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ARTICLE

Increasing atmospheric CO2 concentrations
correlate with declining nutritional status of
European forests
Josep Penuelas 1,2✉, Marcos Fernández-Martínez3, Helena Vallicrosa1,2, Joan Maspons 1,2,

Paolo Zuccarini 1,2, Jofre Carnicer1,2, Tanja G.M. Sanders 4, Inken Krüger4, Michael Obersteiner5,

Ivan A. Janssens 3, Philippe Ciais 6 & Jordi Sardans1,2

The drivers of global change, including increases in atmospheric CO2 concentrations, N and S

deposition, and climate change, likely affect the nutritional status of forests. Here we show

forest foliar concentrations of N, P, K, S and Mg decreased significantly in Europe by 5%, 11%,

8%, 6% and 7%, respectively during the last three decades. The decrease in nutritional status

was especially large in Mediterranean and temperate forests. Increasing atmospheric CO2

concentration was well correlated with the decreases in N, P, K, Mg, S concentrations and the

increase of N:P ratio. Regional analyses indicated that increases in some foliar nutrient

concentrations such as N, S and Ca in northern Europe occurred associated with increasingly

favourable conditions of mean annual precipitation and temperature. Crucial changes in

forest health, structure, functioning and services, including negative feedbacks on C capture

can be expected if these trends are not reversed.
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Atmospheric CO2 concentrations and nitrogen (N) and
sulfur (S) deposition, together with warming and drought,
likely affect the nutritional status of forests1–6 and

therefore their functioning, structure and ecosystem services7–9.
Elevated atmospheric CO2 concentrations, usually tested at
500–700 ppm, decrease the N and P concentrations of plants10–13.
Increases in atmospheric CO2 concentrations are frequently
correlated with higher growth10 and more efficient photosynth-
esis, and thus likely dilute leaf-level nutrient concentrations.
Increases in atmospheric CO2 concentrations also reduce tran-
spiration14 and stomatal conductance15, thus also hindering
nutrient uptake16,17 that may even ultimately limit the initial
increase in plant production under the rise of atmospheric
CO2 concentrations18–20. N deposition also increases tree
productivity21,22 and foliar N concentrations but can decrease
foliar P and Mg concentrations23–25. Warming tends to increase
the mineralisation, cycling and availability of nutrients when
water is available12, but the consequent increase in growth
involves a dilution of nutrients that leads to frequent decreases
in foliar N concentrations26,27 and increases in C:nutrient
ratios12,28. Plants at sites not limited by water respond by
increasing nutrient uptake29,30, but if warming persists or even
increases in the long term, nutrients can become limiting31,32.
Warming in dry environments, though, can increase soil drought,
exacerbating limitations of water and nutrients33,34. Plants under
these conditions respond by activating mechanisms for conser-
ving and taking up water and nutrients but C:nutrient ratios still
frequently increase in photosynthetic tissues7,35–38.

The concentrations of atmospheric CO2 have increased from
~350–360 ppm in the 1990s to the current 410 ppm (in 2019)39.
The deposition of oxidised N in some regions of the world such as
Europe peaked during the 1980s, up to 6–8-fold higher than in
1900, but has since decreased to half its highest value40,41. The
annual deposition of reduced Nin Europe is currently more than
two-fold higher than in 190042. S deposition in Europe has
decreased to ~70% of the level in 190042. Europe has also warmed
faster than the global average of 0.27 °C per decade during the last
three decades, and this warming has varied throughout Europe.
Temperatures have risen by 0.48, 0.44 and 0.34 °C per decade in
northern, central and southern Europe, respectively, in the period
1979–201043,44.

These increasing CO2 concentrations, changes in N and S
deposition and climate change have been accompanied by a
general decrease in foliar P concentrations and a consequent
increase in N:P ratios in recent decades in Fagus sylvatica24,45–47,
Picea abies and Pinus sylvestris24,48 and Quercus petraea24. Clear
general patterns for foliar N concentrations, however, have not
been found, with decreases, increases or no changes, depending
on species and foliar cohorts24,49–52.Likely local, regional or
latitudinal differences have not been considered, so these changes
in foliar nutrient concentrations have not been consistently
attributed to a particular environmental driver or combination of
drivers. Furthermore, most reported nutritional changes in plants
refer to N and P concentrations, but other important nutrients
are key to the nutritional status of trees, such as K, S, Mg and Ca4.

We analysed (i) the changes in foliar elemental composition
and stoichiometry during the last three decades for the main tree
species in forests throughout Europe (Supplementary Fig. 1) at
three different spatial scales: over the entire Europe, at different
latitudes, and locally, as well as (ii) the empirical relationships of
these changes with their possible drivers, i.e. increased atmo-
spheric CO2 concentrations, N and S deposition and climate
change, using statistical attribution analyses, data available from
field experiments and models of the responses of nutrients to
these drivers of global change. The results showed that forest
foliar concentrations of N, P, K, S and Mg decreased significantly

in Europe by 5%, 11%, 8%, 6% and 7%, respectively, and that
these decreases were especially large in Mediterranean and tem-
perate forests and mainly related to the rising of atmospheric CO2

concentration. In contrast, foliar N, S and Ca concentrations
increased associated with increasingly favourable conditions of
mean annual precipitation and temperature in boreal forests.
Crucial changes in forest health, structure, functioning and ser-
vices, including negative feedbacks on C capture can be expected
if these trends in central and southern European forests are not
reversed.

Results
Declining nutritional status. Foliar N, P and K concentrations
decreased in European forests during the last three decades, by 5%,
11% and 8%, respectively (Fig. 1), especially in central and
southern Europe (Fig. 2 and Supplementary Fig. 1). An exception is
northern Europe where foliar N concentration increased and foliar
P concentrations did not change. The foliar N:P ratio increased
everywhere by an average of 7% (Fig.1 and Supplementary Fig. 2).
Foliar S and Mg concentrations decreased in Europe, by 6% and
7%, respectively (Fig. 3), although foliar S concentrations, as Ca
concentrations, increased in northern Europe and decreased in
central Europe (Fig. 4 and Supplementary Fig. 3). The trends were
not dominated by any extreme values; the effect of the anomalously
high or low years for Mg and S concentrations (Fig. 3) was
minimised in the mixed model analyses. The results of the analyses
after removing years 1996 and 2012 (respectively anomalously high
and low) consistently showed that foliar Mg still decreased at a rate
of −0.0036 ± 0.0007mg g−1 (P < 0.0001)—lower slope than in
Fig. 3—and S decreased at a very similar rate as shown in Fig. 3
(−0.0030 ± 0.0007mg g−1, P < 0.0001).

The foliar elemental concentrations followed similar trends in
all species (Fig. 2 and Supplementary Figs. 4–9), with few
exceptions such as P and Mg increase in P. sylvestris at northern
latitudes (Figs. 2 and 4). Each species had a distinct foliar
elemental composition (elementome), even though the individual
trees grew under different environmental conditions and
limitations at distinct latitudes (see Fig. 5 and Supplementary
Tables 3–10 for a DA and Supplementary Fig. 10 for similar
results in a PCA; the DA and the PCA were applied to multi-
elemental data space to quantify the ‘elementome’), result
consistent with recent studies showing the strong species identity
in foliar elemental composition53. But despite the observed
species identity in their foliar elemental composition, all studied
seven species, i.e. F. sylvatica, P. sylvestris, A. alba, P. abies, Q.
ilex, Q. petraea and Q. robur, changed their elemental composi-
tion between 1990 and 2016. They shifted their foliar elemental
composition along the axis toward decreasing foliar P, K and Mg
concentrations and increasing N:P ratio during 2005–2016
relative to 1990–2004. The overall nutritional status of all species
thus declined. The regional analysis, though, indicated that this
decline did not extend to the northern forests. The foliar
elemental composition of the trees at northern latitudes, mostly of
P. sylvestris and P. abies, shifted toward increasing N but also to
increasing N:P ratio (Fig. 5b) suggesting a softening of N
limitation.

Possible drivers. CO2 concentrations during 1990–2016
increased everywhere by ca. 50 ppm, N and S deposition
decreased on average by ca. 25% and 65%,respectively, and
temperature increased everywhere, especially in the north by
almost 1 °C, whereas precipitation increased by ca. 50 mm year−1

in the north and decreased by ca. 100 mm year−1 in the south
(Supplementary Fig. 11). The increase in atmospheric CO2 was
the only predictor systematically associated with the decreases in
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nutrient concentrations (Fig. 6). The mixed-model analyses at the
level of individual trees produced similar results (Supplementary
Table 2). The regional analyses indicated that the increases in
some foliar nutrient concentrations in northern Europe were
associated with increasingly favourable MATs at northern lati-
tudes (see interactions CO2 x MAT in Supplementary Table 1).
These mixed-model analyses also included tree growth, which
was not selected in any of the explanatory models. The decreases
in nutrient concentrations were thus not due to a dilution as a
result of individual tree growth, because the increase in the dia-
meter of the tree stems at breast height was never in the most
parsimonious models for the driving factors.

We then conducted a meta-analysis of the available literature
on open-top chambers (OTC) and FACE (Free-Air Carbon

dioxide Enrichment) experiments to test for changes in foliar
nutrient concentrations in response to experimentally elevated
CO2. The decreases in N and P concentrations in response to
similar increases of 50 ppm CO2 were 3.0% and 2.3% respectively,
with the consequent decrease in N:P ratios (Fig. 6b), i.e. both the
data from European forests and the data from elevated CO2

experiments showed a decreasing effect of increasing CO2 on N
and P concentration. The data from the experiments showed
though lower decreases than those observed in the European
forests, especially for P (Fig. 1).

Discussion
The overall nutritional status of all species declined. The regional
analysis, though, indicated that this decline did not extend to the
northern forests. A general decline in plant nutritional status has
also been reported in other regions such as North America54.
Herbarium analyses1,54–57 also indicated that declines in plant N
have already occurred in the last century despite increases in N
deposition. Our findings are also consistent with a recent study
suggesting a general global pattern of decreasing foliar N con-
centration ca. 9% over the last 40 years56 and with many exam-
ples of local to regional decreases in foliar N and P
concentrations24,54.

Consistently with our results, recent meta-analyses of elevated
CO2 experiments have found that rising CO2 concentrations have
led to decreases in N:P ratios in different plant tissues58 and
woody plants59. Deng et al.58 hypothesise that the experimental
increases in atmospheric CO2 concentrations stimulate higher
plant uptakes of P than N. However, FACE and OTC experiments
are not fully comparable with a progressive increase of atmo-
spheric CO2 concentrations in natural conditions where not only
CO2 concentrations change but also many other factors at the
same time. For example, several European regions have become
more arid in the last decades, especially in southern Europe60 and
rises of plant N:P ratios have been reported in response to
increasing drought13,61. Consistently, we have also observed that
MAT has contributed significantly to increase foliar N:P ratios.
FACE and OTC, instead, estimate the CO2 effects by comparing
treatment with control plots with all the other changes affecting
equally to both treatment and control plots. In ICP data for
European forests some other not controlled factors may have also
contributed to decrease more foliar P than N concentration. The
frequency and intensity of some forest pests have increased62,63,
so biotic factors not controlled in this study could have also
favoured the P-uptake drop64. Moreover, soil P availability tends
to decrease through time by natural processes65 whereas N
availability can continuously be maintained or increase by con-
tinuous loads of N deposition and N2-fixation. The short-term
character of these experiments also does not allow the develop-
ment of long-term processes, such as the feed-backs due to lower
litter quality and the decreases in N and S deposition in recent
decades5. The experimental decrease may have been smaller also
because the experiments test responses to increases in atmo-
spheric CO2 concentrations in a less sensitive range of higher CO2

concentrations than the actual current range of 360–410 ppm.
The decrease in N deposition was slightly and positively related

with foliar Mg and negatively with K concentrations. The
decrease in S deposition was slightly and positively related with
foliar K and negatively with Mg concentrations. The effects of the
shifts in N and S deposition on foliar elemental composition
during the studied period were thus weak. Sulfur deposition has
dropped in general across Europe since 1980s, but N deposition
despite having decreased in general at European scale in the last
two decades, has not decreased in all sites, N loads, despite lower,
continue being substantial, and, in general, no symptoms of
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Fig. 1 Decreasing tree foliar N, P and K concentrations and increasing N:P
ratio. The black lines indicate average trends, and the shaded areas
indicate the standard errors of the average trends. The inset shows the
percentages of forests with decreasing and increasing foliar nutrient
concentrations. Red and blue indicate forests with increasing and
decreasing trends, respectively. All values were adjusted to the same
mean to remove forest-specific variability. See Supplementary Table 1 for
detailed results of the model lme (foliar variable ∼year, random= ∼1|
country/plot/species, data=dades, method= “REML”). Statistically
significant trends (in percentage of sites): N+: 5.68%, N−: 13.18%; P+:
1.21%, P−: 17.30%; N:P+: 14.72%, N:P−: 4.29%; K+: 2.02%, K−: 9.90%.
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significant recovery of soil status have been observed (Schmitz
et al.5, and the references therein). N deposition can cause defi-
ciencies in other nutrients than N and nutrient imbalances due to
a range of effects, including stimulation of plant growth (dilution
effect) and negative effects on tree nutrient acquisition by mod-
ifying mycorrhizal associations24,66. Increasing mean annual
temperature (MAT) also contributed to the decrease in Mg and
the increase in Ca and N:P. Ca Moreover, in general, increases in
soil pH translate into higher foliar cation concentrations67–69.

The higher temperatures at the northern European sites
favoured longer growing seasons, biological activity and nutrient
up-take, thus accounting for the lower general decreases in foliar
nutrient concentrations and even the increase in N. In contrast,
the increases in temperature and consequently in drought
(decreases in mean annual precipitation (MAP) in southern
Europe could account for the decline in soil fertility and capacity
of nutrient uptake, all of which contribute to a decrease in foliar
nutrient concentration, as in experimental drought studies con-
ducted in Mediterranean forests where mineralisation, soil
enzymatic activity and plant growth also decreased, thus
leading to a large decrease in aboveground nutrient

mineralomasses9,35,70–72. A widespread decline in crown condi-
tion, disruption of food webs and increased tree mortality with
increased drought associated with climate change have also been
reported for these southern European forests60.

Other foliar chemistry factors and processes not-measured in
ICP Forest such as resorption or tree age could also be underlying
the observed decrease of foliar nutritional condition. However,
the leaves selected for foliar analyses are mature non-senescent
leaves and the trees selected for foliar analyses are adult non-
senescent trees, and given the frequent long life of trees, the
changes in tree age during the studied period, ~25 years as
maximum in the individual plots, should not affect much the
foliar concentration. Furthermore73, reported that foliar N con-
tents and dry weight tended to slightly decrease with age but that
this was not the case for N concentrations in Fagus sylvatica and
Picea abies in European forests.

Nutrient impoverishment can have multiple effects on the
structure, function and ecosystem services of forests. For example,
N and P are fundamental to C assimilation and protein synthesis,
so their decreased concentrations could constrain the capacity to
take up carbon and the effect of CO2 fertilisation in forests8.
Foliar N:P ratios are negatively correlated with plant net photo-
synthesis and growth3, so the increasing foliar N:P ratios in
European forests (Fig. 2) suggested a worsening nutrient imbal-
ance that may partly account for a lower effect of CO2 fertilisa-
tion8. The consequent changes in plant C:N and C:P
stoichiometries can also drive ecosystem-level N availability by
the effects on litter quality decrease, microbial N immobilisation
and mineralisation19. The reduction in the availability of N may
in turn affect the efficiency of sequestration of C. Increases in
foliar C and decreases in N and P are associated with increases in
non-structural carbohydrates and carbon-based secondary
metabolites41,74 and decreases in foliar protein content, thus
decreasing the nutritional quality of plants56,75,76 for wildlife and
livestock.

We thus conclude that foliar concentrations of N, P, K, S and
Mg are generally decreasing in European forests. These decreases
are generally larger for P than N, so the foliar N:P ratio has
increased in most European forests. These trends are mostly
associated with increasing atmospheric CO2 concentrations that
have led to a higher nutrient demand by trees. The soil nutrient
supply was probably not always sufficient to meet the growing
demands by trees, which could partly explain the deterioration of
tree mineral nutrition. These decreasing trends are stronger in
southern and central Europe than in northern Europe where the
concentrations of some elements are even increasing, all in con-
sonance with the increase in MAT favouring nutrient availability
and uptake in northern Europe while hindering them in
increasingly dry southern Europe. These nutrient limitations for
forest growth should be taken into account by the scientific and
environmental management communities to avoid over-
estimations of forest productivity in response to elevated atmo-
spheric CO2 when developing global climate models and
projections. The consequences of such pervasive nutrient
impoverishment can be key for forest structure, function, health
and capacity to provide ecosystem services.

Methods
Data acquisition. We used foliar and growth data of the International Co-
operative Programme on Assessment and Monitoring of Air Pollution Effects on
Forests operating under the UNECE Convention on Long-range Transboundary
Air Pollution (CLRTAP) (ICP Forests). Activities under ICP Forests are conducted
in 42 states using harmonised sampling and analysis following the manuals on
Sampling and Analysis of needles and leaves—Part XII: http://www.icp-forests.org/
pdf/manual/2016/ICP_Manual_2017_01_part12.pdf and Tree growth—Part V:
(http://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part05.pdf).
In this study, we have gathered all the available data of foliar N, P, K, S, Ca and Mg

1995 2000 2005 2010 2015

5.0

5.5

6.0

6.5

7.0

1995 2000 2005 2010 2015

1.0

0.8

1.2

1.4

1.6

1995 2000 2005 2010 2015

0.8

1.0

1.2

1.4

Fo
lia

r C
a 

(m
g 

g−1
)

F o
lia

r M
g 

(m
g 

g−1
)

Fo
lia

r S
 (m

g 
g−1

)

Year

ΔFoliar Ca: -0.0026 ± 0.0029 mg g−1 y−1; P=0.37

ΔFoliar Mg: -0.0055 ± 0.0009 mg g−1 y−1; P<0.001

ΔFoliar S: -0.0036 ± 0.0007 mg g−1 y−1; P<0.001

65 % 35 %

−1.0 −0.5−1.5 0.0
0

2

4

6

D
en

si
ty

ΔFoliar Ca (mg g−1 y−1)

53 % 47 %

−0.10 −0.05 0.00 0.05
0

10

20

30

D
en

si
ty

ΔFoliar Mg (mg g−1 y−1)

−0.02 0.00 0.02 0.04 0.06 0.08
0

20
40
60
80

61 % 39 %

D
en

si
ty

ΔFoliar S (mg g−1 y−1)

a

b

c

Fig. 3 Decreasing tree foliar Ca, Mg and S concentrations. The black lines
indicate the average trends, and the shaded areas indicate the standard
errors of the average trends. The inset shows the percentages of forests
with decreasing and increasing foliar nutrient concentrations. Red and blue
indicate forests with increasing and decreasing trends, respectively. All
values were adjusted to the same mean to remove forest-specific variability.
See Supplementary Table 1 for detailed results of the model lme (foliar
variable∼year, random=∼1|country/plot/species, data= dades, method=
“REML”). Statistically significant trends (in percentage of sites):Ca+: 7.46%,
Ca−: 6.45%; Mg+: 7.11%, Mg−: 8.13%; S+: 6.09%, S−: 12.19%.
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Fig. 4 Geographical distribution of the trend in annual rate of variation for Ca, Mg, and S foliar concentration in mg g−1. a the entire forests, b Pinus
sylvestris, c Picea abies, and d Fagus sylvatica. The estimations are based on neural networks using 80% of the trees with more than five measurements for
training and 20% for validation. We replicated the process 1000 times and averaged the results.
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concentrations in annual series. We have used data from 28 countries with a total
of 528 different plots and with 506 of these plots with the canopy clearly dominated
by one tree species, 21 co-dominated by two tree species, and 1 plot co-dominated
by three tree species.

Foliar samples were taken at least biannually at the intensive forest monitoring
plots (Level II) from the living crown of the dominant canopy layer providing
information on the nutrient status of one or more species per plot. The analysis was
done for 1000 needles or 100 leaves covering a range of elements (for detailed
information please refer to the ICP Forest Manual). Briefly, in each plot a
minimum of five dominant trees were randomly selected avoiding the trees used in
crown assessment, so to avoid crown damage of these trees. A composite sample by
species was made by mixing equal quantities of each sample per plot after drying.
Sampled leaves were mature current year leaves or needles. Only in the case of
evergreens such as Q. ilex both mature (non-senescent) one- and second-year
leaves were sampled. The sample analyses procedure was based on homogenised
methods, basically direct C and N determination by elemental-analyser (Kjeldhal
method was also allowed for N determination), whereas for the other elements the
most common procedure was based on acid digestion with nitric acid or nitric acid
mixtures (43–46%) followed by wet ashing (40%) and posterior determination,
mostly by inductively coupled plasma coupled to atomic emission spectrometry
(ICP-AES). Quality assurance and assessment of the analytical process was
controlled by the regular organisation of Inter-laboratory Comparisons by the
Forest Foliar Co-ordinating Centre. The laboratory results were considered of
sufficient quality when the laboratory receives a qualification for the concerning
parameter(s) after participation in the inter-laboratory comparisons. The growth
survey assessed the diameter at breast height (dbh) for the dominant trees at a five
or ten yearly interval. Additionally, permanent girth bands provided annual data
of dbh.

For atmospheric CO2 concentration, we used monthly data from the Mauna
Loa Observatory, available online (http://scrippsco2.ucsd.edu/data/
atmospheric_co2/) and provided by the Scripps Institution of Oceanography
(Scripps CO2 programme). We calculated the annual averages to use in our
statistical analyses. We obtained the meteorological-climate data from CRU TS

v3.25 of the Climatic Research Unit77. Annual data for N (NO3
−+NH4

+) and S
(SO4

−) atmospheric deposition were extracted from the European Monitoring and
Evaluation Programme (EMEP) with a spatial resolution of 0.1 × 0.1° for longitude
and latitude, and the MSC-W chemical transport model developed to estimate
regional atmospheric dispersion and deposition of acidifying and eutrophying
compounds of N and S over Europe.

Statistics and reproducibility. First, we used time series of observations of foliar
N, P, K, S, Ca and Mg concentrations at 410 European sites (Supplementary
Fig. 12) for the last three decades (1990–2016) to investigate their temporal trends
using mixed models, where year was the fixed covariate and site-species was the
random factor. Second, we repeated the analyses separately for northern, central
and southern European forests (separated by parallels at 46° and 58° North;
Supplementary Fig. 1b). Third, we repeated the previous two analyses for each of
the most abundant species: F. sylvatica, P. sylvestris, and P. abies. Fourth, we
predicted the rate of changes in foliar elemental concentration across Europe as a
function of MAP, MAT and nutrient deposition rate of change using neural net-
works. We calculated the rate of changes of the foliar elements for each tree with
more than five measurements and the rate of change of the MAP, MAT and
nutrient deposition for the same period and location using Theil-Sen robust
regressions implemented in mblm R package71. Then, we used 80% of the esti-
mated rates to train the neural networks and 20% for validation using keras78 in
R79 with TensorFlow80 backend. The neural networks had two hidden layers with
128 units each with rectified linear activation functions. We repeated the process
1000 times making predicted maps and averaging the results. Finally we masked
the pixels with no forest81 and for species specific models, we also applied a mask
with the distribution maps82–84. Fifth, we used multivariate analyses, including a
discriminant analysis (DA) and a principal component analysis (PCA) of all
nutrient variables to analyse the shifts in the elementome53,85,86 for each species for
the entire Europe and each of the three latitudes.

We explored which environmental factors could better explain the observed
changes in foliar elemental concentrations. To do so, we estimated the temporal

Fig. 5 Shifts of the elementome (elemental composition) of European tree species toward lower nutrient concentrations except for northern latitudes.
Discriminant analyses of the foliar elemental concentrations and N:P ratios for the seven dominant species, Pinus sylvestris, Picea abies, Abies alba, Fagus
sylvatica, Quercus robur, Quercus petraea and Quercus ilex, for the entire Europe and for northern, central and southern Europe. All plots compare the data for
1990–2004 with the data for 2005–2016. The circles/ellipses for each species and period depict the mean position and the space occupied by the 95%
confidence interval for the scores of each species.
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contributions of the predictor variables to the trends of foliar N, P and K
concentrations and the N:P ratio following the methodology established by
Fernandez-Martinez et al.41,87. We first fitted one model for each foliar nutrient
using a generalized linear mixed model (GLMM), with the species and
experimental plot as random factors, using the lme function from the nlme R
package88 and an autoregressive and moving-average (ARMA) (p= 1, q= 0)
temporal autocorrelation structure using the corCAR1 function. We then fitted the
full (saturated) models for each foliar nutrient as a function of atmospheric CO2,
MAT and MAP and N (oxidised and reduced) and S deposition. We also included
the interactions between mean site values and their temporal anomalies to account
for different effects of, for example, increasing temperature (annual anomalies)
depending on the average temperature of the site (e.g. decreasing temperature may
have a positive effect in warm climates but a negative effect in cold climates). We
also included the first-order interactions between atmospheric CO2, climate and
variables of atmospheric deposition. We then removed non-significant terms from
the full models until obtaining the final model (containing only significant terms)
using stepwise backward-forward selection. The amount of the variance explained
by the models was assessed using the r.squared GLMM function in R
(MuMInpackage: Barton89) following the method of Nakagawa and Schielzeth)90.

We next used the final models (lme models explained above) to identify the
drivers contributing to the changes in foliar nutrient concentrations using the
TempCont R package. We first calculated the trend (mean ± standard error of the
mean) of a foliar nutrient concentration using raw data with GLMMs with an

ARMA (p= 1, q= 0) structure to account for temporal autocorrelation. We then
calculated the trends of foliar nutrient concentrations predicted by the final model
(containing all significant predictors) and the trends of the foliar nutrient
concentrations predicted by the same model but sequentially maintaining the
temporally varying predictors constant (e.g. temporal anomalies in MAT were held
constant using the median for each site, but all other predictors varied based on the
observations). The difference between the prediction of the final model and the
prediction of the model when one predictor was controlled was assumed to be the
contribution of that predictor to the temporal change in foliar nutrient
concentrations. The differences between the sum of all temporal contributions and
the observed trend of a foliar nutrient were considered as unknown temporal
contributions. All errors were calculated using error propagation.

We finally conducted a meta-analysis of published experimental data for the
environmental factor that was best correlated with nutrient depletion: CO2

fertilisation. We used the keywords: atmospheric CO2, C:N, CO2 fertilisation, C:P,
decrease, dilution, FACE, foliar, increase, leaf, needle, nitrogen, N:P, phosphorus,
photosynthetic tissues, rise, and stoichiometry in our web search in Web of Science
and google scholar between 1988 and 2018. We gathered the available studies that
tested for the effects of elevated atmospheric CO2 concentrations (both using FACE
and OTC methodologies) on N and P concentrations and the N:P ratio of green
mature leaves for all types of vegetation (353, 297 and 684 studies, respectively).
The list of the published articles considered appears into supplementary Material.
The R metafor (v. 2.0-0) and forest plot (v. 1.7.2) packages were used for the

Fig. 6 a Factors contributing to the decreasing tree foliar N, P, K, S and Mg concentrations and b a meta-analysis of the effects of experimentally elevated
atmospheric CO2 concentrations (using both FACE and OTC methodologies) on the N, P, K, Mg and Ca concentrations and the N:P ratio of green mature
leaves for all types of vegetation. a Plot of the temporal contribution of the predictor variables on N, P, K, S and Mg concentrations and the N:P ratio (Ca
concentration did not change significantly; see Fig. 2). The models (see Supplementary Table 1) suggest that increasing CO2 is the main and only
contributor to the decreases in N, P, K and S concentrations. The temporal variations of the predictors are shown in Supplementary Fig. 12. Error bars
indicate standard errors. Units are ppm for CO2, kg ha−1 y−1 for S and N deposition and °C for temperature. See Methods for information about the
methodology used to calculate the contributions. (*), P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001. b Meta-analysis of published studies (353, 297 and
684 studies for N and P concentrations and the N:P ratio, respectively). See references in Supplementary material for Fig. 6b.
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analyses as described in Hedges et al.91. We calculated the response ratio (lnRR) as
ln (Xi/Xn) = lnXi - lnXn, where Xi and Xn are the values of each chemical
compound in leaf tissue observation before and after the treatment respectively.
The sampling variance for each lnRR was calculated as ln[(1/ni) × (Si/Xi)2+ (1/
nn) × (Sn/Xn)2], where ni, nn, Si, Sn, Xi and Xn are the post-treatment and control
sample sizes, standard deviations, and mean response values, respectively. The
sensitivity was evaluated per ppm of CO2 added in the treatment. We thereafter
standardised the effect size to an increase of 50 ppm since atmospheric CO2

concentrations increased everywhere by ca. 50 ppm during 1990–2016.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author, Prof. Josep Penuelas.

Code availability
All codes are available upon request to the corresponding author, Professor Josep
Penuelas.
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