)]e" < Ce? / |f(T)e" (7 — x)e " dr,

x

and for z <0

Ce? [*
u(@)le™ < o= [ |f(@)e e dr
C 2 0
+—2§5 / |f(r)e= | =2) g

The bound
lullrz < eal|fllz2
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follows from classical convolution results between functions in L2 and functions
in L', since

0 1
[
oo n—ed

& 1
/ Te dr 5 -
0 n

Then, we choose n = %55, so that the pseudo-inverse of £, has a bounded
inverse in L7 :

—~—1
I1Lg || <2,

where ¢y is independent of €. Using the form of £, we obtain easily
ullp, < esllfllez

with c3 independent of e.

Remark 25 The choice made for n is such that
n<ed, n<eV?,

for values of § for which Theorem 1 is valid. This means that as x — —oo

(A« — 1, B,), and, as x — 400 (As, B, — 1) tend exponentially to O faster than
ezl

In fact, £, has the same properties as the operator M; in the proof of Lemma
7.3 in [3], see also [4]: L, is Fredholm with index -1, when acting in L, for 5
small enough. £, has a trivial kernel, and its range is orthogonal to B, with
the scalar product of L?(R).

7.3 Properties of M,

We saw that M, is Fredholm with index 0. Furthermore the derivative of the
heteroclinic solution belongs to its kernel:

(A (AP £ AL (A3) - gB2AL — gAL(B2)
s\ B e 2B + B, — gA2B, — (B3) — gB.(A2)]

— <8> (71)

We show below (see section 7.3.1) that the kernel of Mg, is one dimensional,
then this implies that the range of M, needs satisfy the orthogonality with
only one element. In fact, because of selfadjointness in L?, the range of M, is
orthogonal in L?(R) to

(A,,B.,) e L.
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7.3.1 Dimension of ker M,

Any element ¢(z) in the kernel lies, by definition, in L7, hence ¢(z) tends towards
0 exponentially at +oo. Near z = too the vector ((z) ~ ¢, (x) should verify

Mi(i(x) =0

where there are only 2 possible good dimensions (on each side). This gives a
bound = 2 to the dimension of the kernel of M. Let us show that dimension 2 of
ker M, implies non uniqueness of the heteroclinic, which contradicts Theorem
1, hence the only possibility is that the dimension is one.

Let us choose arbitrarily go and assume that the kernel of M, consists in

Co(2),C1 ()

where ¢, = (A, B.)|4, and let us decompose a solution of (1) in the neighbor-
hood of gy as

U =Tu(UY +a1¢, +Y), (72)

where T, represents the shift x — x + a, where a, a1 € R, and Y belongs
to a subspace transverse to ker My,. Let us denote by Qo and Py = I — Qq,
projections, respectively on the range of M, and on a complementary subspace
(Qo may be built in using the eigenvectors (g, (] of the adjoint operator M ).
Let us denote by

F(U,9)=0
the system (1) where we look for an heteroclinic U for g # go. Then, we have
FUL,g0) = 0,
DUF(U*ggO)agO) = Mgoa

and since
Mgo<_j = 07 j = 07 17

using the equivariance under operator T, we obtain (denoting Fo = F(U. (g "),

and [..]®® the argument of a quadratic operator)

90)

1
0 = MyY + (9 - 90)0yFo + 5 D Folar¢, +Y]® +
+0(lg = golllg — gol + laa| + [V |} + [[Y]]).

The projection Qg of this equation allows to use the implicit function theorem
to solve with respect to Y and then obtain a unique solution

Y = y(a’la g)a
with
—_——1 1/—\/71 2 (2)
Y = —(9—90)Mgy, QodyFo— §Mgo QoDiyFolarq)'™ +

+0(lg = g0l(lg = gol + lax]) +[as[*)).
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Then projecting on the complementary space, (only one equation since we work
in the subspace orthogonal to (), we may observe (see the proof below) that
Py0y,Fo = 0 and then obtain the ”bifurcation” equation as

q(a1,9 — go) = O((lg — go| + |aa])?),

where the function ¢ is quadratic in its arguments and

1
Alg=goC1 = EPOD%JU}—O[CUCI](Q)'

This equation is just at main order a second degree equation in a; depending on
g — go- Provided that the discriminant is not 0, the generic number of solutions
is 2 or 0. If the discriminant is 0 for ¢ = go, we just go a little farther in g,
and obtain a non zero discriminant, since the discriminant cannot stay = 0,
because of the analyticity in g of the heteroclinic. This is true except for a
set of isolated values of g. We can then use the implicit function theorem for
finding corresponding solutions for the system with higher order terms. In fact
we already know a solution, corresponding to U =yl 4 (g — go)agU£9°> +
h.o.t. which corresponds to specific values for a; and Y, of order O(g — go). It
then results that there is at least another solution of order O(g — go), so that
there exists another heteroclinic, in the neighborhood of the known one (then
in contradiction with Theorem 1).

Remark 26 The above proof with only 1 dimension in the Kernel, provides

— -1
Y = (g — go)My, 0yF0 + O((g9 — go0)?), which gives a unique heteroclinic.
Since we found only one heteroclinic, this shows that the kernel is of dimension
1.

7.3.2 Proof of P40, Fy =0
Lemma 27 Any (u,v) in the kernel of M satisfies

/ AyBy(Bsu+ Aww)dx =0,
R

and 8,F0(Uy, g) = (A B2, A2 B,.) belongs to the range of M, hence PodyFo =
0.

Proof.
Differentiating with respect to g the system (1) verified by the heteroclinic,

we obtain 54 B2
B
g * . * * _
Mg( 0y B. > - ( A2B, ) = 0yFo(Ux.9),
hence (A,B2, A2B,) belongs to the range of M . When (u,v) € ker M, then

(u,v) € ker M} where My = M7, when the adjoint is computed with the scalar
product of L?, hence

/ AyB.(Bsu+ Awv)dr = 0. (73)
R
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Hence, the eigenvectors ¢, (] of the adjoint M (the orthogonal of this 2-
dimensional eigenspace is the range of M), are orthogonal to 9, Fy = (A. B2, A2B.)l4,
in L2

A Appendix

A.1 Monodromy operator

Let us prove the estimate for the monodromy operators. We prove the following

Lemma 28 Forn,d < A, <1, and a > (1+62)2 and the following estimates
hold

ISo(@,s)l| < €7 —co<z<s
1S1(z,5)[] < 707, —oo<s<u
with
Ql/251/2
0=~
We start with the system
ry = Axn+ Aive
Thy = —Nw+ AT

where A, and \; are functions of x. When 7,0 < A, <1, a1l > (1+ (52)2, we
have, for £ small enough (see (14))

a1/2(51/2

TZW:U-

Now we have
(21 + 23)" = 2X. (a7 + 23)

hence ’
(23 + 23) () = el 2 DI (23 4 22)(s),

which, for x < s, leads to
(o +a3)(x) < 77y /(af + 23)(s).

The proof is then done for the operator Sg. The estimate for S; is obtained in
the same way.

Remark 29 We have

[T (r)dr cos( : Ai(T)dr)  sin( Sw Xi(7)dT)
So(x,s) = efs Ar(T)d ( _Sin‘(ff: /\l(T)dT) COS(‘MI/:; )\i(T) ) .
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Remark 30 In fact, once we have proved Lemma 10, we are able to improve the
estimate of the integral f; A (T)dT in using Corollary 15. Indeed this corollary
leads to

A7 > 1- 1+ (BY + o)
1—[1 =026+ ce(1 4 6%)]e%o®

1 — (1 _ cla2)e255m

AVARAVARLY,

provided that
52
e<da?, < —_—.
1+c(146%)
Now, in using
(1—a*)/* <3741 —a) fora < 1.

this leads to (x < 0)

0 0
1
/ M(r)dr 2 o / 1= (1= )] tdr
1 0 edt
1 CNVR =g
> Lol - (- a2 )
> L ||
6l/4"
so that _ cs
e Ar(m)dr <edn, z<s5<0, (74)

which is better than the estimate in Lemma 28.

A.2 Computation of the system with new coordinates

Let us look for the system (8) writen in the new coordinates, first in forgetting
quadratic and higher orders terms

PRSP ( (1+6*)ByB; 3N2 N7
B ZCI — ( T 7 A + i )+ T 1 A
o 4N, ' A, A2+ %)

2
e (12}5 ) g222 (52(/1*2 — B3 +2(1+ 52)A*A0) — (A2 AN A

A2+ X))
4N,

As 1
B 24 A
o(x1 +y1) + 5 +4AT 3,
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2 12 2 2 g2
\iBoxh, = _M <A1+ (1"'5,23031) _ Ar — 3

(A2 =AY (1+6%)Bge? 5, ~2 2
4A’I" A2 + Z:’k (A* BO)
- (2 + 27,
A2 A2
= MNDBof2— (47)30(231 +y1) — (TN)AQ
1 1 —~
~As — 241224
+4 3 4)\T()\T+)\Z) 0,
with L,
5= e26°Bo(1 + 6*)(A.” — B?)
24, ’
£y B S)O] - XDAL — BY)
AN NA, ’
hence
¥ = fi+ AT+ Nz,
Ty = fo— Niz1+ Ao,
and in the same way
v o= 1= Ay + Ay,
Yo = —Jf2—Xiy1 — \ye,
—2
oo 22°0%(A —BY) _ 2h
' Al (1+6%)Bo’
2 _ )2 —
Bi = —()\Ti/\Z),VA3 + A*Bozl.

(14 6*)ByA.
We notice that the following estimates hold

306252 < 30825

<
|fl| = A* = o ’
Byets?
|f2| S /Oig S 30825.

*

A.2.1 Full system in new coordinates

3

(76)

(77)

We intend to derive the full system (1) with coordinates (x1,x2,y1, Y2, Bo, 21).
Differentiating (17) and (18) we see that we respectively need to add to the
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previous expressions (75) for z} and z,

— I !
1A ;5+<<3A3—§>>’A2+€2 (1+06%)B3 A3+<<1+5j>30>’31
By | \ 2v2\, 42\, A, 9A.’ 24,

—~2
(1+52)2Bo[3AA LAY Boe?(1+6%)2 Ao _ B
24, ’ 24, By

—~ / 9 PN 2 o/ 9 223 o3\ /
1 (A X_((/\T—)\i)>A _<(/\T—3)\i))A+<s (1+6)BO>B
Bo 2van ) O DN Y\ vana, ) AN A, '
!
1 1 A2 \2)2 1 DD V) L W S
v (i |- B2 ) e i (1 O i )
0 g A* A

B+ —2 B
AN N A, By

and

We then arrive to the system (22,23,24,25).
We observe that (using (11))

—1  (1+6%)B,

A* = _TBl
A.
2
A2y = _%(1 —e2V/2(1 + 62 A)
2
C
( ) alBoBl, |a1| < 3/2, (78)
A,
( ) = asBoBi, |as| < —2 (79)
2001, 2 )
2V2) 12
/\2 ce?
<_T)\)) =b02BoB1, |b2| < —, (80)
@ﬁ—ﬁv’ c
i) = BoBy, 1] € —, 81
(A$—3Af)>’ c
2 Z 20} = BBy, eo| € —, 82
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/
1+62 232 &
82 (# = dlBOBl7 |d1| S AN3’ (83)

24, \
li
1 22— \P)? c
<4/\ x ll_( = D SRR =g
1+46*)B ' c

(%) =e1By, e < —3 (85)

e2(1 + 6%)3 B2 ' c
<(7f)vo> = egBoBl, |€2| S —_—3> (86)

4/\r)\iA* A*

with ¢ independent of € and 0 € [d, d1].

A.3 System after elimination of z;
A.3.1 System after scaling
After the scaling (27) our system (22,23,24,25) takes the form

-/

= Loy + Boﬁo + Bo1 (Y, 7) +Z1M o1 (Y, ?)
+71°Bong + Co1(X,Y),
= LY+ ByF + Bll(Y, ?) +Z1 M4 (7, 7)
+71°Bony + C11(X,Y),
where Fy, F1, ng, n; are two-dimensional vectors Mo, My are linear operators

in (X,Y), Bo1, B11 are quadratic and Cp1, Cy; are cubic in (X,Y), all functions
of By. More precisely we have

=_ (36 \ = i < of
F(J: 5f20 , F1: _5 f20 , |Fj|§057
553[) 6630

—~2
ng = 55 —~2 elA* PN )
GQA* BO — bQ(l + 5 )A*Bg

My (X,Y) =<6 ( mm(? g ) :

mOQ( )
_ . = __ o 2Bo—— T
mo1 (X, Y) = A*BO CLlAO + ClAQ + (dl — 281(1 + 0 )E Ax)Ag - B_ y
* 0
~ ol i - 2 2B(2) -— T2
mog(X, Y) = A.By|—a2Ao+ c2ls+ (dz — 262(1 +4 )E A—)A3 B
* 0

— B3 __
+ A Biba(T1 +71) + (1 + 52)2527%2143,

*

46



B (X,Y) =¢d ( Zgigz ;g )

u+6%@—5%30

e*(1 4 6%)?By——2
e————s—

bOl (7, 7) A —5 A3
24, A,
1+ 6%)B
wx% [ale +c1ds + di1As — B_]
* 0
~ v _ 1 72 414 2 et(1+6%)B3——
bOQ(X, Y) — —m (314* - 25 Bo(l + 5 ) ) AO + €9 7*143
1+6*)B
(#A [— (Ion + baBo(T1 + Y1) + c2 Az + da Az — —]
A, By
3 2(1+62)QBO
C(n(X, Y) = 6252140 1 A4B§(1+52)4
T 4X. N Bo ( - 2.2 )

ni, M1, B11, C11 are deduced respectively from ng, M1, Bo1, Co1 in chang-
ing (a1, c1,ba,da, e2) into their opposite.

A.3.2 System after elimination of z;

Let us replace z1 by Zig+ Z(X, Y, By) in the differential system for (X,Y). The
new system becomes (notice that By is in factor of the ”constant” terms)

X' = LoX + BoFo+ Lo (X,Y) +Bn(X,Y),

Y = L1?—|—Bof1 +£11(Y,?) +311(Y,?),

which is (30) with o
Fo = Fy +Z15°n0,

Lo (X,Y) =zi0Mo(X,Y),

801(7, ?) = BOl(Y, 7) + Z(Y, ?)MOl(Y, 7) +Con (7, 7)
+2Z_1()Z(Y, ?)Bono + Z(Y, ?)2B0’n0.

In using estimates (21), (78) to (86), it is straightforward to check that

ce
|Fol + 71| < =,
[0

hence



For higher order terms we have

Boi(X,Y)| < ee(IX[+]Y])?%
o cA,
12Z02(X,Y)ng| < ¢ 5 (X + Y3,
I 2i
ZXYV)Ma(X,Y)| < e—=(X[+[V])",
A,
EE TPl < =g (X]+ [T
. € — —
|Coi(X,Y)| < Cm(|X|+|Y|)37
hence, choosing « small enough and for
X+ Y] <p, (87)
we obtain o o e .
[Bor (X, V)| + [Bu (X, V)| < —7 ([X] + [V])*,
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