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López-Morales4, Yamila Miguel24,25, Karan Molaverdikhani26,27, Zafar

Rustamkulov28, David K. Sing28,22, Kevin B. Stevenson29, Hannah R

Wakeford14, Jeehyun Yang12, Keshav Aggarwal30, Robin

Baeyens31, Saugata Barat31, Miguel de Val Borro32, Tansu

Daylan33,34, Jonathan J. Fortney15, Kevin France35, Jayesh M

Goyal36, David Grant14, James Kirk4,37,38, Laura Kreidberg39, Amy

Louca24, Sarah E. Moran40, Sagnick Mukherjee15, Evert

Nasedkin39, Kazumasa Ohno15, Benjamin V. Rackham41,42,43, Seth

Redfield44, Jake Taylor1,17, Pascal Tremblin45, Channon

Visscher7,46, Nicole L. Wallack5,13, Luis Welbanks18,47, Allison

Youngblood48, Eva-Maria Ahrer49,50, Natasha E. Batalha51, Patrick

Behr35, Zachory K. Berta-Thompson52, Jasmina Blecic53,54, S.L.

Casewell55, Ian J.M. Crossfield56, Nicolas Crouzet24, Patricio E.

Cubillos57,20, Leen Decin58, Jean-Michel Désert31, Adina D.

Feinstein16,59, Neale P. Gibson60, Joseph Harrington61, Kevin

Heng26,50, Thomas Henning39, Eliza M.-R. Kempton62, Jessica

Krick63, Pierre-Olivier Lagage45, Monika Lendl64, Joshua D.

Lothringer65, Megan Mansfield47,66, N. J. Mayne67, Thomas

Mikal-Evans39, Enric Palle68, Everett Schlawin66, Oliver

Shorttle11, Peter J. Wheatley49,50 and Sergei N. Yurchenko19

*Corresponding author(s). E-mail(s): shang-min.tsai@physics.ox.ac.uk
All author affiliations are listed at the end of the paper.

1
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Abstract

Photochemistry is a fundamental process of planetary atmo-
spheres that regulates the atmospheric composition and stabil-
ity [1]. However, no unambiguous photochemical products have
been detected in exoplanet atmospheres to date. Recent obser-
vations from the JWST Transiting Exoplanet Early Release Sci-
ence Program [2, 3] found a spectral absorption feature at 4.05
µm arising from SO2 in the atmosphere of WASP-39b. WASP-
39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant
exoplanet orbiting a Sun-like star with an equilibrium temper-
ature of ∼1100 K [4]. The most plausible way of generating SO2

in such an atmosphere is through photochemical processes [e.g.,
5, 6]. Here we show that the SO2 distribution computed by a
suite of photochemical models robustly explains the 4.05 µm
spectral feature identified by JWST transmission observations
[7] with NIRSpec PRISM (2.7σ) [8] and G395H (4.5σ) [9]. SO2

is produced by successive oxidation of sulphur radicals freed
when hydrogen sulphide (H2S) is destroyed. The sensitivity of
the SO2 feature to the enrichment of the atmosphere by heavy
elements (metallicity) suggests that it can be used as a tracer of
atmospheric properties, with WASP-39b exhibiting an inferred
metallicity of ∼10× solar. We further point out that SO2 also
shows observable features at ultraviolet and thermal infrared
wavelengths not available from the existing observations.

JWST observed WASP-39b as part of its Transiting Exoplanet Early Release
Science Program (ERS Program 1366), with the goal of elucidating its atmo-
spheric composition [2, 3]. Data from the NIRSpec PRISM and NIRSpec
G395H instrument modes revealed a distinct absorption feature between 4.0
and 4.2 µm, peaking at around 4.05 µm that atmospheric radiative-convective-
thermochemical equilibrium models could not explain with metallicity and
C/O values typically assumed of gas giant planets (1–100× Solar and 0.3–
0.9, respectively; [8, 9]). After excluding instrument systematics and stellar
variability, a thorough search for gases has revealed sulphur dioxide (SO2)
as a promising candidate with the best-fit absorption feature (see Methods),
although ad-hoc spectra with injected SO2 were used in the analysis.

Sulphur shares some chemical similarities to oxygen but uniquely forms
various compounds with a wide range of oxidation states (-2 to +6; [10]).
While SO2 is ubiquitously outgassed and associated with volcanism on terres-
trial worlds (e.g., Earth, Venus, and Jupiter’s satellite Io), the source of SO2 is
fundamentally different on gas giants. Under thermochemical equilibrium, sul-
phur chiefly exists in the reduced form, such that hydrogen sulphide (H2S) is
the primary sulphur reservoir in a hydrogen/helium-dominated gas giant [11–
14]. At the temperature of WASP-39b, the equilibrium mixing ratio of SO2

in the observable part of the atmosphere is less than ∼ 10−12 for 10× solar
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metallicity and less than ∼ 10−9 for even 100× solar metallicity (see Extended
Data Fig. 1). This equilibrium abundance of SO2 is several orders of magni-
tude smaller than the values needed to produce the spectral feature observed
by JWST (volume mixing ratios of 10−6–10−5) [8, 9]. In contrast, under UV
irradiation, SO2 can be oxidised from H2S as a photochemical product. H
and OH radicals, generated by photolysis processes, are key to liberating SH
radicals and atomic S from H2S and subsequently oxidising them to SO and
SO2. While previous photochemical modelling studies have shown that sub-
stantial SO2 can be produced in hydrogen-rich exoplanet atmospheres in this
way [5, 6, 13, 15, 16], the extent to which such a model could reproduce the
current WASP-39b observations remained unverified.

We have performed several independent, cloud-free 1D photochemical
model calculations of WASP-39b using the ATMO, ARGO, KINETICS, and
VULCAN codes (see Methods for model details). All models included sulphur
kinetic chemical networks and were run using the same vertical temperature-
pressure profiles of the morning and evening terminators adopted from a
3D WASP-39b atmospheric simulation with the Exo-FMS general circulation
model (GCM; see Extended Fig 2) [17]. The nominal models assumed a metal-
licity of 10× solar [18] with a solar C/O ratio (C/O = 0.55) while we explored
the sensitivity to atmospheric properties.

The peak mixing ratios of the major sulphur species produced by the dif-
ferent photochemical models are largely consistent with each other to within
an order of magnitude, as shown in Figure 1. The SO2 mixing ratio profiles are
highly variable with altitude and strongly peaked at 0.01–1 mbar with a value
of 10–100 ppm. SO2 (along with CO2) is more favoured at the cooler morning
terminator where H2S is less stable against reaction with atomic H at depth
(with SO2 abundance peak of 50–90 ppm at the morning terminator and 15–30
ppm at the evening terminator). While the peak SO2 abundance from the pho-
tochemical models is greater than that estimated from fitting to the PRISM
and G395H data, which assumed vertically constant mixing ratios of ≈1–10
ppm and ≈2.5–4.6 ppm, respectively, the column integrated number densities
above 10 mbar are highly consistent (see Methods). Our models indicate that
S, S2, and SO, which are precursors of SO2, also reach high abundances in
the upper atmosphere above the pressure level where H2S is destroyed. Never-
theless, they are not expected to manifest observable spectral features in the
PRISM/G395H wavelength range.

The important pathways of sulphur kinetics in WASP-39b’s atmosphere
from our models are summarised in Figure 2. The photochemical production
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Fig. 1: Simulated vertical distribution of sulphur species and CO2

The colour-shaded areas indicate the span (enclosed by the maximum and
minimum values) of volume mixing ratios (VMR) of CO2 (blue), SO2 (pink
with black borders), and other key sulphur species (H2S: orange; S: yellow; S2:
grey; and SO: light blue) computed by an ensemble of photochemical models
(ARGO, ATMO, KINETICS, and VULCAN) for the morning (a) and evening
(b) terminators. The thermochemical equilibrium VMRs are indicated by the
dotted lines, with SO2 not within the x-axis range due to its very low abun-
dance in thermochemical equilibrium. The range bar on the right represents
the main pressure ranges of the atmosphere probed by JWST NIRSpec spec-
troscopy. Photochemistry produces SO2 and other sulphur species above the
1 mbar level with abundances several orders of magnitude greater than those
predicted by thermochemical equilibrium.

paths of SO2 from H2S around the SO2 peak are as follows:

H2O
hν−−→ OH+H

H2O+H −−→ OH+H2

H2S + H −−→ SH + H2

SH + H −−→ S + H2

S + OH −−→ SO + H

SO+OH −−→ SO2 +H

net : H2S + 2H2O −−→ SO2 + 3H2

(1)

Water photolysis in (1) is an important source of atomic H that initiates the
pathway. The last step of oxidising SO into SO2 is generally the rate-limiting
step. The oxidisation of SO and photolysis of SO2 account for the main sources
and sinks of SO2, which lead to altitude-varying distribution that peaks around
0.1 mbar (see Extended Data Fig. 4). At high pressures with less available
OH, reactions involving S2 become important in oxidising S (see Methods).
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Fig. 2: A simplified schematic of the chemical pathways of sulphur
species. H2S, which is the stable sulphur-bearing molecule at thermochemi-
cal equilibrium in an H2 atmosphere, readily reacts with atomic H to form SH
radicals and subsequently atomic S in the photochemical region (above ∼ 0.1
mbar). Reaction of S with photochemically-generated OH then produces SO,
which is further oxidized to SO2. The thick arrows denote efficient reactions
and M denotes any third body. Inefficient reactions and inactive paths in the
temperature regime of WASP-39b are greyed out. The dark cyan arrows mark
the main path from H2S to SO2 whereas the orange arrows mark the path
important at higher pressures. Sulphur species are colour-coded by the oxida-
tion states of S. Rectangles indicate stable molecules while ovals indicate free
radicals.

The growth of elemental sulphur allotropes beyond S2 effectively stops for
temperatures higher than ∼ 750 K [5, 6].

Figure 3 shows the morning/evening averaged transmission spectra result-
ing from the different photochemical models. All models are able to reproduce
the strength and shape of the 4.05 µm SO2 feature seen in the NIRSpec
PRISM and G395H modes. The scatter in the model spectra is on par with
the uncertainties of the data, and is attributed to the spread in the vertical
VMR structure of SO2 and CO2 produced by each model (Fig. 1). Also shown
in Fig. 3 are the predicted spectra in the MIRI LRS wavelength range (5–12
µm), which exhibit prominent SO2 features around 7.5 µm and 8.8 µm as well
as an upward slope redward of 12 µm due to CO2. In addition, our models
predict a strong UV (0.2–0.38 µm) transmission signal from the presence of
S species: H2S, S2, SO2, and SH produce a sharp opacity gradient shortward
of 0.38 µm (Extended data Fig. 7), where the room-temperature UV cross
sections are used except those at 800 K for SH. The discrepancy between the
models and previous HST STIS and VLT FORS2 observations [20] (see Fig. 3)
within 0.38–0.5 µm could be potentially due to enhanced UV opacities at high
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Fig. 3: Terminator averaged theoretical transmission spectra. We
show the transmission spectra averaged over the morning and evening termi-
nators generated from 1D photochemical model results. (a): Comparison to
the NIRSpec PRISM FIREFly reduction [8]). (b): Comparison to the NIRSpec
G395H weighted-mean reduction [9]). (c): Comparison to the current HST and
VLT/FORS2 optical wavelength data [19, 20], the models show pronounced
features at UV wavelengths due to sulphur species compared to the model
without S bearing species (dashed blue line). (d): Predicted spectra across the
MIRI LRS wavelength range, with SO2 removed from the VULCAN output
shown in grey to indicate its contribution. All of the spectral data show 1-σ
error bars and the standard deviations averaged (unweighted) over all reduc-
tions are shown for the NIRSpec G395H data.

temperatures and/or aerosol particles. Further characterization of the sulphur
species spectral features in the UV is promising with the scheduled HST/UVIS
observation (Program 17162, PIs Rustamkulov & Sing).

SO2 has recently been suggested as a promising tracer of metallicity in
giant exoplanet atmospheres [16]. To test this and reveal trends in atmospheric
properties, we have conducted sensitivity analysis on metallicity as well as
temperature and vertical mixing using VULCAN (see Methods for details and
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Fig. 4: The metallicity trends and synthetic spectra with varying
metallicity. Panel (a) shows the averaged VMR of H2O, CO2, and SO2 in the
atmosphere between 10 and 0.01 mbar probed by transmission spectroscopy
as a function of atmospheric metallicity. The nominal model is shown in solid
lines, whereas the eddy diffusion coefficient (Kzz) scaled by 0.1 and 10 are
shown in dashed and dashed-dotted lines, respectively. The models with the
whole temperature increased and decreased by 50 K are indicated by the
upward and downward facing triangles connected by dotted lines respectively.
Panel (b) displays the morning and evening terminator-averaged theoretical
transmission spectra with different metallicities (relative to solar value) com-
pared with the NIRSpec observation.

further tests on C/O and stellar UV flux). Figure 4 (a) summarises these results
for SO2, along with H2O and CO2, which are more commonly used as proxies
for atmospheric metallicity [13, 21–23]. Overall, the average abundance of SO2

in the pressure region relevant for such observation is not strongly sensitive to
temperature or vertical mixing once SO2 has reached observable ppm levels
and is mildly sensitive to C/O (see Extended Fig. 5). In contrast, SO2 shows
an either similar or stronger dependence on metallicity, compared to H2O and
CO2. This sensitivity to metallicity can be understood from the net reaction
(1), where it takes one molecule of H2S and two molecules of H2O to make one
SO2. While SO2 can be further oxidised into SO3, which requires additional
oxygen, SO3 is rarely produced to an observable level in an H2-dominated
atmosphere. Therefore, SO2 can be an ideal tracer of heavy element enrichment
for giant planets, with given constraints on the temperature and stellar FUV
flux. The applicability of SO2 as a tracer of metallicity is further shown in
Figure 4 (b), where the increase in the SO2 feature amplitude between 5× and
20× solar metallicity is much greater than that of CO2 and H2O. As such,
retrieval analyses seeking to evaluate the atmospheric metallicity of warm giant
exoplanets can substantially benefit from both CO2 and SO2 measurements.

Our results demonstrate the importance of considering photochemistry—
and sulphur chemistry in particular—in warm exoplanet atmospheres when
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interpreting exoplanet atmospheric observations. Exoplanet photochemistry
has been investigated using numerical models since the detection of an atmo-
sphere on a transiting exoplanet [24, 25], followed by a diverse set of subsequent
studies elucidated the interplay of carbon, oxygen, nitrogen, hydrogen, and sul-
phur (e.g., see [26] for a review). It has been further pointed out that sulphur
can impact other nonsulphur species, such as atomic H, CH4, and NH3 ([6, 15];
also see Extended Fig. 6). Temperature trends in the photochemical production
of sulphur species (Extended Fig. 10) in exoplanet atmospheres are poten-
tially observable with features in the UV and infrared (Fig. 3 and Extended
Fig. 7). At temperatures higher than that of WASP-39b, SH and SO may
become relatively more abundant than SO2 [6, 13, 15]. Observing these compo-
sitional variations with temperature in H2-dominated atmospheres, modulated
by the atmospheric metallicity, could substantially improve our understand-
ing of high-temperature chemical networks and atmospheric properties. The
observational effort should also be complemented by a more accurate deter-
mination of key chemical reaction rate constants and UV cross sections at
the relevant temperatures [e.g., 27, 28] as well as photochemical modelling
developed beyond 1D that includes horizontal transport [e.g., 29–31].

The accessibility of sulphur species in exoplanet atmospheres through the
aid of photochemistry allows for a new window into planet formation processes,
whereas in the Solar System gas giants, the temperature is sufficiently low
that sulphur is condensed out as either H2S clouds or together with NH3 as
ammonium hydrosulphide (NH4SH) clouds [32] making it more difficult to
observe. Sulphur has been detected in protoplanetary discs [33] where it may
be primarily in refractory form [34], making it a reference element revealing
the metallicity contributions of accreted solid and gas [35–37]. Such efforts
for warm giant exoplanets are now a possibility thanks to the observability
of photochemically produced SO2. Thus, the detection of SO2 offers valuable
insights into further atmospheric characterisation and planet formation.

Data Availability. The data used in this paper are associated with JWST
program ERS #1366 and are available from the Mikulski Archive for Space
Telescopes (https://mast.stsci.edu), which is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA contract NAS
5-03127 for JWST. The chemical networks and abundance output of the pho-
tochemical models (ARGO, ATMO, KINETICS, and VULCAN) presented in
this study are available at https://doi.org/10.5281/zenodo.7542781.

Code Availability.
The codes VULCAN and gCMCRT used in this work to simulate
composition and produce synthetic spectra are publicly available:
VULCAN[6, 38] (https://github.com/exoclime/VULCAN)
gCMCRT[39] (https://github.com/ELeeAstro/gCMCRT)
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Methods

4.05 µm Feature

A list of gas species that have been compared to the 4.05 µm absorption
feature in the transit observation of WASP-39b can be found in [8]. In partic-
ular, species with absorption features at similar wavelengths but are ruled out
include H2S, HCN, HBr, PH3, SiO, and SiO2. H2S and HCN absorb short-
ward of the feature at 4.05 µm while SiO2 absorb longward of that, whereas
HBr, SiO, and PH3 have wider absorption bands than the observed feature.
Chemically, SiO and SiO2 are also expected to rain out at the temperature of
WASP-39b and the solar elemental abundances have little bromine (Br/H ∼
4×10−10). Ultimately, the injection tests of SO2 provide 2.7σ detection with
NIRSpec PRISM [8] and 4.8σ with G395H [9].

The Temperature-Pressure and Eddy Diffusion
Coefficient Profiles Derived from the Exo-FMS GCM

To provide inputs to the 1D photochemical models, a cloud-free WASP-39b
General Circulation Model (GCM) was run using the Exo-FMS GCM model
[17]. We computed the transmission spectra derived from our photochemical
model results using gCMCRT [39] and the ExoAmes high-temperature SO2

line list [40]. System parameters were taken from [7]. We assume a 10× solar
metallicity atmosphere in thermochemical equilibrium and use two-stream,
correlated-k radiative-transfer without optical and UV wavelength absorbers
such as TiO, VO and Fe, which are assumed to have rained out from the
atmosphere given the atmospheric temperatures of WASP-39b. The assump-
tion about thermochemical equilibrium in radiative transfer calculations will
be discussed in the next section.

Although the temperatures of WASP-39b cross several condensation curves
of sulfide clouds, such as Na2S and ZnS, the gas composition is not expected
to be significantly affected. The elemental abundances of Na and Zn are less
abundant than S (Na/S ≈ 0.13, Zn/S ≈ 0.0029), which would at most reduce
≈ 20% of the total sulphur, similar to how oxygen being sequestered in silicates
and metals [41]. Furthermore, this full condensation is unlikely since sulfide
condensates generally have high surface energies [42, 43] that inhibit efficient
nucleation, consistent with the detection of gaseous sodium on WASP-39b [8].

WASP-39b’s radius is inflated significantly and we assume an internal
temperature of 358 K, taken from the relationship between irradiated flux
and internal temperature found in [44]. Extended Data Fig. 2 (a) shows the
latitude-longitude map of the temperature at a pressure level of 10 mbar. The
input to the photochemical models are the temperature-pressure profiles at the
morning and evening limbs (Extended Data Fig. 2), which we compute by tak-
ing the average of the profiles over all latitudes and ± 10◦ (as estimated from
the opening angle calculations from [45]) of the morning (western) and evening
(eastern) terminators (i.e., the region between the grey curves in Extended
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Data Fig 2 (a). The cooler morning terminator as a result of the horizontal
heat transport facilitated by the global circulation can be seen in the figure.

Vertical mixing in 1D chemical models is commonly parameterised by eddy
diffusion. For exoplanets, the eddy diffusion coefficient (Kzz) is in general a
useful but loosely constrained parameter. For the 1D photochemical models
used in this work, we assume Kzz follows an inverse square-root dependence
with pressure in the stratosphere [e.g., 30] as

Kzz(cm
2 s−1) = 5× 107

(
5bar

P

)0.5

(2)

and held constant below the 5-bar level in the convective zone. The eddy dif-
fusion profile generally fits the root-mean-squared vertical wind multiplied by
0.1 scale height as the characteristic length scale from the GCM. The resulting
Kzz profile is presented in Extended Data Fig. 2.

Radiative Feedback of Disequilibrium Composition

The temperature profiles adopted from the GCM assume chemical equilibrium
abundances. To evaluate the radiative feedback from disequilibrium chemical
abundances, we first performed self-consistent 1D calculations, coupling the
radiative-transfer and photochemical kinetics models using HELIOS[47] and
VULCAN[6], where the opacity sources in HELIOS include H2O, CH4, CO,
CO2, NH3, HCN, C2H2, SH, H2S, SO2, Na, K, H−, CIA H2–H2 and H2–He (see
references in [47]). Yet we found negligible differences between the temperature
profile computed from equilibrium abundances and that from disequilibrium
abundances. This is likely because water, as the predominant infrared opac-
ity source, remains unaffected by disequilibrium processes. Meanwhile, a few
opacities are missing in our radiative-transfer calculation. In particular, the
opacity of SO2 [49] does not extend into the visible and UV wavelength range.
Previous works [13] and [50] indicated that SH and S2 have strong absorption
in the UV–visible and can potentially impact the thermal structure. To quan-
tify the radiative effect of these sulphur species, we calculated the shortwave
heating rate with

cP
dT

dt
=

Fκi∆mi

∆mair
(3)

where cP is the specific heat capacity of the air, F is the stellar flux associated
with the direct beam, and ∆mi, ∆mair are the column mass of species i and
air of an atmospheric layer, respectively. Extended Data Fig. 3 illustrates the
shortwave heating due to SH and S2, and SO2. Our estimate shows that SO2

contributed the most in our WASP-39b model, rather than SH and S2 being the
main shortwave absorbers for atmospheres with solar-like metallicity [13][50].
The peak of heating due to SO2 is comparable to a grey opacity of 0.05 cm2/g
over 220–800 nm and could potentially raise the temperatures around 0.1 mbar
(the visible grey opacity for WASP-39b’s irradiation is about 0.005 cm2/g [51]).
Nevertheless, this heating effect does not change our main conclusions about
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photochemically forming SO2 on WASP-39b. As long as temperatures do not
fall below ∼750 K where sulphur allotrope formation starts to take over, SO2

is not too sensitive to temperature increases up to 100 K.

The Stellar Spectrum of WASP-39

We require the high-energy spectral energy distribution (SED) of the WASP-
39 host star as input to drive our set of photochemical models. However, as
an inactive mid G-type star (Teff = 5485 ± 50 K; [52]) at a distance of 215 pc
(Gaia DR3), WASP-39 is too faint for high-S/N ultraviolet spectroscopy with
HST. In order to approximate the stellar radiation incident on WASP-39b, we
created a custom stellar SED that combines direct spectroscopy of WASP-39
in the optical (with HST/STIS G430L and G750L modes; GO 12473, PI – D.
Sing) with representative spectra from analogous stars at shorter wavelengths.

Our approach to estimating the ultraviolet stellar SED was based on two
factors: 1) in the NUV (2300 – 2950 Å), where the flux is dominated by the
photosphere, we chose a proxy with a similar spectral type to WASP-39, and
2) in the XUV and FUV (1 – 2300 Å), where the stellar flux is dominated by
chromospheric, transition region, and coronal emission lines, we chose a proxy
star with similar chromospheric activity indicators and used spectral type as
a secondary consideration. In the NUV, we used HST/STIS E230M spectra
of HD 203244, a relatively active (Ca II log(R

′

HK) = -4.4 [53]), nearby (i.e.,
unreddened, d = 20.8 pc; Gaia DR2), G5 V star (Teff=5480 K; [54]) from the
STARCat archive [55]. While HD 203244 is a suitable proxy at photospheric
wavelengths, WASP-39 is a relatively old (∼7 Gyr) star with low chromo-
spheric activity (logR

′

HK = -4.97 ± 0.06) and a long rotation period (Prot =
42.1 ± 2.6 days; [52]), suggesting significantly lower high-energy flux than HD
203244. Therefore, we elected to use a lower-activity G-type star, the Sun, at
wavelengths shorter than 2300 Å. The Sun has high-quality archival data avail-
able across the UV and X-rays and similar chromospheric activity to WASP-39
(the average solar Ca II log(R

′

HK) value is -4.902 ± 0.063, and ranges from
approximately -4.8 to -5.0 from solar maximum to solar minimum [56, 57]).
With the components in hand, we first corrected the observed STIS spectra
of WASP-39 for interstellar dust extinction of E(B – V ) = 0.079 [58] using
a standard RV = 3.1 interstellar reddening curve [59], then interpolated all
spectra onto a 0.5 Å pixel−1 grid. The NUV spectrum of HD 203244 was
scaled to the reddening-corrected WASP-39 observations in the overlap region
between 2900 and 3000 Å, and the XUV+FUV spectrum of the quiet Sun [60]
was scaled to the blue end of the combined SED. The flux scaling between
two spectral components is defined as ( (Fref - α × Fproxy) / σref )2 in the
overlap region, where “proxy” is the spectrum being scaled, “ref” is the spec-
trum to which we are scaling, and α is the scale factor applied to the proxy
spectrum. α is varied until the above quantity is minimized (α = 2.04×10−16

and 7.58×10−3 for the FUV and NUV component, respectively.). The final
combined spectrum was convolved with a 2 Å FWHM Gaussian kernel, and
wavelengths longer than 7000 Å were removed to avoid the near-IR fringing
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in the STIS G750L mode. We show the stellar spectrum at the surface of the
star used for our photochemical models in Extended Data Fig. 2.

We compared our estimated SED for WASP-39 against archival GALEX
observations from [61], who find the NUV (1771–2831 Å) flux density to be
168.89 µJy, or an average NUV spectral flux of Fλ = 9.8 × 10−16 erg cm−2 s−1

Å−1 at 2271 Å. Correcting this value by the average extinction correction in
the GALEX NUV bandpass, a factor of 1.79, and comparing it to the average
flux of our estimated SED over the same spectral range (1.66 × 10−15 erg
cm−2 s−1 Å−1), we find the agreement between the GALEX measurement of
WASP-39 and our stellar proxy to be better than 6%.

Simulated Transmission Spectra from gCMCRT

To post-process the 1D photochemical model output and produce transmission
spectra, we use the 3D Monte Carlo radiative-transfer code gCMCRT [39].

For processing 1D columns, gCMCRT uses 3D spherical geometry but with
a constant vertical profile across the globe in latitude and longitude. In this
way, spectra from 1D outputs can be computed. We process each photochem-
ical model’s morning and evening terminator vertical 1D chemical profiles
separately, taking the average result of the two transmission spectra to produce
the final spectra that are compared to the observational data.

In the transmission spectra model, we use opacities generated from the
following line lists: H2O [63], OH [64] CO [65], CO2 [66], CH4 [67], CH3 [68],
HCN [69], C2H2 [70], C2H4 [71], C2H6 [72], C4H2 [72], C2 [73], CN [74], CH
[75], SO2 [40], SH [49], SO [76], H2S [77], NO [78], N2O [78], NO2 [78], HCl
[72], Na [79], K [79].

Description of Photochemical Models

We use the following 1D thermo-photochemical models to produce the steady-
state chemical abundance profiles for the terminators of WASP-39b. All models
assume cloud-free conditions and adopt the same temperature profiles, stellar
UV flux, eddy diffusion coefficient profile (Extended Data Fig. 2), and zero-
flux (closed) boundary conditions. A zenith angle of 83 degrees (an effective
zenith angle that matches the terminator-region-mean actinic flux for near-
unity optical depth) is assumed for the terminator photochemical modelling.

VULCAN

The 1D kinetics model VULCAN treats thermochemical [38] and photochem-
ical [6] reactions. VULCAN solves the Eulerian continuity equations including
chemical sources/sinks, diffusion and advection transport, and condensa-
tion. We applied the C–H–N–O–S network (https://github.com/exoclime/
VULCAN/blob/master/thermo/SNCHO photo network.txt) for reduced
atmospheres containing 89 neutral C-, H-, O-, N-, and S-bearing species and
1028 total thermochemical reactions (i.e., 514 forward-backward pairs) and
60 photolysis reactions. The sulphur allotropes are simplified into a system

https://github.com/exoclime/VULCAN/blob/master/thermo/SNCHO_photo_network.txt
https://github.com/exoclime/VULCAN/blob/master/thermo/SNCHO_photo_network.txt
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of S, S2, S3, S4, and S8. The sulphur kinetics data is drawn from the NIST
and KIDA databases, as well as modelling [80][5] and ab-initio calculations
published in the literature [e.g., 81]. For simplicity and cleaner model com-
parison, the temperature-dependent UV cross sections [6] are not used in this
work. The pathfinding algorithm described in [82] is utilised to identify the
important chemical pathways. We note that the paths presented in this study
are mainly based on VULCAN output (see Extended Data Table 1). While
detailed reactions might differ between different photochemical models, the
major paths remain robust.

KINETICS

The “KINETICS” 1D thermo-photochemical transport model [41] uses the
Caltech/JPL KINETICS model [83, 84] to solve the coupled 1D continuity
equations describing the chemical production, loss, and vertical transport of
atmospheric constituents of WASP-39 b. The model contains 150 neutral C-,
H-, O-, N-, S-, and Cl-bearing species that interact with each other through
2350 total reactions (i.e., 1175 forward-reverse reaction pairs). These reac-
tions have all been fully reversed through the thermodynamic principle of
microscopic reversibility [85], such that the model would reproduce thermo-
chemical equilibrium in the absence of transport and external energy sources,
given sufficient integration time. The chemical reaction list involving C-, H-
, O-, and N-bearing species is taken directly from [23]. Included for the first
time here are 41 sulphur and chlorine species: S, S(1D), S2, S3, S4, S8, SH,
H2S, HS2, H2S2, CS, CS2, HCS, H2CS, CH3S, CH3SH, SO, SO2, SO3, S2O,
HOSO2, H2SO4 (gas and condensed), OCS, NS, NCS, HNCS, Cl, Cl2, HCl,
ClO, HOCl, ClCO, ClCO3, ClS, ClS2, Cl2S, ClSH, OSCl, ClSO2, and SO2Cl2.
The thermodynamic data of several chlorine- and sulphur-bearing species are
not available in previous literature, and we performed ab initio calculations
for these species. We first carried out electronic structure calculations at the
CBS-QB3 level of theory using Gaussian 09 ([86]) to determine geometric con-
formations, energies, and vibrational frequencies of the target molecules. Then
the thermodynamic properties of these molecules were calculated by Arkane
([87]), a package included in the open-source software RMG v3.1.0 ([88, 89]),
with atomic energy corrections, bond corrections, and spin-orbit corrections,
based on the CBS-QB3 level of theory as the model chemistry. The reac-
tion rate coefficients and photolysis cross sections for these S and Cl species
are derived from Venus studies [90–95], interstellar medium studies [96], Io
photochemical models [97, 98], Jupiter cometary-impact models [99, 100], the
combustion-chemistry literature [101–104], terrestrial stratospheric compila-
tions [105, 106], and numerous individual laboratory or computational kinetics
studies [e.g., 107–111].
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ARGO

The 1D thermochemical and photochemical kinetics code, ARGO, originally
[112, 113] utilised the Stand2019 network for neutral hydrogen, carbon, nitro-
gen and oxygen chemistry. ARGO solves the coupled 1D continuity equation
including thermochemical-photochemical reactions and vertical transport. The
Stand2019 network was expanded by Ref [114] by updating several reactions,
incorporating the sulphur network developed by Ref [15], and supplement-
ing it with reactions from Ref [116] and Ref [94], to produce the Stand2020
network. The Stand2020 network includes 2901 reversible reactions and 537
irreversible reactions, involving 480 species composed of H, C, N, O, S, Cl and
other elements.

ATMO

The C–H–N–O chemical kinetics scheme from Ref [117] is implemented by
Ref [118] in the standard 1D atmosphere model ATMO, which solves for the
chemical disequilibrium steady state. As of the time of writing of this article,
the sulphur kinetic scheme of ATMO, derived from applied combustion mod-
els, is still at the development and validation stage. Hence, for WASP-39b, we
performed ATMO with the C–H–N–O–S thermochemical network from VUL-
CAN [6] along with the photochemical scheme from Ref [119] (an update of the
native photochemical scheme from Ref [117]), with the additional 71 photolysis
reactions of H2S, S2, S2O, SO, SO2, CH3SH, SH, H2SO, and COS.

Sensitivity Tests

We examine the sensitivity of our chemical outcomes to essential atmospheric
properties using VULCAN. For models with various metallicity and C/O
ratios, we explore the sensitivity to temperature and vertical mixing by sys-
tematically varying the temperature-pressure and eddy diffusion coefficient
profiles. Specifically, the temperature throughout the atmosphere is shifted by
50 K and the eddy diffusion coefficients are multiplied/divided by 10. These
variations span a range comparable to the temperature differences among
radiative transfer models [47] and the uncertainties in parameterising verti-
cal mixing with eddy diffusion coefficients [120, 121]. Regarding our choice of
internal heat, we have further conducted tests with different internal temper-
atures and found the compositions above 1 bar are not sensitive to internal
temperature, because the quench levels of the main species are at higher lev-
els given the adopted eddy diffusion coefficient. We have also verified that the
temperature above the top boundary of the GCM (∼ 5× 10−5 bar; Extended
Data Fig. 2) does not impact the composition below.

Sensitivity to C/O is summarised in Extended Data Fig. 5 where the nomi-
nal model has a C/O ratio of 0.55 as in the main text. The averaged abundance
of both SO2 and H2O in the pressure region relevant for transmission spectrum
observations show similar dependencies on C/O, decreasing by a few factors
as the C/O increased from sub-solar (0.25) to super-solar (0.75) values. The
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averaged abundance of SO2 is not too sensitive to temperature and vertical
mixing either, except for C/O = 0.75 where the SO2 concentration is ∼ ppm
level, similar to what is found in Figure 4.

Finally, we performed sensitivity tests to the UV irradiation – the ultimate
energy source of photochemistry. We first tested the sensitivity to the assumed
stellar spectra by performing the same models with the solar spectrum (close
to WASP-39) and found negligible differences in the photochemical results.
Since the UV spectrum shortward of 295 nm is constructed from stellar proxies
rather than directly measured, we then focused on varying the stellar flux in
the FUV (1–230 nm) and NUV (230-295) separately. Extended Fig. 8 shows
that the resulting sulphur species abundances are almost identical when the
UV flux is reduced by a factor of 10, broadly consistent with what [5] suggested
that the photochemical destruction of H2S only becomes photon limited when
the stellar UV flux is reduced by about two orders of magnitude (for a directly
imaged gas giant). On the other hand, while SO and SO2 are not sensitive
to increased NUV, they are significantly depleted with increased FUV. This
is owing to that the photodissociation of SO and SO2 mainly operates in the
FUV, and the enhanced FUV can destroy SO and SO2, even with the same
amount of available OH radicals.

Spectral Effects of Assuming a Vertically Uniform SO2

Distribution

Minor species commonly have VMR varying with altitude in the observable
region of the atmosphere, especially those produced or destroyed by photo-
chemistry. Extended Fig. 9 demonstrates that assuming a vertically-constant
VMR of SO2 can lead to underestimating its abundances by about an order
of magnitude. This is verified by comparing the column-integrated number
density from the pressure level relevant for transmission spectroscopy. For
example, the terminator-averaged column-integrated number density of SO2

above 10 mbar by VULCAN is about 1.4 × 1019 molecules/cm2, which is
equal to a vertically uniform SO2 with a concentration around 4 ppm. Hence
modelling frameworks that assume vertically uniform composition should be
treated with caution and would benefit from comparisons with photochemi-
cal models, especially for photochemical active species that can exhibit large
vertical gradients.

Opacities of Sulphur Species

The opacities of sulphur species illustrated in extended data Fig. 7 are com-
piled from UV cross sections and IR line lists. The room-temperature UV
cross sections are taken from the Leiden Observatory database [122](http:
//home.strw.leidenuniv.nl/∼ewine/photo). The IR opacities include SO2[123],
H2S[124], [125], CS[126], and a newly computed high-temperature line list for
SO[127]. The opacity from OCS[128] is currently only available up to room
temperature, hence its coverage is likely incomplete in our region of interest.

http://home.strw.leidenuniv.nl/~ewine/photo
http://home.strw.leidenuniv.nl/~ewine/photo
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Alternative SO2 production pathways

S2 formation can compete with SO2 production, as we will explore in detail
in the next section. On WASP-39b, reactions involving S2 are found to be
important in oxidising S at high pressures where less OH is available. S and
SH would first react to form S2 by SH+S −−→ H+S2 before getting oxidised
through S2 +OH −−→ SO + SH. The scheme is similar to (1) except SH and
S2 play the role of catalyst to oxidise S into SO while SO can also self-react
to form SO2 in this regime (references of important reactions are listed in
Extended Data Table 1).

Implications of Observing Sulphur Photochemistry

The temperature of WASP-39b resides within the sweet spot of producing
SO2[16]. Previous photochemical modelling works suggested that at lower tem-
peratures, sulphur allotropes would be favoured over SO2 while SH can prevail
at higher temperatures[5, 6]. Here, we briefly elucidate the general temperature
trends of sulphur photochemical products.

After S is liberated from H2S, sulphur can either follow the oxidisation
or chain polymerisation paths, as illustrated in Fig. 2. The competing of the
two paths is essentially controlled by the abundance of the oxidising radical
OH relative to atomic H. We can estimate the OH to H ratio by assuming
OH is in quasi-equilibrium with H2O, i.e. kH2O[H2O][H] = k’H2O[OH][H2],
where kH2O and k’H2O are the forward and backward rate constants of H2O+

H −−→ OH + H2, respectively. Then [OH]/[H] ∼ 2
kH2O

k′
H2O

× O/H, since most

of the O is in H2O. Extended Data Fig. 10 (a) shows that the [OH]/[H] ratio
strongly depends on temperature. When the temperature drops below ∼750
K, the scarcity of OH makes S preferably react with SH to form S2. SO and
SO2 could only be produced at higher altitudes where more OH is available
from water photolysis [e.g., 5, 6].

We further perform photochemical calculations using VULCAN with a grid
of temperature profiles across planetary equilibrium temperatures 600–2000
K, adopted from the 1D radiative-convective equilibrium models applied in
[130], where an internal temperature of 100 K with perfect heat redistribution
and gravity g = 1000 cm/s2 are assumed. Apart from the thermal profiles, we
keep the rest of the planetary parameters the same as the WASP-39b model in
this work, including stellar UV irradiation. Extended Data Fig. 10 (b) sheds
light on observing sulphur photochemistry on other irradiated exoplanets, sum-
marising the averaged abundances of the key sulphur molecules produced by
photochemistry as a function of equilibrium temperature. For 10 ×solar metal-
licity, the sweet spot temperature for producing observable SO2 is 1000 K ≲
Teq ≲ 1600 K. For Teq ≲ 1000 K, SO2 production below the 0.01 mbar level
ceased and Sx (sulphur allotropes; mainly S2 and S8 here) is more favoured. For
Teq ≳ 1600 K, SH becomes the predominant sulphur-bearing molecular (apart
from atomic S) around mbar levels. While observing SH is challenging in the
infrared, it can potentially be identified in the Near-UV (300–400 nm)[131].
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Extended Data Fig. 1: Chemical equilibrium abundances in the
atmosphere of WASP-39b. The volume mixing ratio profiles of H2O (blue),
CO2 (orange), H2S (green), and SO2 (red), as computed by FastChem [132]
based on the morning terminator temperature profile, are given for 10 × (solid)
and 100 × (dashed) solar metallicity.
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Extended Data Fig. 2: The temperature-wind map of the WASP-
39b Exo-FMS GCM and input for 1D photochemical models. (a):
The colour scale represents temperature across the planet and arrows denote
the wind direction and magnitude at 10 mbar. The ± 10◦ longitudinal regions
with respect to the morning and evening terminators are indicated with solid
grey lines. The ‘+’ symbol denotes the sub-stellar point. (b): 1D Temperature-
Pressure profiles adopted from the morning and evening terminators averaging
all latitudes and ± 10◦ longitudes (grey-line enclosed regions in panel (a))
and the Kzz profile (Equation (2) and held constant below the 5-bar level)
overlaying the root-mean-squared vertical wind multiplied by 0.1 scale height
from the GCM (grey). The temperatures are kept isothermal from those at
the top boundary of the GCM around 5 × 10−5 bar when extending to lower
pressures (∼ 10−8 bar) for photochemical models. (c): Input WASP-39 stellar
flux at the surface of the star. The pink shaded region indicates the optical
wavelength range where the stellar spectrum is directly measured, whereas the
blue and green shaded regions are those constructed from the Sun and HD
20324, respectively.
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strate their potential impact on the temperature structure. Heating due to a
vertically constant grey opacity of 0.05 cm2 g−1 is shown for comparison. All
heating rates are integrated over 220–800 nm.



12 Photochemically-produced SO2 in the atmosphere of WASP-39b

10 1 101 103 105 107

production and loss rates (cm 3s 1)

10 8

10 6

10 4

10 2

100

pr
es

su
re

 (b
ar

)

SO + OH  SO2 + H
SO2 + hv  SO + O
SO + SO  SO2 + S

Extended Data Fig. 4: The main source and sink profiles of SO2 in
our WASP-39b model. The reaction rates of the main sources and sinks of
SO2 in the VULCAN morning-terminator model for WASP-39b. The dashed
lines of the same colour are the corresponding reverse reactions and the black
dotted line indicates the distribution profile (arbitrarily scaled) of SO2.



Photochemically-produced SO2 in the atmosphere of WASP-39b 13

0.25 0.5 0.75
C/O ratio

10 8

10 7

10 6

10 5

10 4

10 3

10 2

av
er

ag
e 

vm
r b

et
we

en
 1

0 
an

d 
0.

01
 m

ba
r

H2O

CO2

SO2

(a)

3 3.5 4 4.5 5
wavelength ( m)

2.05

2.10

2.15

2.20

2.25

2.30

2.35

tra
ns

it 
de

pt
h 

(%
)

H2O SO2

CO2
VULCAN C/O = 0.25
VULCAN C/O = 0.55 (solar)
VULCAN C/O = 0.75

NIRSpec PRISM (FIREFly)

(b)

Extended Data Fig. 5: The C/O trends and synthetic spectra. Same
as Fig. 4 but as a function of a function of C/O ratio at 10× solar metal-
licity. Panel (a) shows the averaged VMR of H2O, CO2, and SO2 between
10 and 0.01 mbar as a function of C/O ratio, where the solar C/O is 0.55.
The nominal model is shown in solid lines, whereas the eddy diffusion coef-
ficient (Kzz) scaled by 0.1 and 10 are shown in dashed and dashed-dotted
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that exhibit differences from VULCAN including sulphur kinetics (solid) and
without sulphur kinetics (dashed).
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Extended Data Fig. 8: The main sulphur species abundances with
reduced and enhanced UV irradiation. Volume mixing ratio profiles of
the main sulphur species in the VULCAN morning-terminator model with
0.1× (Panel (a)) and 10× (Panel (b)) UV. Our nominal model is shown in
solid lines for comparison, while the model with varying FUV (1–230 nm) is
shown in dashed line and that with varying NUV (230–295 nm) is shown in
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Extended Data Table 1: Important reactions for SO2 Production.
Selected list of reactions relevant for SO2 Production in the VULCAN model
of WASP-39b.

Reaction
Rate Coefficient

(cm3 molecules−1 s−1)
Valid Temperature

(K)
Ref.

H2S +H −−→ SH+H2 5.8 ×10−17 T 1.94 exp(−455/T ) 190–2237 [109]
SH+H −−→ S +H2 2.16 ×10−11 295 [133]
S +OH −−→ SO+H 6.59 ×10−11 298 [107]
SO+OH −−→ SO2 +H 1.79 ×10−7 T−1.35 295–703 [134]
S + SH −−→ S2 +H 4 ×10−11 295 [135]
SO+ SH −−→ S2 +OH 1 ×10−13 exp(−2300/T ) Est.[102]
SO+ SO −−→ SO2 + S 3.5 ×10−15 298 [136]
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