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HECKE CYCLES ON MODULI OF VECTOR BUNDLES AND ORBITAL

DEGENERACY LOCI

V. BENEDETTI, M. BOLOGNESI, D. FAENZI, L. MANIVEL

Abstract. Given a smooth genus two curve C, the moduli space SUC(3) of rank three semi-
stable vector bundles on C with trivial determinant is a double cover in P8 branched over
a sextic hypersurface, whose projective dual is the famous Coble cubic, the unique cubic
hypersurface that is singular along the Jacobian of C. In this paper we continue our exploration
of the connections of such moduli spaces with the representation theory of GL9, initiated in
[GSW13] and pursued in [GS15, RS18, RS19, BMT21]. Starting from a general trivector v
in ∧3C9, we construct a Fano manifold DZ10(v) in G(3, 9) as a so-called orbital degeneracy
locus, and we prove that it defines a family of Hecke lines in SUC(3). We deduce that DZ10(v)
is isomorphic to the odd moduli space SUC(3,OC(c)) of rank three stable vector bundles on
C with fixed effective determinant of degree one. We deduce that the intersection of DZ10(v)
with a general translate of G(3, 7) in G(3, 9) is a K3 surface of genus 19.

1. Introduction

The Coble hypersurfaces are among the most fascinating objects in algebraic geometry, being
connected with an unusual amount of different topics such as abelian varieties and their moduli
spaces, moduli spaces of points in P2, theta-groups and theta-representations à la Vinberg, or
the arithmetic invariant theory of Bhargava-Gross. Long after their discovery in the first
quarter of 20th century, they were realized to be directly connected to certain moduli spaces
of vector bundles on curves. Indeed, a Coble quartic in P7 is isomorphic to the moduli space
SUC(2) of rank two semistable bundles with trivial determinant on a genus three curve C. For
a curve C of genus two, the moduli space SUC(3) of rank three semistable bundles with trivial
determinant is a double cover of P8, branched over a sextic hypersurface whose projective dual
is a Coble cubic [Ort05, Ngu07, BB12]. The geometry of the Coble hypersurfaces reflects in
many ways the geometry of these curves.

More generally, the moduli spaces SUC(r, L) of semi-stable vector bundles of rank r on C
with fixed determinant L have been thoroughly investigated, from many different perspectives,
including theta maps, conformal blocks and the Verlinde formula. Up to isomorphism, they do
not depend on L but only on its degree d modulo r, and up to sign. Moreover they are smooth
when d and r are coprime. So the moduli spaces that are connected to the Coble hypersurfaces
have each one smooth companion, and one can wonder how these Fano manifolds fit into the
picture.

For genus three, we provided an answer to this question in [BBFM23], where we proved
that the moduli space SUC(2, L) of stable vector bundles with fixed determinant L of degree
one, can be embedded in the Grassmannian G(2, 8) as the singular locus of a special quadratic
section of the Grassmannian. This quadratic section is uniquely determined by this property,
exactly as the Coble quartic is uniquely determined by the fact that it is singular along the
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Kummer threefold of C; for this reason we coined it the Coble quadric. Our main purpose in
this paper is to obtain a similar description of the odd moduli space in genus two.

As in [BBFM23], our study will be based on the beautiful relationships with certain theta-
representations, in the sense of Vinberg. To be more specific, it was observed in [GSW13]
that a Coble quartic can easily be constructed from a general element in ∧4V8, if we denote
by V8 a complex vector space of dimension eight. Similarly, a Coble cubic can be constructed
from a general element in ∧3V9, if V9 is now a complex vector space of dimension nine. In
[BMT21] we used the approach of orbital degeneracy loci, whose general theory was developped
in [BFMT20a, BFMT20b], to explore this connection further and construct the Coble sextic
and its singular locus, and even the generalized Kummer fourfold associated to the Jacobian
of the curve, which is a famous example of hyperKähler manifold. Here we further apply these
ideas to linear spaces in SUC(3).

Lines in the moduli spaces SUC(r, L) have been investigated by many authors, where by
lines we mean rational curves that have degree one with respect to the ample generator of the
Picard group. In SUC(3) there are three families of lines passing through the general point:
one family of Hecke lines, and two families of lines contained in the P4’s of the two natural
rulings of the moduli space. Starting from a general element v in ∧3V9, we will be able to
describe these two rulings in terms of orbital degeneracy loci (Proposition 3.2). In order to
describe the Hecke lines, we will first construct an orbital degeneracy locus in G(3, V9), that
we denote by DZ10(v), and we will prove that each point of DZ10(v) defines two Hecke planes
in SUC(3) (where we define a Hecke plane as a plane whose lines are all Hecke lines). It is
probably known to the experts that although the family of Hecke lines is irreducible, the family
of Hecke planes has two different components, and this is one of the key properties that will
allow us to prove our main result (Theorem 4.9):

Theorem. For v general in ∧3V9, the Fano eightfold DZ10(v) ⊂ G(3, V9) is isomorphic to the
odd moduli space SUC(3,OC(c)), c ∈ C.

An important advantage of this approach by orbital degeneracy loci is that it provides lots of
informations on the embedding of SUC(3,OC(c)) into the Grassmannian. For example we get a
free resolution of its ideal sheaf, from which we can confirm an expectation recently expressed
by Mukai and Kanemitsu [KM23], that the intersection of the moduli space with a general
translate of G(3, 7) in G(3, 9) is a K3 surface of genus 19 (Proposition 4.14). In fact, there is a
natural embedding of SUC(3,OC(p)) in G(3, V9) for any choice of a point p on C, and playing
with these one expects to be able to describe a locally complete family of K3 surfaces of genus
19. Such locally complete families have been constructed so far for most values of the genus
up to 20, but genus 19 would be new.

The plan of the paper is the following. In section 2, we recall some useful facts about the
lines and planes inside the moduli space SUC(3), for C a curve of genus 2. In section 3 we recall
the connections with representation theory and use them to describe explicitely the rulings of
SUC(3) by P4’s, starting from a general element v of ∧3V9. In section 4 we apply the same
approach to Hecke lines and planes. We define the orbital degeneracy locus DZ10(v), show that
it parametrizes pairs of Hecke planes and deduce our main Theorem. Finally we describe the
minimal resolution of its ideal sheaf and the application to K3 surfaces of genus 19.
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and V.B. partially supported by SupToPhAG/EIPHI ANR-17-EURE-0002, Région Bourgogne-
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2. Moduli space of rank 3 vector bundles on genus 2 curves

2.1. Moduli spaces. We will use the same notations as in [BBFM23]: we denote by UC(r, d)
the moduli space of semi-stable vector bundles on a curve C of rank r and determinant of degree
d. If L is a degree d line bundle on C, we will denote by SUC(r, L) the subvariety of UC(r, d)
parametrizing vector bundles of fixed determinant L; moreover SUC(r) := SUC(r,OC). Since
all the moduli spaces SU(r, L) are (non canonically) isomorphic when the degree of L is fixed,
we will also denote their isomorphism class by SUC(r, d); it does depend on d only modulo r.

2.2. Theta maps. In this paper we focus on the case where C has genus two and the rank
r = 3. The moduli space SUC(3) has Picard rank one, and the positive generator of the Picard
group defines the Theta map

θ : SU3(C) −→ |3Θ| = P(V9)

to the linear system |3Θ| on C. This map is a double cover branched over a sextic hypersurface
S, whose projective dual is the Coble cubic, characterized as the unique cubic hypersurface in
P(V ∨

9 ) that is singular along the Jacobian of C [Ort05, Ngu07, Bea03].
The sextic S is also singular, in fact its singular locus identifies with that of SUC(3), which

has dimension five and can be described set theoretically as the locus of properly semi-stable
vector bundles, equivalent to a direct sum E = F ⊕det(F )∨ for some rank two vector bundle F
of degree zero on C. As a deeper stratum, we get the fourfold K parametrizing vector bundles
E = L1 ⊕ L2 ⊕ L3, for three degree zero line bundles L1, L2, L3 with trivial tensor product.
When two among the three bundles L1, L2, L3 coincide, we get a surface that is a singular
model of the Jacobian of C. Its singular locus, where the three bundles L1, L2, L3 all coincide,
is in bijection with the 81 three-torsion points of the Jacobian.

2.3. Lines in the moduli space. Rational curves in the moduli spaces SUC(r, d) were ex-
tensively studied, see e.g. [NR75, NR78, Sun05, MS09, Pal16, MTiB20]. Restricting to g = 2,
r = 3 and d = 0, the results of [MTiB20] show that there exist three different families of cover-
ing lines, i.e. families of rational curves of degree one with respect to the Theta embedding and
passing through a general point of the moduli space. We will denote these three families, as
subvarieties of the Hilbert scheme, by FH , FR1 , FR2 , and we will denote by FH , FR1 , FR2 their
bijective images inside the Grassmannian G(2, V9). They all have dimension eleven, which is
the expected dimension.

2.3.1. Hecke lines. The family FH of Hecke lines is most naturally defined as parametrizing
lines in planes that are constructed as follows. Start with a point p ∈ C and a stable rank
three vector bundle E on C with det(E) = OC(p). Any non zero linear form on the fiber Ep
defines a rank three vector bundle F on C as the kernel of the composition E→Ep→Op. Since
E is stable of degree one, by [NR78, Remark 5.2 (v)] it is (0, 1)-semistable, and then by [NR78,
Lemma 5.5] the vector bundle F is automatically semistable.

We thus get a linear embedding of P(E∨
p ) inside SUC(3), whose image we will denote by

Π(E, p) (this is a good Hecke cycle in the terminology of [NR78]; the fact that the embedding
is linear is e.g. in [MTiB20]). By the first paragraph of the proof of [NR78, Theorem 5.13], the
resulting morphism

ϕp : SUC(3,OC(p))−→G(3, V9)

is injective.
Note also that the point p can be uniquely recovered from any good Hecke plane. Indeed,

the image of P(E∨
p ) in SUC(3) is defined by the rank three bundle M over C × P(E∨

p ) fitting
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into the exact sequence

0−→M−→p∗1E−→p∗1Op ⊗ p∗2OP(E∨
p )(1)−→0

[NR78, page 362]. For a point q ̸= p of C, the restriction M(q) of M to {q}×P(E∨
p ) is a trivial

bundle on P2, while M(p) is the direct sum of the hyperplane bundle and the dual tautological
bundle, in particular it is non trivial. This allows to distinguish p among the points of C.

The lines in the planes Π(E, p) are the Hecke lines. They are specified by fixing a one-
dimensional subpace L of Ep, and considering the planes P ⊂ Ep that contain L; we will
denote the corresponding Hecke line by δ(E, p, L). In fact the previous argument works over
such a line:

Lemma 2.1. A Hecke line δ(E, p, L) uniquely determines the vector bundle E and also the
point p in general.

As a result, the projectivization F̂H of the dual universal bundle on what is denoted UC(3, C)
in [NR78] (the moduli space of stable bundles with effective determinant of degree one) maps
birationally to FH , and fibers over the curve C.

2.3.2. Lines in the rulings. Another way to construct lines in SUC(3) is to use extensions
between bundles of smaller ranks. Consider stable vector bundles E1, E2 with rank(E1) = r1
and rank(E2) = r2 = 3 − r1, r1 being either 1 or 2. Suppose that E1 has degree −1 and E2

degree 1, with det(E1) = det(E2)
−1. So if r1 = 1, the line bundle E1 is determined by E2, and

vice versa: if r1 = 2, the line bundle E2 is determined by E1. The space of extensions between
E1 and E2 is five dimensional, and we get a linear embedding of P(Ext1(E2, E1)) ≃ P4 inside
SUC(3). Hence we obtain two rulings R1 and R2 in four-dimensional projective spaces. The
families FR1 and FR2 consist in the lines contained in these two rulings.

Lemma 2.2. A line in FR1 (or FR2) that is contained in the stable locus of the moduli space
is contained in a unique linear space of the ruling.

Proof. Consider a line δ in SUC(3) which is contained in two different members of the rul-
ing R1, corresponding to pairs of vector bundles (E1, E2) and (E′

1, E
′
2), and two planes A ⊂

Ext1(E2, E1), A
′ ⊂ Ext1(E′

2, E
′
1). Each point of P(A) and P(A′) can be identified to a point

of δ = P(B) , and we can choose isomorphisms A ≃ B ≃ A′ compatible with these identifica-
tions. Hence an element e of Hom(B,Ext1(E2, E1)) ≃ Ext1(p∗1E2, p

∗
1E1 ⊗ p∗2OP(B)(1)), where

the latter Ext group is taken between vector bundles on C ×P(B) = C × δ, with p1 and p2 the
two projections. This defines on this surface an extension (see [MTiB20, Proposition 2.5])

0−→p∗1E1 ⊗ p∗2OP(B)(1)−→E−→p∗1E2−→0.

Similarly, we get an element e′ of Hom(B,Ext1(E′
2, E

′
1)) ≃ Ext1(p∗1E

′
2, p

∗
1E

′
1⊗p∗2OP(B)(1)), and

an extension

0−→p∗1E
′
1 ⊗ p∗2OP(B)(1)−→E′−→p∗1E

′
2−→0.

We claim that E ≃ E′. Since δ is supposed not to meet the locus of properly semistable bundles
(the singular locus of the moduli space), the isomorphism class of EC×{t} is uniquely determined
at every point t ∈ δ, and has to coincide with that of E′

C×{t}. Since this is true for any t ∈ δ, we

deduce from [Ram73, Lemma 2.5] that E′ = E⊗ p∗2N for some line bundle N on δ; computing
determinants we see that N is in fact trivial.

But then the composition

p∗1E1 ⊗ p∗2OP(B)(1)−→E ≃ E′−→p∗1E
′
2
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clearly has to vanish, hence there is an induced morphism from p∗1E1 ⊗ p∗2OP(B)(1) to p
∗
1E

′
1 ⊗

p∗2OP(B)(1), and then from E1 to E′
1. Exchanging e and e

′ we deduce that in fact E1 ≃ E′
1 and

E2 ≃ E′
2. □

In the construction of the rulings, the rank two bundle (or its dual) is parametrized by
UC(2, 1) and determines the rank one bundle. So the rulings are parametrized by UC(2, 1). By
the previous Lemma, the corresponding families of lines FR1 and FR2 are the birational images

of F̂R1 and F̂R2 , which are G(2, 5)-fibrations over UC(2, 1). Notice that since UC(2, 1) is a fiber

bundle over the abelian surface Pic1(C), this is also the case for F̂R1 and F̂R2 .

2.3.3. Action of the involution. According to [Ort05], the covering involution τ of the double
cover θ of SUC(3) is given by E 7→ τ(E) := ι∗E∨, where ι is the hyperelliptic involution of C.

Lemma 2.3. The two rulings R1 and R2 are exchanged by τ .

Proof. If the bundle E fits into an exact sequence

0 → E1 → E → E2 → 0,

with rank(E1) = 2, deg(E1) = −1, rank(E2) = 1, deg(E2) = 1, then ι∗E∨ fits into the exact
sequence

0 → ι∗E∨
2 → ι∗E∨ → ι∗E∨

1 → 0,

with rank(ι∗E∨
2 ) = 1, deg(ι∗E∨

2 ) = −1, rank(ι∗E∨
1 ) = 2, deg(ι∗E∨

1 ) = 1. This implies the
claim. □

The upshot is that the images of FR1 and FR2 inside G(2, V9) form a single family FR :=
FR1 = FR2 , and their fibrations over Pic1(C) descend to FR.

Lemma 2.4. The family FH of Hecke lines is preserved by τ .

Proof. This is clear from the previous Lemma since the lines are preserved by τ . But let us
be more precise. Let E be a stable rank three vector bundle such that det(E) = OC(p) for a
point p ∈ C. Consider a complete flag L ⊂ P ⊂ Ep. There is a commutative diagram

0

Op ⊗ P/L

OO

0

0 // FP //

OO

E // Op ⊗ Ep/P //

OO

0

0 // G∨
L

γL //

OO

E // Op ⊗ Ep/L

OO

// 0

0

OO

Op ⊗ P/L

OO

0

OO

The bottom horizontal exact sequence defines a vector bundle G∨
L, whose dual GL has again

rank three and determinant OC(p). Moreover GL is also stable. Indeed, FP is (semi)stable
of degree 0, hence (0, 1)-(semi)stable. By [NR78, Lemma 5.5] G∨

L is then (0, 0)-(semi)stable,
hence (semi)stable as well as its dual.

The plane Π(E, p) in SUC(3) parametrized by P(E∨
p ) consists in the vector bundles FP , for

P ⊂ Ep. We get a line in this plane, that is, a Hecke line, by imposing to the planes P to
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contain a common line L. Then dualizing the first vertical exact sequence in the previous
diagram, and pulling-back by the hyperelliptic involution, we get

0−→ι∗F∨
P−→ι∗GL−→Oι(p)−→0,

confirming that the image of our Hecke line is again a Hecke line. □

Nevertheless, observe that the bundle ι∗GL that defines this Hecke line does really depend
on L, not only on E. This will be a direct consequence of the next

Lemma 2.5. The map from P(Ep) to SUC(3,OC(p)), sending L to GL, is non constant.

Proof. The proof mimicks the proof of [NR78, Lemma 5.9], where it is proved that the dif-
ferential of the morphism L 7→ GL is injective in a context that needs a little adaptation, as
follows. The differential is computed in [NR78, Lemma 5.10] in a rather general setting.

To deduce it is injective in our situation as well, let us onsider the exact sequence

0 → G∨
L → E → Op ⊗ Ep/L→ 0.

By letting L vary in P(Ep), we get a family of extensions

0 → G∨ → p∗1E → p∗2Q⊗ O{p}×P(Ep) → 0

on C×P(Ep), where Q is the rank two tautological bundle on P(Ep). By [NR78, Lemma 5.10],
the differential of L 7→ GL is given by the connecting homomorphism

Hom((G∨|{p}×P(Ep),Q) → R1p2∗End(G).

But this fits in the exact sequence

0 → p2∗End(G) → p2∗Hom(G∨, p∗1E) → Hom((G∨|{p}×P(Ep),Q) → R1p2∗End(G).

Since G∨ is a family of stable bundles, p2∗End(G) = OP(Ep). Similarly to what happens in the

proof of [NR78, Lemma 5.9], the result will follow if we can show that Hom(G∨
L, E) is one

dimensional, which is essentially a slight modification of [NR78, Lemma 5.6].
In order to check this, the main observation is the following. The morphism γL : G∨

L→E
in the diagram above has full rank outside p. Suppose γ : G∨

L→E is another a morphism ,
generically of full rank. Then det(γ) defines a section of det(GL)⊗ det(E) = OC(2p). But this
line bundle has a unique global section, vanishing only (with multiplicity two) at p. So γ also
has to be an isomorphism outside p. But if the dimension of Hom(G∨

L, E) was bigger than one,
we could construct morphisms sγL + tγ whose rank would drop at any chosen point of C, and
this would yield a contradiction. □

Proposition 2.6. The image of the plane Π(E, p) by the involution τ is

τ(Π(E, p)) = Π∗(ι∗E, ι(p)),

where Π∗(F, q) is the plane that parametrizes the duals of the bundles parametrized by Π(F, q).
In particular, it is not a plane of the same type.

Proof. Indeed, if we had τ(Π(E, p)) = Π(E′, p′) for some bundle E′ and some point p′, then by
the proof of Lemma 2.4 we would deduce that GL = ι∗E′ does not depend on L. □

Let us define a Hecke plane in SUC(3) as a plane whose lines are all Hecke lines. We
have defined two distinct families of Hecke planes parametrized by UC(3, C) (which is nine
dimensional), and we want prove that there is no other Hecke plane through the general point
of SUC(3). The key point to prove this claim is the following result [Hwa02, Theorem 3]:
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Proposition 2.7. The VMRT at a general point [F ] of the family of Hecke lines is the image

of the relative flag manifold Fl(F )
ψ−→ C by the linear system |OFl(F )(1, 1)⊗ ψ∗KC |, into the

projectivized tangent space of SUC(3) at F , that is, P(H1(C,End0(F ))) ≃ P(H0(C, S2,1(F ) ⊗
KC)

∨).

Corollary 2.8. A general Hecke line is contained in exactly two Hecke planes.

Proof. Consider a general Hecke line δ(E, p, L) in SUC(3), and let Π be a Hecke plane containing
this line. Let [F ] be a general point on δ(E, p, L), and let us apply the previous Proposition.
In the VMRT at [F ], δ(E, p, L) defines a point δ, and Π defines a projective line π through δ.
Observe that any line in Π is a Hecke line, hence of the form δ(E′, p′, L′); since the point p′ is
uniquely determined in general, we get a rational map from the dual plane of lines in Π, to C,
and such a map must be constant, equal to p. This means that π is contained in the fiber over
p of the relative flag bundle Fl(F ). So we just need to consider the ordinary three-dimensional
flag manifold Fl(1, 2,C3). And then it is clear that any point (L0 ⊂ P0) is contained in exactly
two lines, parametrizing flags of the form (L0 ⊂ P ) or (L ⊂ P0). □

It would be interesting to describe the VMRT at a general point of the families FR1 and FR2 .
They must be P3-bundles over the families of P4’s in the rulings passing through the general
point [E] ∈ SUC(3), which are parametrized by curves C1 and C2. Note that like the rulings
R1 and R2, the curves C1 and C2 map to Pic1(C), and in fact these curves have a simple
description in terms of theta divisors. Each of them parametrizes line bundles L of degree -1
such that h0(L∨⊗E) ̸= 0. The locus of line bundles L∨ ∈ Pic1(C) that verify this condition is
just the theta divisor associated with E, which in this case is a divisor in Pic1(C) belonging to
the linear system |3Θ|. For general E, the associated theta divisor is smooth and irreducible.
An easy computation shows that the generic element of |3Θ| is a curve of genus 10.

Let us summarize the results we will use in the sequel.

Proposition 2.9. The moduli space SUC(3) admits three covering families of lines:

• The family FH of Hecke lines, which is birationally fibered over C.
• Two families of lines FR1 and FR2 contained in the rulings, which are birationally fibered
over Pic1(C) and exchanged by the involution τ ; they both descend to the same family
FR inside G(2, V9), which is still birationally fibered over the abelian surface Pic1(C).

The moduli space SUC(3) also admits four covering families of planes:

• Two families PH , PH∗ of Hecke planes, both birationally fibered over C.
• Two families PR1 and PR2 of planes contained in the rulings, both birationally fibered
over Pic1(C).

Proof. The only point that does not follow from the previous discussion is that there is not
other plane Π through the general point of SUC(3), which is made of lines contained in one of
the rulings. What we have to exclude is that the lines in Π belong to P4’s, say from R1, that
move with the line. In this situation, we would get a map from the dual plane Π∨ to R1, that
we could compose with the projection to Pic1(C). The composition would need to be constant,
which means that the line bundle we denoted E1 must be constant.

But then, consider the pencil of lines in Π passing through a fixed general point [E] of
SUC(3). For each of these lines we get a morphism E1−→E, and the quotient bundle has to
change with the line. So we deduce that F = Hom(E1, E) has at least two global sections.
This means that F belongs to the Brill-Noether stratum W1

3,3, which according to [BPGN97]

has the expected dimension given by the Brill-Noether number ρ13,3 = 6. Since F determines
E1 up to 3-torsion, this leaves only six parameters also for E, which cannot be general. □
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3. ODL interpretations

In this section we summarize the results of [GSW13] and [BMT21] about the relationships
between the moduli space SUC(3), the Coble cubic and a skew-symmetric cubic tensor in nine
variables.

3.1. On the Coble side. The starting point is a general v ∈ ∧3V9. By the Borel-Weil theorem,
there is a natural identification

∧3V9 ≃ H0(P(V ∨
9 ),∧2U(1)),

where U denotes the rank eight tautological bundle. This allows to consider the skew-symmetric
cubic tensor v as a family of skew-symmetric bilinear forms, and then the loci where these
forms drop rank: first a Pfaffian cubic hypersurface, and then its singular locus where the rank
drops to six. This turns out to be an abelian surface, and the Pfaffian hypersurface is the
corresponding Coble cubic, being singular exactly on the abelian surface.

3.2. On the dual side. The Borel-Weil theorem gives another identification

∧3V9 ≃ H0(P(V9),∧3Q),

where Q denotes the rank eight tautological quotient bundle. This allows to consider the
skew-symmetric cubic tensor v in nine variables as a family of cubic tensors in eight variables,
which are considerably simpler. In particular, ∧3V8 admits finitely many GL(V8)-orbits, and
for each orbit closure Y ⊂ ∧3V8 there is an orbital degeneracy locus (ODL) DY (v) ⊂ P(V9). Set
theoretically, this is simply the set of points x for which v defines an element of ∧3Qx ≃ ∧3V8
that falls into Y . For v generic, we need only consider the orbits Yi of codimension i ≤ 8, since
this will also be the codimension of DYi(v) ⊂ P(V9). Moreover, this locus will be almost always
singular, with singular locus DSing(Yi)(v), and it will come with some natural desingularisations,
induced by desingularisations of Y of a special type, called Kempf collapsings. Concretely, in
this case we get the following loci:

• The Coble sextic

S := {[U1] ∈ P(V9) | ∃U6 ⊃ U1, v ∈ U1 ∧ (∧2V9) + ∧2U6 ∧ V9} ⊂ P(V9).
• Its singular locus (five dimensional, corresponding to strictly semistable bundles)

Sing(S) := {[U1] ∈ P(V9) | ∃U5 ⊃ U2 ⊃ U1, v ∈ U2 ∧ (∧2V9) + ∧2U5 ∧ V9}.
• The fourfold K parametrizing rank three vector bundles with trivial determinant, split-
ting as a sum of three line bundles:

K := {[U1] ∈ P(V9) | ∃U6 ⊃ U3 ⊃ U1, v ∈ U1 ∧ (∧2V9) + U3 ∧ U6 ∧ V9 + ∧3U6}.
As proved in [BMT21], K is a singular model of the generalized Kummer fourfold
associated to the Jacobian of C. Moreover, its singular locus (when two of the three
line bundles are equal) is a surface which is birational to the Jacobian itself, but with
81 singular points in bijection with the 3-torsion points (when the three line bundles
are equal).

3.3. The rulings. We have seen that the two rulings of SUC(3) by P4’s are parametrized by
pairs of bundles (E1, E2), of ranks (1, 2) or (2, 1), such that det(E1)⊗ det(E2) = OC . Up to a
shift in the degrees, this is very similar to the data that defines a strictly semistable rank three
vector bundle on C, hence a point in Sing(S). So we expect the latter to be the parameter
space for some natural families of five-dimensional subspaces of V9. This is exactly the content
of the next two statements.
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Since SUC(3) is a double cover of P(V9) branched over the sextic S, a P4 = P(U5) in P(V9)
will lift to a pair of P4’s in SUC(3), meeting in codimension one, exactly when the sextic
hypersurface restricts on P(U5) to a double cubic. We will check this phenomenon does happen
by rather indirect arguments. Define

Sing(S) := {(U1 ⊂ U2 ⊂ U5) ∈ Fl(1, 2, 5, V9), v ∈ U2 ∧ (∧2V9) + ∧2U5 ∧ V9}.

Lemma 3.1. The projection Sing(S)→Sing(S) is generically finite of degree two.

Proof. This is contained in [BMT21, Remark 3.1]. □

Proposition 3.2. Let (U1 ⊂ U2 ⊂ U5) be general in Sing(S). Then P(U5)∩S is a double cubic
in P(U5) ≃ P4, and θ−1(P(U5)) is the union of two copies of P4 in SUC(3).

Proof. Let us fix a general (U1 ⊂ U2 ⊂ U5) in Sing(S). This means that

v ∈ U2 ∧ (∧2V9) + ∧2U5 ∧ V9.

The intersection P(U5) ∩ S parametrizes the flags (W1 ⊂W6), with W1 ⊂ U5, such that

v ∈W1 ∧ (∧2V9) + ∧2W6 ∧ V9.

We need to understand the relative position of the flags (U1 ⊂ U2 ⊂ U5) and (W1 ⊂W6).

Lemma 3.3. dim(W6 ∩ U2) = 2 and dim(W6 ∩ U5) = 4.

Proof of the Lemma. We will argue as follows. Let

A = U2 ∧ (∧2V9) + ∧2U5 ∧ V9, B =W1 ∧ ∧2V9 + ∧2W6 ∧ V9.

The dimension of A is 62. We can stratify the space of flags (W1 ⊂ W6), with W1 ⊂ U5, by
the possible values of dim(W1 ∩ U2), dim(W6 ∩ U2) and dim(W6 ∩ U5). On each stratum S,
the quotient P := A/A ∩ B has a fixed dimension, hence defines a vector bundle of a certain
rank. Moreover this bundle is generated by global sections and v defines such a global section.
Although S is in general not compact, we can apply the general Bertini type arguments to the
space Γ = U2 ∧ (∧2V9)+∧2U5 ∧V9 of global sections, which is finite dimensional and generates
P everywhere on S.

Remark that we consider the same space U2∧(∧2V9)+∧2U5∧V9 in two different ways: first as
a trivial bundle A on S, then as a space of global sections of the quotient bundle P. We will be
able to conclude that when rankS(P) > dim(S), the general v ∈ U2∧(∧2V9)+∧2U5∧V9 defines
a section that vanishes nowhere, which means that there exists no flag (W1 ⊂W6) satisfying the
corresponding conditions. If rankS(P) ≤ dim(S), the general section either vanishes nowhere,
or on a locus of dimension dim(S)− rankS(P), and we need this difference to be equal to three
(at least) since we are looking for a hypersurface in P4. Note in particular that we can, and
will always suppose in the sequel that dim(W1 ∩ U2) = 0, since P(U2) is only one dimensional.

When convenient, we will occasionally replace P by some quotient P, to which the same
arguments will a fortiori apply. In some cases we will even need that this quotient is in fact
obtained by pull-back from another parameter space S; under the condition that rank(P) >
dim S− 3, this will allow as well to eliminate the stratum S. In the end, a unique stratum will
survive and we will have proved the Lemma. More precisely, we will prove that for all but one
couple of values (dim(W6 ∩ U2), dim(W6 ∩ U5)) the section defined by v vanishes on a locus of
dimension at most two. So there will be a unique couple of values (dim(W6∩U2),dim(W6∩U5))
describing the intersection dimensions of a general flag W1 ⊂ W6 inside P(U5) ∩ S. The
conclusion will hold for any flag (U2 ⊂ U5) and for the general v ∈ U2∧(∧2V9)+∧2U5∧V9, hence
conversely for the general v and the general flag (U2 ⊂ U5) such that v ∈ U2∧(∧2V9)+∧2U5∧V9.
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Let us discuss the different possibilities for (dim(W6∩U2),dim(W6∩U5)), which can a priori
be (0, 2), (1, 2), (2, 2), (0, 3), (1, 3), (2, 3), (1, 4), (2, 4), (2, 5).

(0,2) This is the open stratum. We compute that

A ∩B =W1 ∧ U5 ∧ V9 + U2 ∧ (∧2W6) + (W6 ∩ U5) ∧W6 ∧ U5

has dimension 46. Since this is the first time we make such a computation, let us explain
once and for all how we proceed; the bravest readers should be able to check the next
computations by themselves. Let v1, . . . , v9 be a basis of V9 such that U2 = ⟨v1, v2⟩ and
U5 = ⟨v1, . . . , v5⟩. Since we are on the stratum indexed by the intersection dimensions
(0, 2), we can suppose that W1 = ⟨v3⟩ and W6 = ⟨v3, v4, v6, v7, v8, v9⟩. Then a brute
force computation shows that a basis of P := A/B is given by the classes, if we denote
vijk := vi ∧ vj ∧ vk, of the following 16 trivectors: v145, v156, v157, v158, v159, v245,
v256, v257, v258, v259, v124, v125, v126, v127, v128, v129. So P has rank 16 and A ∩ B has
dimension 62− 16 = 46, as claimed.

Since the open stratum has dimension 19 = 16+ 3, at first sight there is no obstruc-
tion. But let W2 := W6 ∩ U5, W4 := W2 + U2 and W8 := W6 + U2. The parameter
space for such flags (W1 ⊂ W2 ⊂ W4 ⊂ W8), with U2 ⊂ W4 ⊂ U5 has dimension 11
(six dimensions for the choice of W2 in U5, transverse to U2; then one extra dimension
for the choice of W1; W4 is uniquely determined; finally four extra dimensions for the
choice of W8 containing W4). Let

C :=W2 ∧ U5 ∧ U9 + U2 ∧ (∧2W8).

We check that A ∩ B ⊂ C ⊂ A and that C has dimension 53, hence codimension 9 in
A. Therefore the zero locus of the section of the bundle A/C induced by our general v
must have dimension at most 11 − 9 = 2 < 3. This means that a general point in the
intersection P(U5) ∩ S does not belong to this stratum.

(1,2) Let T1 :=W6∩U2 andW2 :=W6∩U5. The parameter space for such flags has dimension
17: one dimension for the choice of T1 in U2, four dimensions for the choice of W1 in
U5, then twelve dimensions for the choice ofW6 containingW2 = T1+W1. We compute
that

A ∩B =W1 ∧ U5 ∧ V9 + U2 ∧ (∧2W6) + T1 ∧W6 ∧ V9
has dimension 46, so the rank of P is 16 = dim(S)− 1, and we are safe.

(2,2) In this case W6 ∩ U5 = W6 ∩ U2 = U2. But this implies that W1 ⊂ U2, which we
excluded right from the beginning.

(0,3) LetW3 :=W6∩U5. The parameter space for such flags (W1 ⊂W3 ⊂W6) has dimension
17 (6 dimensions for the choice ofW3 in U5, transverse to U2; then two extra dimensions
for the choice ofW1 inW3; finally nine extra dimensions for the choice ofW6 containing
W3). In this case A ∩B has dimension 45, so the rank of P is 17 and we are safe.

(1,3) Let T1 := W6 ∩ U2 and W3 := W6 ∩ U5. Here the parameter space has dimension 16
and the dimension of A∩B jumps to 49, so P has rank 13 on this stratum. So we need
to dig a little bit more. Let W8 :=W6 + U5. In this case we check that

A ∩B =W1 ∧ U5 ∧ V9 + T1 ∧W6 ∧ V9 + U2 ∧ (∧2W6) +W3 ∧ U5 ∧W6 ⊂

⊂ C := ((W1 + T1) ∧W8 ∧ V9 + ∧3W8) ∩A ⊂ A.

The dimension of C is 56, so the rank of A/C is 6. But now C and A/C only depend
on W1, T1 and W8. The parameter space for (W1, T1,W8) has dimension eight (one
dimension for T1 in U2; four dimensions for W1 in U5; and three extra dimensions for
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W8, that contains U5). So the zero locus of the section induced by v has dimension at
most 2 inside this stratum.

(2,3) Here W3 :=W6 ∩ U5 has dimension 3 and W6 ⊃ U2. In this case we check that

A ∩B =W1 ∧ U5 ∧ V9 + U2 ∧W6 ∧ V9 ⊂ C :=W1 ∧ U5 ∧ V9 + U2 ∧ (∧2V9) ⊂ A.

The bundle A/C has rank four and depends only on W1 for which we have four param-
eters; so we are safe.

(1,4) Let T1 := W6 ∩ U2 and W4 := W6 ∩ U5. The parameter space for these flags has
dimension 13 (one dimension for T1 in U2; four dimensions for W1 in U5; then two
dimensions for W4 in U5 and containing T1 +W1; finally six extra dimensions for W6

containing W4). We check that

A ∩B =W1 ∧ U5 ∧ V9 + T1 ∧W6 ∧ V9 + U2 ∧ (∧2W6) +W4 ∧ U5 ∧W6

has dimension 50. So P has rank 12 on this stratum, and since dim(S) − rankS(P) =
1 < 3, we are safe.

(2,5) This means that U5 ⊂ W6. But then A ∩ B = ∧2U5 ∧ V9. A dimension count shows
that the general v does not belong to any such space. □

Now, let us go back to the proof of the proposition. The only possibility for [W1] to be a
general point of the hypersurface P(U5) ∩ S is that dim(W6 ∩ U2) = 2 and dim(W6 ∩ U5) = 4.
The parameter space for such pairs [W1 ⊂ W6] has dimension 11 while the quotient bundle P

has rank 8 on this stratum. So the set of points [W1] ∈ P(V5) ∩ S such that dim(U6 ∩ V2) = 2
and dim(U6 ∩ V5) = 4 has expected dimension 3, i.e. it is a hypersurface inside P(U5).

With the help of [GS] we can construct the parameter space for the stratum (2, 4) and
the quotient bundle P, and check that the degree of OP(U5)(1) on the zero locus of a general
section of P inside the parameter space is equal to three. So this zero locus projects to a cubic
hypersurface in P(U5). Set theoretically this cubic coincides with P(V5)∩S. Since S is a sextic,
this means that S cuts P(U5) along a double cubic hypersurface. The result follows. □

In order to ensure we really get P4’s in a ruling of SUC(3), there remains to check that
our family of linear spaces covers the whole moduli space. To be precise, we expect to get
codimension one families of the two rulings. Indeed recall that the base of the rulings is five
dimensional, exactly as Sing(S). But the latter is actually, by its very definition, a P1-fibration

over its image π2,5(Sing(S)) through the projection π2,5 : Fl(1, 2, 5, V9) → Fl(2, 5, V9), whose
birational image in G(5, V9) is the basis of our family. A similar phenomenon will happen for
Hecke lines, as we will see in the next section. We have therefore a four dimensional family of
P4’s and we want to show that these cover P(V9).

Proposition 3.4. There are 18 P4’s of the family π2,5(Sing(S)) passing through the general

point of P(V9). In particular, the P4’s parametrized by π2,5(Sing(S)) cover P(V9).

Proof. This is a degree computation that we carried out with [GS]. In order to do so, construct

π2,5(Sing(S)) inside Fl(2, 5, V9) as the zero locus of a general section of the quotient of ∧3V9
by U2 ∧ (∧2V9)+∧2U5 ∧V9. Then consider the projective bundle P(U5) over π2,5(Sing(S)) and
its relative tautological bundle OP(U5)(−1). We get∫

P(U5)
c1(OP(U5)(1))

8 = 18

and the result follows. □
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In fact we get the two rulings of SUC(3), since by Remark 2.3.3 they are exchanged by the
covering involution of SUC(3). Indeed the two copies of P4 constituting θ−1(P(U5)), being
exchanged by the involution, must belong to different rulings.

4. The odd moduli space as an ODL

4.1. Orbital degeneracy loci in G(3, V9). Over the Grassmannian, the Borel-Weil theorem
provides still another identification

∧3V9 ≃ H0(G(3, V9),∧3Q),

where Q now denotes the rank six tautological quotient bundle. This allows to consider the
skew-symmetric cubic tensor v as a family of skew-symmetric cubic tensors in six variables. The
GL(V6)-orbit closures in ∧3V6 are easy to describe: by increasing dimension (and forgetting
the extremal ones) we have

• the cone Z10 over the Grassmannian G(3, 6),
• the variety Z5 of partially decomposable tensors,
• the tangent variety Z1 to the Grassmannian, which is a quartic hypersurface.

Correspondingly, we get inside G(3, V9)

• a hypersurface DZ1(v) of the Grassmannian, which is a singular quadratic section,
• its singular locus DZ5(v), whose singular locus is
• DZ10(v), a smooth eightfold since DSing(Z10)(v) = ∅ for dimensional reasons.

Remark 4.1. The hypersurface DZ1(v) of G(3, V9) has obvious similarities with the Coble
quadric discovered in [BBFM23]. As the latter, it is a special quadratic section of the Grass-
mannian. Nevertheless its relationship with the moduli space is less direct. The Coble quadric
can be characterized as the unique quadric section of the Grassmannian G(2, V8) which is
singular exactly on a copy of the odd moduli space of rank two vector bundles on a (non hyper-
elliptic) genus three curve. Here, it is the singular locus of the quadric section, for which we are
not aware of any modular interpretation, which is itself singular along a copy of the odd moduli
space of rank three vector bundles on the genus two curve (indeed, we will show in Theorem 4.9
that DZ10(v) identifies with such a moduli space). The quadric section is presumably uniquely
determined by this property, but we did not prove this.

4.2. A Fano eightfold. By definition, DZ10(v) ⊂ G(3, V9) is the projection from Fl(3, 6, V9)
of the locus

D̃Z10(v) := {(U3 ⊂ U6) ∈ Fl(3, 6, V9), v ∈ U3 ∧ (∧2V9) + ∧3U6}.

Proposition 4.2. D̃Z10(v) ≃ DZ10(v) is a smooth Fano eightfold of even index.

Proof. First observe that D̃Z10(v) is defined as the zero locus of a general section of a globally
generated vector bundle of rank 19 on the flag manifold Fl(3, 6, V9), namely

E = ∧3V9/(U3 ∧ (∧2V9) + ∧3U6).

We deduce that D̃Z10(v) is smooth of dimension eight. Moreover its canonical bundle can be
computed by the adjunction formula: since the canonical bundle of Fl(3, 6, V9) is det(U3)

6 ⊗
det(U6)

6, we find that

KD̃Z10
(v) = det(U3)

−3 ⊗ det(U6)
5
|D̃Z10

(v)
.

This does not seem to be negative, but observe that the quotient of U3 ∧ (∧2V9) + ∧3U6

by U3 ∧ (∧2V9) is just the line bundle ∧3(U6/U3). Over D̃Z10(v), our v defines a section of
this line bundle, and this section is nowhere vanishing for v general. Indeed U3 ∧ (∧2V9) has
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codimension 30 in ∧3V9, and this is much bigger than the dimension of G(3, V9). We conclude

that on D̃Z10(v), the line bundle ∧3(U6/U3) is trivial, which means that det(U3) ≃ det(U6).
As a consequence, we can rewrite the canonical bundle as

KD̃Z10
(v) = det(U3)⊗ det(U6)|D̃Z10

(v) ≃ det(U6)
2
|D̃Z10

(v)
.

Since det(U3) ⊗ det(U6) is dual to the minimal very ample line bundle on the flag manifold

Fl(3, 6, V9), the first identity shows that D̃Z10(v) is Fano. The second identity implies it has
even index.

We now prove that D̃Z10(v) and DZ10(v) are isomorphic. Let π be the projection from

Fl(3, 6, V9) to G(3, V9). We denote in the same way its restriction from D̃Z10(v) to DZ10(v).
Since U3 ∧ (∧2V9) has codimension one inside U3 ∧ (∧2V9)+∧3U6, the fact that [U3] ∈ DZ10(v)

has two pre-images in D̃Z10(v) would imply that v actually belongs to U3 ∧ (∧2V9), and we

already noticed this cannot be the case for v general. So π : D̃Z10(v)→DZ10(v) is a bijection.
There remains to check it is everywhere immersive. For this we use the normal exact sequence

0−→TD̃Z10(v)−→TF l(3, 6, V9)|D̃Z10
(v)−→E|D̃Z10

(v)−→0.

Since the flag manifold is homogeneous, its tangent space at some point (U3 ⊂ U6) can be seen
as a quotient of sl(V9), by the space of morphisms that preserve the flag. The projection to
G(3, V9) induces a surjective map between tangent spaces, whose kernel, the vertical tangent
space, is just the tangent space Hom(U3, U6/U3) to the fiber G(3, U6). This vertical tangent
space should be seen as the quotient of the subspace of sl(V9) consisting of morphisms that
preserve U3. So the fact that π is immersive at (U3 ⊂ U6) amounts to the following claim:
if X ∈ sl(V9) preserves U3 and sends v to U3 ∧ (∧2V9) + ∧3U6, then it preserves the full flag
(U3 ⊂ U6).

In order to check this, note that we can decompose v = v′ + e4 ∧ e5 ∧ e6, where v′ belongs
to U3 ∧ (∧2V9) (which does not contain v, as we already stressed), and e4, e5, e6 are a basis of
U6 modulo U3. Since X preserves U3, X(v′) belongs to U3 ∧ (∧2V9). On the other hand, since
X(e4 ∧ e5 ∧ e6) = X(e4)∧ e5 ∧ e6 + e4 ∧X(e5)∧ e6 + e4 ∧ e5 ∧X(e6), it is clear that it belongs
to U3 ∧ (∧2V9) + ∧3U6 if and only if X preserves U6, and the proof is complete. □

4.3. A family of planes in the moduli space. We want to prove that the projective planes
in P(V9) parametrized by DZ10(v) lift to planes in the moduli space SUC(3). As we already
noticed for the P4’s of the rulings, this happens if the sextic S restricted to such a plane restricts
to a double cubic.

Proposition 4.3. Let [U3] ∈ DZ10(v), then P(U3)∩ S is a double cubic, and θ−1(P(U3)) is the
union of two projective planes meeting along a cubic curve.

Proof. Since [U3] ∈ DZ10(v), there exists U6 ⊃ U3 such that v ∈ U3 ∧ (∧2V9) + ∧3U6. We are
looking for flags (W1 ⊂ W6) such that W1 ⊂ U3 and v ∈ W1 ∧ (∧2V9) + (∧2W6) ∧ V9. These
flags correspond to points [W1] ∈ P(U3)∩S. For a generic element [W1] in this intersection, we
want to compute the values of (dim(W6 ∩ U3),dim(W6 ∩ U6)). We will prove:

Lemma 4.4. W6 ⊃ U3 and dim(W6 ∩ U6) = 5.

Proof. For convenience let us denote A = U3∧(∧2V9)+∧3U6 and B =W1∧(∧2V9)+(∧2W6)∧V9.
According to the relative position of the flags (U3 ⊂ U6) and (W1 ⊂W6), the intersection of A
and B will have a specific dimension, and will be constrained by the fact that it has to contain
the general tensor v. Let us discuss these constraints more precisely, for each possible values of
(dim(W6 ∩U3), dim(W6 ∩U6)); this couple of integers can a priori be either (3, 6), (3, 5), (3, 4),
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(3, 3), (2, 5), (2, 4), (2, 3), (1, 4), or (1, 3). We will discuss these cases roughly by increasing
complexity, and exclude all of them except (3, 5).

(3,3) In this case A ∩ B = W1 ∧ (∧2V9) + U3 ∧ W6 ∧ V9, and we would deduce that v ∈
A ∩B ⊂ U3 ∧ (∧2V9). But this is a contradiction, since we have already observed that
the general tensor v is contained in no such space.

(2,3) Here we compute that

A ∩B =W1 ∧ (∧2V9) + (U3 ∩W6) ∧W6 ∧ V9 + U3 ∧ (∧2W6),

So again A ∩B ⊂ U3 ∧ (∧2V9) and we get the same contradiction as before.
(3,4) Same argument.
(1,4) In this case the parameter space for the flag (U1 ⊂ U6) has dimension 14. Moreover

A ∩B =W1 ∧ (∧2V9) + U3 ∧ (∧2W6) + ∧3U6

has dimension 49. So v defines a general section of the vector bundle A/A ∩ B, of
rank 16 over the 14-dimensional parameter space, and will therefore vanish nowhere in
general.

(2,5) Here the parameter space for the flag (U1 ⊂ U6) has dimension 9, while

A ∩B =W1 ∧ (∧2V9) + (W6 ∩ U3) ∧W6 ∧ V9 + U3 ∧ (∧2W6) + ∧3U6

has dimension 53. So the vector bundle A/A ∩ B has rank 12 and we conclude as in
the previous case.

(3,6) In this case U6 = V6 and the parameter space is a projective plane. Moreover

A ∩B =W1 ∧ (∧2V9) + U3 ∧ U6 ∧ V9 + ∧3U6

has dimension 59. So the vector bundle A/A∩B has rank 6 and we conclude as before.
(1,3) This is the biggest stratum, of dimension 17. Here

A ∩B =W1 ∧ (∧2V9) + U3 ∧ (∧2W6) + ∧2(U6 ∩W6) ∧ U6

has dimension 49, so the quotient A/A ∩ B has rank 16 which is smaller than the
dimension of the parameter space. So we need to modify the argument a little bit. For
this we observe that

A ∩B ⊂ C :=W1 ∧ (∧2V9) + ∧2(W6 + U3) ∧ U3 + ∧3U6,

which has dimension 54 but only depends on W1 and W8 := W6 + U3. And now the
parameter space for the flag (W1 ⊂ U3 ⊂ W8) is only 7-dimensional, while the bundle
A/C has rank 11. So the previous argument applies.

(2,4) This case is somewhat similar to the previous case. Indeed the parameter space for the
flag (U1 ⊂ U6) has dimension 13, and we compute that

A ∩B =W1 ∧ (∧2V9) + (W6 ∩ U3) ∧W6 ∧ V9 + U3 ∧ (∧2W6) + ∧2(W6 ∩ U6) ∧ U6

has dimension 53, so the quotient A/A ∩ B has rank 12 which is smaller than the
dimension of the parameter space. But we observe that

A ∩B ⊂ D := (W6 ∩ U3) ∧ (∧2V9) + ∧2(W6 + U6) ∧ U3 + ∧3U6,

which has dimension 60 but only depends on W2 :=W6 ∩U3 and W8 :=W6 +U6. And
now the parameter space for the flag (W2 ⊂ U3 ⊂ U6 ⊂ W8) is only 4-dimensional,
while the bundle A/D has rank 5. So the previous argument applies.
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So we are only left with the case (dim(U6 ∩ V3),dim(U6 ∩ V6)) = (3, 5), which concludes the
proof of the Lemma. □

In order to conclude the proof of the Proposition, we proceed as follows. The parameter
space for the flags W1 ⊂ U3 ⊂W6 with dim(U6 ∩W6) ≥ 5 has dimension equal to 7. Over this
space we have

A ∩B =W1 ∧ (∧2V9) + U3 ∧W6 ∧ V9 + ∧3U6,

which has constant dimension 59, even when W6 specializes to U6. So A/A ∩B defines a rank
six vector bundle W on the parameter space.

Then with the help of [GS] we construct the parameter space and the vector bundle W, and
we check that the degree of OP(V3)(1) on the zero locus of a section of W inside the parameter
space is equal to three. So this zero locus projects to a cubic curve E in P(V3), and set-
theoretically this cubic coincides with P(V3) ∩ S. But S is a sextic, so it has to cut E doubly
in P(V3). The result follows. □

So we get a family of planes in SUC(3). Let us denote by F the family of lines contained
in these planes. We need to check that the lines from F cover the whole moduli space. This
follows from the next statement:

Proposition 4.5. The family of planes parametrized by DZ10(v) covers P(V9).

Proof. It is sufficient to check that the eighth Chern class of the bundle (OP(V9)(1))
⊕8 over the

projective bundle p : P(U3) → DZ10(v) is different from zero. This can be done with the help
of [GS]. Let L be the pullback to P(U3) of the restriction of the bundle OG(3,V9)(1) to DZ10(v).
By constructing DZ10(v) as a zero locus inside Fl(3, 6, V9), and P(U3) as a projective bundle
over it, we checked that ∫

P(U3)
c1(L)

2c1(OP(U3)(1))
8 = 18,

which implies the claim. Similarly, in order to check this non-vanishing, we could have used the
fact that

∫
P(U3)

c2(M)c1(OP(U3)(1))
8 = 6 ̸= 0, where M is defined as M := (p∗U3/OP(U3)(−1))∨,

which can again be checked with [GS]. □

Remark 4.6. The 18 appearing in the formula here above has a nice interpretation. Recall
that P(U3) has dimension 10, hence - given a general point p ∈ P(V9) - there is a surface
inside DZ10(v) that parametrizes planes through p. Moreover each point p defines two points
[E1], [E2] = τ∗[E1] in SUC(3). It turns out that the surface is a disjoint union of two P2’s
embedded via their anticanonical class since the degree 18 is twice the degree of each P2 inside
DZ10(v) ⊂ G(3, V9) in the Plücker embedding. In view of Theorem 4.9, these two planes
correspond to the two Hecke planes inside SUC(3,OC(c)) defined as extensions of E1 by Oc
and E2 by Oc.

We will also need the following technical result.

Lemma 4.7. The general line in F does not meet Sing(S).

Proof. It is enough to prove that the general plane in DZ10(v) meets Sing(S) at most in a finite
set. In order to prove this, we proceed as follows. A plane in DZ10(v) corresponds to a flag
(U3 ⊂ U6), a point in Sing(S) (or rather Sing(S)) to a flag (U1 ⊂ U2 ⊂ U5). The point is
contained in the plane if U1 ⊂ U3 and we need that v ∈ C ∩D where

C = U3 ∧ (∧2V9) + ∧3U6, D = U2 ∧ (∧2V9) + (∧2U5) ∧ V9.
We will stratify the parameter space by the relative position of the two flags (U1 ⊂ U3 ⊂ U6)
and (U1 ⊂ U2 ⊂ U5). There are 23 possibilities. We can eliminate 9 of them right away by
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observing that if U2 ∩U3 = U2 ∩U6, and U5 ∩U3 has codimension at most one in U5 ∩U6, then
C ∩D ⊂ U3 ∧ (∧2V9), which cannot happen in general.

For the 14 remaining strata S, we will compute the dimension of S and the rank of C ∩D

on S. If dimS + rankS(C ∩D) ≤ 92, then the set of flags compatible with the general v will
have dimension at most 92− 84 = 8, and will project to DZ10(v) with finite (possibly empty)
general fibers.

The data we computed are summarized in the following table, where the intersection dimen-
sions in the first four columns specify each stratum S.

U2 ∩ U3 U2 ∩ U6 U5 ∩ U3 U5 ∩ U6 dimS rankS(C ∩D)

1 1 1 3 46 46
1 2 1 2 45 46
1 2 1 3 44 46
1 1 1 4 42 46
1 2 1 4 41 46
1 2 2 3 42 50
1 1 2 4 41 50
1 2 2 4 40 50
1 2 2 5 36 50
2 2 2 4 38 53
1 2 3 4 37 53
1 2 3 5 34 53
2 2 2 5 33 53
2 2 3 5 32 59

The sum of the two numbers in the righmost columns does never exceed 92, and this implies
our claim. □

Proposition 4.8. The family of lines in the planes parametrized by DZ10(v) is a codimension
one family of Hecke lines.

Proof. The family F of lines covers SUC(3) by the previous statement, so it must consist of
Hecke lines or lines contained in the rulings. Let F denote its image in G(2, V9), which is
the image of a projective plane bundle over DZ10(v). Since DZ10(v) is Fano, it is rationally
connected, so F is rationally connected as well. If it was contained in FR, we could consider

its preimage inside FR1 and then F̂R1 . By Lemmas 2.2 and 4.7, the preimage F̂ would still be

rationally connected, and would therefore be contained in a fiber of the fibration of F̂R1 to the

abelian surface Pic1(C). But these fibers have codimension two, while F̂ is a divisor: indeed
F is a projective plane bundle over DZ10(v), so it has dimension 10, hence codimension one in
FH . This is a contradiction. □

4.4. The odd moduli space. We finally prove our main result.

Theorem 4.9. For generic v ∈ ∧3V9, the orbital degeneracy locus DZ10(v) is isomorphic to the
moduli space SUC(3,OC(c)) of semistable rank three vector bundles on C with fixed determinant
OC(c), for a certain point c ∈ C.

Proof. By Proposition 4.3, each point of DZ10(v) defines a pair of planes in SUC(3), exchanged
by the cover involution. By Proposition 4.8 these planes are Hecke planes, that cover the
whole moduli space by Proposition 4.5. According to Proposition 2.9, there are only two
such covering families of Hecke planes, and they are exchanged by the cover involution. This
implies that each point of DZ10(v) defines a plane in each of the two families PH and PH∗ . We
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0

IZ10

OO

S21111V
∨
6 ⊗ S(−2)

OO

(S321111V
∨
6 ⊕ S22221V

∨
6 )⊗ S(−3)

OO

S332211V
∨
6 ⊗ S(−4)

OO

(S522222V
∨
6 ⊕ S33333V

∨
6 )⊗ S(−5)

mm

(S533322V
∨
6 ⊕ S444222V

∨
6 ⊕ S443331V

∨
6 )⊗ S(−6)

mm OO

(S544332V
∨
6 ⊕ S544332V

∨
6 )⊗ S(−7)

OO

(S554442V
∨
6 ⊕ S644433V

∨
6 ⊕ S555333V

∨
6 )⊗ S(−8)

OO

S665544V
∨
6 ⊗ S(−10)

11

(S555552V
∨
6 ⊕ S744444V

∨
6 )⊗ S(−9)

OO

(S666654V
∨
6 ⊕ S765555V

∨
6 )⊗ S(−11)

OO 11

S766665V
∨
6 ⊗ S(−12)

OO

det(V ∨
6 )7 ⊗ S(−14)

OO

0

OO

Figure 1. Minimal resolution of IZ10

can therefore lift DZ10(v), at least birationally, to a hypersurface in either PH and PH∗ . But
recall from Proposition 2.9 that these two families fiber over C. Since DZ10(v) is Fano, hence
rationally connected, its pre-image in PH is also rationally connected, hence contained in a
fiber of the projection to C, over some point c. Recall that this fiber is a birational image of
SUC(3,OC(c))), and therefore the latter maps birationally to DZ10(v). Since SUC(3,OC(c))) is
smooth and its Picard group is cyclic, this birational morphism has to be an isomorphism. □

We know that the moduli space SUC(3,OC(c)) has index two, so comparing with Proposition
4.2 we see that its canonical bundle must be the restriction of det(U3)

2 on the Grassmannian,
or also det(U3)⊗ det(U6) on the flag manifold Fl(3, 6, V9). We deduce:

Corollary 4.10. D̃Z10(v) is projectively equivalent to SUC(3) in its anticanonical embedding.

4.5. Resolving the structure sheaf. An immediate consequence of our approach is that
we can provide a resolution of the structure sheaf of SUC(3,OC(c)) inside G(3, V9). Indeed,
by construction DZ10(v) is modeled on the cone Z10 over G(3, V6) ⊂ P(∧3V6). The minimal
resolution of its ideal IZ10 has been computed in [PW86]. Letting S = C[∧3V6], this minimal
resolution is reproduced in Figure 1.
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Since this is an equivariant resolution, we can relativize it to the total space of ∧3Q over
G(3, V9). This yields the resolution of the ideal sheaf of DZ10(v) in Figure 2.

0

IDZ10
(v)

OO

S21111Q
∨

OO

S21Q
∨(−1)⊕ S22221Q

∨(1)

OO

S2211Q
∨(−1)

OO

S3Q
∨(−2)⊕ S33333Q

∨

ll

S3111Q
∨(−2)⊕ S222Q

∨(−2)⊕ S33222Q
∨(−1)

ll OO

S32211Q
∨(−2)⊕ S32211Q

∨(−2)

OO

S33222Q
∨(−2)⊕ S3111Q

∨(−3)⊕ S222Q
∨(−3)

OO

S2211Q
∨(−4)

22

S33333Q
∨(−2)⊕ S3Q

∨(−4)

OO

S22221Q
∨(−4)⊕ S21Q

∨(−5)

OO 22

S21111Q
∨(−5)

OO

O(−7)

OO

0

OO

Figure 2. Minimal resolution of the ideal of DZ10(v)

Remark 4.11. Notice the remarkable fact that this corresponds to a Cohen-Macaulay (length
equal to the codimension) and even Gorenstein (last term of rank one, which implies that the
resolution is self-dual) locally free resolution of ODZ10

(v). In general, if F• is a Gorenstein

OX -locally free resolution of OZ , with Z ⊂ X, then the canonical bundle KZ of Z is given by
the formula:

KZ = (KX ⊗ F∨
− codimX(Z))|Z .

In our situation, we deduce that KDZ10
(v) is the restriction of KG(3,V9) ⊗O(7) = O(−2), which

confirms what we proved in Proposition 4.2.

We can derive the following facts from the previous resolution.

Corollary 4.12. The Hilbert polynomial of (DZ10(v),ODZ10
(v)(1)) is

χ(ODZ10
(v)(m− 1)) =

477

2240
m8 +

63

160
m6 +

99

320
m4 +

47

560
m2.
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In full generality, the Hilbert polynomial of the moduli space of vector bundles of fixed rank
and determinant on a curve of given genus is given by the Verlinde formula, but in a form
which is far from being obviously polynomial, see e.g. [Bea97, Proposition 3.1].

Proposition 4.13. DZ10(v) has the following properties.

(1) It is not linearly normal, but k-normal for any k ≥ 2.
(2) It is contained in 810 quadratic sections of the Grassmannian.
(3) It is scheme theoretically cut-out by quadrics.

Proof. The Hilbert polynomial (recall that DZ10(v) is Fano) gives h
0(ODZ10

(v)(1)) = 85, which

is bigger by one than the dimension of ∧3V9. The difference comes from the term S3Q∨(−2)
in the resolution of IDZ10

(v): by Bott’s theorem h3(S3Q∨(−1)) = 1. From the same theorem

we readily reduce that h1(IDZ10
(v)(k)) = 0 for any k ≥ 2, which proves the first assertion. The

second one is just a computation. The last one follows from the fact that S21111Q
∨(2) = S21111Q

is generated by global sections, hence also IDZ10
(v)(2). □

It would be nice to find an explanation of this failure of linear normality.

4.6. Application to K3 surfaces of genus 19. Consider again the embedding

DZ10(v) ≃ SUC(3,OC(c)) ⊂ G(3, V9).

Since the moduli space is a Fano eightfold of index two, we will obtain a surface S with trivial
canonical bundle by considering the zero locus of two general sections of the dual tautological
bundle (or equivalently, the intersection of DZ10(v) with a general translate of G(3, 7) inside
G(3, V9)).

Proposition 4.14. The surface S is a K3 surface of genus 19.

Proof. In order to simplify the notations we let D := DZ10(v) and G := G(3, V9). We need to
check that S is connected and that h1(OS) = 0. This a standard computation: the Koszul
complex of the section of G = U∨ ⊕ U∨ that defines S in D resolves its structure sheaf as a
OD-module, and we will be able to conclude if we can check that

hi(D,∧iG∨) = hi(D,∧i−1G∨) = 0 ∀i > 0.

Since the bundle G on D is the restriction of a bundle defined on the whole Grassmannian, we
can check these vanishing by twisting the complex J• of vector bundles on the Grassmannian
that resolves OD, and verify that

(1) hi+j(G,∧iG∨ ⊗ Jj) = hi+j(D,∧i−1G∨ ⊗ Jj) = 0 ∀i > 0, ∀j ≥ 0.

This is just an application of Bott’s theorem on the Grassmannian. All bundles in play are
homogeneous and even completely reducible: they come from certain semisimple representa-
tions of the parabolic subgroup P defining G(3, V9) = GL(9)/P . The exterior powers and
tensor products appearing in (1) can thus be computed with [vLCL92] as exterior powers and
tensor products of representations of the Levi factor of P , which is just GL(3)×GL(6). Then,
it is possible to implement Bott’s Theorem with a Python script to compute the cohomol-
ogy of the corresponding bundles. In this way we were able to obtain all cohomology groups
Hk(G,∧iG∨ ⊗ Jj) for all i ≥ 0, j ≥ 0, k ≥ 0. In fact they all vanish except H0(G,∧0G∨ ⊗ J0)
and H18(G,∧6G∨ ⊗ J10), which are both one dimensional. This implies that h0(OS) = 1,
h1(OS) = 0 and h2(OS) = 1, proving that S is a K3 surface. The genus is 19 because the
degree of OS(1) := OG(1)|S is equal to 36, as computed with [GS]. □

Remark 4.15. Similar computations lead to the following observations and questions:



20 V. BENEDETTI, M. BOLOGNESI, D. FAENZI, L. MANIVEL

(1) The Euler characteristic χ(S,U∨
|S) = 9, suggesting that U∨

|S has nine global sections,

while we would expect seven. What is the explanation?
(2) Since the normal bundle of S in D = SUC(3,OC(p)) is NS/D = U∨

|S ⊕ U∨
|S , this would

imply that h0(S,NS/D) = 9 + 9 = 18. Do the intersection of the moduli space with
translates of G(3, 7) really form a family of K3 surfaces of dimension 18?

(3) The Euler characteristic χ(S,End0(U
∨
|S)) = −2. If we could prove that U∨

|S is stable,

hence simple, we would deduce that his moduli space is a K3 surface. It is conjectured
in [KM23, Section 1.2] that this moduli space should be a quartic K3 surface.

Remark 4.16. The construction of Hecke lines and planes in SUC(3) shows that the odd
moduli space SUC(3,OC(p)) has a different embedding inside G(3, V9) for each point p ∈ C.
Equivalently, since this moduli space does not depend on p, it admits a rank three vector
bundle Ep for each p, generated by global sections. Considering a global section of Ep⊕Eq, for
p and q any two points in C, it follows from Proposition 4.14 that we will in general still get
a K3 surface. Mukai and Kanemitsu recently suggested that this construction should yield a
locally complete family of K3 surfaces of genus 19, a genus for which no such projective model
was previously known [KM23].
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