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Kidney
Introduction: Despite recognized geographic and sex-based differences in hemoglobin in the general

population, these factors are typically ignored in patients with chronic kidney disease (CKD) in whom a

single therapeutic range for hemoglobin is recommended. We sought to compare the distribution of he-

moglobin across international nondialysis CKD populations and evaluate predictors of hemoglobin.

Methods: In this cross-sectional study, hemoglobin distribution was evaluated in each cohort overall and

stratified by sex and estimated glomerular filtration rate (eGFR). Relationships between candidate pre-

dictors and hemoglobin were assessed from linear regression models in each cohort. Estimates were

subsequently pooled in a random effects model.

Results: A total of 58,613 participants from 21 adult cohorts (median eGFR range of 17–49 ml/min) and 3

pediatric cohorts (median eGFR range of 26–45 ml/min) were included with broad geographic represen-

tation. Hemoglobin values varied substantially among the cohorts, overall and within eGFR categories,

with particularly low mean hemoglobin observed in women from Asian and African cohorts. Across the

eGFR range, women had a lower hemoglobin compared to men, even at an eGFR of 15 ml/min (mean

difference 5.3 g/l, 95% confidence interval [CI] 3.7–6.9). Lower eGFR, female sex, older age, lower body

mass index, and diabetic kidney disease were all independent predictors of a lower hemoglobin value;

however, this only explained a minority of variance (R2 7%–44% across cohorts).

Conclusion: There are substantial regional differences in hemoglobin distribution among individuals with

CKD, and the majority of variance is unexplained by demographics, eGFR, or comorbidities. These find-

ings call for a renewed interest in improving our understanding of hemoglobin determinants in specific

CKD populations.

Kidney Int Rep (2023) 8, 2056–2067; https://doi.org/10.1016/j.ekir.2023.07.032

KEYWORDS: anemia; chronic kidney disease; geography; glomerular filtration rate; hemoglobin; sex

ª 2023 Published by Elsevier, Inc., on behalf of the International Society of Nephrology. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
T
he prevalence of anemia in the general population
varies substantially around the world due to

multiple factors, including deficiency of iron and other
micronutrients, acute and chronic infections, and he-
moglobinopathies.1 Globally, the burden of anemia is
higher in women compared to men, with the highest
prevalence estimates in Sub-Saharan Africa and South
Asia.2,3 Physiological, sex-based differences in hemo-
globin concentration are recognized in the general
adult population by having different reference ranges
for men and women. The anticipated heterogeneity in
hemoglobin values arising from these demographic
factors is largely ignored in the setting of CKD. Inter-
national guidelines suggest a narrow ‘acceptable’ range
of hemoglobin in CKD irrespective of sex, geography,
or other factors, principally with the aim of avoiding
potential harms associated with therapeutic correction
of hemoglobin to physiological levels.4-6

Within this treatment construct, there is an inherent
assumption that individuals with CKD are similar in
terms of hemoglobin distribution and determinants of
hemoglobin. However, there is a paucity of information
about geographic differences in hemoglobin distribu-
tion among CKD populations. Although there is an
established relationship between eGFR and hemoglo-
bin,7,8 there are limited data on other potential con-
tributors to hemoglobin such as etiology of kidney
disease, albuminuria, and chronic health conditions in
people with CKD. It is also unclear if the level of kidney
function modifies the association between hemoglobin
International Reports (2023) 8, 2056–2067
and patient-level characteristics; for instance, if the
difference in hemoglobin among men and women that
is observed in the general population still holds when
eGFR is reduced.

These knowledge gaps hinder our capacity to indi-
vidualize the approach to anemia risk stratification,
thresholds for initiation of therapy, and treatment goals
for patients with CKD. Conversely, an improved
awareness and understanding of hemoglobin variation
in different CKD populations could enhance discussions
with patients, as well as inform the future design of
clinical trials of anemia therapy. In this collaborative
initiative from the International Network of CKD
Cohort Studies (iNET-CKD), we sought to evaluate
geographic variation in hemoglobin distribution among
individuals with CKD and investigate predictors of
hemoglobin across participating cohorts with a partic-
ular focus on the contributions of sex, eGFR, and eti-
ology of CKD.
METHODS

Study Design

This cross-sectional study used a distributed network
approach to meta-analyze individual participant data
from each participating iNET-CKD cohort.9-29 Details of
the cohorts, including study country, target population
and recruitment years are provided in Supplementary
Table S1. The iNET-CKD includes observational
studies of individuals with varying severity of CKD
2057
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with defined objectives and prospective data collec-
tion.30 The present analysis included study partici-
pants who had an eGFR below 60 ml/min per 1.73 m2

and complete data for a core set of variables including
age, sex, and hemoglobin. Kidney transplant recipients
and participants receiving dialysis at the time of he-
moglobin measurement were excluded. The pediatric
cohorts 4C (Europe), CKiD (US), and KNOW-Ped CKD
(Korea) contributed to the descriptive phase of the
analysis. The distributed network approach is similar
to a 2-stage individual participant data meta-analysis;
however, it uses standardized data collection and
methods across cohorts, as opposed to using published
data from previous studies.31 Participating in-
vestigators had the following options: of (i) providing
deidentified individual-level data to a central hub at
the University of British Columbia, Canada, for analysis
or (ii) conducting the analysis and transferring the
output to the central hub for pooled analysis
(Supplementary Figure S1). For both options, a study
protocol was sent to investigators. Ethical approval for
the study was granted from the research ethics board at
each participating site.

Variable Definitions

A variable dictionary was created to harmonize data
extraction, coding, and labeling of variables
(Supplementary Table S2). The first available hemo-
globin value (in grams per liter, g/l) was used for each
participant. Glomerular filtration rate was estimated by
using the 2009 Chronic Kidney Disease Epidemiology
Collaboration formula32 and using serum creatinine
standardized to isotope dilution mass spectrometry.
The bedside Schwartz equation was used to estimate
glomerular filtration rate in pediatric cohorts.33 Albu-
minuria was measured by the albumin-to-creatinine
ratio (ACR, in mg/g) and classified as per Kidney Dis-
ease Improving Global Outcomes stages as A1
(ACR <30 mg/g), A2 (ACR 30–299 mg/g), or A3
(ACR $ 300 mg/g). The closest value of eGFR or ACR
within 3 months of the date of the index hemoglobin
measurement was chosen. Iron saturation was
measured in 9 adult cohorts. Etiology of kidney disease
was classified as diabetic kidney disease, hypertension,
glomerulonephritis, polycystic kidney disease, or
‘other’ based on a physician diagnosis or a kidney bi-
opsy. A small number of cohorts did not collect data for
specific etiologies such as polycystic kidney disease
(Supplementary Table S2). In some instances, the
‘other’ category contained unknown or missing cases.
Definitions for atheromatous cardiovascular disease,
heart failure, and diabetes mellitus are provided in
Supplementary Table S2. Body mass index (BMI) was
calculated as weight (kg) divided by square height (m2)
2058
and categorized as <18.5, 18.5 to 24.9, 25.0 to 29.9,
or $30.0. Smoking status was classified as current,
former, or never. Use of erythropoiesis stimulating
agent (ESA) therapy and renin-angiotensin-
aldosterone-system (RAAS) inhibitors was ascertained
as a yes/no exposure using medication records and/or
Anatomical Therapeutic Chemical codes. Altitude was
categorized as 1 to 499, 500 to 1000 and >1000 meters
above sea level based on the location of residency or, if
unavailable, the location of the center of study
enrollment.

Statistical Analysis

To compare the distribution of hemoglobin across the
cohorts, we report summary statistics (mean and SD)
stratified by sex and eGFR category (<20, 20–29, 30–
44, and 45–59 ml/min per 1.73 m2). In each of the
adult cohorts, the association between hemoglobin
and candidate predictor variables was examined in a
series of linear regression models. To maximize cohort
participation, the first set of models included a core
set of variables that was available in all cohorts,
including age (per 10-year increase), sex, year of
hemoglobin measurement, and eGFR (per 10 ml/min
per 1.73 m2 increase). An extended multivariable
model incorporated comorbidities (cardiovascular
disease, diabetes, and heart failure), BMI, albumin-
uria categories, and etiology of CKD. Due to inter-
dependence between diabetes mellitus and etiology of
CKD, estimates for etiology of CKD are presented
separately for individuals with and without diabetes
mellitus. Potential interactions were identified a priori
between eGFR and the following variables: sex, age,
and etiology of CKD. In an exploratory analysis,
smoking status, use of RAAS inhibitors and altitude
were added separately to the extended model. Only
cohorts that collected data for each variable in a
multivariable model could be included in that model.
For categorical variables with missing values, a
separate category was created to ensure that
sequential models included the same individuals from
each cohort, thus facilitating a better comparison
between models. A complete case analysis was con-
ducted as a sensitivity analysis. Covariate coefficient
estimates from each cohort were subsequently pooled
in a random effects meta-analysis. Heterogeneity in
beta-coefficients was assessed using tau (the between-
cohort SD) and the I2 statistic. To remove potential
confounding from variable use of (or access to) ESA
therapy in different countries, we repeated the anal-
ysis in patients unexposed to ESA treatment. All
analyses were performed with SAS version 9.4 (SAS
Institute Inc., Cary, NC) and R version 4.2.0 (R Core
Team 2014, Vienna, Austria).
Kidney International Reports (2023) 8, 2056–2067
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RESULTS

Participant Characteristics

A total of 58,613 participants from 24 cohorts were
included. Characteristics of included participants by
cohort are summarized in Table 1. Three cohorts were
pediatric cohorts including 1107 participants with
median age ranging from 10 to 14 years. In the
remaining 21 adult cohorts, median age ranged from 47
years in H3AKDN Enugu Site (Africa) to 84 years in
CKDBIS (Germany). The majority of participants were
male except for CKD-BIS and the primary care cohorts
RRID (UK) and PROVALID (Europe), which had a slight
majority of women. The proportion of participants
with diabetes mellitus ranged from 7.5% in PSI BIND-
NL (Netherlands) to 58% in CKDopps (US). One cohort
(PROVALID) specifically recruited individuals in a
primary care setting with diabetes. Kidney-specific
characteristics are summarized in Table 2. Partici-
pants from pediatric cohorts had moderate to advanced
CKD with median eGFR values of 26 (4C), 32 (KNOW-
Ped CKD), and 45 ml/min per 1.73 m2 (CKiD). The
median eGFR in adult CKD cohorts ranged between 17
ml/min per 1.73 m2 in EQUAL (Europe) and 49 ml/min
per 1.73 m2 in RRID. The proportion of participants
with severe albuminuria varied between 2.7% in
NRHP (Uruguay) and 68% in CKDQLD (Australia). In
general, albuminuria values were known for the
Table 1. Participant characteristics by cohort

Cohort N Age (Median, IQR) Female (%) <18.5 18.5--24.9

CORE-CKD 1312 64 (57, 69) 34.5 2.3 43.4

C-STRIDE 2302 54 (43, 63) 42.7 2.5 41.2

ICKD 3506 53 (44, 60) 33.6 6.9 47.4

KNOW-CKD 1430 58 (50, 66) 37.9 2.5 54.9

CKD-JAC 2494 63 (55, 70) 36.3 6.9 55.5

CKD.QLD 1883 71 (61, 78) 45.6 1.2 17.7

CanPREDDICT 2526 70 (61, 77) 37.5 0.5 5.7

CRIC 4224 62 (55, 68) 44.1 0.5 13.4

CKDopps US 2119 70 (61, 77) 48.5 1.1 13.1

CKDopps BR 720 66 (57, 76) 47.2 0.7 20.3

NRHP 19,288 73 (65, 79) 42.1 0.6 16.8

H3Africa 338 47 (36, 59) 47.9 1.2 8.3

CKD-REIN 2946 69 (61, 77) 34.6 1.6 26.1

RIISC 790 65 (53, 76) 36.6 0.9 22.7

BIS 777 84 (79, 88) 52.3 0.4 25.4

EQUAL 1720 76 (71, 81) 34.5 1.2 24.3

GCKD 3995 65 (57, 70) 38.1 0.5 18.0

CKDopps GERMANY 2638 75 (67, 80) 43.2 1.1 23.4

PSI BIND-NL 644 63 (54, 72) 32.3 0.9 29.5

RRID 1184 76 (70, 81) 53.7 0.3 19.3

PROVALID 670 68 (62, 74) 58.5 0.0 12.8

4C 651 12 (9, 14) 33.8 8.1 69.6

CKiD 210 14 (11, 16) 43.3 - -

KNOW-Ped CKD 246 10 (5, 14) 30.9 67.1 29.7

BMI, body mass index; CHF, congestive heart failure; CVD, cardiovascular disease; DM, diabe

Kidney International Reports (2023) 8, 2056–2067
majority of participants; however, missingness was
higher in cohorts that recruited individuals with more
advanced CKD (eGFR <30 ml/min per 1.73 m2). The
etiology of CKD was unknown for a substantial number
of participants in most cohorts. Where the cause was
known (physician-diagnosed or biopsy-proven), the
most common causes were hypertension and diabetic
kidney disease, except for C-STRIDE (China), CKD-JAC
(Japan), and H3AKDN Enugu Site, which had a rela-
tively higher prevalence of glomerulonephritis. A total
of 4947 participants (8.4%) were receiving ESA ther-
apy (Table 1).
Hemoglobin Distribution Among Cohorts

The distribution of hemoglobin across all participating
cohorts is provided in Supplementary Table S3 and
summarized graphically in Figure 1. Among pediatric
cohorts, mean (SD) hemoglobin ranged from 113 (19) g/l
to 119 (15) g/l in female participants, and from 118 (16)
g/l to 122 (18) g/l in male participants. In adult cohorts,
there was considerable variation in hemoglobin values
in both men and women. For example, in women, the
mean (SD) hemoglobin ranged from 94 (21) g/l to 130
(12) g/l. Even within the same world region, there was
substantial variation in hemoglobin distribution.
Among men participating in European cohorts, the
mean (SD) hemoglobin varied between 117 (16) g/l and
BMI (%)

DM (%) CVD (%) CHF (%) ESA (%)25--29.9 ‡30 Unknown

37.3 15.7 1.3 50.8 16.5 1.0 2.5

26.3 5.0 25.1 23.8 10.4 1.2 15.0

30.8 12.1 2.7 36.0 22.6 11.9 2.9

35.2 6.6 0.8 42.2 16.8 2.2 11.7

22.3 5.0 10.3 38.4 22.8 4.8 13.8

28.5 44.9 7.8 47.6 19.6 8.2 4.5

8.2 9.7 76.0 48.1 45.2 26.9 20.3

28.8 56.8 0.5 53.4 33.1 10.5 3.6

23.7 50.0 12.1 58.0 30.5 16.9 5.2

21.1 20.1 37.8 50.7 23.1 16.1 12.2

28.7 29.3 24.5 37.1 28.2 9.4 7.6

8.6 1.2 80.8 19.5 2.4 0.9 2.7

35.5 34.7 2.1 43.0 36.3 13.2 7.8

31.4 40.6 4.4 40.3 35.3 0.0 6.6

45.6 28.7 0.0 31.0 55.3 46.5 0.5

34.5 30.8 9.2 41.3 26.3 17.4 24.9

37.2 43.3 1.0 38.2 33.6 19.1 3.0

35.5 37.6 2.5 47.9 29.0 13.4 11.6

35.4 23.3 10.9 7.5 17.1 6.5 16.9

42.4 38.0 0.0 20.3 19.4 4.5 0.0

32.4 53.6 1.2 100.0 42.7 5.8 7.3

11.7 10.6 0 0.6 - - 23.5

- - 100 0.0 0.5 1.4 22.9

2.4 0.8 0 0.8 - 0.4 18.3

tes mellitus; ESA, erythropoiesis stimulating agent; IQR, interquartile range.
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Table 2. Description of kidney parameters by cohort

Cohort eGFR (Median, IQR)

eGFR (%) ACR (%) Etiology of CKD (%)

<20 20--30 30--45 45--59 A1 A2 A3 n/a DKD HTN GN PKD Other

CORE-CKD 36 (28, 47) 5.0 25.8 38.4 30.8 26.0 22.9 41.3 9.8 36.0 24.6 5.3 3.0 31.0

C-STRIDE 33 (23, 44) 18.3 24.5 34.5 22.7 12.5 27.2 49.8 10.6 14.7 - 41.7 - 43.6

ICKD 39 (33, 47) 0.8 11.2 57.5 30.5 47.1 23.3 24.2 5.3 25.7 8.4 13.7 3.1 49.1

KNOW-CKD 33 (23, 45) 20.0 22.7 32.0 25.2 8.8 28.3 58.1 4.8 31.3 23.4 29.9 9.6 5.9

CKD-JAC 33 (21, 45) 22.3 21.4 31.1 25.3 8.9 24.2 57.3 9.5 21.5 19.8 41.7 - 17.0

CKD.QLD 32 (21, 42) 20.8 24.6 35.4 19.2 16.4 8.0 68.2 7.5 24.0 21.1 9.3 2.8 42.7

CanPREDDICT 27 (21, 34) 22.2 38.8 36.3 2.7 22.9 32.7 37.9 6.5 28.7 25.9 11.4 4.5 29.6

CRIC 44 (34, 52) 2.2 15.1 37.2 45.5 27.2 21.0 27.2 24.6 27.9 16.6 - - 55.5

CKDopps US 25 (18, 33) 31.2 36.1 27.1 5.6 15.5 10.0 19.5 55.0 22.7 21.1 5.0 1.5 49.6

CKDopps BR 24 (17, 34) 35.0 31.8 24.7 8.5 30.8 9.4 10.8 48.9 33.9 29.0 8.6 4.2 24.3

NRHP 37 (28, 46) 10.5 19.8 42.9 26.8 96.4 - 2.7 0.9 11.0 52.1 3.8 1.4 31.7

H3Africa 23 (10, 38) 42.6 17.2 26.9 13.3 46.7 13.0 40.2 - 19.8 5.6 34.0 2.4 38.2

CKD-REIN 31 (23, 41) 16.2 30.0 37.9 15.9 25.1 28.6 37.9 8.4 20.3 20.9 17.5 5.6 35.7

RIISC 29 (22, 39) 18.1 35.2 33.7 13.0 15.1 32.4 47.1 5.4 14.9 27.6 9.9 5.7 41.9

BIS 47 (37, 53) 0.9 10.0 29.3 59.7 63.1 29.7 6.2 1.0 - - - - 100.0

EQUAL 17 (14, 20) 74.1 23.4 2.3 0.1 - 20.9 18.0 61.1 20.4 35.6 9.2 2.6 32.2

GCKD 42 (35, 50) 1.0 11.1 46.3 41.6 43.6 29.7 25.0 1.7 16.3 23.5 15.4 3.9 40.8

CKDopps GERMANY 23 (19, 28) 29.5 49.4 14.8 6.3 17.4 14.5 15.5 52.6 30.6 35.6 8.3 2.9 22.6

PSI BIND-NL 30 (21, 42) 22.5 26.1 31.1 20.3 - - - 100 6.2 8.9 16.6 5.1 63.2

RRID 49 (42, 54) - 2.8 30.8 66.4 80.6 16.2 3.2 - 20.3 - - - 79.7

PROVALID 48 (39, 54) 2.7 9.0 27.3 61.0 63.0 26.4 8.8 1.8 100.0 - - - -

4C 26 (17, 34) 33.6 30.4 28.9 7.1 11.7 34.9 52.4 1.1

CKiD 45 (37, 53) 1.4 11.4 37.1 50.0 - - - 100

KNOW-Ped CKD 32 (18, 47) 27.6 17.1 25.2 30.1 59.8 10.6 29.7 -

ACR, albumin to creatinine ratio; CKD, chronic kidney disease; DKD, diabetic kidney disease; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis; HTN, hypertension; PKD,
polycystic kidney disease.
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139 (18) g/l. When comparing world regions, women
from Asian cohorts tended to have a lower average
hemoglobin than women from European cohorts, and
this finding was broadly consistent within categories of
eGFR (Supplementary Figure S2). With the exception of
H3AKDN Enugu Site, men had a higher hemoglobin
value, on average, compared to women from the same
cohort. Nine adult cohorts collected data on iron
saturation with values available for between 12.6%
and 97.8% of participants (Supplementary Table S4). In
these cohorts, the mean value of iron saturation ranged
between 22.8% and 30.9%.

Sex Differences in Hemoglobin

To further illustrate differences in mean hemoglobin in
men and women across the eGFR spectrum, data from all
cohorts were pooled in a violin plot (Figure 2, left panel).
In keeping with the bubble plots in Figure 1, mean he-
moglobin values variedwidely across the cohorts in both
sexes and within strata of eGFR. The shape of the he-
moglobin distribution was also different by sex,
demonstrating a broader dispersion of values in women
compared to men. Across all eGFR categories, women
tended to have a lower hemoglobin value compared to
men; however, the magnitude of these differences was
smaller inmore advanced CKD compared to earlier stages
of CKD (Figure 2, right panel). Evidence of an interaction
2060
between sex and eGFR was consistent across cohorts
with an overall P-value of <0.001 (Supplementary
Table S5). For example, in women compared to men,
mean hemoglobin was 13.5 (95% CI 11.4–15.7) g/l lower
at an eGFR of 60 ml/min per 1.73 m2, 10.8 (95% CI 8.9–
12.6) g/l lower at an eGFR of 45 ml/min per 1.73 m2, 7.9
(95% CI 6.3–9.7) g/l lower at an eGFR of 30 ml/min per
1.73 m2, and 5.3 (95% CI 3.7–6.9) g/l lower at an eGFR of
15 ml/min per 1.73 m2 (Figure 2, Supplementary
Tables S6A–D). There was no attenuation in these esti-
mates after multivariable adjustment.

Differences in Hemoglobin by eGFR and Cause

of CKD

In men, each 10 ml/min per 1.73 m2 decrease in eGFR
was associated with a 5.8 (95% CI 5.2–6.4) g/l decrease
in mean hemoglobin. The corresponding estimate in
women was 4.0 (95% CI 3.5–4.5) g/l. There was mini-
mal change in these estimates after multivariable
adjustment (Supplementary Table S7). Compared to
diabetic kidney disease, glomerulonephritis (pooled
mean difference 4.8 (95% CI 2.1–7.6) g/l), polycystic
kidney disease (pooled mean difference 6.2 (95% CI
3.9–8.5) g/l) and hypertension (pooled mean difference
6.6 (95% CI 4.7–8.4) g/l) were all associated with higher
mean hemoglobin values (Figure 3, Supplementary
Table S8A). In a multivariable model, the pattern of
Kidney International Reports (2023) 8, 2056–2067



Figure 1. Bubble plot showing the mean hemoglobin for men (left panel) and women (right panel) in each iNET-CKD cohort and grouped by
world region.
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these findings was consistent among individuals
without diabetes mellitus, whereas there was some
attenuation in disease-specific estimates among those
with diabetes mellitus (Figure 3, Supplementary
Tables S8B and C). There was no statistically signifi-
cant interaction between eGFR and etiology of CKD
based on the pooled analysis.

Other Covariate Associations With Hemoglobin

Cohort-specific and pooled estimates for the indepen-
dent association between candidate predictor variables
and hemoglobin from a multivariable linear regression
model are provided in Supplementary Table S9. This
analysis included 15 cohorts who had data available for
all covariates in the extended model. Overall, each 10-
year increase in age was associated with a modest
reduction in mean hemoglobin of 0.6 (95% CI 0.27–0.99)
g/l. The presence of diabetes mellitus was associated
Figure 2. Violin plot of the distribution of mean hemoglobin values in partic
panel), and estimates of sex-based differences in hemoglobin level from ag
plot is a hybrid of a box plot and a kernel density plot. The boxes represent
1.5 times the IQR. The kernel density estimation shows the shape of the dis
and lower probability, respectively, that participating cohorts of the study w
given stratum of sex and eGFR category were excluded from the plot.
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with a 2.5 (95% CI 1.5–3.5) g/l reduction in mean he-
moglobin. Compared to individuals with a BMI of 18.5
to 24.9 kg/m2, those with a BMI $30 kg/m2 had, on
average, a 5.2 (95% CI 3.9–6.6) g/l higher hemoglobin
level. Heart failure was associated with a small reduction
in hemoglobin (1.4 g/l, 95% CI 0.7–2.1). No statistically
significant associations were found between hemoglobin
level and coronary artery disease or categories of albu-
minuria. The proportion of variance (R2) in hemoglobin
explained by this set of covariates, applied in the same
way in all cohorts, ranged between 6.9% and 44.3%,
representing a modest improvement in R2 compared to
the simpler core model (Supplementary Table S10).

In an exploratory analysis, we evaluated the rela-
tionship between hemoglobin and smoking status
(available in 11 cohorts), use of RAAS inhibitors
(available in 13 cohorts) and altitude (available in 8
cohorts). These variables were added separately to the
ipating iNET-CKD cohorts stratified by sex and category of eGFR (left
e-adjusted and multi-variable-adjusted models (right panel). A violin
the median and interquartile range (IQR), and the whiskers represent
tribution. Wider and narrower sections of the plot represent a higher
ill take on the given value. Cohorts with less than 10 participants in a
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Figure 3. Pooled estimates of the difference in mean hemoglobin according to the etiology of CKD based on meta-analysis of the unadjusted
and multivariable-adjusted cohort-level estimates. For the multivariable-adjusted results, estimates are presented separately in individuals with
and without diabetes mellitus. In each case, diabetic kidney disease (DKD) serves as the reference group. For example, in the case of
glomerulonephritis (GN), the green estimate represents the mean difference in hemoglobin in non-diabetic individuals with GN compared to
those with DKD; whereas, the red estimate represents the mean difference in hemoglobin in diabetic individuals with GN compared to those
with DKD. DKD, diabetic kidney disease; DM, diabetes mellitus; GN, glomerulonephritis; HTN, hypertension; PKD, polycystic kidney disease.
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previously described extended model. Compared to
nonsmokers, current smoking was associated with
higher mean hemoglobin (2.1 g/l, 95% CI 1.1–3.1,
Supplementary Table S11). Mean hemoglobin was also
higher among those living at altitudes higher than 1000
meters compared to those living at sea level (5.4 g/l,
95% CI 0.5–10.4, Supplementary Table S12). The use of
RAAS inhibitors was not consistently associated with a
difference in hemoglobin (0.07 g/l, 95% CI �1.1 to 1.2,
Supplementary Table S13).

Expected Values of Hemoglobin Based on

Specific Patient Characteristics

To illustrate the possible range in hemoglobin values
among patients with CKD, even at the same level of
eGFR, we used the extended regression model to
generate estimates of hemoglobin conditional on spe-
cific patient characteristics (Figure 4). For all compari-
sons, eGFR was fixed at 34 ml/min per 1.73 m2 (overall
mean in the study population), and other covariates
were held at their mean values unless otherwise spec-
ified. The “typical” patient (based on mean values of
covariates) across all cohorts was aged 65 years and had
an expected hemoglobin value of 124.7 g/l (95% CI
122.2–127.3). A 40-year-old man with glomerulone-
phritis, a BMI of 30 kg/m2 and without diabetes, had an
expected hemoglobin value of 133.6 g/l (95% CI 131.4–
135.9), whereas a 70-year-old woman with diabetic
kidney disease and a BMI of 24 kg/m2 had an expected
hemoglobin value of 111.6 g/l (95% CI 107.3–116).
Between-cohort heterogeneity accounted for a large
2062
proportion of variability in these estimates. For
example, the pooled estimate for the last patient
example had a tau of 7.6 g/l and I2 of 96.8%.

Sensitivity Analysis

We repeated the analysis among participants unexposed
to ESA therapy at the time of hemoglobin measurement.
Estimates for mean differences in hemoglobin according
to sex (Supplementary Table S14), etiology of CKD
(Supplementary Table S15) and other covariates
included in the extended multivariable model
(Supplementary Table S16) were similar to those of the
primary analysis. A complete case analysis (conducted
in 10 cohorts who provided individual-level data) pro-
duced similar estimates to those of the primary analysis
(Supplementary Table S17).

DISCUSSION

In this study of over 58,000 individuals with CKD from
24 cohorts representing all major world regions, we
observed wide variation in hemoglobin distribution
internationally, both overall and within categories of
eGFR. Women had a lower hemoglobin value, on
average, compared to men in virtually all cohorts, and
this difference was evident across the full range of
eGFR. In multivariable regression models, we identified
independent associations between hemoglobin and sex,
eGFR, etiology of CKD, age, BMI, and the presence of
heart failure and diabetes. Collectively, however, these
variables explained only a minority of variance in
hemoglobin.
Kidney International Reports (2023) 8, 2056–2067



Figure 4. Cohort-specific and pooled estimates for the expected value of hemoglobin in 3 hypothetical patients conditional on specific
characteristics generated from the extended multivariable model (n ¼ 15 cohorts). In all cases, eGFR is fixed at 34 ml/min per 1.73 m2. Unless
otherwise specified, other covariates are held at their mean values. eGFR, estimated glomerular filtration rate.
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To our knowledge, this is the first study to describe
international differences in hemoglobin concentration
in individuals with CKD and across the range of kidney
function. The positive association between eGFR and
hemoglobin has long been recognized.7 The largest and
most contemporaneous study to demonstrate this as-
sociation came from the CKD Prognosis Consortium
(CKD-PC) and included 254,666 participants from 17
CKD cohorts.8 Across an eGFR range of 15 to 60 ml/min
per 1.73 m2, the relationship between eGFR and he-
moglobin was linear with a similar reduction in he-
moglobin per unit decrease in eGFR that was observed
in the present analysis. Similar to the CKD Prognosis
Consortium study, we found minimal association of
hemoglobin with participant age or the magnitude of
albuminuria, and lower hemoglobin values among
participants with diabetes compared to those without
diabetes. Our study expands on the CKD Prognosis
Consortium analysis by including a geographically
more diverse population with CKD, with greater rep-
resentation of people from African and Asian countries.
We have also shown the potential contribution of the
etiology of CKD to the level of hemoglobin, with higher
values observed in individuals with hypertension,
glomerulonephritis, and polycystic kidney disease
compared to those with diabetic kidney disease. In
their framework for diagnosing and classifying CKD,
Kidney Disease Improving Global Outcomes recognizes
the importance of ascertaining the etiology of CKD34;
however, this is generally not considered in the
assessment of different functions of the kidney. Taking
these variables together, a younger male patient with
glomerulonephritis and a BMI of 30 kg/m2 would be
expected to have a hemoglobin of 134 g/l, whereas an
older female patient with diabetic kidney disease and a
BMI of 24 kg/m2 would be expected to have a hemo-
globin of 112 g/l at the same eGFR value of 34 ml/min
Kidney International Reports (2023) 8, 2056–2067
per 1.73 m2. This clinical example serves to demon-
strate the anticipated variability in hemoglobin distri-
bution based on patient-level characteristics outside of
eGFR alone.

Average hemoglobin values were particularly low
among women in Asian and African cohorts compared
to their European counterparts. This finding mirrors the
patterns observed in global studies of anemia preva-
lence.2,3 This regional variation in hemoglobin distri-
bution has not been well described in CKD; and this
raises important questions about our understanding of
the pathophysiology of anemia in CKD. In the general
population, the proportion of prevalent anemia cases
attributable to CKD varies significantly by world region,
with a much higher attributable fraction observed in
high-income Asia Pacific countries compared to South
Asian or African countries.35 It was striking that all
cohorts had a high proportion of unexplained variance
in hemoglobin. Apart from the predictors of hemoglobin
evaluated in the present study, there are other con-
tributors to hemoglobin concentration that would be
expected to vary by world region independently of CKD
status. Anemia in African countries has been linked to a
high prevalence of infections such as malaria, soil-
transmitted helminthiasis, and schistosomiasis;
whereas, genetic traits such as thalassemia and sickle
cell disorders play an important role in the development
of anemia in Africa and parts of central and South
Asia.1,2 The same factors that contribute to variability in
hemoglobin distribution internationally could poten-
tially also influence response to anemia therapies, as has
been postulated with the use of ESAs.36 This study
represents an important first step in refining our un-
derstanding of regional determinants of hemoglobin in
individuals with CKD, which has been identified as a
key research priority by the International Society of
Nephrology as part of its Closing the Gaps initiative.37,38
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Köttgen, Florian Kronenberg, Veronica Lamadrid, Joo Hoo
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Wang, Christoph Wanner, Andrzej Wiecek, Gunter Wolf

Dick de Zeeuw, Luxia Zhang, Yuyan Zheng, Ming-Hu

Zhao, and Robert Zietse.
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Across virtually all CKD cohorts, women had a lower
hemoglobin compared to men. The magnitude of this
difference became smaller with declining levels of eGFR,
a finding which has also been observed in studies using
measured glomerular filtration rate.39 The pooled anal-
ysis nonetheless showed that women continued to have
a lower average hemoglobin down to an eGFR of 15 ml/
min per 1.73 m2. This finding argues against the notion
that physiological differences in hemoglobin concen-
tration in men and women should be ignored in the
presence of CKD, or that the same target range of he-
moglobin should be sought regardless of sex. Previous
studies have shown that women receiving dialysis
require a higher dose of ESA to achieve the same target
hemoglobin as men.40,41 Sex differences have been
observed for other biomarkers with important impli-
cations for health, such as the threshold used for high
sensitivity troponin in the diagnosis of myocardial
infarction.42,43 Our understanding of sex differences in
the epidemiology of kidney disease has advanced in
recent years; however, many of the discrepancies
observed between men and women in CKD outcomes
remain unexplained.44 The sex-based differences in
hemoglobin observed in this study call for research ef-
forts to improve our understanding of the natural his-
tory and determinants of hemoglobin trajectory in
women with CKD, and should stimulate debate about
the uniform interpretation of hemoglobin values in in-
dividuals with CKD.

Strengths of this study include a large sample size
with broad geographic representation of CKD cohorts, a
diverse patient population in terms of demographics,
etiology of CKD and range of kidney function, and the
use of a standardized data dictionarywith harmonization
of study variables and methods. The findings should be
interpreted in the context of potential limitations. Only a
minority of cohorts had robust data for iron parameters,
and data were not available for other potentially
important variables such as hemoglobinopathies, in-
flammatory markers, malignancy, nutrition, or socio-
economic status. Similarly, data for smoking status, use
of RAAS inhibitors, and altitude were not collected in all
cohorts. There was likely misclassification of CKD etiol-
ogy, which was based on either physician diagnosis or
kidney biopsy. Some cohorts had a high proportion of
“other” etiologies which could have included both un-
known and missing cases. It was not possible to collect
information about differences in laboratory measure-
ment of hemoglobin; however, variation in hemoglobin
assays is similarly unknown for registry data that
contribute to global studies of anemia prevalence.
Although the cross-sectional design facilitated inclusion
of a larger number of cohorts, the findings are none-
theless based on a single hemoglobin value, and it would
2064
be more informative to evaluate differences in the lon-
gitudinal trajectory of hemoglobin values. This will be
the focus of future work.

In conclusion, this collaborative study from the
iNET-CKD cohorts demonstrated considerable variation
in hemoglobin distribution among individuals with
CKD from different world regions with more pro-
nounced geographic differences in mean hemoglobin
among women, mirroring findings from the general
population. Our findings challenge the current dogma
of interpreting hemoglobin values similarly in all pa-
tients with CKD, and call for a renewed interest in
broadening our understanding of hemoglobin de-
terminants in specific CKD populations.
Kidney International Reports (2023) 8, 2056–2067
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