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Abstract

Federated learning and its application to medical image segmentation have recently become
a popular research topic. This training paradigm suffers from statistical heterogeneity
between participating institutions’ local datasets, incurring convergence slowdown as well
as potential accuracy loss compared to classical training. To mitigate this effect, federated
personalization emerged as the federated optimization of one model per institution. We
propose a novel personalization algorithm tailored to the feature shift induced by the usage
of different scanners and acquisition parameters by different institutions. This method
is the first to account for both inter and intra-institution feature shift (multiple scanners
used in a single institution). It is based on the computation, within each centre, of a series
of radiomic features capturing the global texture of each 3D image volume, followed by
a clustering analysis pooling all feature vectors transferred from the local institutions to
the central server. Each computed clustered decentralized dataset (potentially including
data from different institutions) then serves to finetune a global model obtained through
classical federated learning. We validate our approach on the Federated Brain Tumor
Segmentation 2022 Challenge dataset (FeTS2022). Our code is available at (https://
github.com/MatthisManthe/radiomics_CFFL).

Keywords: Federated learning, Federated personalization, Segmentation, Brain tumor
segmentation.

1. Introduction

Deep learning methods have shown significant success on a variety of medical image segmen-
tation tasks (Liu et al., 2021b; Futrega et al., 2022). These methods require a large quantity
of data to perform well. The construction of inter-institution datasets is constrained by data
regulations and overall sensitivity of health data.

Federated learning has been intensively studied within the last years in medical imaging
(Li et al., 2019; Liu et al., 2021a; Xu et al., 2022). This paradigm designates training of a
machine learning model on a decentralized dataset, enabling the collaboration of different
institutions to train a model without sharing data. Convergence speed and final accuracy
of federally trained models can however be weakened by the statistical heterogeneity of
local datasets. In that sense, multiple ideas have been proposed to improve robustness of
the standard Federated Averaging (FedAvg) algorithm (McMahan et al., 2017) reducing the
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required number of communication rounds and bringing models’ accuracy closer to central-
ized performance (Li et al., 2020; Karimireddy et al., 2020; Wang et al., 2020b; Tang et al.,
2022).

Personalized federated learning has been recently introduced as training one model per
specific institution while benefiting from others. Main axes of research in this domain
revolve around training one model per participating institution through adaptations of
meta-learning (Fallah et al., 2020; Acar et al., 2021), multi-task learning (Marfoq et al.,
2021), leveraging partial model sharing (Arivazhagan et al., 2019; Pillutla et al., 2022),
local finetuning (Li et al., 2021; Yu et al., 2022) or hypernetworks (Shamsian et al., 2021).
Clustered federated learning has also been proposed (Ghosh et al., 2020; Sattler et al., 2021)
as clustering institutions with similar local distribution and building one model per cluster.

We propose a novel personalization technique tailored to medical image segmentation.
In realistic applications of federated learning, participating institutions use different acqui-
sition methods (scanners, acquisition parameters, ...) inducing a feature shift between local
datasets. We focus on developing a method specifically for this type of heterogeneity. Fur-
thermore, state-of-the-art methods hypothesize homogeneous local distribution associated
to an institution, which is not necessarily the case as an institution can use multiple scan-
ners or vary the acquisition methods depending on the situation. We introduce the idea
of sample-level clustered federated learning accounting for both inter and intra-institution
heterogeneity while limiting the amount of transmitted information, preserving as much
as possible data privacy. Our method enables to build a model for each isolated type of
image volume appearance. We apply and validate our approach on the task of brain tumor
segmentation based on the FeTS challenge dataset (based on BraTS challenge dataset) in
which both inter and intra-institution feature shifts could be verified.

2. Method

An overview of the proposed method is depicted on Figure 1. Each institution computes
a set of features (first and second order intensity statistics) on each multimodal volume,
and sends these feature vectors to the server. The latter normalizes each feature of each
received vector and computes clusters in this normalized radiomic feature space. In paral-
lel, classical FedAvg is performed for a certain amount of communication rounds to build
an initial global model. Then, FedAvg is performed for each cluster with the previously
federally trained model as initialization, giving one final model per cluster of samples with
homogeneous texture.

Formally, let K be the number of institutions, each with a local dataset Dk :=
{(xk,i, yk,i)}nk

i=1 with xk,i ∈ X = Rm×h×w×d the multimodal MRI scan to segment, yk,i ∈
Y = {0, 1}l×h×w×d its associated multi-label ground-truth segmentation map, nk the local
dataset size of institution k and N =

∑K
k=1 nk the total number of samples. We note

w ∈ W = Rp the parameters of the neural network to be optimized for the downstream
task.

Radiomic features extraction Each institution extracts a set of radiomic features (first-
order and texture features) from each modality and volume. Features of different modalities
for a same patient are concatenated into a single feature vector. As opposed to classical
approaches with radiomics which try to characterize the texture of a tumor (Shur et al.,
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Figure 1: Overall framework of radiomic feature-based clustered federated finetuning.

2021), we compute radiomic features on whole-brain masks on each modality, thus mainly
on brain regions which should have a similar appearance with similar acquisition protocols
(scanner, parameters, etc.). Formally, for each sample xk,i of institution k a feature vector
fk,i ∈ RR is computed and transmitted to the server.

Server-side clustering After retrieving the feature vector associated to each volume of
each institution, the server normalizes each feature of each vector. For a given feature with
index r, we note f r its value in the feature vector f . In this study, the chosen normalization
follows Equation (1) with P r

min and P r
max being two chosen percentiles on the pooled set of

features across all institutions.

f̂ r
k,i = max(0,min(1,

f r
k,i − P r

min

P r
max − P r

min

)) (1)

To account for highly correlated features, a principal component analysis (PCA) is applied
on the set of normalized feature vectors, followed by the computation of C clusters by fitting
a Gaussian mixture model (GMM). For training and inference purpose, the normalization
parameters, PCA model and GMM are returned to each institution.

We note Cluster : RR → {1, ..., C} the application of this clustering process on features
extracted from a volume and D̂c :=

⋃K
k=1{(xk,i, yk,i) | Cluster(f̂k,i) = c, i ≤ nk} the set

of samples assigned to cluster c decentralized over the K institutions. We note nc,k the

number of samples of institution k assigned to cluster c, and Nc =
∑K

k=1 nc,k the total size

of D̂c.
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Global federated learning initialization Following (McMahan et al., 2017), we use
FedAvg to compute an initial global model winit. Given a loss function l :W×X ×Y → R,
the classical federated objective can be defined as:

w∗ = argmin
w∈W

K∑
k=1

nk∑
i=1

l(w, xk,i, yk,i) . (2)

At each communication round t, each institution performs E local epoch(s) of stochastic
gradient descent (SGD) starting from the current global model wt, giving K updates ∆wt

k =
wt
k − wt to aggregate. The server-side aggregation step is a weighted averaging of these

updates wt+1 = wt +
∑K

k=1
nk
N ∆wt

k.

Clustered federated finetuning Given the clustering model computed at server-side,
we are now able to define a novel clustered federated learning objective:

{w∗c}Cc=1 = argmin
{wc}Cc=1∈WC

K∑
k=1

nk∑
i=1

l(wCluster(f̂k,i)
, xk,i, yk,i) , (3)

where wc is the parameter set of the global federated model finetuned on dataset D̂c of
cluster c. Note that this objective is different from the one defined in recent clustered
federated learning approaches such as (Ghosh et al., 2020) as we compute clusters at sample
level, not at institution level, enabling to account for an intra-institution heterogeneity. We
optimize each cluster model wc by finetuning the global model winit with FedAvg on the
decentralized dataset D̂c for Tc rounds. The aggregation step for the federated finetuning
of cluster model wc at communication round t becomes wt+1

c = wt
c +

∑K
k=1

nc,k

Nc
∆wt

c,k.

Inference Given a new sample x′ ∈ X to segment, the whole clustering pipeline is applied
to determine which of the C cluster models must be used. That is, radiomic features f ′ are
extracted from x′, normalized following Equation (1), reduced through the computed PCA
model, assigned to cluster c using the GMM and segmented with model wc.

3. Experiments

3.1. Datasets

Experiments were led using The MICCAI’s Federated Brain Tumor Segmentation 2022
Challenge dataset (FeTS2022) (Bakas et al., 2017; Pati et al., 2021; Reina et al., 2022). This
dataset is based on the Brain Tumor Segmentation 2021 Challenge dataset (BraTS2021).
Consisting of 1251 multi-modal brain MRI scans (T1, T1ce, T2 and FLAIR) of size 240×
240× 155 with isotropic 1mm3 voxel size along with their multi-label tumor segmentation
masks including 3 labels, namely enhancing tumor (ET), tumor core (TC) and whole tumor
(WT). The real-world partitioning along the 23 acquiring institutions is provided in addition
to the samples, enabling to simulate federated learning. Institutions’ datasets sizes are very
heterogeneous (cf Appendix A.1) with ∼61% of institutions owning less than 15 samples
each. As we do not have the scanner information for every sample, an intra-institution
feature shift may exist. This dataset served to evaluate the performance of the proposed
clustered federated personalization method and compare it to state-of-the-art methods.

4



Clustered Federated Fine-Tuning for Brain Tumor Segmentation

Dataset splitting In all of the experiments, a ∼70-15-15% train - validation - test split
was followed, giving 833 training, 218 validation and 200 test samples. We computed such
split institution-wise, giving a local training, validation and test dataset per institution.
We refer to the global train, validation and test sets as the aggregation of each local set,
preserving the representation of each institution in each partition. Due to the computational
cost of training models on FeTS2022 and the limited amount of samples (< 5) provided by
multiple institutions, we did not perform cross-validation.

Image volume pre-processing Each volume was resized to the bounding box contain-
ing all brain voxels, padded to a minimum size of 128 on each dimension if necessary. Each
modality of each volume’s intensities was then standardized to a zero-mean one-variance
gaussian distribution to eliminate the feature shift due to absolute intensity values of scan-
ners.

3.2. Radiomic feature-based clustering

Feature extraction and processing Ninety-three features including first-order statis-
tics as well as higher order statistical features capturing textural information were extracted
per modality using Pyradiomics (van Griethuysen et al., 2017), thus leading to a feature
vector of dimension 372. The estimation of these textural features derives from the compu-
tation of matrices describing the spatial and intensity relationship between each individual
pixel and its neighbors in the image, including GLCM, GLRLM, GLSZM, NGTDM and
GLDM (Shur et al., 2021). These matrices require to discretize intensity values of the origi-
nal images. In this study, we chose an absolute discretization technique based on fixing the
histogram bin size to 0.09 for feature extraction. Features were extracted on whole brain
masks. A list of the extracted features is provided in Appendix B.1. We first normalized the
feature vectors following Equation (1) and setting P r

min as the 2nd-centile and P r
max as the

98th-centile. Dimension of the normalized feature vectors were then reduced to 30 through
PCA, preserving 96.58% of the variance. We validated the radiomic features extraction on
The Calgary-Campinas-359 (CC359) dataset (cf Appendix C).

Clustering We fitted a GMM by setting the number of clusters to 10 on the FeTS2022
samples with tied covariance matrix to account for the limited amount of samples compared
to the number of remaining feature dimensions. The performance of the proposed radiomic-
based clustering method is assessed visually based on the comparison of 2 t-SNE plots of
the radiomic feature distribution where each sample is colored either by the label of its
belonging institution or by the label of the cluster it was assigned to through the GMM.

3.3. Clustered federated finetuning (CFFT)

We evaluated the performance of the proposed federated personalization method for the
multi-class segmentation task of the FeTS2022 brain MRI dataset based on standard DICE
score and 95% Hausdorff distances.

Model architecture and data preprocessing The backbone architecture used in all
experiments is a small-sized 3D U-Net (cf Appendix D) trained on 3D patches of size
128×128×128 with a batch size of 1. We used instance normalization without any learned

5



Manthe Duffner Lartizien

parameters to make the model as robust as possible to any feature shift. If not specified,
training includes data augmentation focused on reducing the feature shift (gaussian noise,
gaussian smoothing, intensity scaling and gamma contrast adjustment).

Comparison with baseline methods We validated our approach against different base-
lines. We first trained a global model on the pooled FeTS2022 dataset (e.g. BraTS2021)
with SGD, referred to Centralized in the following. FedAvg was used as the baseline global
federated optimization algorithm, as described in Section 2. As a personalized FL base-
line, we finetuned the FedAvg final model on each local dataset with SGD; this method
is referred to as Local Finetuning. We then experimented with two versions of our CFFT
method : the proposed CFFT version preserving the privacy of each clustered dataset D̂c

by finetuning with FedAvg and an ideal version referred to as CFFTideal, which consists in
finetuning on the pooled datasets D̂c of each cluster with SGD.

Training hyperparameters In Centralized, Local Finetuning and pooled finetuning of
CFFTideal, a learning rate of 0.02 gave the best results. For federated counterparts, a
learning rate of 0.05 was used. A weight decay of 10−5 was used in all experiments, motivated
by state-of-the-art publications (Wang et al., 2020a; Yuan et al., 2022). Centralized training
was performed for 300 epochs, FedAvg for 300 communication rounds with one local epoch
per round, Local Finetuning for 20 local epochs, CFFTideal for 50 epochs and CFFT for 50
communication rounds with one local epoch. The best models at each epoch/communication
round were selected based on the validation set performance for all methods. Best results
were found by removing data augmentation for clustered finetuning methods, while keeping
it for Local Finetuning.

4. Results and Discussion

4.1. Performance of the radiomic features based clustering

We show on Figure 2(a) a t-SNE plot of the radiomic features computed on sample images
of FeTS2022. It highlights both inter and intra-institution feature shift in this dataset. We
do not have access to the scanner type (vendor, magnetic field) or acquisition parameter
to establish further correlation with the observed clusters, but a visual analysis of some
example 3D images belonging to different clusters highlights some pattern discrepancies.
For example, within institution 4, we can distinguish two types of multi-modal volume
appearance (cf Appendix B.2), confirming the existence of intra-institution feature shift,
which is well captured by the proposed radiomic based GMM model (Figure 2(b)). Although
out of the scope of this paper, we emphasize that feature normalization enabled to spot some
outlier volumes (cf Appendix E).

4.2. Performance of the clustered federated finetuning (CFFT) method

We show in Table 1 and Table 2 aggregated test DICE scores and 95% Hausdorff distances
respectively of Centralized, FedAvg, Local Finetuning, CFFTideal and CFFT, with sample-
wise standard deviation. Per institution results are given in Appendix A.2. On average
Centralized training remains the gold standard with the best performance on both metrics.
FedAvg produces a less robust model, with a gap of more than one DICE point compared to
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(a) Colored by institution (b) Colored by GMM cluster

Figure 2: t-SNE plots of radiomic features computed on FeTS2022 samples.

Centralized on average. This was shown significant based on a two-tailed Wilcoxon signed-
rank test for both metrics with p < 0.01. All personalization methods also significantly
improve the FedAvg DICE score in a similar fashion, with CFFTideal giving a slight edge on
average 95% Hausdorff distance. Note that CFFTideal performs better than its federated
counterpart CFFT as we could expect. The goal of this preliminary method is to produce
clusters of sample with homogeneous appearance and texture. In that sense, the gap on
average metrics between CFFTideal and CFFT is smaller that between Centralized and
FedAvg, motivating a reduction of the shift between institutions taking part in FedAvg in
each cluster. Moreover, Figure 3 shows the label distributions of each computed cluster.
They are relatively homogeneous, confirming the focus on the feature shift. Other types of
shift such as label or concept shifts can be present in the dataset, and we give a hint on their
existence in Appendix A.1 with relatively heterogeneous label distributions per institution.
Our method’s performance is on par with Local Finetuning while restricting its effect on
feature shift. We emphasize that the proposed paradigm of targeting an identified type of
shift would potentially generalize better to unseen data.

On a more general note, the choice of the number of clusters is important. Using too
few does not capture feature shift, using too many overfits on clustered training data.
Ten clusters gave the best validation results. We must acknowledge the relatively high
variability of clustering results, possibly due to the high number of dimensions remaining
after PCA to preserve sufficient variance. It must also be noted that the high heterogeneity
of the local dataset sizes poses problems to assess the performance of personalized methods,
with some institutions only owning one or two test samples (cf Appendix A.2). Finally,
we hypothesize in this preliminary work that the computed radiomic features are safe to
share with a server. We provide a basic validation of the impracticability of reconstructing
a volume based on the 93 features extracted per modality in Appendix F, but it remains
an open question as to how these features could be leveraged by an attack against our
method. Thus, this preliminary work could be improved by studying the compatibility of the
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framework with known privacy-preserving federated learning techniques such as differential
privacy or homomorphic encryption, or developing a federated framework including PCA
and clustering. Limiting the amount of computed features to the most relevant ones could
also be beneficial while opening explainability opportunities.

Training algorithm Average TC WT ET
Centralized 0.8912 ± 0.1201 0.8896 ± 0.1878 0.9188 ± 0.0859 0.8651 ± 0.1956

FedAvg 0.8803 ± 0.1414 0.8722 ± 0.2251 0.9099 ± 0.0906 0.8588 ± 0.2005
Local finetuning 0.8879 ± 0.1202 0.8876 ± 0.1863 0.9132 ± 0.0891 0.8629 ± 0.1960

CFFTideal 0.8887 ± 0.1239 0.8867 ± 0.1891 0.9139 ± 0.0892 0.8654 ± 0.1960
CFFT 0.8874 ± 0.1254 0.8799 ± 0.2056 0.9120 ± 0.0907 0.8704 ± 0.1852

Table 1: Test DICE scores (mean ± standard deviation)

Training algorithm Average TC WT ET
Centralized 5.1348 ± 6.2212 4.4407 ± 7.2052 7.0318 ± 11.0671 3.7770 ± 8.5314

FedAvg 5.8854 ± 7.7368 4.7745 ± 8.0444 8.8814 ± 15.9499 3.7091 ± 7.6837
Local finetuning 5.9334 ± 7.9817 4.8587 ± 9.3901 8.9284 ± 16.3270 3.5861 ± 7.5650

CFFTideal 5.5915 ± 7.2588 4.6436 ± 7.3390 8.3688 ± 15.3738 3.5383 ± 7.5576
CFFT 5.8749 ± 7.6108 4.7359 ± 7.4458 8.8709 ± 16.4791 3.6520 ± 7.6291

Table 2: Test 95% Hausdorff distances (mean ± standard deviation)

Figure 3: Label distribution per computed cluster in FeTS2022. Green values correspond
to the amount of samples associated to each cluster.
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imilian Baust, Yan Cheng, Sébastien Ourselin, M. Jorge Cardoso, and Andrew Feng.
Privacy-Preserving Federated Brain Tumour Segmentation. In Heung-Il Suk, Mingxia

9



Manthe Duffner Lartizien

Liu, Pingkun Yan, and Chunfeng Lian, editors, Machine Learning in Medical Imaging,
Lecture Notes in Computer Science, 2019.

Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. FedDG: Federated
Domain Generalization on Medical Image Segmentation via Episodic Learning in Contin-
uous Frequency Space. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021a.

Xiangbin Liu, Liping Song, Shuai Liu, and Yudong Zhang. A Review of Deep-Learning-
Based Medical Image Segmentation Methods. Sustainability, 13(3), January 2021b.
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Appendix A. Per institution analysis

A.1. Per institution label distribution and local datasets sizes

Figure 4: Label distribution per institution in FeTS2022. Green values correspond to the
amount of samples associated to each institution in the complete dataset.
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A.2. Per institution results

Institution Test size Centralized FedAvg Local Finetuning CFFTideal CFFT
1 77 0.9300 0.9256 0.9280 0.9289 0.9285
10 2 0.8044 0.8051 0.8076 0.8085 0.8072
11 3 0.9069 0.9000 0.9006 0.9055 0.9053
12 2 0.7386 0.7031 0.7131 0.7032 0.7106
13 6 0.6248 0.4910 0.6090 0.5596 0.5781
14 1 0.6261 0.6115 0.6237 0.6195 0.6100
15 2 0.5924 0.5282 0.6296 0.6135 0.5539
16 5 0.9185 0.9211 0.9265 0.9028 0.9095
17 2 0.9162 0.9133 0.9133 0.9140 0.9101
18 58 0.9187 0.9117 0.9082 0.9138 0.9119
19 1 0.9659 0.9625 0.9634 0.9649 0.9650
2 1 0.9231 0.9221 0.9221 0.9206 0.9160
20 5 0.9386 0.9314 0.9354 0.9346 0.9358
21 6 0.9594 0.9545 0.9559 0.9574 0.9599
22 2 0.9600 0.9553 0.9553 0.9563 0.9570
23 1 0.8881 0.8919 0.8937 0.8879 0.8867
3 3 0.6956 0.5952 0.6946 0.6928 0.6681
4 8 0.6687 0.6669 0.7005 0.6960 0.6943
5 4 0.8057 0.7946 0.7925 0.8349 0.8204
6 6 0.8762 0.8762 0.8762 0.8806 0.8844
7 2 0.8895 0.8873 0.8924 0.8828 0.8804
8 2 0.9631 0.9621 0.9621 0.9645 0.9634
9 1 0.7895 0.8232 0.7818 0.8545 0.8416

Table 3: Average test dice scores per institution
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Institution Test size Centralized FedAvg Local Finetuning CFFTideal CFFT
1 77 3.6752 4.3375 4.5268 4.3651 4.4183
10 2 7.5957 7.1775 7.1275 6.8905 7.1512
11 3 3.1412 3.5267 3.2199 3.2042 3.0589
12 2 10.6487 24.9708 26.7511 23.4790 28.9451
13 6 8.1182 12.2476 13.0226 8.0737 10.0930
14 1 3.2863 4.2002 3.3708 4.1926 5.0000
15 2 15.2838 17.3938 18.8894 19.4479 24.4377
16 5 4.3992 8.8826 8.7169 9.8859 9.9735
17 2 1.7756 2.0977 2.0977 1.9249 2.2928
18 58 4.7928 5.1874 5.0459 5.1053 4.8157
19 1 1.6667 1.3333 1.3333 1.1381 1.1381
2 1 5.0726 5.9127 5.9127 6.1498 8.7888
20 5 5.8938 2.6021 2.4663 2.4494 2.3830
21 6 2.1143 2.2983 2.3060 1.6677 1.5816
22 2 2.4694 3.1271 3.1271 3.2594 15.0383
23 1 4.2356 3.9560 3.7742 4.2201 4.2560
3 3 6.5017 9.2293 7.6449 7.4780 8.9391
4 8 14.1589 12.5674 12.6770 10.3157 10.3217
5 4 5.2451 7.8477 7.7993 6.7148 7.6399
6 6 10.0190 10.2264 10.2264 9.6674 9.5711
7 2 12.2938 15.7393 14.9248 16.0055 16.4357
8 2 1.2761 1.4267 1.4267 1.3291 1.3738
9 1 12.8816 6.7070 7.9211 6.1545 6.5459

Table 4: Average test hausdorff distances per institution

Appendix B. Radiomic features extraction

B.1. Radiomic features list

Using Pyradiomics, 93 features are extracted per modality:

• First Order Statistics (18 features) (standard deviation is not included)

• Gray Level Cooccurence Matrix (GLCM) (24 features)

• Gray Level Run Length Matrix (GLRLM) (16 features)

• Gray Level Size Zone Matrix (GLSZM) (16 features)

• Neighbouring Gray Tone Difference Matrix (NGTDM) (5 features)

• Gray Level Dependence Matrix (GLDM) (14 features)
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B.2. Visual examples

Figure 5: FeTS2022 01172 MRI scans, owned by institution 4, assigned to cluster 7.
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Figure 6: FeTS2022 01195 MRI scans, owned by institution 4, assigned to cluster 4.
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Appendix C. Radiomic features validation on CC359

Dataset The Calgary-Campinas-359 (CC359) dataset (Souza et al., 2018). This dataset
consists of 359 T1-weighted brain MRI scans of healthy subjects along with their ”silver-
standards” brain masks generated both using the STAPLE algorithm. These images were
acquired on scanners from three vendors (Siemens, Philips and General Electric) at both
1.5 T and 3 T. Sixty exams were acquired per vendor and magnetic field strength, except
for Philips 1.5T which totalizes 59 exams. This dataset, concatenating 6 series of exams of
equal size and low intra-feature shift serves as a use case to validate the radiomic feature
extraction process.

Parameters We fixed the histogram bin size to 0.15 for features extraction on the CC359
dataset. We normalized the feature vectors following Equation (1) and setting P r

min as the
2nd-centile and P r

max as the 98th-centile. Dimension of the normalized feature vectors is
then reduced to 30 through PCA, preserving 99.96% of the variance.

Results We show on Figure 7 a t-SNE plot of the radiomic features computed on CC359
after normalization and PCA where each label encodes for one of the 6 scanners on which
the image were acquired (e.g. philips 3 corresponds to a 3T Philips scanner). Despite only
dealing with healthy patients with a normalization process that significantly reduces feature
shift, distinct clusters can be identified for each scanner manufacturer and magnetic field
value. This demonstrates the capacity of the selected radiomic feature vector to capture
textural patterns induced by the scanner characteristics.

Figure 7: t-SNE of radiomic features.
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Appendix D. Model architecture

We use a small-sized 3D U-Net as the backbone architecture. It includes 3 down-sampling
and up-sampling paths. Stride 2 convolutions are used in down-sampling paths, and trans-
pose convolutions for up-sampling paths. Kernel size is (3,3,3) for every convolution block.
A first stride 1 convolution block outputs 16 channels, multiplied by 2 at each downsampling
path to reach 128 channels in the bottleneck part of the network. Inference are done with
a sliding window with an overlap of 0.5 and Gaussian aggregation of results on overlaps.

Appendix E. Outliers detection

For some extracted features, the normalization process clearly highlighted outliers. As
example, the GLCM Cluster Prominence feature computed on the FLAIR n°1441 was two
orders of magnitude higher than for any other volume. We verified that this volume has
a particular appearance, with extreme intensities toward the eye balls (Figure 8). Such
manually computed features can thus be leveraged for federated outlier detection without
sacrificing too much privacy.

Figure 8: Flair MRI scan of patient n°1441
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Appendix F. Privacy preservation basic validation

We explore in this section the efficiency of an attack on the radiomic features communicated
during the proposed clustered federated finetuning process. Its objective is, given every
normalized feature vector computed on the train and validation T1 volumes, to train a
decoder to reconstruct the associated volumes. Each volume was standardized and resized
to 1283 voxels to simplify the task.

Model The model is composed of a first linear layer outputting 4096 values reshaped to
[512, 2, 2, 2], followed by 6 3D residual convolutional blocks, upsampling each dimension by
a factor of 2 while dividing the number of channels by 2. We use 3D batch normalization
and LeakyRelu activation function with a slope of 0.2 between each layer. The model is
composed of approximately 20 millions parameters.

Training parameters We train this model using the same training - validation - test
split as for the original segmentation task. The loss and metric used is a standard MSE.
We use Adam with a learning rate of 1e-4 and a weight decay of 1e-5 for 300 epochs with
a batch size of 2. The final model is selected based on best validation performance.

Result We show in Figure 9 the training and validation loss curves. After only 20 epochs,
the model starts to overfit on the training set with a stagnating validation performance. We
show in Figure 10 two slices of reconstruction outputs of the test set. The model is only able
to reconstruct an average volume, validating the fact that the transmitted feature vectors
do not contain enough information to reconstruct a volume, even the tumorous parts. The
proposed scheme of attack is also unrealistically powerful, as it presumes a large amount of
already leaked data.

Figure 9: Training and validation loss curves of a model reconstructing T1 volumes based
on extracted radiomic features.
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(a) T1 scan of patient n°176

(b) T1 scan of patient n°134

Figure 10: Example outputs of a model trained to reconstruct T1 volumes based on trans-
mitted radiomic features. We show slice n°64 for both samples. On the left are
ground truth standardized volumes, on the right are reconstructed volumes.
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