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Abstract

A six-dimensional reversible normal form system occurs in Bénard-
Rayleigh convection between parallel planes, when we look for domain
walls intersecting orthogonally (see Buffoni et al [1]). We prove analyt-
ically the existence, local uniqueness, and analyticity in parameters, of
a heteroclinic connection between two equilibria, each corresponding to
a system of convective rolls. We prove that the 3-dimensional unstable
manifold of one equilibrium, intersects transversally the 3-dimensional
stable manifold of the other equilibrium, both manifolds lying on a 5-
dimensional invariant manifold. We also study the linearized operator
along the heteroclinic, allowing to prove (in another paper) the persis-
tence under perturbation, of the heteroclinic obtained in [1].

Key words: Reversible dynamical systems, Invariant manifolds, Bifurcations,
Heteroclinic connection, Domain walls in convection

1 Introduction and Results

Let us study the following reversible system in R6

A(4) = A(1−A2 − gB2) (1)

B′′ = ε2B(−1 + gA2 +B2),

where the coordinates in R6 are Z = (A0, A1, A2, A3, B0, B1) = (A,A′, A′′, A′′′, B,B′).
This system occurs in the search for domain walls intersecting orthogonally, in a
fluid dynamic problem such as the Bénard-Rayleigh convection between parallel
horizontal plates (see subsection 1.1 and all details in [1]). The heteroclinic we
are looking for, corresponds to the connection between rolls on one side and
rolls oriented orthogonally on the other side.
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We would like to find analytically a heteroclinic connection (g > 1, ε small)
such that

A∗(x), B∗(x) > 0,

(A∗(x), B∗(x)) →
{

(1, 0) as x → −∞
(0, 1) as x → +∞ .

By a variational argument Boris Buffoni et al [1] prove the existence of such
an heteroclinic orbit, for any g > 1, and ε small enough. This type of elegant
proof does not unfortunately allow to prove the persistence of such heteroclinic
curve under reversible perturbations of the vector field. This is our motivation
for producing analytic arguments, proving such an existence, uniqueness and
smoothness in parameters (ε, g) of this orbit, however for limited values of g,
fortunately including physical interesting ones. Then we study the linearized
operator along the heteroclinic curve, allowing to attack the problem of existence
of orthogonal domain walls in convection (forthcoming paper).

After some basic consideration on the system, a first part of the paper (sec-
tions 4, 5, 6) is devoted to the proof of Theorem 1. Then section 7, is devoted
to the study of the linearized operator along the heteroclinic, some properties of
which are necessary for the forthcoming proof of existence of orthogonal domain
walls in convection.

We set δ = (g−1)1/2. The idea here might be to use the arc of equilibria A2+
B2 = 1, which exists for δ = 0, connecting end points M− = (1, 0) and M+ =
(0, 1), and to prove that for suitable values of δ, the 3-dimensional unstable
manifold of M− intersects transversally the 3-dimensional stable manifold of
M+, both staying on a 5 dimensional invariant manifold Wδ. However, for δ = 0
the situation in M+ is very degenerated, with a quadruple 0 eigenvalue for the
linearized operator, while it is only a double eigenvalue in M−. Then we are not
able to prove, for δ close to 0, that the 3-dimensional unstable manifold of M−
exists from B = 0 until B reaches a value close enough to 1.

The strategy here consists to keep in mind that, after changing the coordi-
nate x in x = εx, the limit ε → 0 of the system (1) gives a non C1 heteroclinic
solution such that (i) for x running from −∞ to 0, then (A0, B0) varies from
(1, 0) to (0, 1√

g ) on the ellipse A2
0 + gB2

0 = 1, while (ii) for x running from 0

to +∞, then (A0, B0) varies from (0, 1√
g ) to (0, 1) in satisfying the differential

equation (see the first integral (3)).

B′
0 =

ε√
2
(1−B2

0).

The major difficulty in the proof of Theorem 1 is to prove the existence of
the 3-dim unstable manifold of M− until A0 reaches a neighborhood of 0, and
to prove the existence of the 3-dim stable manifold of M+ until B0 reaches

a neighborhood of 1/
√
g = 1/

√
1 + δ2. The usual proofs of existence of such

invariant manifolds give only local results, so we need to use here a first integral
of the system, expressing that both manifolds lie on a 5-dimensional invariant
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manifold, and then we are able to extend sufficiently the domain of existence of
these manifolds. Indeed we prove the following

Theorem 1 Let us choose 0 < δ0 < 1/3, then for δ0 ≤ δ ≤ 0.825, η0 such that
for ε small enough with α = ε2/7, where 0 < α = [(1 + δ2)η20 − 1]1/2, the 3-dim
unstable manifold of M− intersects transversally the 3-dim stable manifold of
M+. The connecting curve which is obtained is locally unique (it is the only
curve for this intersection). Moreover its dependency in parameters (ε, δ) is
analytic. In addition we have B(x) and B′(x) > 0 on (−∞,+∞), the principal
part of B(x) being given

i) for x ∈ (−∞, 0], by

B0(x) =
1

(1 + δ2

2 )
1/2 cosh(x0 − εδx)

,

coshx0 =
1

B00(1 +
δ2

2 )
1/2

,

B00 = B0(0) = (1 − η20δ
2)1/2,

ii) for x ∈ [0,+∞), by

B0(x) =
tanh(εx/

√
2) +B00

1 +B00 tanh(εx/
√
2)
.

For x → −∞ we have (A0 − 1, A1, A2, A3, B0, B1) → 0 at least as eεδx, while

for x → +∞, (A0, A1, A2, A3) → 0 at least as −
√

δ
2x, and (B0 − 1, B1) → 0 at

least as e−
√
2εx.

Remark 2 From the form of system (1) and Lemma 10 it should be noticed
that

A0 − 1 → 0 as e2εδx while B0 → 0 as eεδx for x → −∞.

In section 4 we prove at Lemma 10 the existence of the unstable manifold

of M− = (1, 0) until a neighborhood of (A0, B0) = (0, 1/
√
1 + δ2). Here there

is no restriction on the choice of δ, except δ ≥ δ0 > 0.
In section 5 we prove at Lemma 17 the existence of the stable manifold of

M+ = (0, 1) until (backward direction) a neighborhood of (0, 1/
√
1 + δ2). Here

there is a restriction δ ≤ 0.95, for being able to reach the end point.
In section 6 we need the restriction δ ≤ 0.825 for saving a transverse inter-

section of the two manifolds. This ends the proof of Theorem 1.
In section 7 we give in Lemma 23 the properties of the linearized operator

along the heteroclinic, which are necessary to prove a persistence result under
a reversible perturbation for the heteroclinic in the 8-dimension space (with
B ∈ C).

Remark 3 It should be noticed that we show that, in the middle of the hetero-
clinic, A0(0) ∼ αδ which is very close to 0. The choice of α = ε2/7 results from
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the proof of Theorem 1. If, one day, we are able to choose a much smaller α ,
for example α =

√
ε this would imply important improvements for the proof of

orthogonal domain walls (however see Remark 16).

Remark 4 Using symmetries of the system: A 7→ ±A, B 7→ ±B and reversibil-
ity symmetry: (A(x), B(x)) 7→ (A(−x), B(−x)), we find 8 heteroclinics. Two
are connecting M− to M+ with opposite dynamics, two others connect −M− to
M+, two connect M− to −M+, and two connect −M− to −M+. The one which
interests us is the only one connecting M− to M+ with the dynamics running
from M− to M+.

1.1 Origin of system (1)

The Bénard-Rayleigh convection problem is a classical problem in fluid me-
chanics. It concerns the flow of a three-dimensional viscous fluid layer situated
between two horizontal parallel plates and heated from below. Upon increasing
the difference of temperature between the two plates, the simple conduction
state looses stability at a critical value of the temperature difference corre-
sponding to a critical value Rc of the Rayleigh number. Beyond the instability
threshold, a convective regime develops in which patterns are formed, such as
convective rolls, hexagons, or squares. Observed patterns are often accompanied
by defects.

Mathematically, the governing equations are the Navier-Stokes equations
coupled with an equation for the temperature, and completed by boundary
conditions at the two plates. Observed patterns are then found as particular
steady solutions of these equations. Very recently, the existence of orthogonal
domain walls has been studied by [1], where the authors handle the full governing
equations, showing that the study leads to a small perturbation of the reduced
system of amplitude equations (1).

Starting from a formulation of the steady governing equations as an infinite-
dimensional dynamical system in which the horizontal coordinate x plays the
role of evolutionary variable (spatial dynamics), a center manifold reduction
is performed, which leads to a 12-dimensional reduced reversible dynamical
system (reducing to 8-dimensional after restricting to solutions with reflection
symmetry y → −y). A normal form for this reduced system is obtained, for
which, after an appropriate rescaling of the normal form, the principal part is
the system (1), with B ∈ C, and B2 replaced by |B|2. The truncation leading
to (1) allows to take B real, since its phase does not play any role at this level.
Solutions of the system (1) provide leading order approximations of solutions of
the full governing equations. In particular, the equilibrium (A0, B0) = (0, 1) of
the system (1) gives an approximation of convection rolls (in the x direction)
bifurcating for Rayleigh numbers R > Rc close to Rc, whereas the equilibrium
(A0, B0) = (1, 0) of the system (1) gives the same convection rolls (in the y
direction) rotated by an angle π/2 with the phase fixed by the imposed reflection
symmetry. A heteroclinic orbit connecting these two equilibria provides then an
approximation of orthogonal domain walls (see Figure 1). The parameter ε in
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(1) is such that ε4 is proportional to R1/2 −R1/2
c . The parameter g > 1 in (1)

is function of the Prandtl number, while other parameters, which only appear
in higher orders, are the wave numbers of the rolls, close to the critical value.

Remark 5 Values of δ such that 0.476 ≤ δ include values obtained for δ in the
Bénard-Rayleigh convection problem where g is function of the Prandtl number P
(see [3]). With rigid-rigid, rigid-free, or free-free boundaries the minimum values
of g are respectively (gmin = 1.227, 1.332, 1.423) corresponding to δmin = 0.476,
0.576, 0.650. The restriction in Theorem 1 corresponds to 1 < g ≤ 1.680. The
eligible values for the Prandtl number are respectively P > 0.7404, > 0.9125, >
1.332.

x

y

Figure 1: Orthogonal domain wall

Acknowledgement The author warmly thanks Mariana Haragus for her
help in section 7, and her constant encouragements.

2 Global invariant manifold Wδ

The first observation is that we have the first integral

ε2(A′2)′′ − 3ε2A′′2 −B′2 +
ε2

2
(A2 +B2 − 1)2 + ε2δ2A2B2 = 0, (2)

i.e.

2ε2A1A3 − ε2A2
2 −B2

1 +
ε2

2
(A2

0 +B2
0 − 1)2 + ε2δ2A2

0B
2
0 = 0 (3)

This defines a 5-dimensional invariant maniford Wδ valid for any δ > 0, which
contains the heteroclinic curve that we are looking for. The singular points of
this manifold are given by

A1 = A2 = A3 = B1 = 0,

0 = A0(A
2
0 + (1 + δ2)B2

0 − 1),

0 = B0((1 + δ2)A2
0 +B2

0 − 1).
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For δ > 0, and since (A0, B0) = (0, 0) or (±(δ2 + 2)−1/2,±(δ2 + 2)−1/2) do not
belong to Wδ, we only find the singular points

(A0, B0) = (±1, 0), (4)

(A0, B0) = (0,±1).

For δ = 0, all singular points belong to a circle of singular points:

A2
0 +B2

0 = 1. (5)

3 Linear study of the dynamics

3.1 Case δ > 0 (g > 1)

3.1.1 Neighborhood of M− = (1, 0)

The eigenvalues of the linearized operator at M− are such that λ4 = −2 or
λ2 = ε2δ2, hence

±2−1/4(1± i),

±εδ.

This gives a 3-dimensional unstable manifold, and a 3-dimensional stable man-
ifold.

3.1.2 Neighborhood of M+ = (0, 1)

The eigenvalues of the linearized operator at M+ are such that λ4 = −δ2 or
λ2 = 2ε2, hence

±2−1/2(1± i)δ′,

±ε
√
2, δ′ =

√
δ.

This gives again a 3-dimensional unstable manifold and a 3-dimensional stable
manifold.

All this implies that the 3-dimensional unstable manifold starting at M−
is included into the 5−dimensional manifold Wδ, as well as the 3-dimensional
stable manifold starting at M+ is included into the 5−dimensional manifold Wδ.
This gives a good hope that these two manifolds intersect along a heteroclinic
curve...provided that they still exist ”far” from the end points M+ and M−.
The idea is to show that this occurs when δ is not too small.

3.2 Linear dynamics near the arc of equilibria for δ = 0

Let us denote the family of fixed points as

A2
∗ +B2

∗ = 1, B∗ ≥ 0,
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which is an arc of circle of equilibria in the (A0, B0) plane. The linearized
operator along this family is

L∗ =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−2A2
∗ 0 0 0 −2A∗B∗ 0

0 0 0 0 0 1
2ε2A∗B∗ 0 0 0 2ε2B2

∗ 0




,

and its eigenvalues are
0 double,

and λ such that
λ4 − 2ε2B2

∗λ
2 + 2A2

∗ = 0.

The discriminant is

∆ = ε4B4
∗ − 2A2

∗ = ε4B4
∗ + 2B2

∗ − 2,

it results that
i) for 0 < B2

∗ < B2
c = 1

ε4 (−1+
√
1 + 2ε4) ≃ 1− ε4/2, i.e. A∗ > Ac ≃ ε2√

2
, we

have ∆ < 0 and 4 complex eigenvalues

λ0, λ0, − λ0, − λ0,

while
ii) for Bc < B∗ < 1, i.e. A∗ < Ac, we have ∆ > 0 and 4 real eigenvalues

λ2
± = ε2B2

∗ ±
√
ε4B4

∗ − 2A2
∗ > 0,

two > 0, two < 0,

and
iii) for B∗ = Bc, i.e. A∗ = Ac, ∆ = 0 and two double eigenvalues

λ = ±εB∗.

In all cases there are two stable directions and two well determined unstable
directions, depending smoothly on (A∗, B∗). The eigenvector belonging to the
eigenvalue 0 is tangent to the family of equilibria.

Let us sum up the situation for the system (1) with δ = 0, linearized along
the arc of equilibria:

for 0 < B∗ < Bc we have a two-dimensional invariant subspace, associated
with two eigenvalues λ0, λ0, and a two-dimensional invariant subspace associated
with −λ0 and −λ0.

When B∗ reaches Bc the eigenvalues λ0 and λ0 merge in a double eigenvalue
εB∗ which splits in two real positive eigenvalues λ+, λ− when Bc < B∗ < 1. The
same phenomenon occurs for eigenvalues−λ0 and−λ0 which merge in−εB∗ and
then split in −λ+,−λ−. The smooth dependence in B∗ of the two-dimensional
invariant spaces (general result of perturbation theory of linear operators [6])
shows that these two-dimensional subspaces stay transverse to each other all
along the curve A2

∗ +B2
∗ = 1. We sum up these properties in the following
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Lemma 6 The system (1) admits, for δ = 0 an arc of equilibria (A0, B0) =
(A∗, B∗), A2

∗ +B2
∗ = 1. Along this arc of equilibria, the family of 2-dimensional

stable manifolds and the family of 2 -dimensional unstable manifolds belong to
the 5-dimensional manifold W0 (singular along the arc of equilibria). These fam-
ilies constitute two 3-dimensional manifolds intersecting each other transversally
along the open arc (without end point M+).

Remark 7 Notice that the limit points M− = (1, 0) and M+ = (0, 1) have a
degenerate situation, because of the multiple 0 eigenvalue. The above transver-
sality is weaker and weaker as (A∗, B∗) → (0, 1) A ”serious” study is needed
since it is not obvious, for example, that the 3-dim stable manifold of M+ is
obtained for δ 6= 0 by a simple perturbation of the family of 2-dimensional stable
manifolds along the arc A2

∗ +B2
∗ = 1, for A∗ > 0.

4 Unstable manifold of M

4.1 Change of coordinates

Let us fix 0 < δ0 ≤ 1/3, and δ1 > 1, we assume, from now on

0 ≤ B0 ≤
√
1− η20δ

2, η0 >
1√

1 + δ2
=

1√
g
,

α
def
= (η20(1 + δ2)− 1)1/2,

ε2

α2
≤ δ0 ≤ δ ≤ δ1, (6)

and let us define new coordinates

Z = (Ã∗ + Ã0, A1, A2, A3, B0, B1)
t (7)

where A0 = Ã∗ cancels A′
3 with

Ã∗
2 def
= 1− (1 + δ2)B2

0 , Ã∗ ≥ δα.

In the following α is a ”small parameter”, the relative size of which, with respect
to ε is precized later.

Remark 8 The occurence of Ã∗ is linked with a formal computation of an
expansion of the heteroclinic in powers of ε, which gives Ã∗ as the principal part
of A0, valid for B0 < (1 + δ2)−1/2 = 1/

√
g. The hope is to build the unstable

manifold until this limit value.

Remark 9 We choose the conditions on δ, δ0 ≤ δ ≤ δ1 in the purpose to
include known computed values of the coefficient g = 1 + δ2, in the convection
problems, with different boundary conditions (see [3]).

We prove below the main result of this section:
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Lemma 10 For ε small enough, α small enough and for 0 < δ0 < 1/3, and

δ ∈ [δ0, δ1], α2 = η20(1 + δ2)− 1,

ε2 ≤ δ0α
2, ε = α7/2,

the 3-dimensional unstable manifold of M− exists for

0 ≤ B0(x) ≤ (1− η20δ
2)1/2, x ∈ (−∞, 0].

It sits in Wg, is analytic in (ε, δ), and

A0 = Ã∗ +B0O(
εδ

Ã∗
1/2

eεδx)

A1 = B0O(
εδ

Ã∗
eεδx)

A2 = B0O(εδeεδx)

A3 = B0O(εδeεδx),

where
0 ≤ 1− Ã∗ ≤ cB2

0 , Ã∗(0) = 1, Ã∗ ≥ δα.

Moreover, as x → −∞, A0 − Ã∗, A1, A2, A3 are bounded by cεδe2εδx, and B0,
resp. B1 by ceεδx, resp. cεeεδx, where c is a constant independent of ε, δ.

Remark 11 We observe that A0 reaches a value close to 0 since Ã∗ reaches δα
which is close to 0, while B0 reaches (1−η20δ

2)1/2 which is close to 1/(1+δ2)1/2 =
1/

√
g, not close to 1.

The system (1) becomes

Ã0

′
= A1 +

(1 + δ2)B0

Ã∗
B1

A′
1 = A2

A′
2 = A3 (8)

A′
3 = −2Ã∗

2
Ã0 − 3Ã∗Ã0

2
− Ã0

3

B′
0 = B1

B′
1 = ε2δ2B∗(Ã∗

2
−B2

0) + 2ε2(1 + δ2)Ã∗B0Ã0 + ε2(1 + δ2)B0Ã0

2
,

Now, we define the linear operator

Lδ =




0 1 0 0 0 (1+δ2)B0

Ã∗
0 0 1 0 0 0
0 0 0 1 0 0

−2Ã∗
2

0 0 0 0 0
0 0 0 0 0 1

2ε2(1 + δ2)Ã∗B0 0 0 0 0 0




, (9)
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for which 0 is a double eigenvalue, and such that the non zero eigenvalues satisfy

λ4 − 2ε2B2
0(1 + δ2)2λ2 + 2Ã∗

2
= 0. (10)

The discriminant is

∆′ = ε4B4
0(1 + δ2)4 − 2Ã∗

2
.

Our assumption B0 ≤
√
1− η20δ

2 and ε2

α2 ≤ δ ≤ δ1, in addition with the con-

straint
1

α
≥ (1 + δ2)2. (11)

implies

−∆′ ≥ Ã∗
2
.

Then we have two pairs of complex eigenvalues

λ2
± = ε2B2

0(1 + δ2)2 ± i
√
−∆′.

The idea is to find new coordinates able to manage a new linear operator in the
form of two independent blocs

(
±λr λi

−λi ±λr

)
(12)

for which the eigenvalues are
±λr ± iλi,

where

2λ2
r =

√
2Ã∗ + ε2B2

0(1 + δ2)2 (13)

2λ2
i =

√
2Ã∗ − ε2B2

0(1 + δ2)2

λ2
r − λ2

i = ε2B2
0(1 + δ2)2

λ2
r + λ2

i =
√
2Ã∗

4λ2
rλ

2
i = −∆′.

We choose a form of the linear operator as (12) for being able to have good
estimates for the monodromy operator associated with the linear operator, the

coefficients of which are functions of B0 ∈ [0,
√
1− η20δ

2] (see Appendix A.1).

4.2 Estimates for the eigenvalues

First, notice that (13) and
α ≤ (1 + δ2)−2

imply

λrλi ≥
Ã∗
2
,
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21/4Ã∗
1/2 ≥ λr ≥ Ã∗

1/2

21/4
≥ α1/2

21/4

√
δ, (14)

1

23/4
Ã∗

1/2
≤ λi ≤

Ã∗
1/2

21/4
. (15)

4.3 New coordinates

The eigenvector and generalized eigenvector for the eigenvalue 0 are :

Z0 =




0
0
0
0

Ã∗
0




, Z1 =




0

−(1 + δ2)B0

0
0
0

Ã∗




.

Now we denote by
V +
r ± iλiV

+
i , V −

r ± iλiV
−
i

the eigenvectors belonging respectively to the eigenvalues

λr ± iλi, − λr ± iλi

then we define

V +
r =




−λr(λ
2
r−3λ2

i )

2Ã∗
2

1
λr

λ2
r − λ2

i

− λr(λ
2
r−λ2

i )

(1+δ2)B0Ã∗

− (λ2
r−λ2

i )
2

(1+δ2)B0Ã∗




, V +
i =




− 3λ2
r−λ2

i

2Ã∗
2

0
1

2λr

− (λ2
r−λ2

i )

(1+δ2)B0Ã∗

− 2λr(λ
2
r−λ2

i )

(1+δ2)B0Ã∗




,

and we define new coordinates as




Ã0

A1

A2

A3

0
B1




= B0(x1V
+
r + x2λiV

+
i + y1V

−
r + y2λiV

−
i + z0Z0 + z1Z1).

We observe that after eliminating z0, we still have 6 coordinates, including B0

as one of the new coordinates.

Remark 12 We notice that we put B0 in front of the new coordinates, as this
results from the analysis, and shorten the computations.
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We have now

Ã0 = −B0
λr(λ

2
r − 3λ2

i )

2Ã∗
2 (x1 − y1)−B0

λi(3λ
2
r − λ2

i )

2Ã∗
2 (x2 + y2)

A1 = B0(x1 + y1)− (1 + δ2)B2
0z1

A2 = λrB0(x1 − y1) + λiB0(x2 + y2) (16)

A3 = (λ2
r − λ2

i )B0(x1 + y1) + 2λrλiB0(x2 − y2)

0 = − (λ2
r − λ2

i )

(1 + δ2)B0Ã∗
A2 + Ã∗B0z0

B1 = − (λ2
r − λ2

i )

(1 + δ2)B0Ã∗
A3 + Ã∗B0z1,

which needs to be inverted. We obtain

B0x1 =
(λ2

r + λ2
i )

4λr
Ã0 +

3λ2
r − λ2

i

4λr(λ
2
r + λ2

i )
A2 (17)

+
A1

2
+

(1 + δ2)B∗

2Ã∗
B1 +

(λ2
r − λ2

i )

2Ã∗
2 A3,

λiB0x2 = − (λ2
r + λ2

i )

4
Ã0 −

λ2
r − 3λ2

i

4(λ2
r + λ2

i )
A2 (18)

− (λ2
r − λ2

i )

4λr

(
A1 +

(1 + δ2)B0

Ã∗
B1

)
+

1

4λr

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
A3,

B0y1 = − (λ2
r + λ2

i )

4λr
Ã0 −

3λ2
r − λ2

i

4λr(λ
2
r + λ2

i )
A2 (19)

+
A1

2
+

(1 + δ2)B0

2Ã∗
B1 +

(λ2
r − λ2

i )

2Ã∗
2 A3,

λiB0y2 = − (λ2
r + λ2

i )

4
Ã0 −

λ2
r − 3λ2

i

4(λ2
r + λ2

i )
A2 (20)

+
(λ2

r − λ2
i )

4λr

(
A1 +

(1 + δ2)B0

Ã∗
B1

)
− 1

4λr

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
A3,

B0z1 =
(λ2

r − λ2
i )

(1 + δ2)B0Ã∗
2A3 +

1

Ã∗
B1.

Let us now define

12



X =

(
x1

x2

)
, Y = X =

(
y1
y2

)
,

then, for ε small enough, we obtain the following useful estimates

Ã∗
1/2

23/4
≤ λr, λi < 21/4Ã∗

1/2
, Ã∗ ≥ δα ≥ ε2

α
,

|Ã0| ≤ 3
B0

Ã∗
1/2

(|X |+ |Y |),

|A1| ≤ B0(|X |+ |Y |) + 2B2
0 |z1|,

|A2| ≤ 2B0Ã∗
1/2

(|X |+ |Y |), (21)

|A3| ≤ 2B0Ã∗(|X |+ |Y |),
|B1| ≤ 3ε2B2

0(|X |+ |Y |) + Ã∗B0|z1|.

4.4 System with new coordinates

The system (8) writen in the new coordinates is computed in Appendix A.2. It
takes the following form

x′
1 = f1 + λrx1 + λix2 (22)

+B1

[
a1Ã0 + c1A2 + d1A3 + e1

B1

B0
− 1

B0
x1

]

−ε2
(1 + δ2)(2 − δ2)B0

2Ã∗
Ã0

2
− ε2

(1 + δ2)B0

2Ã∗
2 Ã0

3
,

x′
2 = f2 − λix1 + λrx2 +B1

[
−a2Ã0 + b2A1 + c2A2 + d2A3 + e2B1 −

1

B0
x2

]
(23)

− 1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2
− 1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
Ã0

3
.

y′1 = f1 − λry1 + λiy2 + (24)

+B1

[
−a1Ã0 − c1A2 + d1A3 + e1

B1

B0
− 1

B0
y1

]

−ε2
(1 + δ2)(2− δ2)B0

2Ã∗
Ã0

2 − ε2
(1 + δ2)B0

2Ã∗
2 Ã0

3
,

y′2 = −f2 − λiy1 − λry2 +B1

[
−a2Ã0 − b2A1 + c2A2 − d2A3 + e2B1 −

1

B0
y2

]
(25)

+
1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2
+

1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
Ã0

3
,

13



B′
0 = −ε2(1 + δ2)B0

A3

Ã∗
+ Ã∗B0z1,

with

f1 =
ε2δ2B0(1 + δ2)(Ã∗

2
−B2

0)

2Ã∗
,

f2 = −ε2δ2B0(1 + δ2)(λ2
r − λ2

i )(Ã∗
2 −B2

0)

4λrλiÃ∗
,

coefficients aj , bj , cj , dj , ej are defined and estimated in Appendix A.2 in (78,79),

(80,81,82), (83,84), (85,86). Here Ã0, A1, A2, A3, B1 should be replaced by their
(linear) expressions (16) in coordinates (x1, x2, y1, y2, z1) with coefficients func-
tions of B0. The system above should be completed by the differential equation
for z1. In fact we replace the equation for z′1 by the direct resolution of the first
integral (3) with respect to z1 (see below).

4.5 Resolution of (3) with respect of z1(X, Y,B0)

For extending the validity for the existence of the unstable manifold of M− we
need to replace the differential equation for z1 in using instead the first integral
(3). This leads to

B2
1 = {Ã∗B0z1 − ε2

B0(1 + δ2)

Ã∗
A3}2 = 2ε2A1A3 − ε2A2

2 +

ε2

2
(−δ2B2

0 + 2Ã∗Ã0 + Ã0

2
)2 + ε2δ2(Ã∗ + Ã0)

2B2
0 ,

hence

Ã∗
2
z21 = ε2δ2Ã∗

2
(1 +

δ2B2
0

2Ã∗
2 ) +

2ε2

B0
A3(x1 + y1)−

ε4(1 + δ2)2

Ã∗
2 A2

3 −
ε2

B2
0

A2
2 +

+
2ε2Ã∗

2

B2
0

Ã0

2
+

2ε2Ã∗
B2

0

Ã0

3
+

ε2

2B2
0

Ã0

4
, (26)

where we may observe on the r.h.s., that

δ2

2Ã∗
2 <

1

2α2
,

hence

ε2δ2 ≤ ε2δ2(1 +
δ2B2

0

2Ã∗
2 ) ≤ ε2δ2(1 +

1

2α2
),

which is independent of (X,Y ). Moreover there is no linear part in (X,Y ). For
further estimates, we make a new scaling

(X,Y, z1) = εδ(X,Y , z1). (27)

14



We notice that (21) implies

|2ε
2

B0
A3(x1 + y1)| ≤ cε4δ2Ã∗(|X |+ |Y |)2

|ε
4(1 + δ2)2

Ã∗
2 A2

3| ≤ cε6δ2(|X |+ |Y |)2

ε2

B2
0

A2
2 ≤ cε4δ2Ã∗(|X |+ |Y |)2)

2ε2Ã∗
2

B2
0

Ã0

2
≤ cε4δ2Ã∗(|X |+ |Y |)2

|2ε
2Ã∗
B2

0

Ã0

3
| ≤ cε5δ3

Ã∗
1/2

(|X |+ |Y |)3

ε2

2B2
0

Ã0

4
≤ cε6δ4

Ã∗
2 (|X|+ |Y |)4,

so that the factors in the estimates are such that

cε4δ2Ã∗

ε2δ2Ã∗
2 ≤ cε2

Ã∗
,

cε6δ4

ε2δ2Ã∗
4 ≤ c

ε2δ0

Ã∗
2 ,

cε5δ3

ε2δ2Ã∗
5/2

≤ c
ε5/2δ3/4

Ã∗
2 ,

c being independent of ε and δ. Now defining z10 such that

1 ≤ z10(B0)
def
= (1 +

δ2B2
0

2Ã∗
2 )

1/2 ≤ 1

α
, for α ≤ 1/

√
2, (28)

It results that

z1
2 = z10

2 +O
(

ε2

Ã∗
(|X|+ |Y |)2 + ε5/2δ3/4

Ã∗
2 (|X |+ |Y |)3 + ε2

Ã∗
2 (|X|+ |Y |)4

)

and using

B2
0 =

1− Ã∗
2

1 + δ2

we also have

1

z10
2 =

2Ã∗
2

2Ã∗
2
+ δ2B2

0

≤ 2(1 + δ2)Ã∗
2

δ2
≤ cÃ∗

2

δ2
,

so that

z1 = z10(B0)

{
1 +

Ã∗
2

δ2
O
(

ε2

Ã∗
(|X|+ |Y |)2 + ε5/2δ3/4

Ã∗
2 (|X |+ |Y |)3 + ε2

Ã∗
2 (|X |+ |Y |)4

)}1/2

= z10(B0)
{
1 +O[ε2(|X|+ |Y |)2]

}1/2
, for |X |+ |Y | ≤ ρ, ρ fixed,
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and taking the square root, we obtain (using ε2

α ≤ ε
√
δ0)

z1 = z10(B0) + Z(X,Y ,B∗) (29)

with
Z(X,Y ,B0) = O(ε(|X |+ |Y |)2,

Z(X,Y ,B0) being defined in the ball

|X|+ |Y | ≤ ρ,

provided that ε is small enough and where ρ is of order 1, not necessarily small
with respect to ε and α. Moreover Z is analytic in its arguments and is at least
quadratic in (X,Y ).

Since z1 contains z10 which is independent of (X,Y ), the new system has
new ”constant terms” and ”linear terms”, appearing as perturbations of the
former ones.

4.6 System where z1 is eliminated

The new system is computed in Appendix A.3. We obtain (notice that B0 is in
factor of the ”constant” terms)

X
′

= L0X +B0F0 + L01(X,Y ) + B01(X,Y ), (30)

Y
′

= L1Y +B0F1 + L11(X,Y ) + B11(X,Y ),

where

L0 =

(
λr λi

−λi λr

)
, L1 =

(
−λr λi

−λi −λr

)
,

and with the following estimates, for terms independent of (X,Y )

|F0|+ |F1| ≤
cε

α3
, (31)

for terms which are linear in (X,Y )

|L01(X,Y )|+ |L11(X,Y )| ≤ c
ε

α2
(|X|+ |Y |), (32)

and for terms at least quadratic in (X,Y ), choosing α small enough and for

|X|+ |Y | ≤ ρ,

we obtain
|B01(X,Y )|+ |B11(X,Y )| ≤ cε

α1/2
(|X |+ |Y |)2. (33)
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4.7 Integral formulation for solutions bounded as x → −∞
Let us introduce the monodromy operators associated with the linear operators
L0,L1 which have non constant coefficients (functions of B0 (see [2]):

∂

∂x
S0(x, s) = L0S0(x, s), S0(x, s1)S0(s1, s2) = S0(x, s2), S0(x, x) = I,

∂

∂x
S1(x, s) = L1S1(x, s), S1(x, s1)S1(s1, s2) = S1(x, s2), S1(x, x) = I.

The coefficients of operators L0,L1 are functions of B0, so we need the Lemma

28 in Appendix A.1, with the following estimates, valid for 0 ≤ B0 ≤
√
1− η20δ

2,

α ≤ (1 + δ2)−2 :

||S0(x, s)|| ≤ eσ(x−s), −∞ < x < s ≤ 0, (34)

||S1(x, s)|| ≤ e−σ(x−s), −∞ < s < x ≤ 0, (35)

with

σ =
α1/2δ1/2

21/4
.

We are looking for solutions of (30) which stay bounded for x → −∞. Then,
thanks to estimates (34) (35), the system (30) may be formulated as

X(x) = S0(x, 0)X0 +

∫ x

0

S0(x, s)G0(s)ds (36)

Y (x) =

∫ x

−∞
S1(x, s)G1(s)ds

G0(s)
def
= B0F0 + L01(X,Y ) + B01(X,Y ),

G1(s)
def
= B0F1 + L11(X,Y ) + B11(X,Y )

where X,Y and B0 are bounded and continuous functions of s, B0 tending
towards 0 as s → −∞.

4.8 Strategy

The idea is
i) solve (36) with respect to (X,Y ) in function of (X0, B0);
ii) solve the integro-differential equation for B0, with B0|x=0 = B0(0).
Then the unstable manifold ofM− is given (see [2]) by Y |x=0, z1|x=0 in terms

of X0, B0(0). The result will be valid for an interval [0,
√
1− η20δ

2] for B0 and

it appears that A0 is then very close to 0 at this end point. The hope is that
this should allow to compute its intersection with the 3-dim stable manifold of

M+ which computation should be valid for B0 in the interval [
√
1− η20δ

2, 1].
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4.9 Resolution for (X, Y )

Let us define, for κ > 0

C0
κ = {X ∈ C0(−∞, 0];X(x)e−κx is bounded}

equiped with the norm

||X||κ = sup
(−∞,0)

|X(x)e−κx|.

We observe that, provided that κ < σ

|
∫ x

−∞
S1(x, s)e

κsds| ≤ eκx

κ+ σ

|S0(x, 0)e
−κx| ≤ e(σ−κ)x, x ≤ 0,

|
∫ x

0

S0(x, s)e
κsds| ≤ eκx

σ − κ
, x ≤ 0.

Let us choose
κ ≤ σ

2
,

then

|
∫ x

−∞
S1(x, s)e

κsds| ≤ eκx

σ
= 21/4

eκx

α1/2δ1/2
,

|
∫ x

0

S0(x, s)e
κsds| ≤ 25/4

eκx

α1/2δ1/2
, x ≤ 0.

Let us assume that
||B0||κ ≤ m

holds with m independent of ε, which needs to be proved at next subsection.
Hence, the implicit function theorem applies for (X,Y ) in the function space
C0

κ, provided that we can choose κ ≤ σ
2 and ||X ||κ+ ||Y ||κ ≤ ρ. Using the above

estimates for coefficients, we obtain

|X(x)e−κx| ≤ |X0|+
25/4

α1/2δ1/2
||B0F0 + L01(X,Y ) + B01(X,Y )||κ,

hence

||X ||κ ≤ |X0|+
25/4

α1/2δ1/2
||B0F0 + L01(X,Y ) + B01(X,Y )||κ, (37)

and in the same way

||Y ||κ ≤ 21/4

α1/2δ1/2
||B0F1 + L11(X,Y ) + B11(X,Y )||κ. (38)
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Remark 13 The choice of κ is governed by the behavior of B0(x) as x → −∞,
which is studied at next subsection.

For ε small enough, estimates on F1, B11, (38) and ||X||κ + ||Y ||κ ≤ ρ, we

obtain, with S
def
= ||X||κ + ||Y ||κ

S ≤ |X0|+ c[
εm

α7/2δ1/2
+

Sε

α5/2δ1/2
+

εSρ

αδ1/2
]

so that (using δ ≥ δ0 > 0) for
ε = α7/2, (39)

ε

α5/2δ1/2
+

ερ

αδ1/2
≤ cε2/7,

S(1− cε2/7) ≤ |X0|+ cm,

which implies
S ≤ (1 + c′ε2/7)|X0|+ c′m,

which leads finally to
||Y ||κ ≤ c(m+ ε2/7|X0|), (40)

||X||κ ≤ (1 + cε2/7)|X0|+ cm, (41)

where c is a number independent of ε, and |X0| ≤ ρ/2, ε = α7/2 small enough,
and we assume m bounded by a certain M of order 1, S ≤ ρ, where ρ is fixed
arbitrarily, of order 1.

4.10 Resolution for B0

We intend to solve the part of our system for B0 with B0(0) = B0|x=0.
We notice from (16) and (21) that

B1 = εδÃ∗B0

{
z10(B0) + Z(X,Y ,B0)

}
− ε3δ(1 + δ2)

B0

Ã∗
A3

A3 = B0[ε
2B2

0(1 + δ2)2(x1 + y1) + 2λrλi(x2 − y2)],

ε2(1 + δ2)
A3

Ã∗
2 ≤ 4ε2

Ã∗
(|X |+ |Y |) ≤ 4ε

√
δ0(|X|+ |Y |),

so that it is clear that (see above estimates for Z)

B1 > 0 for B0 ∈ (0,

√
1− η20δ

2), |X |+ |Y | ≤ ρ. (42)

This is coherent with the study of the linearized system near M− : Indeed the
principal part of the differential equation for B0 is

B′
0 = εδB0Ã∗z10(B0)
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which may be integrated as

B2
0 =

1

(1 + δ2

2 ) cosh
2(x0 − εδx)

, (43)

coshx0 =
1

B0(0)(1 +
δ2

2 )
1/2

,

which satisfies B0 = 0 for x = −∞, and B0 = B0(0) for x = 0. More precisely
the differential equation for B0 is now (after replacing (X,Y ) by its expression
found at previous subsection)

B′
0 = εδÃ∗B0z10(B0)[1 + f(B0)] (44)

where f(B0) is a non local analytic function of B0 in C0
κ, such that

||f(B0)||κ ≤ cερ.

Remark 14 We may notice that we might replace cερ in the estimate above,
by

cερeκx → 0 as x → −∞,

since X and Y ∈ C0
κ.

We are looking for the solution such that B0 = 0 for x = −∞, and B0(0) ≤√
1− η20δ

2 for x = 0. We can rewrite (44) as

2B0B
′
0

B2
0Ã∗z10(B0)

= 2εδ[1 + f(B0)]. (45)

We now introduce the variable v :

v =
1−

√
1− (1 + δ2

2 )B
2
0

1 +
√
1− (1 + δ2

2 )B
2
0

, B2
0 =

1

1 + δ2

2

4v

(1 + v)2
,

so that
(ln v)′ = 2εδ[1 + f(B0)].

We observe that for x runing from −∞ to 0,

w = ln v is increasing from −∞ to w0 = ln v0 < 0.

Now let us define h continuous in its argument and such that

h(w) = f(B0),

B0 =
1

(
1 + δ2

2

)1/2
2ew/2

(1 + ew)
,
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and let us find an a priori estimate for the solution B0(x), for x ∈ (−∞, 0]. We
obtain by simple integration

∫ x

0

w′(s)

1 + h(w)(s)
ds = 2εδx.

For α small enough we have

1− cερ ≤ 1

1 + h(w)
≤ 1 + cερ,

hence (since w < w0, and x < 0)

(w0 − w)(1 − cερ) ≤ −2εδx ≤ (w0 − w)(1 + cερ)

so that

exp(
−2εδx

1 + cερ
) ≤ ew0−w ≤ exp(

−2εδx

1− cερ
)

and

v0 exp(
2εδ

1− cερ
x) ≤ v(x) ≤ v0 exp(

2εδ

1 + cερ
x).

It finally results that we obtain an a priori estimate for

B0(x) = B0(X0, B0(0))(x) ∈ C0
κ, (46)

B0(X0, B0(0))(x) =
1

(
1 + δ2

2

)1/2
2
√
v(x)

(1 + v(x))
, x ∈ (−∞, 0),

2
√
v0 exp(

εδ
1−cερx)

1 + v0 exp(
2εδ

1−cερx)
≤

(
1 +

δ2

2

)1/2

B0 ≤
2
√
v0 exp(

εδ
1+cερx)

1 + v0 exp(
2εδ

1+cερx)
, (47)

v0 =
1−

√
1− (1 + δ2

2 )B
2
0(0)

1 +
√
1− (1 + δ2

2 )B
2
0(0)

< 1.

It remains to notice that we can choose

κ =
εδ

1 + cερ

in the proof for (X,Y ), which needs to satisfy

κ ≤ σ

2
=

α1/2
√
δ

25/4
. (48)

We have already chosen ε = α7/2 hence

κ ≤ εδ = δα7/2 ≤ α1/2
√
δ

25/4
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for α small enough, and (48) is satisfied. The a priori estimate for B0 al-
lows to prove that there is a unique solution of the integro-differential equa-
tion (45) which satisfies the estimate (47) (see [2]). Since B0 is in factor in

Ã0, A1, A2, A3, B1 the behavior for x → −∞ of the coordinates of the unstable
manifold, is governed by the behavior of B0. The estimates indicated in Lemma
10 results from (21), (27) and(28). This ends the proof of Lemma 10. In addition
we have the following result (useful for the forthcoming persistence proof):

Corollary 15 On the unstable manifold described in Lemma 10 we have the
estimates

|A0A1| ≤ cεeεδx, x ∈ (−∞, 0],

B2
0(x) ≤ (B2

00 + cε)e2εδx.

The first estimate is better than the one directly obtained with Lemma 10.
For proving it, we notice that

A0A1 = Ã∗Ã∗
′
+ Ã0Ã∗

′
+ Ã∗A1 + Ã0A1,

and from (21) we have

|Ã∗A1| ≤ B0(|X |+ |Y |) + 2B2
0Ã∗|z1|

≤ B0ρεδ + 2B0εδ

[(
Ã∗

2
+

δ2B2
0

2

)1/2

+O(ε)

]

≤ cεeεδx.

We also have directly

|Ã∗Ã∗
′
| = 2(1 + δ2)B0B

′
0

≤ cεe2εδx,

and from Lemma 10

|Ã0Ã∗
′
|+ |Ã0A1| ≤ ce2δx

ε√
α

ε

α
≤ cεe2εδx.

The second estimate results from (45), which implies for a certain c > 0

|(B2
0(x)e

−2εδx)′| ≤ cε2δeκx, with κ ∼ εδ.

This leads to (x < 0)

B2
0(x)e

−2εδx −B2
00 ≤ cε2δ

∫ 0

x

eκτdτ

≤ cε2δ

κ
.

Corollary 15 is proved.
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Remark 16 The above corollary allows to improve the estimates for the mon-
odromy operators S0(x, s) and S1(x, s) as shown in Appendix A.1. This allows
to avoid the division by

√
α in the estimates in subsection 4.9, and finally al-

lows a better choice α = ε1/3 instead of ε2/7. Since this does not lead to major
changes in the sequel, we keep α = ε2/7 for simplicity.

Let us define the hyperplane H0

B0 = (1 − η20δ
2)1/2.

4.11 Intersection of the stable manifold with H0

We need to give precisely the intersection of the unstable manifold with the

hyperplane B0 =
√
1− η20δ

2. This gives a two-dimensional manifold lying in

the 4-dimensional manifold Wg ∩H0. Taking into account of

Ã∗ = δα

λr, λi ∼ δ1/2α1/2

21/4
, ε = α7/2,

Ã∗z10 ∼ δ√
2
B00,

|Y (0)| = O(ε2/7|X0|+B00),

we obtain a two-dimensional intersection which is tangent to a plane (parameters
x1, x2) with principal part given by

A0 = δα+
εδ1/2

23/4α1/2
B00(x1 − x2)

A1 = εδB00x1 −
(1 + δ2)√

2
B3

00

εδ

α

A2 =
δ3/2

21/4
B00α

1/2ε(x1 + x2) +O(α1/2ε) (49)

A3 =
√
2δ2B00εαx2 +O(αε)

B00 =

√
1− η20δ

2 ∼ (1 + δ2)−1/2,

with

|x1|+ |x2| ≤ ρ, δ0 ≤ δ ≤ δ1, ε = α7/2, α2 = η20(1 + δ2)− 1 > 0,

and where we do not write B1 since we know that this manifold lies in the 5
dimensional manifold Wg.

5 Stable manifold of M+

We show the following
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Lemma 17 For ε small enough, α = [η20(1+δ2)−1]1/2 small enough, δ0 ≤ δ ≤
0.95, the 3-dimensional stable manifold of M+ is included in the 5-dimensional
manifold Wg, it exists for A0, A1, A2, A3 in a ball of small radius η (indepen-

dent of ε, α), is analytic in parameters (ε, δ), and reaches B0(0) = B00
def
=√

1− η20δ
2. Moreover as x → +∞, (A0, A1, A2, A3, B0−1, B1) → 0 as exp(−

√
2εx),

z0 + z1
def
=

B0 − 1

δ1/2
≃ − (1−B00)(1− tanh(εx/

√
2)

1 +B00 tanh(εx/
√
2)

, (50)

|z0 + z1| ≤ 0.282.

Let us define
δ′ = δ1/2,

and choose a new basis

V −
r =




1

− δ′√
2

0
δ′3√
2

0
0




, V −
i =




0

− δ′√
2

δ′2

− δ′3√
2

0
0




,

V +
r =




1
δ′√
2

0

− δ′3√
2

0
0




, V +
i =




0
δ′√
2

δ′2

δ′3√
2

0
0




,

W−
1 =




0
0
0
0
1

−ε
√
2




, W+
1 =




0
0
0
0
1

ε
√
2




,

for defining new coordinates (x1, x2, y1, y2, z0, z1) such that

Z = (0, 0, 0, 0, 1, 0)t+ δ′x1V
−
r + δ′x2V

−
i + δ′y1V

+
r + δ′y2V

+
i + δ′z0W

−
1 + δ′z1W

+
1
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A0 = δ′(x1 + y1)

A1 = − δ′2√
2
(x1 − y1 + x2 − y2)

A2 = δ′3(x2 + y2) (51)

A3 =
δ′4√
2
(x1 − y1 − x2 + y2)

B0 = 1 + δ′(z0 + z1)

B1 = −ε
√
2δ′(z0 − z1).

A simple resolution leads to

x1 =
A0

2δ′
− A1

2
√
2δ′2

+
A3

2
√
2δ′4

x2 = − A1

2
√
2δ′2

+
A2

2δ′3
− A3

2
√
2δ′4

y1 =
A0

2δ′
+

A1

2
√
2δ′2

− A3

2
√
2δ′4

y2 =
A1

2
√
2δ′2

+
A2

2δ′3
+

A3

2
√
2δ′4

z0 =
B0 − 1

2δ′
− B1

2εδ′
√
2

z1 =
B0 − 1

2δ′
+

B1

2εδ′
√
2
.

Let us define

A0 = δ′(x1 + y1) = δ′u (52)

B0 = 1 + δ′v,

then system (1) reads as

A′
0 = A1,

A′
1 = A2,

A′
2 = A3,

A′
3 = −A0

(
δ2 + 2δ2v + δu2 + (1 + δ2)v2

)
,

v′ =
1

δ′
B1,

B′
1 = ε2(1 + δ′v)

(
2δ′v + δv2 + (1 + δ2)δu2

)
.

With variables (51) this gives

x′
1 = − δ′√

2
(x1 + x2)−

δ′ug(u, v)

2
√
2

,

x′
2 =

δ′√
2
(x1 − x2) +

δ′ug(u, v)

2
√
2

,
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y′1 =
δ′√
2
(y1 + y2) +

δ′ug(u, v)

2
√
2

,

y′2 = − δ′√
2
(y1 − y2)−

δ′ug(u, v)

2
√
2

,

z′0 = −ε
√
2z0 −

εδ′

2
√
2
f(u, v),

z′1 = ε
√
2z1 +

εδ′

2
√
2
f(u, v),

g(u, v) = u2 + 2δv + (1 + δ2)v2

f(u, v) = 3v2 + δ′v3 + (1 + δ2)(1 + δ′v)u2,

where the linear part is as expected.
For finding the stable manifold of M+ we put the system in an integral form,

looking for solutions tending to 0 as x → +∞ :

X(x) = e−LxX0 −
δ′

2
√
2

∫ x

0

e−L(x−s)u(s)G(u, v)(s)ds,

Y (x) = − δ′

2
√
2

∫ +∞

x

eL(x−s)u(s)G(u, v)(s)ds, (53)

z0(x) = e−ε
√
2xz00 −

εδ′

2
√
2

∫ x

0

e−ε
√
2(x−s)f(u, v)(s)ds,

z1(x) = − εδ′

2
√
2

∫ +∞

x

eε
√
2(x−s)f(u, v)(s)ds, (54)

where

G =

(
g

−g

)
, L =

δ′√
2

(
1 1
−1 1

)
.

We notice that

eLx = e
δ′x√

2

(
cos δ′x√

2
sin δ′x√

2

− sin δ′x√
2

cos δ′x√
2

)
, (55)

||e−Lx|| ≤ e
− δ′x√

2 , x > 0,

hence, we have the estimates (for x ≥ 0)

eεx
√
2||
∫ x

0

e−L(x−s)e−εs
√
2ds|| ≤

∫ x

0

e
− (δ′−2ε)(x−s)√

2 ds ≤
√
2

δ′ − 2ε
,

eεx
√
2||
∫ ∞

x

eL(x−s)e−εs
√
2ds|| ≤

∫ ∞

x

e
(δ′+2ε)(x−s)√

2 ds =

√
2

δ′ + 2ε
.
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We need a precise estimate on |z00|, for being able to obtain an intersection of the
stable manifold of M+ with the unstable manifold of M− computed previously
at Lemma 10. We need to reach values of (X0, z00) such that

z00 + z1(0) = −h(δ) +
α2δ2

2δ′(1 + δ2)
+O(α4) < 0

|X0| close to 0,

with

h(δ) =
1

δ1/2
(1−

√

1− δ2

1 + δ2
),

and where

η0 −
1√

1 + δ2
∼ α2

2
√
1 + δ2

.

We notice that |z00+ z1(0)| is very closely below h(δ). Moreover, we notice that

the maximum of h(δ) obtained for δ = 1+
√
5

2 ≃ 1.618, is such that

hmax = (
1 +

√
5

2
)−2 ≃ 0.382.

Remark 18 The strategy is to first solve (53) with respect to (X,Y ) in function
of (X0, v) ∈ R2 × C0

ε
√
2
(defined below) and then to solve the first integral (3)

with respect to (z0−z1) in function of (X0, v), which gives an integro differential
equation for v. It is then possible to solve this integro-differential equation for
v(x) in C0

ε
√
2
in function of (X0, z00). The stable manifold of M+ is then obtained

with (X,Y, z0, z1) as a function of (X0, z00).

Let us define for this section

C0
κ = {X ∈ C0[0,+∞);X(x)eκx is bounded}

equiped with the norm

||X ||κ = sup
(0,+∞)

|X(x)eκx|.

Using (55), the system (53,54) gives two scalar equations with unknown func-
tions (u, v). We obtain for u(x) :

u(x) = e
− δ′x√

2 u0(x)−
δ′

2

∫ ∞

0

e
− δ′|x−s|√

2 cos[
δ′|x− s|√

2
− π

4
]u(s)g(u, v)(s)ds, (56)

with

u0(x) = x10 cos
δ′x√
2
− x20 sin

δ′x√
2
.

27



Hence, we obtain the following estimate in C0
ε
√
2
,

||u||ε√2 ≤ ||X0e
− δ′x√

2 ||ε√2 +

√
2δ

(δ − 4ε2)
||u||ε√2||g||0.

Moreover we have

||g||0 ≤ ||u||2
ε
√
2
+ 2δ||v||ε√2 + (1 + δ2)||v||2

ε
√
2
,

≤ ||u||2
ε
√
2
+ 3||v||ε√2 (57)

which, for
δ ≤ 0.95

||v||ε√2 ≤ h(δ) = 0.282,

gives √
2[2δ||v||ε√2 + (1 + δ2)||v||2

ε
√
2
] < 0.972 < 1.

It results that for ||v||ε√2 ≤ 0.282 we can bound ||u||ε√2 as

0.028||u||ε√2 ≤ ||X0e
− δ′x√

2 ||ε√2 +

√
2δ

(δ − 4ε2)
||u||3

ε
√
2

which, for
|X0| ≤ 0.0015

and ε small enough, leads to

||u||ε√2 ≤ 50||X0e
− δ′x√

2 ||ε√2 ≤ 50|X0|, (58)

||g||0 ≤ 0.98√
2
.

Remark 19 The fact that (x1 + y1) is in factor of g(x1 + y1, z0 + z1) for the
estimates of ||X ||ε√2 and ||Y ||ε√2 is essential here, since this leaves a freedom
on ||z0 + z1||ε√2. This is the main difference with section 4, and this allows to
use the direct method for the stable manifold of M+, contrary to what we did
for the computation of the unstable manifold of M−. In fact, using the direct
method for the unstable manifold would give a too small bound for B0, with no
possibility of connection with the stable manifold of M+.

Then we obtain

||xj ||ε√2 ≤ ||X0e
− δ′x√

2 ||ε√2 +
δ′

2(δ′ − 2ε)
||u||ε√2||g||

≤ ||X0e
− δ′x√

2 ||ε√2 +
1

2
√
2
||u||ε√2 (59)

≤ (1 +
25√
2
)||X0e

− δ′x√
2 ||ε√2 = 18.7||X0e

− δ′x√
2 ||ε√2

||yj ||ε√2 ≤ 1

2
||u||ε√2(||u||2ε√2

+ 3||v||ε√2) (60)

≤ 25√
2
||X0e

− δ′x√
2 ||ε√2 = 17.7||X0e

− δ′x√
2 ||ε√2,
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which is valid, as soon as ε is small enough and

|X0| ≤ 0.0015, δ0 ≤ δ ≤ 0.95, ||z0 + z1||ε√2 ≤ 0.282

holds.

5.1 Using the first integral (3)

For extending the domain of validity for the stable manifold of M+, instead of
using the differential equations for z0 and z1 we use the first integral (3):

B2
1 =

ε2

2
(B2

0 − 1 +A2
0)

2 + ε2δ2A2
0B

2
0 + 2ε2A1A3 − ε2A2

2,

hence

B2
1 =

ε2

2
[(B2

0 − 1)2 + 2δ(1 + δ2)u2(2δ′v + δv2)

+δ2u4 + 8δ3(x1y1 − x2y2)].

Taking the square root gives the traces of the stable and of the unstable mani-
folds on Wg. The stable manifold needs satisfy B1 = B′

0 > 0 , since B0 < 1 for
x = 0, B0 = 1 for x = ∞, and the sign of B1 does not change in the interval.
Hence

B1 =
ε√
2
(1−B2

0)

(
1 +

2δ′(1 + δ2)u2

(2v + δ′v2)
+

δu4 + 8δ2(x1y1 − x2y2)

(2v + δ′v2)2

)1/2

(61)

and the estimates we found for ||X ||ε√2 and ||Y ||ε√2 may be used.

Remark 20 We notice that this implies that v < 0, v′ > 0, and |v(x)|max =
|z00 + z1(0)| is then O(α2) close to h(δ).

We observe that
B1 = B′

0 =
ε√
2
[1−B2

0 ]

may be easily integrated (B0(0) =
√
1− η20δ

2), B0(∞) = 1), and moreover leads
to

z0 − z1 =
1

2
v(2 + δ′v)

i.e.

z1 = −δ′

4
(z0 + z1)

2 < 0 (62)

which is the solution of (54) for u = 0. Let us show that the expression above
for B1, is valid. Using ||v||ε√2 ≤ 0.282, and δ ≤ 0.95, we obtain

1−B2
0 = |δ′v|(2− |δ′v|)

≥ 1.725δ′|v|

29



so that
∣∣∣∣
2δ′(1 + δ2)u2

(2v + δ′v2)
+

δu4 + 8δ2(x1y1 − x2y2)

(2v + δ′v2)2

∣∣∣∣

≤ 4u2 + 0.24|u|
1.725|v| +

u4 + 0.02u2

(1.725)2v2
.

In using (59,60)

|8δ2(x1y1 − x2y2)| ≤ 160|X0||u|
(
|u|2 + 3|v|

)

≤ 480|X0||u|
(

1

40
|u|+ |v|

)

≤ 0.72|u|
(

1

40
|u|+ |v|

)
,

and we also have

|8δ2(x1y1 − x2y2)| ≤ 8|X ||u|(0.075|u|+ 3|v|).

We now assume that for x ∈ (0,∞)

|u(x)| ≤ 0.9|v(x)|, (63)

which has to be checked at the end. Then
∣∣∣∣
2δ′(1 + δ2)u2

(2v + δ′v2)
+

δu4 + 8δ2(x1y1 − x2y2)

(2v + δ′v2)2

∣∣∣∣ ≤ 0.68,

and also
∣∣∣∣
2δ′(1 + δ2)u2

(2v + δ′v2)
+

δu4 + 8δ2(x1y1 − x2y2)

(2v + δ′v2)2

∣∣∣∣ ≤ 9.383(|X |+ |Y |)

implying a smooth function for the square root, provided that we check a pos-
teriori (63) and that |X |+ |Y | is small enough. It follows from (61) that z0−z1
is a smooth function of (v,X, Y ) for ε small enough,

δ < 0.95, |v| ≤ 0.282,

|X |+ |Y | ≤ 0.9|v|, |X |+ |Y | small enough,

so that

z0 − z1 =
1

2
v(2 + δ′v)[1 + Z(X,Y )],

|Z(X,Y )| ≤ 10(|X |+ |Y |).

It results that

−ε
√
2(z0 − z1) = v′ = −ε

√
2v(1 +

δ′

2
v)[1 + Z(X,Y )], (64)
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where X,Y are expressed in function of (X0, v) (non local expression in v).
Then we can integrate the integro-differential equation, as in section 4.10. We
introduce the new variable w as

w′ =
v′

v(1 + (δ′/2)v)
,

w = ln

( −v

1 + (δ′/2)v

)
,

v = − ew

1 + δ′

2 e
w
;

w decreases from w0 to −∞ for x ∈ (0,∞), while v grows from v0 < 0 to 0. We
observe now that we have

|Z(X(X0, v), Y (X0, v))| ≤ 10(|X |+ |Y |) ≤ 20(18.7 + 17.7)|X0|
≤ 740|X0|,

so that, expressed in term of w, we have

Z(X(X0, v(w)), Y (X0, v(w))) = h(w),

|h(w)| ≤ c|X0| < 1/2

for |X0| small enough. We then obtain, by simple integration

ε
√
2x(1− c|X0|) ≤ w0 − w(x) ≤ ε

√
2x(1 + c|X0|).

Remark 21 The constant c above may be replaced by

ce−ε
√
2x

since |X | and |Y | lie in C0
ε
√
2
.

We deduce the estimate

v0
1− tanh( εx(1−c|X0|)√

2
)

1 +B00 tanh(
εx(1−c|X0|)√

2
)
≤ v(x) ≤ v0

1− tanh( εx(1+c|X0|)√
2

)

1 +B00 tanh(
εx(1+c|X0|)√

2
)

(65)

where

v0 =
B00 − 1

δ′
, B00 = B0(0).

The a priori estimate for v obtained in (65) allows to prove (see [2]) the existence
and uniqueness of a solution for (64), provided that (63) is satisfied on the whole
interval x ∈ [0,∞). For checking this, we notice from (65) that

|v(x)| ≥ |v0|e−ε
√
2x, |u(x)| ≤ 50|X0|e−

δ′x√
2 ,

where the last estimate results from the bound for ||g||0 and an estimate for

u(x)e
δ′x√

2 from (56). Hence (63) is satisfied as soon as

50|X0| ≤ 0.9|v0|,
which is OK for |X0| small enough. Lemma 17 is proved.
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5.2 Intersection of the stable manifold with H0

We need to compute the intersection of the 3-dimensional stable manifold of
M+ with the hyperplane H0 defined by

B0 =

√
1− η20δ

2. (66)

We then obtain a 2-dimensional sub-manifold living in the 4-dimensional man-
ifold Wg ∩H0. We have by construction

A0 = δ1/2(x10 + y10),

A1 = − δ√
2
(x10 + x20 − y10 − y20) (67)

A2 = δ3/2(x20 + y20)

A3 =
δ2√
2
(x10 − x20 − y10 + y20),

where y10 and y20 are expressed in function of X0 = (x10, x20), with the restric-
tion

|x10|+ |x20| ≤ η.

6 Intersection of the two manifolds

We need to see the intersection of the plane (49) tangent to the unstable manifold
of M−, with the plane tangent to the stable manifold of M+ given by (67).

We then find a linear system with 4 unknowns (x1
(u), x2

(u), x
(s)
10 , x

(s)
20 ), with

the restrictions
|x(s)

10 |+ |x(s)
20 | ≤ η, |x1

(u)|+ |x2
(u)| ≤ ρ.

We then have

(x
(s)
10 + y

(s)
10 ) = δ′α+

ε

23/4α1/2
B00(x1

(u) − x2
(u))

−(x
(s)
10 + x

(s)
20 − y

(s)
10 − y

(s)
20 ) =

√
2εB00x1

(u) − (1 + δ2)B00
ε

α
(68)

(x
(s)
20 + y

(s)
20 ) =

α1/2ε

21/4
B0(x1

(u) + x2
(u))

(x
(s)
10 − x

(s)
20 − y

(s)
10 + y

(s)
20 ) = 2αεB0x2

(u),

where we need to express (y
(s)
10 , y

(s)
20 ) as a linear function of (x

(s)
10 , x

(s)
20 ). Let us

define

X
(s)
0 =

(
x
(s)
10

x
(s)
20

)
, Y

(s)
0 =

(
y
(s)
10

y
(s)
20

)
, X

(u)
=

(
x1

(u)

x2
(u)

)
,

then we have (with c = 1+δ2

4 B00)

X
(s)
0 =

(
δ′

2 α+ c ε
α

c ε
α

)
+M1X

(u)
,
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Y
(s)
0 =

(
δ′

2 α− c ε
α

0

)
+M 2X

(u)
,

with

M 1 =
εB02

1/4

4α1/2

(
1− 21/4α1/2 −1 + 23/4α3/2

−21/4α1/2 +
√
2α

√
2α− 23/4α3/2

)
,

M 2 =
εB02

1/4

4α1/2

(
1 + 21/4α1/2 −1− 23/4α3/2

21/4α1/2 +
√
2α

√
2α+ 23/4α3/2

)
.

The matrix M 2 is invertible with

M−1
2 =

4α1/2

εB021/4 det(M ′
2)

( √
2α+ 23/4α3/2 1 + 23/4α3/2

−21/4α1/2 −
√
2α 1 + 21/4α1/2

)

det(M ′
2) = [

√
2α(1 + 21/4α1/2)2 + (1− 23/4α3/2)(21/4α1/2 +

√
2α)]

= 21/4α1/2 + 2
√
2α+O(α3/2).

It results that

M 1M
−1
2 ∼

(
1 23/2α

−23/2α −1

)

X
(s)
0 ∼

(
1 23/2α

−23/2α −1

)
Y

(s)
0 +

(
δ′

2 α
δ′

2 α

)
. (69)

Equation (69) represents a 2-dim affine plane resulting from the 4-dim linear
system expressing the intersection of the two manifolds. This gives a condition
on coordinates of the stable manifold, and shows that this affine plane needs

to intersect the tangent plane to the stable manifold given by (67) with Y
(s)
0

expressed as a linear function of X
(s)
0 .

Let us show below (subsection 6.0.1) that in restricting a little δ, and for α
small enough, then, for the tangent plane to the stable manifold at the inter-
section with H0, we have

|Y (s)
0 | ≤ k|X(s)

0 |, k < 1. (70)

This gives bounds for the slope of the tangent plane to this intersection which
passes through the origin in (X(s), Y (s)): using (69), we see that

|X(s)
0 | ≤ k|X(s)

0 |+O(α),

hence this tangent plane intersects transversally the affine plane (69), and defines

a unique point (X
(s)
0 , Y

(s)
0 ) = O(α). This satisfies the constraint of order η on

(X
(s)
0 , Y

(s)
0 ). Then X

(u)
is uniquely determined in using (68). Finally, from (49)
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we obtain

A0(0) ∼ αδ

A1(0) ∼ − (1 + δ2)δ√
2

B3
00

ε

α

A2(0) = O(B00εα
1/2)

A3(0) = O(B00εα
1/2).

This proves that the intersection between the unstable manifold of M− and the
stable manifold of M+ is transverse while they both sit on Wg and cross the
hyperplane (66). Since it is the transverse intersection of two manifolds, depend-
ing analytically on parameters (ε, δ), the resulting curve depends analytically
on these parameters.

We observe that, along this intersection, and by construction, B1(x) =
B′

0(x) > 0. Its principal part on (−∞, 0] is given by (43) with B0(0) = B00 =√
1− η20δ

2, and on [0,+∞)by (50).

The Theorem 1 is then proved. Moreover, since (51), (59), (60) hold we also
have the following

Corollary 22 For x ∈ [0,+∞) there exists c > 0 independent of ε, δ such that
for the heteroclinic curve

|A(m)
0 (x)| ≤ cαδe

− δ′x√
2 , m = 0, 1, 2, 3.

6.0.1 Proof of (70)

The tangent plane to the stable manifold is given by Y0 expressed with (53) for
x = 0, u(x) (function of X0) given by (56), where u is replaced by 0 in g(u, v)
and G(u, v). Then we obtain the estimates

|Y0| ≤ 1

2
||u||0||g||0,

||u||0 ≤ |X0|+
√
2||u||0||g||0,

hence

|Y0| ≤
1

2

||g||0
1−

√
2||g||0

|X0|,

where
||g||0 ≤ 2δ||v||0 + (1 + δ2)||v||20.

Observing that ||v||0 is bounded by h(δ), it is easy to check that for

δ ≤ 0.825,

we obtain h(δ) = 0.2779, so that

||g||0 ≤ 0.5218,
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and

1

2

||g||0
1−

√
2||g||0

≤ k < 1,

with k = 0.9956.

7 Study of the linearized operator

Let us redefine the heteroclinic connection we found at Theorem 1 as

(A∗(x), B∗(x)) ⊂ R2

with
1 < 1 + δ20 ≤ g = 1 + δ2 ≤ 1 + (0.825)2,

and where we know that, for ε small enough

B∗(x) > 0, B′
∗(x) > 0

(A∗(x), B∗(x)) →
{

(1, 0) as x → −∞
(0, 1) as x → +∞ ,

at least as eεδx for x → −∞, and at least as e−
√
2εx for x → +∞.

The system (1) is now considered with B0 complex valued, so in (1) B2 is
replaced by |B|2.

For being able to prove any persistence result under reversible perturbations
of system (1) in R4 ×C2 we need to study the linearized operator at the above
heteroclinic solution. We follow the lines of [3].

The linearized operator is given by

A(4) = (1 − 3A2
∗ − gB2

∗)A− gA∗B∗(B +B),

B′′ = ε2(−1 + gA2
∗ + 2B2

∗)B + 2ε2gA∗B∗A+ ε2B2
∗B.

Taking real and imaginary parts for B :

B = C + iD,

we then obtain the linearized system

−A(4) + (1− 3A2
∗ − gB2

∗)A− 2gA∗B∗C = 0,

1

ε2
C′′ + (1− gA2

∗ − 3B2
∗)C − 2gA∗B∗A = 0,

1

ε2
D′′ + (1− gA2

∗ −B2
∗)D = 0.

Notice that the equation forD decouples, so that we can split the linear operator
in an operator Mg acting on (A,C) and an operator Lg acting on D :

Mg

(
A
C

)
=

(
−A(4) + (1− 3A2

∗ − gB2
∗)A− 2gA∗B∗C

1
ε2C

′′ + (1− gA2
∗ − 3B2

∗)C − 2gA∗B∗A

)
,

35



LgD =
1

ε2
D′′ + (1− gA2

∗ −B2
∗)D.

Let us define the Hilbert spaces

L2
η = {u;u(x)eη|x| ∈ L2(R)},

D0 = {(A,C) ∈ H4
η ×H2

η ;A ∈ H4
η , C ∈ D1}

D1 = {C ∈ H2
η ; ε

−2||C′′||L2
η
+ ε−1||C′||L2

η
+ ||C||L2

η

def
= ||C||D1 < ∞}

equiped with natural scalar products. Below, we prove the following

Lemma 23 Except maybe for a set of isolated values of g, the kernel of Mg in
L2
η is one dimensional, span by (A′

∗, B
′
∗), and its range has codimension 1, L2-

orthogonal to (A′
∗, B

′
∗). Mg has a pseudo-inverse acting from L2

η to D0 for any
η > 0 small enough, with bound independent of ε.

The operator Lg has a trivial kernel, and its range which has codimension 1,
is L2- orthogonal to B∗ (B∗ /∈ L2). Lg has a pseudo-inverse acting respectively
from L2

η to D1 for η > 0 small enough, with bound independent of ε.

Remark 24 The above Lemma is useful for proving the persistence under re-
versible perturbations of our heteroclinic. This is done in a forthcoming paper
and appears to be more difficult than the symmetric case solved in [3].

7.1 Asymptotic operators

Let us define the operators obtained when x = ±∞ :

M−
∞

(
A
C

)
=

(
−A(4) − 2A

ε−2C′′ − (g − 1)C

)
,

M+
∞

(
A
C

)
=

(
−A(4) − (g − 1)A

ε−2C′′ − 2C

)
,

L−
∞D = ε−2D′′ − (g − 1)D,

L+
∞D = ε−2D′′.

Notice that all these operators are negative. Furthermore, their spectra in L2(R)
are such that

σ(M−
∞) = (−∞,−c−], c− = max{2, (g − 1)} > 0,

σ(M+
∞) = (−∞,−c+], c+ = c−,

σ(L−
∞) = (−∞,−(g − 1)],

σ(L+
∞) = (−∞, 0].
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Operators Mg and Lg are respectively relatively compact perturbations of the
corresponding asymptotic operators M∞ and L∞ defined as

M∞ =

{
M−

∞, x < 0
M+

∞, x > 0
, L∞ =

{
L−
∞, x < 0

L+
∞, x > 0

,

Their essential spectrum, i.e. the set of λ ∈ C for which λ−Mg (resp. λ−Lg)
is not Fredholm with index 0, is equal to the essential spectrum of M∞ (resp.
L∞) (see [6]). The latter spectra are found from the spectra of M±

∞ and L±
∞ :

σess(M∞) = (−∞,−c+],

σess(L∞) = (−∞, 0].

In particular, this implies that 0 does not belong to the essential spectrum of
Mg, so that the operator Mg is Fredholm with index 0. Moreover operators
M∞ and L∞ are self adjoint negative operators in L2, and M∞ has a bounded
inverse [6].

||M−1
∞ ||L2 ≤ 1

c+
.

This last property remains valid in exponentially weighted spaces, with weights
eη|x|, and η sufficiently small, since this acts as a small perturbation of the
differential operator (see [5] section 3.1).

We show at section 7.3.1 that the kernel ofMg is one-dimensional (except for

a finite set of values of g), spanned by (A′
∗, B

′
∗)

def
= U∗ with a range orthogonal

to U∗ in L2. Let us define the projections Q0 on U⊥
∗ and P0 on U∗ , which are

orthogonal projections in L2, then we need to solve in L2
η

Mgu = f

in decomposing
u = zU∗ + v, v = Q0u,

(M∞ +Ag)v = Q0f

and we need to satisfy the compatibility condition

〈f, U∗〉 = 0,

while z is arbitrary and we obtain for v :

(I+M−1
∞ Ag)v = M−1

∞ Q0f,

where the operator M−1
∞ Ag is now a compact operator for which −1 is not an

eigenvalue, since v ∈ U⊥
∗ . It results that there is a number c independent of ε

such that
||v||L2

η
≤ c||f ||L2

η
.

From the form of operator Mg and using interpolation properties, we obtain
for v = (A,C)

||(A,C)||D0 ≤ c||f ||L2
η

with a certain c independent of ε.

37



7.2 Properties of Lg

Notice that Lg is self adjoint in L2(R) and that

LgB∗ = 0, but B∗ /∈ L2(R).

This property allows to solve explicitely the equation Lgu = f ∈ L2
η with respect

to u ∈ L2
η (using variation of constants method), and shows that it has a unique

solution, provided that ∫

R

fB∗dx = 0.

We obtain

u(x) =

∫ ∞

x

ε2B∗(x)

B2
∗(s)

F (s)ds

with F (s) =

∫ ∞

s

f(τ )B∗(τ )dτ for s ≥ 0

= −
∫ s

−∞
f(τ)B∗(τ )dτ for s ≤ 0.

By Fubini’s theorem we can write for x ≥ 0

u(x) = ε2B∗(x)

∫ ∞

x

f(τ )B∗(τ )

(∫ τ

x

ds

B2
∗(s)

)
dτ

and, for x ≤ 0

u(x) = −ε2B∗(x)

∫ x

−∞
f(τ)B∗(τ )

(∫ 0

x

ds

B2
∗(s)

)
dτ

−ε2B∗(x)

∫ 0

x

f(τ)B∗(τ )

(∫ 0

τ

ds

B2
∗(s)

)
dτ .

The asymptotic properties of B∗(x) at ±∞ imply, for x ≥ 0

|u(x)|eηx ≤ Cε2
∫ ∞

x

|f(τ )eητ |(τ − x)e−η(τ−x)dτ ,

and for x ≤ 0

|u(x)|e−ηx ≤ Cε2

2εδ

∫ x

−∞
|f(τ )e−ητ |e−(η+εδ)(x−τ)dτ

+
Cε2

2εδ

∫ 0

x

|f(τ)e−ητ |e(η−εδ)(τ−x)dτ .

The bound
||u||L2

η
≤ c2||f ||L2

η
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follows from classical convolution results between functions in L2 and functions
in L1, since

∫ 0

−∞
e(η−εδ)τdτ =

1

η − εδ
,

∫ ∞

0

τe−ητdτ =
1

η2
.

Then, we choose η = 1
2εδ, so that the pseudo-inverse of Lg has a bounded

inverse in L2
η :

||L̃g

−1|| ≤ c2,

where c2 is independent of ε. Using the form of Lg we obtain easily

||u||D1 ≤ c3||f ||L2
η

with c3 independent of ε.

Remark 25 The choice made for η is such that

η < εδ, η < ε
√
2,

for values of δ for which Theorem 1 is valid. This means that as x → −∞
(A∗ − 1, B∗), and, as x → +∞ (A∗, B∗ − 1) tend exponentially to 0 faster than
e−η|x|.

In fact, Lg has the same properties as the operatorMi in the proof of Lemma
7.3 in [3], see also [4]: Lg is Fredholm with index -1, when acting in L2

η, for η
small enough. Lg has a trivial kernel, and its range is orthogonal to B∗, with
the scalar product of L2(R).

7.3 Properties of Mg

We saw that Mg is Fredholm with index 0. Furthermore the derivative of the
heteroclinic solution belongs to its kernel:

Mg

(
A′

∗
B′

∗

)
=

(
−A

(5)
∗ +A′

∗ − (A3
∗)

′ − gB2
∗A

′
∗ − gA∗(B2

∗)
′

ε−2B′′′
∗ + [B′

∗ − gA2
∗B

′
∗ − (B3

∗)
′ − gB∗(A2

∗)
′]

)

=

(
0
0

)
. (71)

We show below (see section 7.3.1) that the kernel of Mg, is one dimensional,
then this implies that the range of Mg needs satisfy the orthogonality with
only one element. In fact, because of selfadjointness in L2, the range of Mg is
orthogonal in L2(R) to

(A′
∗, B

′
∗) ∈ L2

η.
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7.3.1 Dimension of kerMg

Any element ζ(x) in the kernel lies, by definition, in L2
η, hence ζ(x) tends towards

0 exponentially at ±∞. Near x = ±∞ the vector ζ(x) ∼ ζ±(x) should verify

M±
∞ζ±(x) = 0

where there are only 2 possible good dimensions (on each side). This gives a
bound = 2 to the dimension of the kernel ofMg. Let us show that dimension 2 of
kerMg implies non uniqueness of the heteroclinic, which contradicts Theorem
1, hence the only possibility is that the dimension is one.

Let us choose arbitrarily g0 and assume that the kernel of Mg0 consists in

ζ0(x), ζ1(x)

where ζ0 = (A′
∗, B

′
∗)|g0 and let us decompose a solution of (1) in the neighbor-

hood of g0 as

U = Ta(U
(g0)
∗ + a1ζ1 + Y ), (72)

where Ta represents the shift x 7→ x + a, where a, a1 ∈ R, and Y belongs
to a subspace transverse to kerMg0 . Let us denote by Q0 and P0 = I − Q0,
projections, respectively on the range ofMg0 , and on a complementary subspace
(Q0 may be built in using the eigenvectors ζ∗0, ζ

∗
1 of the adjoint operator M∗

g0).
Let us denote by

F(U, g) = 0

the system (1) where we look for an heteroclinic U for g 6= g0. Then, we have

F(U
(g0)
∗ , g0) = 0,

DUF(U
(g0)
∗ , g0) = Mg0 ,

and since
Mg0ζj = 0, j = 0, 1,

using the equivariance under operatorTa, we obtain (denoting F0 = F(U
(g0)
∗ , g0)

and [..](2) the argument of a quadratic operator)

0 = Mg0Y + (g − g0)∂gF0 +
1

2
D2

UUF0[a1ζ1 + Y ](2) +

+O(|g − g0|[|g − g0|+ |a1|+ ||Y ||] + ||Y ||3).

The projection Q0 of this equation allows to use the implicit function theorem
to solve with respect to Y and then obtain a unique solution

Y = Y(a1, g),

with

Y = −(g − g0)M̃g0

−1
Q0∂gF0 −

1

2
M̃g0

−1
Q0D

2
UUF0[a1ζ1]

(2) +

+O(|g − g0|(|g − g0|+ |a1|) + |a1|3)).
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Then projecting on the complementary space, (only one equation since we work
in the subspace orthogonal to ζ∗0), we may observe (see the proof below) that
P0∂g0F0 = 0 and then obtain the ”bifurcation” equation as

q(a1, g − g0) = O((|g − g0|+ |a1|)3),

where the function q is quadratic in its arguments and

q|g=g0ζ1 =
1

2
P0D

2
UUF0[a1ζ1]

(2).

This equation is just at main order a second degree equation in a1 depending on
g− g0. Provided that the discriminant is not 0, the generic number of solutions
is 2 or 0. If the discriminant is 0 for g = g0, we just go a little farther in g,
and obtain a non zero discriminant, since the discriminant cannot stay = 0,
because of the analyticity in g of the heteroclinic. This is true except for a
set of isolated values of g. We can then use the implicit function theorem for
finding corresponding solutions for the system with higher order terms. In fact

we already know a solution, corresponding to U
(g)
∗ = U

(g0)
∗ + (g − g0)∂gU

(g0)
∗ +

h.o.t. which corresponds to specific values for a1 and Y, of order O(g − g0). It
then results that there is at least another solution of order O(g − g0), so that
there exists another heteroclinic, in the neighborhood of the known one (then
in contradiction with Theorem 1).

Remark 26 The above proof with only 1 dimension in the Kernel, provides

Y = −(g − g0)M̃g0

−1
∂gF0 + O((g − g0)

2), which gives a unique heteroclinic.
Since we found only one heteroclinic, this shows that the kernel is of dimension
1.

7.3.2 Proof of P0∂gF0 = 0

Lemma 27 Any (u, v) in the kernel of Mg satisfies
∫

R

A∗B∗(B∗u+A∗v)dx = 0,

and ∂gF0(U∗, g) = (A∗B2
∗ , A

2
∗B∗) belongs to the range of Mg, hence P0∂gF0 =

0.

Proof.
Differentiating with respect to g the system (1) verified by the heteroclinic,

we obtain

Mg

(
∂gA∗
∂gB∗

)
=

(
A∗B2

∗
A2

∗B∗

)
= ∂gF0(U∗, g),

hence (A∗B2
∗ , A

2
∗B∗) belongs to the range of Mg. When (u, v) ∈ kerMg, then

(u, v) ∈ kerM∗
g where Mg = M∗

g, when the adjoint is computed with the scalar
product of L2, hence

∫

R

A∗B∗(B∗u+A∗v)dx = 0. (73)
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Hence, the eigenvectors ζ∗0, ζ
∗
1 of the adjoint M∗

g (the orthogonal of this 2-
dimensional eigenspace is the range ofMg), are orthogonal to ∂gF0 = (A∗B2

∗ , A
2
∗B∗)|g0

in L2.

A Appendix

A.1 Monodromy operator

Let us prove the estimate for the monodromy operators. We prove the following

Lemma 28 For η0δ ≤ A∗ ≤ 1, and α−1 ≥ (1+δ2)2 and the following estimates
hold

||S0(x, s)|| ≤ eσ(x−s), −∞ < x < s

||S1(x, s)|| ≤ e−σ(x−s), −∞ < s < x

with

σ =
α1/2δ1/2

21/4
.

We start with the system

x′
1 = λrx1 + λix2

x′
2 = −λix1 + λrx2

where λr and λi are functions of x. When η0δ ≤ A∗ ≤ 1, α−1 ≥ (1 + δ2)2, we
have, for ε small enough (see (14))

λr ≥ α1/2δ1/2

21/4
= σ.

Now we have
(x2

1 + x2
2)

′ = 2λr(x
2
1 + x2

2)

hence
(x2

1 + x2
2)(x) = e

∫ x
s

2λr(τ)dτ (x2
1 + x2

2)(s),

which, for x < s, leads to

√
(x2

1 + x2
2)(x) ≤ eσ(x−s)

√
(x2

1 + x2
2)(s).

The proof is then done for the operator S0. The estimate for S1 is obtained in
the same way.

Remark 29 We have

S0(x, s) = e
∫ x
s

λr(τ)dτ

(
cos(

∫ x

s
λi(τ )dτ ) sin(

∫ x

s
λi(τ )dτ )

− sin(
∫ x

s λi(τ )dτ ) cos(
∫ x

s λi(τ )dτ )

)
.
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Remark 30 In fact, once we have proved Lemma 10, we are able to improve the
estimate of the integral

∫ x

s λr(τ )dτ in using Corollary 15. Indeed this corollary
leads to

Ã∗
2

≥ 1− (1 + δ2)(B2
00 + cε)e2εδx

≥ 1− [1− α2δ2 + cε(1 + δ2)]e2εδx

≥ 1− (1− c′α2)e2εδx

provided that

ε < c′α2, c′ ≤ δ2

1 + c(1 + δ2)
.

Now, in using
(1− a4)1/4 ≤ 3−1/4(1− a) for a < 1.

this leads to (x < 0)

∫ 0

x

λr(τ )dτ ≥ 1

21/4

∫ 0

x

[1− (1− c′α2)e2εδτ ]1/4dτ

≥ 1

61/4

∫ 0

x

[1− (1− c′α2)1/4e
εδτ
2 ]dτ

≥ 1

61/4
[|x| − (1− c′α2)1/4

2

εδ
(1− e

εδx
2 )]

≥ 1

61/4
|x|,

so that
e
∫

x
s

λr(τ)dτ ≤ e
x−s

61/4 , x < s < 0, (74)

which is better than the estimate in Lemma 28.

A.2 Computation of the system with new coordinates

Let us look for the system (8) writen in the new coordinates, first in forgetting
quadratic and higher orders terms

B0x
′
1 =

(λ2
r + λ2

i )

4λr

(
A1 +

(1 + δ2)B0B1

Ã∗

)
+

3λ2
r − λ2

i

4λr(λ
2
r + λ2

i )
A3

+
A2

2
+

(1 + δ2)

2Ã∗
B2

0ε
2
(
δ2(Ã∗

2
−B2

0) + 2(1 + δ2)Ã∗Ã0

)
− (λ2

r − λ2
i )Ã0

= B0f1 +
(λ2

r + λ2
i )

4λr
B0(x1 + y1) +

A2

2
+

1

4λr
A3,
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λiB0x
′
2 = − (λ2

r + λ2
i )

4

(
A1 +

(1 + δ2)B0B1

Ã∗

)
− λ2

r − 3λ2
i

4(λ2
r − α)

A3

− (λ2
r − λ2

i )

4λr

(
A2 +

(1 + δ2)B2
0ε

2

Ã∗
δ2(Ã∗

2 −B2
0)

)

− 1

4λr
(λ2

r + λ2
i )

2Ã0

= λiB0f2 −
(λ2

r + λ2
i )

4
B0(x1 + y1)−

(λ2
r − λ2

i )

4λr
A2

+
1

4
A3 −

1

4λr
(λ2

r + λ2
i )

2Ã0,

with

f1 =
ε2δ2B0(1 + δ2)(Ã∗

2 −B2
0)

2Ã∗
,

f2 = −ε2δ2B0(1 + δ2)(λ2
r − λ2

i )(Ã∗
2 −B2

∗)

4λrλiÃ∗
,

hence

x′
1 = f1 + λrx1 + λix2, (75)

x′
2 = f2 − λix1 + λrx2,

and in the same way

y′1 = f1 − λry1 + λiy2,

y′2 = −f2 − λiy1 − λry2, (76)

z′1 =
2ε2δ2(Ã∗

2
−B2

0)

Ã∗
=

2f1

(1 + δ2)B0

,

B′
∗ = − (λ2

r − λ2
i )

(1 + δ2)B0Ã∗
A3 + Ã∗B0z1.

We notice that the following estimates hold

|f1| ≤ B0ε
2δ2

Ã∗
≤ B0ε

2δ

α
, (77)

|f2| ≤ B0ε
4δ2

Ã∗
2 ≤ B0ε

2δ.

A.2.1 Full system in new coordinates

We intend to derive the full system (1) with coordinates (x1, x2, y1, y2, B0, z1).
Differentiating (17) and (18) we see that we respectively need to add to the
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previous expressions (75) for x′
1 and x′

2

1

B0

{(
Ã∗

2
√
2λr

)′

Ã0 +

(
(3λ2

r − λ2
i )

4
√
2λrÃ∗

)′

A2 + ε2

(
(1 + δ2)2B2

0

2Ã∗
2

)′

A3 +

(
(1 + δ2)B0

2Ã∗

)′

B1

}

−ε2
(1 + δ2)2B0

2Ã∗
2 [3Ã∗Ã0

2
+ Ã0

3
] +

B0ε
2(1 + δ2)2Ã0

2

2Ã∗
− B1

B0
x1.

and

1

B0

{
−
(

Ã∗

2
√
2λi

)′

Ã0 −
(
(λ2

r − λ2
i )

4λrλi

)′

A1 −
(
(λ2

r − 3λ2
i )

4
√
2λiÃ∗

)′

A2 +

(
ε2(1 + δ2)3B3

0

4λrλiÃ∗

)′

B1

}

+
1

B0

(
1

4λrλi

[
1− (λ2

r − λ2
i )

2

Ã∗
2

])′

A3 −
1

4λrλiB0

(
1− (λ2

r − λ2
i )

2

Ã∗
2

)
[3Ã∗Ã0

2
+ Ã0

3
]

−ε4B3
0(1 + δ2)4

4λrλiÃ∗
Ã0

2
− B1

B0
x2.

We then arrive to the system (22,23,24,25).
We observe that (using (11))

Ã∗
′
= − (1 + δ2)B0

Ã∗
B1

(λ2
r)

′ = − (1 + δ2)B0B1√
2Ã∗

(1− ε2
√
2(1 + δ2)Ã∗)

(λ2
i )

′ = − (1 + δ2)B0B1√
2Ã∗

(1 + ε2
√
2(1 + δ2)Ã∗)

(
Ã∗

2
√
2λr

)′

= a1B0B1, |a1| ≤
c

Ã∗
3/2

, (78)

(
Ã∗

2
√
2λi

)′

= a2B0B1, |a2| ≤
c

Ã∗
3/2

, (79)

(
− (λ2

r − λ2
i )

4λrλi

)′

= b2B0B1, |b2| ≤
cε2

Ã∗
3 , (80)

(
(3λ2

r − λ2
i )

4
√
2λrÃ∗

)′

= c1B0B1, |c1| ≤
c

Ã∗
5/2

, (81)

(
− (λ2

r − 3λ2
i )

4
√
2λiÃ∗

)′

= c2B0B1, |c2| ≤
c

Ã∗
5/2

, (82)
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ε2

(
(1 + δ2)2B2

0

2Ã∗
2

)′

= d1B0B1, |d1| ≤
c

Ã∗
3 , (83)

(
1

4λrλi

[
1− (λ2

r − λ2
i )

2

Ã∗
2

])′

= d2B0B1, |d2| ≤
c

Ã∗
3 , (84)

(
(1 + δ2)B0

2Ã∗

)′

= e1B1, |e1| ≤
c

Ã∗
3 (85)

(
ε2(1 + δ2)3B2

0

4λrλiÃ∗

)′

= e2B0B1, |e2| ≤
c

Ã∗
3 , (86)

with c independent of ε and δ ∈ [δ0, δ1].

A.3 System after elimination of z1

A.3.1 System after scaling

After the scaling (27) our system (22,23,24,25) takes the form

X
′

= L0X + B0F0 +B01(X,Y ) + z1M01(X,Y )

+z1
2B0n0 +C01(X,Y ),

Y
′

= L1Y +B0F1 +B11(X,Y ) + z1M11(X,Y )

+z1
2B0n1 +C11(X,Y ),

where F0, F1,n0,n1 are two-dimensional vectors M01,M11 are linear operators
in (X,Y ), B01,B11 are quadratic and C01,C11 are cubic in (X,Y ), all functions
of B0. More precisely we have

F0 =

(
f1

εδB0
f2

εδB0

)
, F1 =

(
f1

εδB0

− f2
εδB0

)
, |Fj | ≤ c

ε

α
,

n0 = εδ

(
e1Ã∗

2

e2Ã∗
2
B0 − b2(1 + δ2)Ã∗B2

0

)
,

M01(X,Y ) = εδ

(
m01(X,Y )

m02(X,Y )

)
,

m01(X,Y ) = Ã∗B0

(
a1Ã0 + c1A2 + (d1 − 2e1(1 + δ2)ε2

B0

Ã∗
)A3 −

x1

B0

)
,

m02(X,Y ) = Ã∗B0

(
−a2Ã0 + c2A2 + (d2 − 2e2(1 + δ2)ε2

B2
0

A∗
)A3 −

x2

B0

)

+Ã∗B
2
0b2(x1 + y1) + (1 + δ2)2ε2

B3
0

Ã∗
b2A3,
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B01(X,Y ) = εδ

(
b01(X,Y )

b02(X,Y )

)
,

b01(X,Y ) = −ε2
(1 + δ2)(2 − δ2)B0

2Ã∗
Ã0

2

+ e1
ε4(1 + δ2)2B0

Ã∗
2 A3

2

−ε2
(1 + δ2)B0

Ã∗
A3[a1Ã0 + c1A2 + d1A3 −

x1

B0
],

b02(X,Y ) = − 1

4λrλiÃ∗B0

(
3Ã∗

2
− 2ε4B4

0(1 + δ2)4
)
Ã0

2

+ e2
ε4(1 + δ2)B2

0

Ã∗
2 A3

2

−ε2
(1 + δ2)B0

Ã∗
A3[−a2Ã0 + b2B0(x1 + y1) + c2A2 + d2A3 −

x2

B0
],

C01(X,Y ) = ε2δ2Ã0

3


 −ε2 (1+δ2)B0

2Ã∗
2

− 1
4λrλiB0

(
1− ε4B4

0(1+δ2)4

Ã∗
2

)

 .

n1, M11, B11, C11 are deduced respectively from n0, M01,B01, C01 in chang-
ing (a1, c1, b2, d2, e2) into their opposite.

A.3.2 System after elimination of z1

Let us replace z1 by z10+Z(X,Y ,B0) in the differential system for (X,Y ). The
new system becomes (notice that B0 is in factor of the ”constant” terms)

X
′

= L0X +B0F0 + L01(X,Y ) + B01(X,Y ),

Y
′

= L1Y +B0F1 + L11(X,Y ) + B11(X,Y ),

which is (30) with
F0 = F0 + z10

2
n0,

L01(X,Y ) = z10M01(X,Y ),

B01(X,Y ) = B01(X,Y ) + Z(X,Y )M 01(X,Y ) +C01(X,Y )

+2z10Z(X,Y )B0n0 + Z(X,Y )2B0n0.

In using estimates (21), (78) to (86), it is straightforward to check that

|F0|+ |F1| ≤
cε

α3
,

|M01(X,Y )| ≤ c
εδ

Ã∗
(|X|+ |Y |),

hence
|L01(X,Y )|+ |L11(X,Y )| ≤ c

ε

α2
(|X|+ |Y |).
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For higher order terms we have

|B01(X,Y )| ≤ cε(|X |+ |Y |)2,

|2z10Z(X,Y )n0| ≤ c
εÃ∗
δ

(|X |+ |Y |)2,

|Z(X,Y )M 01(X,Y )| ≤ c
ε2Ã∗
δ

(|X|+ |Y |)3,

|Z(X,Y )2n0| ≤ c
ε3Ã∗

3

δ3
(|X |+ |Y |)4,

|C01(X,Y )| ≤ c
ε

α1/2
(|X |+ |Y |)3,

hence, choosing α small enough and for

|X|+ |Y | ≤ ρ, (87)

we obtain
|B01(X,Y )|+ |B11(X,Y )| ≤ cε

α1/2
(|X |+ |Y |)2.
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