Matthis Manthe 
email: matthis.manthe@insa-lyon.fr
  
Stefan Duffner 
email: stefan.duffner@insa-lyon.fr
  
Carole Lartizien 
email: carole.lartizien@creatis.insa-lyon.fr
  
Whole-brain radiomics for clustered federated personalization in brain tumor segmentation

Keywords: Federated learning, Federated personalization, Segmentation, Brain tumor segmentation

Federated learning and its application to medical image segmentation have recently become a popular research topic. This training paradigm suffers from statistical heterogeneity between participating institutions' local datasets, incurring convergence slowdown as well as potential accuracy loss compared to classical training. To mitigate this effect, federated personalization emerged as the federated optimization of one model per institution. We propose a novel personalization algorithm tailored to the feature shift induced by the usage of different scanners and acquisition parameters by different institutions. This method is the first to account for both inter and intra-institution feature shift (multiple scanners used in a single institution). It is based on the computation, within each centre, of a series of radiomic features capturing the global texture of each 3D image volume, followed by a clustering analysis pooling all feature vectors transferred from the local institutions to the central server. Each computed clustered decentralized dataset (potentially including data from different institutions) then serves to finetune a global model obtained through classical federated learning. We validate our approach on the Federated Brain Tumor Segmentation 2022 Challenge dataset (FeTS2022). Our code is available at (https:// github.com/MatthisManthe/radiomics_CFFL).

Introduction

Deep learning methods have shown significant success on a variety of medical image segmentation tasks [START_REF] Liu | A Review of Deep-Learning-Based Medical Image Segmentation Methods[END_REF][START_REF] Micha L Futrega | Optimized U-Net for Brain Tumor Segmentation[END_REF]. These methods require a large quantity of data to perform well. The construction of inter-institution datasets is constrained by data regulations and overall sensitivity of health data.

Federated learning has been intensively studied within the last years in medical imaging [START_REF] Li | Privacy-Preserving Federated Brain Tumour Segmentation[END_REF][START_REF] Liu | FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space[END_REF][START_REF] Xu | Closing the generalization gap of cross-silo federated medical image segmentation[END_REF]. This paradigm designates training of a machine learning model on a decentralized dataset, enabling the collaboration of different institutions to train a model without sharing data. Convergence speed and final accuracy of federally trained models can however be weakened by the statistical heterogeneity of local datasets. In that sense, multiple ideas have been proposed to improve robustness of the standard Federated Averaging (FedAvg) algorithm [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] reducing the required number of communication rounds and bringing models' accuracy closer to centralized performance [START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF][START_REF] Sai | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF]Wang et al., 2020b;[START_REF] Tang | Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning[END_REF].

Personalized federated learning has been recently introduced as training one model per specific institution while benefiting from others. Main axes of research in this domain revolve around training one model per participating institution through adaptations of meta-learning [START_REF] Fallah | Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach[END_REF][START_REF] Alp | Debiasing Model Updates for Improving Personalized Federated Training[END_REF], multi-task learning [START_REF] Marfoq | Federated Multi-Task Learning under a Mixture of Distributions[END_REF], leveraging partial model sharing (Arivazhagan et al., 2019;[START_REF] Pillutla | Federated Learning with Partial Model Personalization[END_REF], local finetuning [START_REF] Li | Ditto: Fair and Robust Federated Learning Through Personalization[END_REF][START_REF] Yu | Salvaging Federated Learning by Local Adaptation[END_REF] or hypernetworks [START_REF] Shamsian | Personalized Federated Learning using Hypernetworks[END_REF]. Clustered federated learning has also been proposed [START_REF] Ghosh | An efficient framework for clustered federated learning[END_REF][START_REF] Sattler | Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints[END_REF] as clustering institutions with similar local distribution and building one model per cluster.

We propose a novel personalization technique tailored to medical image segmentation. In realistic applications of federated learning, participating institutions use different acquisition methods (scanners, acquisition parameters, ...) inducing a feature shift between local datasets. We focus on developing a method specifically for this type of heterogeneity. Furthermore, state-of-the-art methods hypothesize homogeneous local distribution associated to an institution, which is not necessarily the case as an institution can use multiple scanners or vary the acquisition methods depending on the situation. We introduce the idea of sample-level clustered federated learning accounting for both inter and intra-institution heterogeneity while limiting the amount of transmitted information, preserving as much as possible data privacy. Our method enables to build a model for each isolated type of image volume appearance. We apply and validate our approach on the task of brain tumor segmentation based on the FeTS challenge dataset (based on BraTS challenge dataset) in which both inter and intra-institution feature shifts could be verified.

Method

An overview of the proposed method is depicted on Figure 1. Each institution computes a set of features (first and second order intensity statistics) on each multimodal volume, and sends these feature vectors to the server. The latter normalizes each feature of each received vector and computes clusters in this normalized radiomic feature space. In parallel, classical FedAvg is performed for a certain amount of communication rounds to build an initial global model. Then, FedAvg is performed for each cluster with the previously federally trained model as initialization, giving one final model per cluster of samples with homogeneous texture.

Formally, let K be the number of institutions, each with a local dataset

D k := {(x k,i , y k,i )} n k i=1 with x k,i ∈ X = R m×h×w×d the multimodal MRI scan to segment, y k,i ∈ Y = {0, 1} l×h×w×d
its associated multi-label ground-truth segmentation map, n k the local dataset size of institution k and N = K k=1 n k the total number of samples. We note w ∈ W = R p the parameters of the neural network to be optimized for the downstream task.

Radiomic features extraction Each institution extracts a set of radiomic features (firstorder and texture features) from each modality and volume. Features of different modalities for a same patient are concatenated into a single feature vector. As opposed to classical approaches with radiomics which try to characterize the texture of a tumor (Shur et al., 2021), we compute radiomic features on whole-brain masks on each modality, thus mainly on brain regions which should have a similar appearance with similar acquisition protocols (scanner, parameters, etc.). Formally, for each sample x k,i of institution k a feature vector f k,i ∈ R R is computed and transmitted to the server.

Server-side clustering After retrieving the feature vector associated to each volume of each institution, the server normalizes each feature of each vector. For a given feature with index r, we note f r its value in the feature vector f . In this study, the chosen normalization follows Equation (1) with P r min and P r max being two chosen percentiles on the pooled set of features across all institutions.

f r k,i = max(0, min(1, f r k,i -P r min P r max -P r min )) (1) 
To account for highly correlated features, a principal component analysis (PCA) is applied on the set of normalized feature vectors, followed by the computation of C clusters by fitting a Gaussian mixture model (GMM). For training and inference purpose, the normalization parameters, PCA model and GMM are returned to each institution. We note Cluster : R R → {1, ..., C} the application of this clustering process on features extracted from a volume and Dc :=

K k=1 {(x k,i , y k,i ) | Cluster( fk,i ) = c, i ≤ n k }
the set of samples assigned to cluster c decentralized over the K institutions. We note n c,k the number of samples of institution k assigned to cluster c, and N c = K k=1 n c,k the total size of Dc .

Global federated learning initialization Following [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF], we use FedAvg to compute an initial global model w init . Given a loss function l : W × X × Y → R, the classical federated objective can be defined as:

w * = argmin w∈W K k=1 n k i=1 l(w, x k,i , y k,i ) .
(2)

At each communication round t, each institution performs E local epoch(s) of stochastic gradient descent (SGD) starting from the current global model w t , giving K updates ∆w t k = w t k -w t to aggregate. The server-side aggregation step is a weighted averaging of these updates

w t+1 = w t + K k=1 n k N ∆w t k .
Clustered federated finetuning Given the clustering model computed at server-side, we are now able to define a novel clustered federated learning objective:

{w * c } C c=1 = argmin {wc} C c=1 ∈W C K k=1 n k i=1 l(w Cluster( fk,i ) , x k,i , y k,i ) , (3) 
where w c is the parameter set of the global federated model finetuned on dataset Dc of cluster c. Note that this objective is different from the one defined in recent clustered federated learning approaches such as [START_REF] Ghosh | An efficient framework for clustered federated learning[END_REF] as we compute clusters at sample level, not at institution level, enabling to account for an intra-institution heterogeneity. We Nc ∆w t c,k . Inference Given a new sample x ∈ X to segment, the whole clustering pipeline is applied to determine which of the C cluster models must be used. That is, radiomic features f are extracted from x , normalized following Equation (1), reduced through the computed PCA model, assigned to cluster c using the GMM and segmented with model w c .

Experiments

Datasets

Experiments were led using The MICCAI's Federated Brain Tumor Segmentation 2022 Challenge dataset (FeTS2022) [START_REF] Bakas | Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features[END_REF][START_REF] Pati | The Federated Tumor Segmentation (FeTS) Challenge[END_REF][START_REF] Reina | OpenFL: An open-source framework for Federated Learning[END_REF]. This dataset is based on the Brain Tumor Segmentation 2021 Challenge dataset (BraTS2021). Consisting of 1251 multi-modal brain MRI scans (T1, T1ce, T2 and FLAIR) of size 240 × 240 × 155 with isotropic 1mm 3 voxel size along with their multi-label tumor segmentation masks including 3 labels, namely enhancing tumor (ET), tumor core (TC) and whole tumor (WT). The real-world partitioning along the 23 acquiring institutions is provided in addition to the samples, enabling to simulate federated learning. Institutions' datasets sizes are very heterogeneous (cf Appendix A.1) with ∼61% of institutions owning less than 15 samples each. As we do not have the scanner information for every sample, an intra-institution feature shift may exist. This dataset served to evaluate the performance of the proposed clustered federated personalization method and compare it to state-of-the-art methods.

Dataset splitting In all of the experiments, a ∼70-15-15% train -validation -test split was followed, giving 833 training, 218 validation and 200 test samples. We computed such split institution-wise, giving a local training, validation and test dataset per institution. We refer to the global train, validation and test sets as the aggregation of each local set, preserving the representation of each institution in each partition. Due to the computational cost of training models on FeTS2022 and the limited amount of samples (< 5) provided by multiple institutions, we did not perform cross-validation.

Image volume pre-processing Each volume was resized to the bounding box containing all brain voxels, padded to a minimum size of 128 on each dimension if necessary. Each modality of each volume's intensities was then standardized to a zero-mean one-variance gaussian distribution to eliminate the feature shift due to absolute intensity values of scanners.

Radiomic feature-based clustering

Feature extraction and processing Ninety-three features including first-order statistics as well as higher order statistical features capturing textural information were extracted per modality using Pyradiomics [START_REF] Joost | Computational Radiomics System to Decode the Radiographic Phenotype[END_REF], thus leading to a feature vector of dimension 372. The estimation of these textural features derives from the computation of matrices describing the spatial and intensity relationship between each individual pixel and its neighbors in the image, including GLCM, GLRLM, GLSZM, NGTDM and GLDM [START_REF] Shur | Radiomics in oncology: A practical guide[END_REF]. These matrices require to discretize intensity values of the original images. In this study, we chose an absolute discretization technique based on fixing the histogram bin size to 0.09 for feature extraction. Features were extracted on whole brain masks. A list of the extracted features is provided in Appendix B.1. We first normalized the feature vectors following Equation (1) and setting P r min as the 2nd-centile and P r max as the 98th-centile. Dimension of the normalized feature vectors were then reduced to 30 through PCA, preserving 96.58% of the variance. We validated the radiomic features extraction on The Calgary-Campinas-359 (CC359) dataset (cf Appendix C).

Clustering We fitted a GMM by setting the number of clusters to 10 on the FeTS2022 samples with tied covariance matrix to account for the limited amount of samples compared to the number of remaining feature dimensions. The performance of the proposed radiomicbased clustering method is assessed visually based on the comparison of 2 t-SNE plots of the radiomic feature distribution where each sample is colored either by the label of its belonging institution or by the label of the cluster it was assigned to through the GMM.

Clustered federated finetuning (CFFT)

We evaluated the performance of the proposed federated personalization method for the multi-class segmentation task of the FeTS2022 brain MRI dataset based on standard DICE score and 95% Hausdorff distances.

Model architecture and data preprocessing The backbone architecture used in all experiments is a small-sized 3D U-Net (cf Appendix D) trained on 3D patches of size 128 × 128 × 128 with a batch size of 1. We used instance normalization without any learned parameters to make the model as robust as possible to any feature shift. If not specified, training includes data augmentation focused on reducing the feature shift (gaussian noise, gaussian smoothing, intensity scaling and gamma contrast adjustment).

Comparison with baseline methods We validated our approach against different baselines. We first trained a global model on the pooled FeTS2022 dataset (e.g. BraTS2021) with SGD, referred to Centralized in the following. FedAvg was used as the baseline global federated optimization algorithm, as described in Section 2. As a personalized FL baseline, we finetuned the FedAvg final model on each local dataset with SGD; this method is referred to as Local Finetuning. We then experimented with two versions of our CFFT method : the proposed CFFT version preserving the privacy of each clustered dataset Dc by finetuning with FedAvg and an ideal version referred to as CFFT ideal , which consists in finetuning on the pooled datasets Dc of each cluster with SGD.

Training hyperparameters In Centralized, Local Finetuning and pooled finetuning of CFFT ideal , a learning rate of 0.02 gave the best results. For federated counterparts, a learning rate of 0.05 was used. A weight decay of 10 -5 was used in all experiments, motivated by state-of-the-art publications (Wang et al., 2020a;[START_REF] Yuan | What do we mean by generalization in federated learning?[END_REF] 

Results and Discussion

Performance of the radiomic features based clustering

We show on Figure 2(a) a t-SNE plot of the radiomic features computed on sample images of FeTS2022. It highlights both inter and intra-institution feature shift in this dataset. We do not have access to the scanner type (vendor, magnetic field) or acquisition parameter to establish further correlation with the observed clusters, but a visual analysis of some example 3D images belonging to different clusters highlights some pattern discrepancies. For example, within institution 4, we can distinguish two types of multi-modal volume appearance (cf Appendix B.2), confirming the existence of intra-institution feature shift, which is well captured by the proposed radiomic based GMM model (Figure 2(b)). Although out of the scope of this paper, we emphasize that feature normalization enabled to spot some outlier volumes (cf Appendix E).

Performance of the clustered federated finetuning (CFFT) method

We show in Table 1 andTable 2 Centralized on average. This was shown significant based on a two-tailed Wilcoxon signedrank test for both metrics with p < 0.01. All personalization methods also significantly improve the FedAvg DICE score in a similar fashion, with CFFT ideal giving a slight edge on average 95% Hausdorff distance. Note that CFFT ideal performs better than its federated counterpart CFFT as we could expect. The goal of this preliminary method is to produce clusters of sample with homogeneous appearance and texture. In that sense, the gap on average metrics between CFFT ideal and CFFT is smaller that between Centralized and FedAvg, motivating a reduction of the shift between institutions taking part in FedAvg in each cluster. Moreover, Figure 3 shows the label distributions of each computed cluster. They are relatively homogeneous, confirming the focus on the feature shift. Other types of shift such as label or concept shifts can be present in the dataset, and we give a hint on their existence in Appendix A.1 with relatively heterogeneous label distributions per institution. Our method's performance is on par with Local Finetuning while restricting its effect on feature shift. We emphasize that the proposed paradigm of targeting an identified type of shift would potentially generalize better to unseen data. On a more general note, the choice of the number of clusters is important. Using too few does not capture feature shift, using too many overfits on clustered training data. Ten clusters gave the best validation results. We must acknowledge the relatively high variability of clustering results, possibly due to the high number of dimensions remaining after PCA to preserve sufficient variance. It must also be noted that the high heterogeneity of the local dataset sizes poses problems to assess the performance of personalized methods, with some institutions only owning one or two test samples (cf Appendix A.2). Finally, we hypothesize in this preliminary work that the computed radiomic features are safe to share with a server. We provide a basic validation of the impracticability of reconstructing a volume based on the 93 features extracted per modality in Appendix F, but it remains an open question as to how these features could be leveraged by an attack against our method. Thus, this preliminary work could be improved by studying the compatibility of the framework with known privacy-preserving federated learning techniques such as differential privacy or homomorphic encryption, or developing a federated framework including PCA and clustering. Limiting the amount of computed features to the most relevant ones could also be beneficial while opening explainability opportunities. • First Order Statistics (18 features) (standard deviation is not included)

• Gray Level Cooccurence Matrix (GLCM) (24 features)

• Gray Level Run Length Matrix (GLRLM) (16 features)

• Gray Level Size Zone Matrix (GLSZM) (16 features)

• Neighbouring Gray Tone Difference Matrix (NGTDM) (5 features)

• Gray Level Dependence Matrix (GLDM) (14 features) 

B.2. Visual examples

Figure 1 :

 1 Figure 1: Overall framework of radiomic feature-based clustered federated finetuning.

  optimize each cluster model w c by finetuning the global model w init with FedAvg on the decentralized dataset Dc for T c rounds. The aggregation step for the federated finetuning of cluster model w c at communication round t becomes w t+1 c

  Figure 2: t-SNE plots of radiomic features computed on FeTS2022 samples.

Figure 5 :

 5 Figure 5: FeTS2022 01172 MRI scans, owned by institution 4, assigned to cluster 7.

Figure 6 :

 6 Figure 6: FeTS2022 01195 MRI scans, owned by institution 4, assigned to cluster 4.

  

  

  

  

  

  

  . Centralized training was performed for 300 epochs, FedAvg for 300 communication rounds with one local epoch per round, Local Finetuning for 20 local epochs, CFFT ideal for 50 epochs and CFFT for 50 communication rounds with one local epoch. The best models at each epoch/communication round were selected based on the validation set performance for all methods. Best results were found by removing data augmentation for clustered finetuning methods, while keeping it for Local Finetuning.

  aggregated test DICE scores and 95% Hausdorff distances respectively of Centralized, FedAvg, Local Finetuning, CFFT ideal and CFFT, with samplewise standard deviation. Per institution results are given in Appendix A.2. On average Centralized training remains the gold standard with the best performance on both metrics. FedAvg produces a less robust model, with a gap of more than one DICE point compared to

Table 1 :

 1 Test DICE scores (mean ± standard deviation)

	Training algorithm	Average	TC	WT	ET
	Centralized	0.8912 ± 0.1201 0.8896 ± 0.1878 0.9188 ± 0.0859 0.8651 ± 0.1956
	FedAvg	0.8803 ± 0.1414 0.8722 ± 0.2251 0.9099 ± 0.0906 0.8588 ± 0.2005
	Local finetuning	0.8879 ± 0.1202 0.8876 ± 0.1863 0.9132 ± 0.0891 0.8629 ± 0.1960
	CFFT ideal	0.8887 ± 0.1239 0.8867 ± 0.1891 0.9139 ± 0.0892 0.8654 ± 0.1960
	CFFT	0.8874 ± 0.1254 0.8799 ± 0.2056 0.9120 ± 0.0907 0.8704 ± 0.1852
	Training algorithm	Average	TC	WT	ET
	Centralized	5.			

1348 ± 6.2212 4.4407 ± 7.2052 7.0318 ± 11.0671 3.7770 ± 8.5314 FedAvg 5.8854 ± 7.7368 4.7745 ± 8.0444 8.8814 ± 15.9499 3.7091 ± 7.6837 Local finetuning 5.9334 ± 7.9817 4.8587 ± 9.3901 8.9284 ± 16.3270 3.5861 ± 7.5650 CFFT ideal 5.5915 ± 7.2588 4.6436 ± 7.3390 8.3688 ± 15.3738 3.5383 ± 7.5576 CFFT 5.8749 ± 7.6108 4.7359 ± 7.4458 8.8709 ± 16.4791 3.6520 ± 7.6291

Table 2 :

 2 

	A.2. Per institution results				
	Institution Test size Centralized FedAvg Local Finetuning CFFT ideal CFFT
	1	77	0.9300	0.9256	0.9280	0.9289	0.9285
	10	2	0.8044	0.8051	0.8076	0.8085	0.8072
	11	3	0.9069	0.9000	0.9006	0.9055	0.9053
	12	2	0.7386	0.7031	0.7131	0.7032	0.7106
	13	6	0.6248	0.4910	0.6090	0.5596	0.5781
	14	1	0.6261	0.6115	0.6237	0.6195	0.6100
	15	2	0.5924	0.5282	0.6296	0.6135	0.5539
	16	5	0.9185	0.9211	0.9265	0.9028	0.9095
	17	2	0.9162	0.9133	0.9133	0.9140	0.9101
	18	58	0.9187	0.9117	0.9082	0.9138	0.9119
	19	1	0.9659	0.9625	0.9634	0.9649	0.9650
	2	1	0.9231	0.9221	0.9221	0.9206	0.9160
	20	5	0.9386	0.9314	0.9354	0.9346	0.9358
	21	6	0.9594	0.9545	0.9559	0.9574	0.9599
	22	2	0.9600	0.9553	0.9553	0.9563	0.9570
	23	1	0.8881	0.8919	0.8937	0.8879	0.8867
	3	3	0.6956	0.5952	0.6946	0.6928	0.6681
	4	8	0.6687	0.6669	0.7005	0.6960	0.6943
	5	4	0.8057	0.7946	0.7925	0.8349	0.8204
	6	6	0.8762	0.8762	0.8762	0.8806	0.8844
	7	2	0.8895	0.8873	0.8924	0.8828	0.8804
	8	2	0.9631	0.9621	0.9621	0.9645	0.9634
	9	1	0.7895	0.8232	0.7818	0.8545	0.8416

Test 95% Hausdorff distances (mean ± standard deviation) Figure 3: Label distribution per computed cluster in FeTS2022. Green values correspond to the amount of samples associated to each cluster.

Table 3 :

 3 Average test dice scores per institution Institution Test size Centralized FedAvg Local Finetuning CFFT ideal CFFT

	1	77	3.6752	4.3375	4.5268	4.3651	4.4183
	10	2	7.5957	7.1775	7.1275	6.8905	7.1512
	11	3	3.1412	3.5267	3.2199	3.2042	3.0589
	12	2	10.6487	24.9708	26.7511	23.4790	28.9451
	13	6	8.1182	12.2476	13.0226	8.0737	10.0930
	14	1	3.2863	4.2002	3.3708	4.1926	5.0000
	15	2	15.2838	17.3938	18.8894	19.4479	24.4377
	16	5	4.3992	8.8826	8.7169	9.8859	9.9735
	17	2	1.7756	2.0977	2.0977	1.9249	2.2928
	18	58	4.7928	5.1874	5.0459	5.1053	4.8157
	19	1	1.6667	1.3333	1.3333	1.1381	1.1381
	2	1	5.0726	5.9127	5.9127	6.1498	8.7888
	20	5	5.8938	2.6021	2.4663	2.4494	2.3830
	21	6	2.1143	2.2983	2.3060	1.6677	1.5816
	22	2	2.4694	3.1271	3.1271	3.2594	15.0383
	23	1	4.2356	3.9560	3.7742	4.2201	4.2560
	3	3	6.5017	9.2293	7.6449	7.4780	8.9391
	4	8	14.1589	12.5674	12.6770	10.3157	10.3217
	5	4	5.2451	7.8477	7.7993	6.7148	7.6399
	6	6	10.0190	10.2264	10.2264	9.6674	9.5711
	7	2	12.2938	15.7393	14.9248	16.0055	16.4357
	8	2	1.2761	1.4267	1.4267	1.3291	1.3738
	9	1	12.8816	6.7070	7.9211	6.1545	6.5459

Table 4 :

 4 Average test hausdorff distances per institution

	Appendix B. Radiomic features extraction

B.1. Radiomic features list

Using Pyradiomics, 93 features are extracted per modality:
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Appendix A. Per institution analysis

A.1. Per institution label distribution and local datasets sizes 

Appendix C. Radiomic features validation on CC359

Dataset The Calgary-Campinas-359 (CC359) dataset [START_REF] Souza | An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement[END_REF]. This dataset consists of 359 T1-weighted brain MRI scans of healthy subjects along with their "silverstandards" brain masks generated both using the STAPLE algorithm. These images were acquired on scanners from three vendors (Siemens, Philips and General Electric) at both 1.5 T and 3 T. Sixty exams were acquired per vendor and magnetic field strength, except for Philips 1.5T which totalizes 59 exams. This dataset, concatenating 6 series of exams of equal size and low intra-feature shift serves as a use case to validate the radiomic feature extraction process.

Parameters We fixed the histogram bin size to 0.15 for features extraction on the CC359 dataset. We normalized the feature vectors following Equation (1) and setting P r min as the 2nd-centile and P r max as the 98th-centile. Dimension of the normalized feature vectors is then reduced to 30 through PCA, preserving 99.96% of the variance.

Results

We show on Figure 7 a t-SNE plot of the radiomic features computed on CC359 after normalization and PCA where each label encodes for one of the 6 scanners on which the image were acquired (e.g. philips 3 corresponds to a 3T Philips scanner). Despite only dealing with healthy patients with a normalization process that significantly reduces feature shift, distinct clusters can be identified for each scanner manufacturer and magnetic field value. This demonstrates the capacity of the selected radiomic feature vector to capture textural patterns induced by the scanner characteristics. 

Appendix D. Model architecture

We use a small-sized 3D U-Net as the backbone architecture. It includes 3 down-sampling and up-sampling paths. Stride 2 convolutions are used in down-sampling paths, and transpose convolutions for up-sampling paths. Kernel size is (3,3,3) for every convolution block. A first stride 1 convolution block outputs 16 channels, multiplied by 2 at each downsampling path to reach 128 channels in the bottleneck part of the network. Inference are done with a sliding window with an overlap of 0.5 and Gaussian aggregation of results on overlaps.

Appendix E. Outliers detection

For some extracted features, the normalization process clearly highlighted outliers. As example, the GLCM Cluster Prominence feature computed on the FLAIR n°1441 was two orders of magnitude higher than for any other volume. We verified that this volume has a particular appearance, with extreme intensities toward the eye balls (Figure 8). Such manually computed features can thus be leveraged for federated outlier detection without sacrificing too much privacy. 

Appendix F. Privacy preservation basic validation

We explore in this section the efficiency of an attack on the radiomic features communicated during the proposed clustered federated finetuning process. Its objective is, given every normalized feature vector computed on the train and validation T1 volumes, to train a decoder to reconstruct the associated volumes. Each volume was standardized and resized to 128 3 voxels to simplify the task.

Model

The model is composed of a first linear layer outputting 4096 values reshaped to [512, 2, 2, 2], followed by 6 3D residual convolutional blocks, upsampling each dimension by a factor of 2 while dividing the number of channels by 2. We use 3D batch normalization and LeakyRelu activation function with a slope of 0.2 between each layer. The model is composed of approximately 20 millions parameters.

Training parameters We train this model using the same training -validation -test split as for the original segmentation task. The loss and metric used is a standard MSE. We use Adam with a learning rate of 1e-4 and a weight decay of 1e-5 for 300 epochs with a batch size of 2. The final model is selected based on best validation performance.

Result We show in Figure 9 the training and validation loss curves. After only 20 epochs, the model starts to overfit on the training set with a stagnating validation performance. We show in Figure 10 two slices of reconstruction outputs of the test set. The model is only able to reconstruct an average volume, validating the fact that the transmitted feature vectors do not contain enough information to reconstruct a volume, even the tumorous parts. The proposed scheme of attack is also unrealistically powerful, as it presumes a large amount of already leaked data.