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Abstract

In Bénard-Rayleigh convection we consider the pattern defect in or-
thogonal domain walls connecting a set of convective rolls with another set
of rolls orthogonal to the first set. This is understood as an heteroclinic
orbit of a reversible system where the x - coordinate plays the role of time.
This appears as a perturbation of the heteroclinic orbit proved to exist
in a reduced 6-dimensional system studied by a variational method in [2],
and analytically in [8]. We then prove the existence of the heteroclinic
connection between orthogonal sets of rolls, completing the result of [2].

Key words: Reversible dynamical systems, Bifurcations, Heteroclinic con-
nection, Domain walls in convection

1 Introduction

The Bénard-Rayleigh convection problem is a classical problem in fluid mechan-
ics. It concerns the flow of a three-dimensional viscous fluid layer situated be-
tween two horizontal parallel plates and heated from below. Upon increasing the
difference of temperature between the two plates, the simple conduction state
looses stability at a critical value of the temperature difference corresponding
to a critical value Rc of the Rayleigh number. Beyond the instability threshold,
a convective regime develops in which patterns are formed, such as convective
rolls, hexagons, or squares [9]. Observed patterns are often accompanied by
defects as for instance domain walls which occur between rolls with different
orientations. We refer to the works [1, 10], and the references therein, for exper-
imental and analytical results, and detailed descriptions of these patterns and
defects.

Mathematically, the governing equations are the Navier-Stokes equations
coupled with an equation for the temperature, and completed by boundary
conditions at the two plates. Observed patterns are then found as particular
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steady solutions of these equations. In [4] and [5] Haragus and Iooss handled
the full governing equations and proved, for various boundary conditions, the
existence of symmetric domain walls in convection.

Very recently, the existence of orthogonal domain walls has been studied by
Buffoni et al [2], where the authors handle the full governing equations, showing
that the study leads to a small perturbation of the reduced system of amplitude
equations in R6

A(4) = A(1−A2 − gB2) (1)

B′′ = ε2B(−1 + gA2 +B2).

By a variational argument Boris Buffoni et al [2] prove the existence of an
heteroclinic orbit, for any g > 1, and ε small enough, such that

A∗(x), B∗(x) > 0,

(A∗(x), B∗(x)) →
{
M− = (1, 0) as x→ −∞
M+ = (0, 1) as x→ +∞ .

This orbit is expected to represent the connection between a set of convecting
rolls parallel to the x direction, with a set of orthogonal rolls. Unfortunately, this
type of elegant proof does not allow to prove the persistence of such heteroclinic
curve under reversible perturbations of the vector field. Our purpose here is to
use the analytic results of [8] for proving its persistence applied to orthogonal
domain walls in Bénard-Rayleigh convection. It should be noticed that even
though the present analysis looks similar to the one made in [4] and [5], it really
needs serious adaptation since, here we loose the symmetry of the wall defect,
which plays an important role in [4] and [5].

Starting from a formulation of the steady governing equations as an infinite-
dimensional dynamical system in which the horizontal coordinate x plays the
role of evolutionary variable (spatial dynamics), a center manifold reduction is
performed, which leads to a 12-dimensional reduced reversible dynamical system
(reducing to 8-dimensional (R4×C

2), after restricting to solutions with reflection
symmetry y → −y). A normal form up to cubic order for this reduced system
is obtained in [2], which, after some calculations and rescaling (see Appendix
A.1) becomes

A
(4)
0 = k−A

′′
0 +A0(1−

k2−
4

−A2
0 − g|B0|2) + f̂ ,

B′′
0 = ε2B0(−1 + gA2

0 + |B0|2) + ĝ, (2)

with additional cubic terms of the form

f̂0 = id1εA0(B0B0
′ −B0B

′
0) + ε2[d3A

′′
0 + d4A

2
0A

′′
0 + d2A0A

′2
0 + d6A0|B′

0|2 (3)

+d7A
′
0(B0B0

′
+B0B

′
0) + d5A

′′
0 |B0|2] + id8ε

3A′′
0(B0B0

′ −B0B
′
0) +O(ε4),

ĝ0 = ε3[ic0B
′
0 + ic1B

′
0|A0|2 + ic2B

′
0|B0|2 + ic3B

2
0B0

′
+ ic9B0A0A

′
0] (4)

+ε4[c4B
′
0(B0B0

′ −B0B
′
0) + c5B0A0A

′′
0 + c6B0A

′2
0 + c7B

′
0A0A

′
0]

+ε5[ic8B0A0A
′′′
0 + ic7B

′
0A0A

′′
0 + ic10B

′
0A

′2
0 + ic11B0A

′
0A

′′
0 +O(ε6),
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where parameters are defined as (see A.1)

ε4 ∼ R1/2 −R1/2
c , R Rayleigh number,

kc(1 + ε2k−) wave number in y direction,

coefficients cj , dj are real and

f̂ = f̂0 + f̂1

ĝ = ĝ0 + ĝ1,

f̂1 = ε4O[|X |(|X |2 + |Y |2 + ε4)2],

ĝ1 = ε6O[|Y |(|X |2 + |Y |2 + ε4)2],

with

X = (A0, A
′
0, A

′′
0 , A

′′′
0 )t ∈ R

4,

Y = (B0, B
′
0)

t ∈ C
2.

Moreover the system (2) commutes with the reversibility symmetry S1 :

(A0, A
′
0, A

′′
0 , A

′′′
0 , B0, B

′
0) 7→ (A0,−A′

0, A
′′
0 ,−A′′′

0 , B0,−B′
0),

and

A
(4)
0 is odd in X,

B′′
0 is even in X, cancels for Y = 0,

which results from the equivariance of the original system under the shift by
half of a wave length in the y direction (fixing the symmetry y 7→ −y), from
the fact that the bidimensional convective rolls parallel to the x - axis (hence

independent of x) correspond to Y = 0. The estimates for f̂1 and ĝ1 result from
the property of the normal form which does not contain terms of degree 4 in
(X,Y ), and from the inequality

(a+ b)4 ≤ 4(a2 + b2)2 for a, b ∈ R.

Remark 1 Notice that the above reduction is valid for the three classical bound-
ary conditions for the Bénard-Rayleigh convection problem: rigid-rigid, free-free,
free-rigid.

Remark 2 Notice that the system (2) becomes just the system (1) for k− =

f̂ = ĝ = 0, and B0 real.

Remark 3 Notice also that the high order terms of size O(ε4) for A
(4)
0 and

O(ε6) for B′′
0 are functions of e±i x

2ε . This is due to the fact that B0e
i x
2ε is the

original amplitude of the Y mode (see (54).

3



Let us give here the results obtained in [8]:

Theorem 4 Let us choose 0 < δ0 < 1/3, then for δ0 ≤ δ ≤ 0.825, η0 such that
for ε small enough with α = ε2/7, where 0 < α = [(1 + δ2)η20 − 1]1/2, the 3-dim
unstable manifold of M− intersects transversally the 3-dim stable manifold of
M+. The connecting curve (A∗, B∗)(x) which is obtained is locally unique (it
is the only curve for this intersection). Moreover its dependency in parameters
(ε, δ) is analytic. In addition we have B∗(x) and B′

∗(x) > 0 on (−∞,+∞), the
principal part of B∗(x) being given

i) for x ∈ (−∞, 0], by

B∗(x) =
1

(1 + δ2

2 )
1/2 cosh(x0 − εδx)

,

coshx0 =
1

B00(1 +
δ2

2 )
1/2

,

B00 = B∗(0) = (1 − η20δ
2)1/2,

ii) for x ∈ [0,+∞), by

B∗(x) =
tanh(εx/

√
2) +B00

1 +B00 tanh(εx/
√
2)
.

For x → −∞ we have (A∗ − 1, A′
∗, A

′′
∗ , A

′′′
∗ , B∗, B′

∗) → 0 at least as eεδx, while

for x → +∞, (A∗, A′
∗, A

′′
∗ , A

′′′
∗ ) → 0 at least as −

√
δ
2
x, and (B∗ − 1, B′

∗) → 0 at

least as e−
√
2εx.

Corollary 5 For x ∈ (−∞, 0] there exists c > 0 independent of ε such that for
the heteroclinic curve

α|A′
∗|+ |A∗A

′
∗|+ |A′′

∗ |+ |A′′′
∗ | ≤ cεe2εδx,

B2
∗(x) ≤ (B2

00 + cε)e2εδx,

|B′
∗(x)| ≤ cεeεδx.

Corollary 6 For x ∈ [0,+∞) there exists c > 0 independent of ε such that for
the heteroclinic curve

|A(m)
∗ (x)| ≤ cαe

− δ1/2x√
2 , m = 0, 1, 2, 3,

|B∗(x) − 1| ≤ ce−
√
2εx, |B′

∗(x)| ≤ cεe−
√
2εx.

We intend to prove the following

Proposition 7 Except for a finite number of values of g = 1 + δ2 and for ε
such that Theorem 4 applies, the heteroclinic solution connecting an equilibrium
at −∞ (representing convective rolls parallel to x - axis) and a periodic solution
at +∞ (representing convective rolls orthogonal to the previous ones), persists
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as a one-parameter family of orthogonal domain walls, provided that certain
conditions on coefficients of the cubic normal form (see (45) and (47)) are
realized (see 48, 50, 51). The wave numbers of limiting periodic convective
rolls are linked by a one parameter family of relationships depending on ε (the
amplitude of rolls being of order ε2) (see Remark 15).

Remark 8 The wave numbers of the sets of rolls at −∞ and at +∞ differ in
general. This is a major difference with the symmetric case (of non orthogonal
walls) treated in [4] and [5].

Remark 9 Values of δ such that 0.476 ≤ δ include values obtained for δ in the
Bénard-Rayleigh convection problem where g is function of the Prandtl number P
(see [4]). With rigid-rigid, rigid-free, or free-free boundaries the minimum values
of g are respectively (gmin = 1.227, 1.332, 1.423) corresponding to δmin = 0.476,
0.576, 0.650. The restriction in Theorem 4 corresponds to 1 < g ≤ 1.680. The
eligible values for the Prandtl number are respectively P > 0.7404, > 0.9125, >
1.332.

x

y

Figure 1: Orthogonal domain wall

2 Setting of the perturbed system

Since we leave now some freedom to the wave numbers, as well in the y direction,
as in the x direction, the ”end points” of the expected heteroclinic are no longer
(1, 0) at −∞, and the circle (0, eiφ) at +∞. In fact the classical study of steady

convective rolls, shows that these should be respectively (A
(−∞)
0 (k−), 0) and

(0, B
(+∞)
0 (ω, x)) (see [3] section 4.3.3, or [4] sections 2 and 6.2, and Appendix

A.2). We have indeed

(A
(−∞)
0 )2 = 1− k2−

4
+ σ0ε

2k− +O(ε2k3−),

1− (A
(−∞)
0 )

def
= − ω̃

2
−
2
, ω̃2

− =
k2−
4

− σ0ε
2k− +O[k2−(|k−|+ ε2)2],
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ei
x
2εB

(+∞)
0 (ω, x) = r0e

iωx +O(ε6)

ω
def
=

1

2ε
+ εω̃+ =

1 + ε2k+
2ε

+O(ε7),

B
(+∞)
0 e−iεω̃+x = C

(+∞)
0 + iD

(+∞)
0

r20 = 1− k2+
4

+O(ε2|k+|+ ε4) = 1−O[(|̃ω+|+ ε2)2],

C
(+∞)
0 = r0 +O(ε6), oscil. part(C

(+∞)
0 ) = O(ε6),

D
(+∞)
0 = O(ε6).

Remark 10 The coefficient σ0 introduced in the expression of (A
(−∞)
0 )2 de-

pends on the Prandtl number.

Let us set
B0e

−iω̃+x = C0 + iD0,

then (2) becomes

A
(4)
0 = k−A

′′
0 +A0[1−

k2−
4

−A2
0 − g(C2

0 +D2
0)] + f (5)

C′′
0 = 2εω̃+D

′
0 + ε2C0(−1 + ω̃2

+ + gA2
0 + C2

0 +D2
0) + gr (6)

D′′
0 = −2εω̃+C

′
0 + ε2D0(−1 + ω̃2

+ + gA2
0 + C2

0 +D2
0) + gi

with
f = f̂ , gr + igi = ĝe−iω̃+x,

and where the exponential factor disappears in the cubic part when we replace
B0 by (C0 + iD0)e

iω̃+x. Let us define

f = f0(ε, k−, X, Y, Y ) + f1(ωx, ε, k−, X, Y, Y )

gr = gr0(ε,X, Y, Y ) + gr1(ωx, ε, k−, X, Y, Y )

gi = gi0(ε,X, Y, Y ) + gi1(ωx, ε, k−, X, Y, Y ),

where f0, gr0, gi0 come only from cubic terms of the normal form in (2), and
where f1, gr1, gi1 are 2π−periodic in ωx, smooth in their arguments, and satisfy
estimates

|f1(ωx, ε, k−, X, Y, Y )| ≤ cε4|X |(|X |2 + |Y |2)2

|gr1(ωx, ε, k−, X, Y, Y )|+ |gi1(ωx, ε, k−, X, Y, Y )| ≤ cε6|Y |(|X |2 + |Y |2)2,

with

X = (A0, A
′
0, A

′′
0 , A

′′′
0 )

Y = (C0 + iD0, C
′
0 + iD′

0).
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Then we have from (3), (4):

f0 = d1εA0(C0D
′
0 −D0C

′
0) + d2ε

2A0A
′2
0 + d3ε

2A′′
0 (7)

+d4ε
2A2

0A
′′
0 + d5ε

2A′′
0(C

2
0 +D2

0) + d6ε
2A0(C

′2
0 +D′2

0 ) +

+d7ε
2A′

0(C0C
′
0 +D0D

′
0) + d8ε

3A′′
0 (C0D

′
0 −D0C

′
0) +O(ε4),

gr0 + igi0 = iε3(C′
0 + iD′

0)[c0 + c1A
2
0 + c2(C

2
0 +D2

0)] (8)

+ε3c3(C0 + iD0)(C0D
′
0 −D0C

′
0) + iε3c9(C0 + iD0)A0A

′
0

+ε4c4(C
′
0 + iD′

0)(C0D
′
0 −D0C

′
0) + c5ε

4A0A
′′
0(C0 + iD0)

+ε4[c6A
′2
0 (C0 + iD0) + c7A0A

′
0(C

′
0 + iD′

0)]

+iε5(C′
0 + iD′

0)(c7A0A
′′
0 + c10A

′2
0 )

+iε5(C0 + iD0)(c8A0A
′′′
0 + c11A

′
0A

′′
0) +O(ε6).

Now, let us set

A0 = A∗ + Ã0

C0 = B∗ + C̃0

D0 = D̃0

where we observe that we expect

Ã0 →
x=−∞

A
(−∞)
0 − 1 = − ω̃

2
−
2

C̃0 + iD̃0 →
x=+∞

C
(+∞)
0 + iD

(+∞)
0 − 1 ∼ − (ω̃+ +O(ε2))2

2
.

Then (5,6) becomes the ”perturbed system”

Mg(Ã0, C̃0) =

(−k−(A′′
∗ + Ã0

′′
) +

k2
−

4 (A∗ + Ã0) + φ̃0

2ω̃+

ε D̃0

′
+ ω̃2

+(B∗ + C̃0) + ψ̃0r

)
, (9)

LgD̃0 = −2ω̃+

ε
(B′

∗ + C̃0

′
) + ω̃2

+D̃0 + ψ̃0i, (10)

where linear operators Mg and Lg are defined as

Mg

(
A
C

)
=

(
−A(4) + (1− 3A2

∗ − gB2
∗)A− 2gA∗B∗C

1
ε2C

′′ + (1− gA2
∗ − 3B2

∗)C − 2gA∗B∗A

)
, (11)

LgD =
1

ε2
D′′ + (1− gA2

∗ −B2
∗)D, (12)

and where φ̃0, ψ̃0r, ψ̃0i are smooth functions of (ωx, ε, k−, ω̃+, X̃, Ỹ ) where

X̃ = (Ã0, Ã0

′
, Ã0

′′
, Ã0

′′′
)

Ỹ = (C̃0, D̃0, C̃0

′
, D̃0

′
)

7



φ̃0 = φ̃00(ε, k−, X̃, Ỹ ) + φ̃01(ωx, ε, k−, X̃, Ỹ )

ψ̃0r = ψ̃0r0(ε, k−, X̃, Ỹ ) + ψ̃0r1(ωx, ε, k−, X̃, Ỹ )

ψ̃0i = ψ̃0i0(ε, k−, X̃, Ỹ ) + ψ̃0i1(ωx, ε, k−, X̃, Ỹ )

|φ̃01(ωx, ε, k−, X̃, Ỹ )| ≤ cε4

|ψ̃0r1(ωx, ε, k−, X̃, Ỹ )|+ |ψ̃0i1(ωx, ε, k−, X̃, Ỹ )| ≤ cε4.

More precisely, we have

φ̃00(ε, k−, X̃, Ỹ ) = 3A∗Ã0

2
+ Ã0

3
+ 2gB∗Ã0C̃0 (13)

+g(A∗ + Ã0)(C̃0

2
+ D̃0

2
) + f00,

ψ̃0r0(ε, k−, X̃, Ỹ ) = 2gA∗Ã0C̃0 + gB∗Ã0

2
+ 2B∗C̃0

2
+ gÃ0

2
C̃0 (14)

+(B∗ + C̃0)(C̃0

2
+ D̃0

2
) + g00r,

ψ̃0i0(ε, k−, X̃, Ỹ ) = 2gA∗Ã0D̃0 + 2B∗C̃0D̃0 + gÃ0

2
D̃0

+D̃0(C̃0

2
+ D̃0

2
) + g00i, (15)

and in using Theorem 4, Corollaries 5 and 6,

f00 = O[ε3eεδxχ(−∞,0) + αε2e
− δ′x√

2 χ(0,∞) + ε2|X̃ |

+ε(|D̃0

′
|+ ε|D̃0|)(χ(−∞,0) + e

− δ′x√
2 χ(0,∞))],

g00r = O[ε3eεδxχ(−∞,0) + α2ε2e
− δ′x√

2 χ(0,∞) + ε2|X̃ |(eεδxχ(−∞,0) + χ(0,∞))

+ε(|C̃0

′
|+ |D̃0

′
|+ ε|D̃0|)],

g00i = O[ε2eεδxχ(−∞,0) + ε2e−ε
√
2xχ(0,∞) + ε2|X̃|(eεδxχ(−∞,0) + χ(0,∞))

+ε(|C̃0

′|+ |D̃0

′|+ ε|D̃0|)].

where f00 and g00r+ ig00i are smooth functions which come from the rest of the
cubic normal form written in (7,8)) and χ(−∞,0) and χ(0,∞) are the characteristic
functions on the corresponding intervals.

Remark 11 We notice that the estimates for the terms independent of X̃, Ỹ
come from

for f00 : d3ε
2A′′

∗ + d5ε
2A′′

∗B
2
∗ ,

for g00r : c5ε
2A∗A

′′
∗B∗ + c6ε

2A′2
∗ B∗

for g00i : c0εB
′
∗.

8



Moreover, notice that, below, we need to compute
∫
f00A

′
∗dx,

∫
g00rB

′
∗dx,

∫
g00iB∗dx,

which, for terms independent of X̃, Ỹ leads to

for

∫
f00A

′
∗dx : ε2

∫

R

d4A
2
∗A

′
∗A

′′
∗dx = O(ε3),

for

∫
g00rB

′
∗dx : ε2

∫

R

c5A∗A
′′
∗B∗B

′
∗dx = O(ε3),

for

∫
g00iB∗dx : ε

∫

R

c0B
′
∗B∗ = ε

c0
2
,

where we notice
∫
A′′

∗A
′
∗ = 0, ε2

∫
A′′

∗B
2
∗A

′
∗ = −ε2

∫
A′2

∗ B∗B
′
∗ = O(ε4/α2) << ε3,

and taking care of the convergence in eεδx at −∞, which implies a division by
ε in the integral on (−∞, 0).

Before solving the system we need to change variables so that the variables
and the right hand side of (9,10) tend towards 0 at infinity. Let us denote

X̃(−∞) = (A
(−∞)
0 − 1, 0, 0, 0) = (O(ω̃2

−), 0, 0, 0)

Ỹ (+∞) = (C
(+∞)
0 − 1, D

(+∞)
0 ) = [O((ω̃+ + ε2)2),O(ε6)],

then, taking care, in (5,6), of the forms of f , gr, gi, we notice that the limit

terms independent of (Ã0, C̃0, D̃0) in the right hand side of (9,10) as x → −∞
are

k2−
4
A

(−∞)
0 + φ̃00(ε, k−, X̃

(−∞), 0) exp limit as eεδx (see f00),

0 exp limit as eεδx (as B∗ and see g00r)

0 exp limit as eεδx (as B′
∗ and see g00i).

The limit terms independent of (Ã0, C̃0, D̃0) of the right hand side of (9,10) as
x→ +∞ is

0 exp limit as e
−

√
δ√
2
x
(as A∗)

2ω̃

ε
(D

(+∞)
0 )′ + ω̃2C

(+∞)
0 + ψ̃0r(ωx, ε, k−, 0, Ỹ

(+∞)) exp limit as e−
√

δ
2
x (see g00r),

−2ω̃

ε
(C

(+∞)
0 )′ + ω̃2D

(+∞)
0 + ψ̃0i(ωx, ε, k−, 0, Ỹ

(+∞)) exp limit as e−ε
√
2x (see g00i).

Let us change variables as

Ã0 = α−χ− + Â0

C̃0 = β+χ+ + Ĉ0,

D̃0 = γ+χ+ + D̂0,

9



with (in using (59) in Appendix A.2)

α− = (A
(−∞)
0 − 1) = −ω̃2

−/2, β+ = (C
(+∞)
0 (ωx)− 1), γ+ = D

(+∞)
0 (ωx),

const part of β+
def
= β

(c)
+ = − ω̃

2
+

2
+
σ1ε

2ω̃+

2
+
σ2ε

4

2
+O[(|ω̃+|+ ε2)4], (16)

and where χ− and χ+ are smooth functions, such that

χ− = 1 for x ∈ (−∞,−1),

= 0 for x > 0

0 < χ− < 1 for x ∈ (−1, 0),

χ+ = 1 for x ∈ (1,∞),

= 0 for x < 0

0 < χ+ < 1 for x ∈ (0, 1),

such that
(Â0, Ĉ0, D̂0) → 0 as |x| → ∞.

2.1 Properties of linear operators Mg and Lg

Let us define the Hilbert spaces

L2
η = {u;u(x)eη|x| ∈ L2(R)},

D0 = {(A,C) ∈ H4
η ×H2

η ;A ∈ H4
η , C ∈ D1}

D1 = {C ∈ H2
η ; ε

−2||C′′||L2
η
+ ε−1||C′||L2

η
+ ||C||L2

η

def
= ||C||D1

<∞}

equiped with natural scalar products. Then we have the following result (proved
in [8]):

Lemma 12 Except maybe for a set of isolated values of g, the kernel of Mg in
L2
η is one dimensional, span by (A′

∗, B
′
∗), and its range has codimension 1, L2-

orthogonal to (A′
∗, B

′
∗). Mg has a pseudo-inverse acting from L2

η to D0 for any
η > 0 small enough, with bound independent of ε.

The operator Lg has a trivial kernel, and its range which has codimension 1,
is L2- orthogonal to B∗ (B∗ /∈ L2). Lg has a pseudo-inverse acting respectively
from L2

η to D1 for η > 0 small enough, with bound independent of ε.
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3 Calculation and estimates for Mg(Â0, Ĉ0) and

LgD̂0

3.1 First component of Mg(Â0, Ĉ0)

The first component is now the sum of small terms linear in (Â0, Ĉ0) plus

quadratic terms and terms independent of (Â0, Ĉ0) which tend exponentially to

0 as eεδx for x→ −∞ and e−
√
2εx for x→ +∞ :

Mg(Â0, Ĉ0)|1 = −k−Â0

′′
+
k2−
4
Â0 + φ̂0 + ϕ1(k−) (17)

with

ϕ1(k−) = −k−(A′′
∗ + α−χ

′′
−) +

k2−
4
(A∗ − χ−) + α−χ

(4)
− (18)

−3(1−A2
∗)α−χ− + gB2

∗α−χ− + 2gA∗B∗β+χ+,

φ̂0 = φ̃0(ωx, ε, k−, X̃, Ỹ )− χ−φ̃00(ε, k−, X̃
(−∞), 0),

More precisely we have, from (13)

φ̂0 = 3A∗[α
2
−(χ

2
− − χ−) + 2α−χ−Â0 + Â0

2
] + α3

−(χ
3
− − χ−) (19)

+3α2
−χ

2
−Â0 + 3α−χ−Â0

2
+ Â0

3
+ 2gB∗[α−χ−Ĉ0 + β+χ+Â0 + Â0Ĉ0]

+g(A∗ + α−χ− + Â0)[(β+χ+ + Ĉ0)
2 + (γ+χ+ + D̂0)

2] + f̂00,

f̂00 = O[ε3eεδxχ(−∞,0) + αε2e
− δ′x√

2 χ(0,∞) + ε(ω̃+ + ε2)2χ+e
− δ′x√

2

+ε(|D̂0

′|+ ε|D̂0|) + ε2|X̂|].

We notice that for η = εδ/2, and due to Corollary 6,

1

ε2
β′
+ = O(ε3),

1

ε2
γ′+ = O(ε3),

||A′
∗||L2

η
= O(α), ||B′

∗||L2
η
= O(ε1/2),

||A′2
∗ ||L2

η
= O(α2), , ||B′2

∗ ||L2
η
= O(ε3/2),

||A′′
∗ ||L2

η
= O(α), , ||B′′

∗ ||L2
η
= O(ε3/2).

Then we have the estimates (we use extensively 2|ab| ≤ a2 + b2)

||ϕ1(k−)− (

∫

R

A′2
∗ dx)

−1

∫

R

ϕ1A
′
∗dx||L2

η
≤ c

(
k2− + ω̃2

+ + ε4√
ε

+ ε3/2(|k−|+ |ω̃+|)
)
,

∫

R

ϕ1(k−)A
′
∗dx = O[(|k−|+ |ω̃+|+ ε2)2],

11



where we use η = εδ/2 (η < εδ is necessary), integration by parts and

∫

R

A′
∗A

′′
∗dx = 0,

∫

R

(A∗ − χ−)A
′
∗dx = O(1)

∫

R

(1 −A2
∗)A

′
∗χ−dx = O(1).

Using extensively

|Â0

(m)
(x)eη|x|| ≤ c||Â0||H4

η
, m = 0, 1, 2, 3

|Ĉ0

(m)
(x)eη|x|| ≤ cεm||Ĉ0||D1

, m = 0, 1,

we obtain

||φ̂0||L2
η

≤ c
(
αε2 + (ω̃+ + ε2)4 + ω̃4

− + εω̃2
+ + ||(Â0, Ĉ0)||2D0

+ ||D̂0||2D1

)

+c
(
[ε2 + ω̃2

− + ω̃2
+]||(Â0, Ĉ0)||D0

+ ε2||D̂0||D1

)
. (20)

3.2 Second component of Mg(Â0, Ĉ0)

For the second component we have

Mg(Â0, Ĉ0)|2 =
2ω̃+

ε
D̂0

′
+ ω̃2

+Ĉ0 + ψ̂0r + ϕ2(k−), (21)

with

ϕ2(k−) = ω̃2
+(B∗ − χ+)−

2

ε2
β′
+χ

′
+ − 1

ε2
β+χ

′′
+ +

2ω̃+

ε
γ+χ

′
+

−(3− gA2
∗ − 3B2

∗)β+χ+ + 2gA∗B∗α−χ−, (22)

ψ̂0r = ψ̃0r(ωx, ε, k−, X̃, Ỹ )− χ+ψ̃0r(ωx, ε, k−, 0, Ỹ
(+∞)),

where γ+ = D
(+∞)
0 . For ψ̂0r we have

ψ̂0r = 2gA∗(α−χ−Ĉ0 + β+χ+Â0 + Â0Ĉ0) (23)

+g(B∗ + β+χ+ + Ĉ0)(α
2
−χ

2
− + 2α−χ−Â0 + Â0

2
)

+2β2
+(B∗χ

2
+ − χ+) + 2B∗Ĉ0(2β+χ+ + Ĉ0)

+(β2
+ + γ2+)χ+[(χ+B∗ − 1) + β+(χ

2
+ − 1)]

+Ĉ0[(β+χ+ + Ĉ0)
2 + (γ+χ+ + D̂0)

2]

+2χ+(B∗ + β+χ+)(β+Ĉ0 + γ+D̂0) + (B∗ + β+χ+)(Ĉ0

2
+ D̂0

2
)

+ĝ00r,
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ĝ00r = O(ε3eεδxχ(−∞,0) + α2ε2e
− δ′x√

2 χ(0,∞) + ε2|X̂|+ ε(|Ĉ0

′
|+ |D̂0

′
|+ ε|D̂0|).

Now we obtain

||ψ̂0r||L2
η

≤ c

(
α2ε2 +

ω̃4
− + ω̃4

+√
ε

+ ||(Â0, Ĉ0)||2D0
+ ||D̂0||2D1

)
(24)

+c
(
[ε2 + ω̃2

− + ω̃2
+]||(Â0, Ĉ0)||D0

+ ε2||D̂0||D1

)
,

||ϕ2(k−)||L2
η

≤ c(
ω̃2
−√
ε
+

(|ω̃+|+ ε2)2

ε2
),

∫

R

ϕ2(k−)B
′
∗dx = O[(ω̃2

− + ω̃2
+ + ε4)],

where the last estimates use

1

ε2

∫ 1

0

β′
+χ

′
+B

′
∗dx = O(ε4)

1

ε2

∫ 1

0

β+χ
′′
+B

′
∗dx = O(|ω̃+|+ ε2)2

obtained, for the first integral in integrating by parts, and for the second one in

separating the oscillating part of order ε6 from the constant part β
(c)
+ of β+, for

which we make an integration by parts, in using B′′
∗ = O(ε2B∗). More precisely

we have
∫

R

ϕ1(k−)A
′
∗dx+

∫

R

ϕ2(k−)B
′
∗dx = a2

k2−
4

+a3σ0ε
2k−+O(|k3−|+ε2k2−+ω̃2

++ε4),

(25)
with

a2 =

∫

R

(A∗ − χ−)A
′
∗dx− a3,

a3 =
1

2

∫ 0

−1

χ
(4)
− A′

∗ −
3

2

∫

R

(1 −A2
∗)A

′
∗χ−dx+

g

2

∫

R

(A∗B
2
∗)

′χ−dx,

We observe that (see Corollay 5)
∫

R

(A∗ − χ−)A
′
∗dx =

1

2
+O(α)

1

2

∫ 0

−1

χ4
−A

′
∗dx = O(α)

g

2

∫ 0

−∞
(A∗B

2
∗)

′χ−dx = −g
2

∫ 0

−1

(A∗B
2
∗)χ

′
−dx = O(α)

−3

2

∫ 0

−∞
(1−A2

∗)χ−A
′
∗dx =

3

2

∫ 0

−1

(A∗ −
A3

∗
3

− 2

3
)χ′

−dx = 1 +O(α)

13



so that

a2 = −1/2 +O(α), (26)

a3 = 1 +O(α). (27)

3.3 Component LgD̂0

For the third component we obtain

LgD̂0 = −2ω̃+

ε
Ĉ0

′
+ ω̃2

+D̂0 + ψ̂0i + ϕ3(k−), (28)

ϕ3(ω̃, k−, ωx) = −2ω̃+

ε
[B′

∗ + β+χ
′
+]−

2

ε2
γ′+χ

′
+

− 1

ε2
γ+χ

′′
+ − (1 − gA2

∗ −B2
∗)γ+χ+,

and for

ψ̂0i = ψ̃0i(ωx, ε, k−, X̃, Ỹ )− χ+ψ̃0i(ωx, ε, k−, 0, Ỹ
(+∞)),

the estimate

||ψ̂0i||L2
η

≤ c{ε3/2 + (ω̃2
− + ω̃2

+)||D̂0||D1

+||(Â0, Ĉ0)||2D0
+ ||D̂0||2D1

}. (29)

4 Bifurcation equation

Let us use an adapted Lyapunov-Schmidt method. Since

Mg(A
′
∗, B

′
∗) = 0,

we now decompose (Â0, Ĉ0, D̂0) as

Â0 = zA′
∗ + u,

Ĉ0 = zB′
∗ + v,

D̂0 = w,

then equation (9) gives (Q0 is the projection in L2 on the range of Mg)

Mg(u, v) = Q0

(−k−(zA′
∗ + u)′′ +

k2
−

4 (zA′
∗ + u) + φ̂0 + ϕ1(k−)

2ω̃+

ε w′ + ω̃2
+(zB

′
∗ + v) + ψ̂0r + ϕ2(k−)

)
. (30)

14



4.1 Resolution in ω̃+ and w

We observe that (u, v) and w appear non symmetrically, so, we first solve the
equation (28), where the kernel of Lg is empty, and its range of codimension 1.
This has the advantage to give w and ω̃+ in function of (u, v, z, k−, ε).

We have

||ϕ3||L2
η
≤ c(

|ω̃+|√
ε

+ ε3), (31)

and since

∫ 1

0

1

ε2
γ′+χ

′
+B∗dx = −

∫ 1

0

1

ε2
γ+(χ

′
+B∗)

′dx = O(ε4),

we obtain
∫

R

ϕ3B∗dx = − ω̃+

ε
[1 +O(|ω̃+|+ ε2)2] +O(ε

4
),

∫

R

ψ̂0iB∗dx = O[ε+
ε

α
|z|||w||D1

+ ||(u, v)||2D0
+ ||w||2D1

+ (ω̃2
− + ω̃2

+)||w||D1
)].

The compatibility condition for equation (28) leads to

2ω̃+

ε

∫

R

B′
∗B∗dx =

∫

R

[
−2ω̃+

ε
(zB′′

∗ + v′) + ω̃2
+w + ψ̂0i + ϕ3

]
B∗dx,

which gives

ω̃+ =

∫

R

[
−2ω̃+(zB

′′
∗ + v′) + εω̃2

+w
]
B∗dx

+O[
ε2

α
|z|||w||D1

+ ε2 + |ω̃+|(|ω̃+|+ ε2)2]

+εO(||(u, v)||2D0
+ ||w||2D1

+ (ω̃2
− + ω̃2

+)||w||D1
).

which is a smooth function of its arguments and may be solved with respect
to ω̃+ (or equivalently with respect to k+ since ω̃+ = k+

2 + O(ε6)) by implicit
function theorem in the neighborhood of 0 for

(u, v) ∈ D0, w ∈ D1, (ε, ω̃−, z) ∈ R
3,

ω̃+ = k+(ε, ω̃−, z, (u, v), w) ∈ C1(R3 ×D0 ×D1).

Indeed we have the estimate

|k+| ≤ c[ε2 + (ω̃2
− +

ε2

α
|z|)||w||D1

+ ε(||(u, v)||2D0
+ ||w||2D1

)]. (32)

For solving equation (28) we now have

w = L−1
g [−2k+

ε
(B′

∗ + zB′′
∗ + v′) + k

2
+w + ϕ3 + ψ̂0i]

15



which may be solved by implicit function theorem with respect to w in D1 for

(ε, ω̃−, z, (u, v)) ∈ R
3 ×D0

in a neighborhood of 0, assuming

|k−| ≤ c
√
ε, i.e. |ω̃−| ≤ c′

√
ε. (33)

We obtain, using (31), (29) and (32)

w = w(ε, ω̃−, z, u, v)

then
||w||D1

≤ c(ε3/2 + ||(u, v)||2D0
), (34)

and we obtain
|k+| ≤ c[ε2 + (ω̃2

− + ε)||(u, v)||2D0
]. (35)

4.2 Resolution in (u, v)

Now, we replace w and ω̃+ by their expressions w and k+, and consider (30)
which may be solved by implicit function theorem with respect to (u, v) in a

neighborhood of 0 in D0 for (ε, k−√
ε
, z) close to 0 in R3. Indeed, the right hand

side of (30) is smooth in its arguments and estimates in L2
η of the right hand

side are as follows:

1st comp. = O(
k2−√
ε
+ ε3/2|k−|+ αε2 + α|z||k−|+ α2z2

+(ε2 + |k−|)||(u, v)||D0
+ ||(u, v)||2D0

)

2nd comp. = O(ε2+
k2−√
ε
+
√
ε|k−|+ α2z2 + (ε+ |k−|)2|z|

+(ε+ |k−|)2||(u, v)||D0
+ ||(u, v)||2D0

).

Applying implicit function theorem for (ε, k−√
ε
, z) in a neighborhood of 0 in

R3,leads to
(u, v) = (u, v)(ε, k−, z) ∈ D0

with

||(u, v)||D0
≤ c(ε2+

k2−√
ε
+
√
ε|k−|+ α2z2), (36)

Now (notice that α4 = ε8/7, and use (33))

||w||D1
≤ c

(
ε3/2 +

k4−
ε

+ α4z4
)
, (37)

|k+| ≤ cε2. (38)
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4.3 Final bifurcation equation

The orthogonality in L2 of the right hand side of Mg(Â0, Ĉ0) with (A′
∗, B

′
∗) (see

Lemma 12), gives one relationship, expressed as a function of (z, k−, ε), from
which we extract the family of bifurcating solutions. It gives

0 =

∫

R

[−k−(zA′′′
∗ + u′′) +

k2−
4
(zA′

∗ + u)]A′
∗dx+

∫

R

(φ̂0 + ϕ1)A
′
∗dx

+

∫

R

[
2ω̃+

ε
w′ + ω̃2

+(zB
′
∗ + v)]B′

∗dx+

∫

R

(ψ̂0r + ϕ2)B
′
∗dx. (39)

We define

−
∫

R

A′′′
∗ A

′
∗dx =

∫

R

A′′2
∗ dx = a1 > 0, (= O(α2)) (40)

and we have, from (19), (23), (36), (37), (35) and Remark 11

∫

R

φ̂0A
′
∗dx = z2[a′0 +O(

α3ω̃2
−√
ε

+
ε2

α
)]

+O[α4ε2 + αεk2− +
αk4−
ε

+ α2|z|(ε2 + ω̃2
−√
ε
) + α4|z|3],

with

a′0 =

∫

R

(3A∗A
′3
∗ + 2gB∗B

′
∗A

′2
∗ + gA∗A

′
∗B

′2
∗ )dx = O(α4),

and
∫

R

ψ̂0rB
′
∗dx = z2[a′′0 +O(α2εω̃2

−)] +O(ε3 + k4− + ε3/2|k3−|+ ε2k2− +

+αε1/2(k2− + ε|k−|)|z|+ α3ε|z|3)

with

a′′0 =

∫

R

(gB∗B
′
∗A

′2
∗ + 2gA∗A

′
∗B

′2
∗ + 3B∗B

′3
∗ )dx.

Hence
∫

R

φ̂0A
′
∗dx+

∫

R

ψ̂0rB
′
∗dx = z2[a0 +O(

α3ω̃2
−√
ε

+
ε2

α
)] +O[ε3 +

αk4−
ε

(41)

+α2|z|(ε2 + k2−√
ε
+ ε3/2|k−|) + α4|z|3]

where we define (α4 = ε8/7)

a0 = 3

∫

R

(A∗A
′3
∗ + gB∗B

′
∗A

′2
∗ + gA∗A

′
∗B

′2
∗ +B∗B

′3
∗ )dx = O(α4). (42)

Using Corollary 6, we notice that the main contribution of the integral is on
(0,+∞) and is precisely

∫

R

3A∗A
′3
∗ dx = O(α4).
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Now collecting the expressions (40), (25), (41) in (39) we obtain the bifurcation
equation

z2[a0 +O(
ε2

α
)] + a1k−z + a2

k2−
4
[1 +O(α

√
ε)] + a4ε

2k−[1 +O(α)]

= O(ε3 +
α√
ε
|k3−|+

α2

√
ε
|z|(k2− + ε2|k−|) +

α3

√
ε
k2−z

2 + α4|z|3), (43)

where we (use (27))

a4 = σ0a3 +O(α1/2) = σ0 +O(α1/2).

The discriminant of the principal part of the quadratic form of (z, k−) of the
left hand side is

∆ = a21 − a0a2. (44)

We notice that

a0 = O(α4),

a1 = O(α2) > 0,

a2 ∼ −1/2

and it is important to study the sign of ∆.

Remark 13 We expect that ∆ is < 0, as this results from the fact that on
(−∞, 0) the corresponding part of ∆ is << α4, and on (0,+∞) ∆ = O(α4)
where A∗ has approximatively the form

A∗(x) ∼ cαe
− δ′x√

2 cos
δ′x√
2

so that
∫

R

3A∗A
′3
∗ dx ∼ −3

2
c4α4δ′2

∫ ∞

0

e−4θ cos θ(cos θ + sin θ)3dθ

= −231

320
c4α4δ′2,

and

a1 ∼ c2α2δ′3
√
2

∫ ∞

0

sin2 θe−2θdθ

=
c2α2δ′3

4
√
2
.

We then notice that

∆ ∼ c4α4δ

32
(δ2 − 231

10
) < 0

for values of δ considered in Theorem 4.
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4.3.1 Case of negative discriminant ∆

So, let us make the following (reasonable) conjecture

∆ =

(∫

R

A′′2
∗ dx

)2

+
1

2

∫

R

3A∗A
′3
∗ dx = α4∆0 < 0, i.e. ∆0 < 0, (45)

or equivalently

a21 <
1

2
|a0|, a0 < 0.

The bifurcation equation (43) may be written as

|∆|
(
z − a1a4ε

2

|∆|

)2

+

(
a2k−
2

+ a1z + a4ε
2

)2

=
a2ε

4a24a0
α4|∆0|

+O
(
ε3 + αε2|k−|+ α

√
εk2− +

α√
ε
|k3−| (46)

+
α2

√
ε
|z|(k2− + ε2|k−|) + (

α3

√
ε
k2− +

ε2

α
)z2 + α4|z|3

)
.

It results that we can solve the problem only if the term of order ε3 has the
good sign. Using Remark 11 this term is of the form

−a2ε2[c5
∫

R

A∗A
′′
∗B∗B

′
∗dx+ d4

∫

R

A2
∗A

′′
∗A

′
∗dx] = a5ε

3, (47)

with assumption a5 > 0,

where the coefficients d4 and c5, occur in the cubic normal form (7) and (8).
Assuming that the order of magnitude O(1) of coefficients ∆0 < 0 and a5 > 0

are strictly valid, we can use implicit function theorem again, easily checking
that all non written terms are of order higher than ε3, we obtain the family of
solutions

z =
a1a4ε

2

|∆| +
ε3/2

α2
(
a5a2
∆0

)1/2 cosφ+ h.o.t. (48)

k−
2

= −a1
a2
z − a4ε

2

a2
+ (

a5
−a2

)1/2ε3/2 sinφ+ h.o.t.

where φ ∈ [0, 2π]. Finally, since a1 = O(α2), a2 ∼ −1/2, a4 ∼ σ0, a5 = O(1),
the order of magnitude of z and k− are such that

z = O(
ε3/2

α2
) = O(ε13/14), k− = O(ε3/2), ω̃+ = O(ε2).

Remark 14 The order of magnitude of terms on the right hand side of (46) is
dominated by ε3, which is just an estimate from (47). It may happen that one
day it is possible to improve this estimate, and that the dominant term becomes
ε4a2a

2
4a0

α4|∆0| which is stricly of order ε4, moreover with the good sign. This might

then provide a much better result, then with k− of order ε2 as k+ ∼ 2ω̃+ (see
(38)).
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4.3.2 Case of positive discriminant ∆

In the case when ∆ is > 0, the bifurcation equation (43) may be written as

−∆

(
z +

a1a4ε
2

∆

)2

+

(
a2k−
2

+ a1z + a4ε
2

)2

=
−a2ε4a24a0

∆
+O

(
ε3 + αε2|k−|+ α

√
εk2− +

α√
ε
|k3−| (49)

+
α2

√
ε
|z|(k2− + ε2|k−|) + (

α3

√
ε
k2− +

ε2

α
)z2 + α4|z|3

)
.

Then, using again the implicit function theorem, we obtain a family of solutions
such that

i) if a5 > 0

z = −a1a4ε
2

∆
+

√
a5
∆0

ε3/2

α2
sinhφ+ h.o.t.

a2k−
2

= −a1z − a4ε
2 +

√
a5ε

3/2 coshφ+ h.o.t. (50)

φ ∈ R;

ii) if a5 < 0

z = −a1a4ε
2

∆
+

√
|a5|
∆0

ε3/2

α2
coshφ+ h.o.t.

a2k−
2

= −a1z − a4ε
2 +

√
|a5|ε3/2 sinhφ+ h.o.t. (51)

φ ∈ R.

Proposition 7 is proved.

Remark 15 It should be noted that the one parameter family of solutions which
are obtained, correspond to convective rolls at −∞ with wave numbers

kc(1 + ε2k−)

connected to convective rolls at +∞ with wave numbers

kc(1 + 2ε2ω̃+).

The calculations made above, show that we obtain ω̃+ and k− as functions of
ε, φ where φ ∈ R. This is a one parameter family of relationships between wave
numbers at each infinity, depending on the amplitude ε2 of rolls.
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A Appendix

A.1 Reduction of the normal form

We start with

X = (A0, A1, A2, A3)
t ∈ R

4,

Y = (B0, B1)
t ∈ C

2,

and the system under normal form (see [2] in the case of rigid-rigid or free-free
boundary conditions)

dX

dx
= LX +N(X,Y, Y , µ, k̃) + F (X,Y, Y , µ, k̃), (52)

dY

dx
= LkcY +M(X,Y, Y , µ) +G(X,Y, Y , µ),

LX = (A1, A2, A3, 0)
t,

LkcY = (ikcB0 +B1, ikcB1)
t,

|F (X,Y, Y , µ, k̃)| ≤ c|X |(|X |2 + |Y |2 + |k̃|+ |µ|)2

|G(X,Y, Y , µ)| ≤ c|Y |(|X |2 + |Y |2 + |µ|)2, (53)

N(X,Y, Y , µ) =




0
A0P1

A1P1 + c8u8 + c13u13
A2P1 +A0P3 ++c8v8 + c13v13 + d14u14


 ,

M(X,Y, Y , µ) =

(
iB0Q0 + α10u10

iB1Q0 +B0Q1 + α10v10 + iβ10u10 + iβ12u12

)
,

P1 = b0µ+ b′0k̃ + b1u1 + b3u3 + b5u5 + b6u6,

P3 = d0µ+ d′′0 k̃
2 + d1u1 + d3u3 + d5u5 + d6u6,

Q0 = α0µ+ α1u1 + α3u3 + α5u5 + α6u6

Q1 = β0µ+ β1u1 + β3u3 + β5u5 + β6u6,

where

u1 = A2
0, v1 = A0A1, w1 =

1

2
A2

1,

u3 = 2A0A2 −A2
1, v3 = 3A0A3 −A1A2

u5 = B0B0, v5 =
1

2
(B0B1 +B0B1), w5 =

1

2
B1B1

u6 = i(B0B1 −B0B1).
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u8 = A0v3 −A1u3, v8 = A1v3 − 2A2u3,

u13 = A0v5 −A1u5, v13 = A0w5 −A2u5,

u14 = A0w5 +A2u5 −A1v5,

u10 = B0v1 −B1u1, v10 = 2B0w1 −B1v1

u12 = B0v3 −B1u3.

The (reversible) system anticomutes with the symmetry S1 (represents the re-
flection x 7→ −x). and commutes with τ π (shift by half of one period in y
direction):

(A0, A1, A2, A3, B0, B1) 7→ S1(A0,−A1, A2,−A3, B0,−B1),

(A0, A1, A2, A3, B0, B1) 7→ τπ (−A0,−A1,−A2,−A3, B0, B1).

Remark 16 In the case of rigid-free boundary conditions, we have no symmetry
z 7→ 1 − z. We don’t need this symmetry here. The symmetry τ π implies that
F is odd in X and G even in X. It can be shown that there is no term of degree
4 in X,Y, Y in the normal form. Moreover G cancels for Y = Y = 0, since
this is a 4-dimensional invariant subspace (solutions independent of x) in the
8-dimensional space corresponds to bidimensional convective solutions (giving
rolls at −∞).

Then, the X part of the system (52) may be written as a 4th order real
ODE, while the Y part becomes a 2nd order complex ODE as

A
(4)
0 = A0[d0µ+ (d′′0 − b′20 )k̃

2 + d1A
2
0 + d5B̃0B̃0 + id6(B̃0B̃0

′
− B̃0B̃0

′
)]

+(a0µ+ 3b′0k̃)A
′′
0 + a1A

2
0A

′′
0 + a2A0A

′2
0 + a3A0B̃0

′
B̃0

′

+a4A
′
0(B̃0B̃0

′
+ B̃0B̃0

′
) + a5A

′′
0B̃0B̃0 + 3ib6A

′′
0 (B̃0B̃0

′
− B̃0B̃0

′
)

+a6A0A
′
0A

′′′
0 + a7A0A

′′2
0 + a8A

′2
0 A

′′
0 +OX(5),

B̃0

′′
= B̃0[β0µ+ β1A

2
0 + β5B̃0B̃0] + ic1B̃0

′
A2

0 + ic2B̃0

′|B̃0|2 + ic3B̃0

′
B̃0

2

+2iα0µB̃0

′
+ ic4B̃0A0A

′
0 − 2α6B̃0

′
(B̃0B̃0

′
− B̃0B̃0

′
)

+c5B̃0A0A
′′
0 + c6B̃0A

′2
0 + c7B̃0

′
A0A

′
0 + ic8B̃0A0A

′′′
0

ic9B̃0

′
A0A

′′
0 + ic10B̃0

′
A′2

0 + ic11B̃0A
′
0A

′′
0 +OY (5),

with real coefficients dj , aj , bj, cj , βj , αj and

B̃0 = B0e
−ikcx, B̃1 = B1e

−ikcx, (54)

d0 = −4k2cβ0 > 0, d1 = −4k2cβ5 < 0,

β1

β5

=
d5
d1

:= g > 0, b′0 =
4k2c
3
, d′′0 = −20

9
k4c ,
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OX(5) = O(|X |(|X |2 + |Y |2 + k̃2 + |µ|)2),
OY (5) = O(|Y |(|X |2 + |Y |2 + |µ|)2),

X = (A0, A
′
0, A

′′
0 , A

′′′
0 )t

Y = (B̃0, B̃0

′
).

Notice that the high order rests OX(5) and OY (5) are no longer autonomous,
since they are functions of e±ikcx.

Now, as indicated in [2] we make the following scaling

x =
1

2εkc
x̃, µ =

4k2c
−β0

ε4, k̃ = ε2k−

A0(x) =
2kc√
β5

ε2Ã0(x̃), B̃0(x) =
2kc√
β5

ε2
˜̃
B0(x̃),

so that the system above becomes, after suppressing the tildes,

A
(4)
0 = k−A

′′
0 +A0(1−

k2−
4

−A2
0 − g|B0|2) + f̂ ,

B′′
0 = ε2B0(−1 + gA2

0 + |B0|2) + ĝ, (55)

with additional cubic terms of the form

f̂ = id1εA0(B0B0
′ −B0B

′
0) + ε2[d3A

′′
0 + d4A

2
0A

′′
0 + d2A0A

′2
0 + d6A0|B′

0|2

+d7A
′
0(B0B0

′
+B0B

′
0) + d5A

′′
0 |B0|2] + id8ε

3A′′
0 (B0B0

′ −B0B
′
0) +O(ε4),

ĝ = ε3[ic0B
′
0 + ic1B

′
0|A0|2 + ic2B

′
0|B0|2 + ic3B

2
0B0

′
+ ic9B0A0A

′
0]

+ε4[c4B
′
0(B0B0

′ −B0B
′
0) + c5B0A0A

′′
0 + c6B0A

′2
0 + c7B

′
0A0A

′
0]

+ε5[ic8B0A0A
′′′
0 + ic7B

′
0A0A

′′
0 + ic10B

′
0A

′2
0 + ic11B0A

′
0A

′′
0 +O(ε6).

A.2 Periodic solution in M+

Let us consider the 4-dimensional reversible vector field corresponding to the
system (52) with X = 0 and rescaled. We intend to give precise estimates on

the family of periodic bifurcating solutions B
(+∞)
0 (k+, x), here corresponding to

the periodic convection rolls at infinity in M+ with wave numbers close to kc
(becomes 1/2ε after the scaling).

Since we use the normal form up to cubic order, and since there is no term of
order 4, it takes the form (after the scaling used in [2], but before we incorporate

e
ix
2ε in B0, so that the system is autonomous):

dB0

dx
=

i

2ε
B0 +B1 + iε3B0P + ε7g0(ε, Y, Y ) (56)

dB1

dx
=

i

2ε
B1 + ε2B0Q+ iε3B1P + ε6g1(ε, Y, Y ),
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with

Y = (B0, B1)

P = α+ β|B0|2 + εγK

Q = −1 + |B0|2 + εδK

K =
i

2
(B0B1 −B0B1)

where we are looking for a periodic solution (B0, B1), with wave number ω close

to 1+ε2k+

2ε .

A.2.1 Principal part

Let us first compute periodic solutions for g0 = g1 ≡ 0. Then these small terms
will be perturbations treated by an adapted implicit function theorem.

Without g0 and g1, let us use polar coordinates (see [3] section 4.3.3)

B0 = r0e
iθ0

B1 = ir1e
iθ1

then

K = r0r1 cos(θ0 − θ1) = const

dr0
dx

= r1 sin(θ0 − θ1)

dr1
dx

= ε2r0 sin(θ0 − θ1)Q(ε, r20 ,K)

r0
dθ0
dx

=
r0
2ε

+ r1 cos(θ0 − θ1) + ε3r0P

r1
dθ1
dx

=
r1
2ε

− ε2r0 cos(θ0 − θ1)Q(ε, r20 ,K) + ε3r1P.

The required periodic solutions correspond to

r0 and r1 const

θ0 = θ1,
dθ0
dx

=
1+ ε2k+

2ε
K = r0r1,

hence

εk+
2

=
r1
r0

+ ε3P (57)

(
r1
r0

)2 = −ε2Q. (58)

Solving (57) with respect to r1 gives

r1 = εr0
k+ − 2ε2(α+ βr20)

2(1 + ε4γr20)

=
εr0
2

[k+ − 2ε2(α+ βr20)](1 +O(ε4)),
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and (58) leads to

1

4
[k+ − 2ε2(α+ βr20)]

2 +
ε2δr20
2

[k+ − 2ε2(α + βr20)] = (1− r20)(1 + γε4r20)
2

which is solved with respect to r20 , by implicit function theorem:

r20 = 1− k2+
4

+ σ1ε
2k+ + σ2ε

4 +O[(|k+|+ ε2)4], (59)

r1 =
εr0
2
k+ +O(ε3),

where we notice that coefficients σ1 and σ2 are functions of the Prandtl number.
We obtain a one-parameter family of periodic solutions (parameter k+), with
only the Fourier modes e±is.

A.2.2 Estimates of higher order terms

The proof below is new and self contained. There is a geometrical proof without
estimates in Iooss-Pérouème [7], and a more precise proof by Horn in [6] section
3.5.

Let us define by ω the frequency of periodic solutions, where ω is close to

ω0 =
1 + ε2k+

2ε
,

and set

s = ωx, ω = ω0 + ω̂

B0(s) = r0e
is + B̂0

B1(s) = ir1e
is + iB̂1,

where B0 and B1 are 2π− periodic in s, and r0, r1 are solution of (57,58). Let
us introduce the linear operator

L0 =

(
−(iω0

d
ds +

1
2ε + ε3P0) −1

ε2Q0 −(iω0
d
ds + 1

2ε + ε3P0)

)
,

acting in the function space H1(R/2πZ) × L2(R/2πZ). It appears that L0 has
a one-dimensional kernel

(r0e
is, r1e

is)
def
= V0e

is

since (57,58) implies

[(ω0 −
1

2ε
− ε3P0]r0 − r1 = 0

ε2Q0r0 + [(ω0 −
1

2ε
− ε3P0]r1 = 0,
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with

P0 = α+ βr20 + εγr0r1,

Q0 = −1 + r20 + εδr0r1.

Then the system (56), to be completed by its complex conjugate, becomes:

ω̂V0e
is + L0

(
B̂0

B̂1

)
= iω̂

d

ds

(
B̂0

B̂1

)
+

(
ε3r0Plin

−ε2r0Qlin + ε3r1Plin

)

+

(
R0(Ŷ , Ŷ )

R1(Ŷ , Ŷ )

)
, (60)

where

Plin = e2is[βr0B̂0 +
εγ

2
(r0B̂1 + r1B̂0)]

+[βr0B̂0 +
εγ

2
(r0B̂1 + r1B̂0)]

Qlin = e2is[−r0B̂0 +
εδ

2
(r0B̂1 + r1B̂0)]

+[−r0B̂0 +
εδ

2
(r0B̂1 + r1B̂0)],

R0(Ŷ , Ŷ ) = ε3r0e
isPquad + ε3B̂0(e

−isPlin + Pquad)− iε7g0,

R1(Ŷ , Ŷ ) = −ε2r0eisQquad − ε2B̂0(e
−isQlin +Qquad)

+ε3r1e
isPquad + ε3B̂1(e

−isPlin + Pquad)− ε6g1,

with

Qquad = B̂0B̂0 +
εδ

2
(B̂0B̂1 + B̂1B̂0)

Pquad = βB̂0B̂0 +
εγ

2
(B̂0B̂1 + B̂1B̂0).

Let us decompose (
B̂0

B̂1

)
= ŷ

(
r1e

is

−r0eis
)
+

(
B̃0

B̃1

)

where B̃0 and B̃1 have no Fourier component in eis, and we take the component
in eis orthogonal to V0e

is, since adding a component proportional to (r0, r1) is
equivalent to adapt (r0, r1).

We first solve (60) with respect to (B̃0, B̃1) in using the implicit function
theorem, since we observe (notice the term nω0 = n

2ε (1 + ε2k+) in the operator
for a Fourier component enis), that the pseudo-inverse of L0 is bounded from
H1(R/2πZ)× L2(R/2πZ) to H2(R/2πZ) ×H1(R/2πZ). Let us notice that the
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difference with the classical Hopf bifurcation proof is that, norms in these spaces
are chosen as, for example

||u||H2 =
1

ε2
||u′′||L2 +

1

ε
||u′||L2 + ||u||L2 ,

and notice that H1(R/2πZ) is an algebra. It results that we obtain an estimate
such that

||(B̃0, B̃1)||H2×H1 ≤ c(ε2|ŷ|+ ε6).

It then remains to solve the 2-dimensional system in (ω̂, ŷ) which is a real system,
due to the reversibility symmetry:

ω̂r0 + ŷr1 = −ω̂ŷr1 +O(ε4|ŷ|+ ε3|ŷ|+ ε7)

ω̂r1 − ŷr0 = ω̂ŷr0 +O(ε3|ŷ|+ ε2|ŷ|+ ε6),

which gives

ω̂ = O(ε7)

ŷ = O(ε6).

It results finally that the family of periodic solutions at M+ are such that

B0 = r0e
iωx +O(ε6),

B1 = ir1e
iωx +O(ε6), (61)

ω =
1

2ε
+
εk+
2

+O(ε7).
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