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41 
 

42 Abstract 
 

43 Across species, neurons track time over the course of seconds to minutes, which may feed the sense of 

44 time passing. Herein, we asked whether neural signatures of time-tracking could be found in humans. 
45 Participants stayed quietly awake for a few minutes while being recorded with magnetoencephalography. 

46 They were unaware they would be asked how long the recording lasted (retrospective time) or instructed 

47 beforehand to estimate how long it will last (prospective timing). At rest, rhythmic brain activity is non- 

48 stationary and displays bursts of activity in the alpha range (α: 7-14 Hz). When participants were not 

49 instructed to attend to time, the relative duration of α bursts linearly predicted individuals’ retrospective 

50 estimates of how long their quiet wakefulness lasted. The relative duration of α bursts was a better 
51 predictor than α power or burst amplitude. No other rhythmic or arrhythmic activity predicted 

52 retrospective duration. However, when participants timed prospectively, the relative duration of α bursts 

53 failed to predict their duration estimates. Consistent with this, the amount of α bursts was discriminant 

54 between prospective and retrospective timing. Last, with a control experiment, we demonstrate that the 

55 relation between α bursts and retrospective time is preserved even when participants are engaged in a 
56 visual counting task. Thus, at the time scale of minutes, we report that the relative time of spontaneous α 

57 burstiness predicts conscious retrospective time. We conclude that in the absence of overt attention to 

58 time, α bursts embody discrete states of awareness constitutive of episodic timing. 

59 

60 Significance statement 
 

61 The feeling that time passes is a core component of consciousness and episodic memory. A century ago, 

62 brain rhythms called “alpha” were hypothesized to embody an internal clock. However, rhythmic brain 

63 activity is non-stationary and displays on-and-off oscillatory bursts, which would serve irregular ticks to 

64 the hypothetical clock. Herein, we discovered that in a given lapse of time, the relative bursting time of 

65 alpha rhythms is a good indicator of how much time an individual will report to have elapsed. 

66 Remarkably, this relation only holds true when the individual does not attend to time and vanishes when 
67 attending to it. Our observations suggest that at the scale of minutes, alpha brain activity tracks episodic 

68 time. 

69 
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82 

83 Introduction 
 

84 Brain rhythms in the alpha range (α: 7-14 Hz) are canonical markers of the level of consciousness in 

85 humans (Berger, 1935; Fell et al., 2010; Klimesch, 2012). They represent neural synchronization in 

86 spontaneous fluctuations with a period of about 100 ms generated from a variety of neural sources 

87 (Steriade et al., 1990; Steriade, 1999; Raichle, 2015; Halgren et al., 2019; Higgins et al., 2021). Due to 

88 their omnipresence at rest, α rhythms were postulated to be the internal clock supporting one’s awareness 

89 of the passage of time (Treisman, 1963, 1984; Kononowicz and van Wassenhove, 2016; van Wassenhove 

90 et al., 2019). To date however, whether spontaneous oscillations can predict an individual’s experience of 
91 the passage of time at the scale of minutes remains unverified (Kononowicz and van Wassenhove, 2016; 

92 van Wassenhove et al., 2019). Herein, we re-assess the original α clock hypothesis and ask whether bursts 

93 of spontaneous α activity keep track of time. This question was motivated by known non-stationarities in 

94 brain rhythms challenging the role of neural oscillations in cognition (Steriade et al., 1990; Cole and 

95 Voytek, 2017; van Ede et al., 2018), recent description of time cells with long and diverse periods 
96 (Pastalkova et al., 2008; MacDonald et al., 2011; Kraus et al., 2015; Issa et al., 2020; Umbach et al., 

97 2020; Aghajan et al., 2022; Cogno et al., 2022; Tsao et al., 2022), and the identification of paradigmatic 

98 shortcomings in earlier work. 

99 The clock hypothesis posits that in the absence of external sensory inputs, endogenous oscillatory 

100 activity (the pacemaker of the hypothesized internal clock) predicts an individual’s estimation of elapsing 

101 time (Hoagland, 1935; Treisman, 1963). The clock hypothesis was built on the intuition that biological 

102 tick signals are steady and reliable enough to keep count of time units, like mechanical clocks periodically 

103 mark the passing of seconds. In its neurobiological implementation, the tick of the internal clock would be 

104 isomorphic to the period of spontaneous α neural oscillations. Hence, the α clock hypothesis made the 

105 assumption that neural oscillations are stationary, continuous and steadily persistent over time, i.e. can 

106 instantiate pacemaker-like rhythmic activity (e.g. 9–11). Under this assumption, measuring an 
107 individual’s α peak frequency (iAPF) would be equivalent to assessing the rate of change in time units, a 

108 metrical basis for the estimation of time. In a series of experiments, Michel Treisman, the instigator of the 

109 α clock hypothesis, dismissed this idea (Treisman, 1984): he observed that α oscillations did not behave 

110 like regular pacemakers. As is now acknowledged, spontaneous brain rhythms display non-stationarities 

111 with “up and down states” of bursting activity over time (Steriade et al., 1990; Jones, 2016; Sherman et 

112 al., 2016; Cole and Voytek, 2017; Shin et al., 2017). 

113 Herein, we wished to characterize spontaneous α brain activity while participants, quietly awake, 

114 were unaware they would have to report how much time had just elapsed. In human research, this can be 

115 done using a retrospective timing task, in which participants do not know in advance that time is the 

116 experimental factor of interest. Retrospective timing tasks engage episodic memory processes (Michon, 

117 1975; Hicks et al., 1976; Block, 1985), and are under-studied for two reasons. First, retrospective timing 
118 is most relevant and ecologically valid over longer time scales (seconds to minutes and hours) but this 

119 time scale prevents collecting many trials within a single experiment (Grondin, 2010; Chaumon et al., 

120 2022; Balcı et al., 2023). Second, and most importantly, a conservative retrospective task tests a single 

121 trial per participant to prevent attentional re-orientation to time, which would defeat the purpose of the 

122 task. With both these conditions fulfilled, retrospective timing emulates life events – mostly single shot 

123 experiences in our episodic landscape – and engage memory mechanisms (Michon, 1975; Hicks et al., 

124 1976; Block, 1985). Herein, we contend that this stringent approach allows addressing the basic building 

125 block for the automatic coding for the passage of time, at the minute-scale, in a manner very close to real 

126 life situations and comparable to inter-species approaches. 



4  

127 Our study is unique for several theoretical and empirical reasons. Neuroimaging studies mostly 

128 focus on prospective time, when participants covertly or overtly pay attention to time. Herein, our interest 

129 is how the brain codes elapsing time when participants do not a priori adopt a cognitive strategy to 

130 estimate it. Timing tasks mostly focus on how the temporal statistics of external sensory events are 
131 attended to, predicted, analyzed, or categorized; herein, we ask how elapsing time in the absence of 

132 sensory stimulation is encoded. Thus, we assess how endogenous processes during resting-state (Raichle, 

133 2015) contribute to the retrospective sense of time constitutive of the episodic “when” (Friedman, 1993; 

134 Buhusi, 2019; Sugar and Moser, 2019). Last, timing tasks typically address short time-scales that are 

135 below a few seconds with a repeated number of trials time-locked to stimulations (Busch and VanRullen, 

136 2010; Hanslmayr et al., 2011; Chakravarthi and VanRullen, 2012; Jensen et al., 2012; Landau and Fries, 
137 2012; Grabot et al., 2017, 2021; Nobre and Van Ede, 2018; Mioni et al., 2020). Under these experimental 

138 conditions, the assumption that α oscillations are stationary is a fair approximation of the signals. At the 

139 longer episodic time scales investigated here, the assumption of stationarity is clearly violated, which 

140 motivates the novel characterization of spontaneous α activity we explored in this study. 

141 141 

142 Materials and Methods 
 

143 Participants 
 

144 All participants provided a written informed consent in accordance with the Ethics Committee on Human 

145 Research at NeuroSpin (Gif-sur-Yvette, France) and in conformity with the Declaration of Helsinki 

146 (2018). 63 right-handed participants (27 males; age = 27 years old, +/- 6 years) were recruited for the first 

147 study. All had normal or corrected-to-normal vision and were naive as to the purpose of the study. None 

148 declared neurological or psychiatric disorders, and none were under medical treatment. Seven participants 

149 were excluded a priori from the MEG analysis: one participant showed an extreme time estimation 

150 (above the interquartile range), four participants showed non-recoverable noisy  MEG data and two 

151 participants did not comply with the task. Hence, a total of 56 participants (22 males; age = 27 years old, 

152 +/- 6 years) were analyzed in the retrospective time task. 

153 Out of the 56 participants tested in the retrospective time task, a subgroup of 25 participants 

154 performed a prospective duration estimation task: one participant was excluded from the analysis due to 

155 an extreme estimation (above the interquartile range) yielding a final sample for the prospective group of 

156 24 participants (11 males; age = 26 years old, +/- 5 years). 

157 A new group of 26 right-handed participants (12 males; age = 24 years old, +/- 5 years) were 

158 recruited for the visual counting experiment. 3 participants were excluded a priori from the MEG 
159 analysis: one participant showed an extreme time estimation (above the interquartile range), two 

160 participants showed non-recoverable noisy MEG data. Hence, a total of 23 participants (11 males; age = 

161 25 years old, +/- 5 years) were analyzed in the retrospective dual-task. 

162 162 

163 Experimental design 
 

164 In the quiet wakefulness retrospective time experiment (Figure 1a), the experimenter provided 

165 participants with the following instructions before the MEG recording: “I will record your brain activity 

166 at rest. Please, refrain from moving at all times and keep your eyes open. To help attenuate eye 

167 movements, we suggest you fixate on the black screen in front of you.” Following these instructions, the 

168 experimenter left the MEG room and waited for participants to state they were ready to start. 

169 Unbeknownst to participants, the recordings lasted 2 minutes (min), 4 min or 5 min. From the 
170 participant’s viewpoint, the recording unfolded as follows: the French word début (“start”) appeared on 
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171 the screen for 1s followed by a black screen lasting 4 s. A red dot centered on the screen appeared for 500 

172 ms after which the screen remained black for 2 min, 4 min, or 5 min. A second red dot appeared on the 

173 screen for 500 ms at the end of the experiment. At the end of the MEG recording, the participant was 

174 immediately asked to provide a verbal estimate of how much time had elapsed between the two red dots 
175 (retrospective time estimate; rTE). In the retrospective time task, this instruction was fully unexpected by 

176 participants, as confirmed by informal debriefing following the recording. 

177 In the quiet wakefulness prospective time task, participants were informed prior to the MEG 

178 recording that they would be asked to provide an estimation of how much time had passed between the 

179 two red dots (prospective time estimate; pTE). These recordings lasted 2 min or 4 min. 

180 In the retrospective time task following a visual counting task, 17 small white visual annulus were 

181 presented in the center of the screen for 120 ms each. The inter-stimulus interval varied pseudo-randomly 

182 between 7 and 45 s. For instance, one sequence of inter-stimulus-interval would be: 16 s, 5 s, 13 s, 22 s, 8 

183 s, 5 s, 39 s, 1 s, 6 s, 7 s, 15 s, 7 s, 45 s, 6 s, 22 s, and 7 s. This task lasted 4 minutes. Participants were 

184 instructed to detect and count the random occurrences of the annulus and to report their final count at the 

185 end of the recording. The task started and ended with the same red dots, which were used as instructions 
186 to the participants in defining the retrospective duration (rTE) they were also asked to estimate at the end 

187 of the task. 

188 Prior to the MEG recordings, participants' impulsiveness (psychological trait measure) was 

189 assessed using the French validated BIS-11 (Stanford et al., 2009). 37 (out of 56 participants) in the main 

190 retrospective timing task and 25 (out of 26 participants) completed the questionnaire for the visual 

191 counting task. 

192 192 

193 Behavioral analysis 
 

194 Participants’ retrospective (rTE) and prospective (pTE) time estimations were computed relative to the 

195 actual clock time that had elapsed between the two red dots as the ratio between the individual’s verbal 

196 report and clock time. This provided a relative (hence, unitless) measure of duration estimation allowing 
197 the comparison of the 2 min, 4 min and 5 min conditions. To test whether participants significantly 

198 overestimated or underestimated the elapsed time, we performed one-sample, one-tailed t-tests of the 

199 relative time estimates (rTE and pTE). A one-tailed paired-samples t-test was used to compare the rTE 

200 and the pTE of the individuals (N=24) who performed the retrospective and prospective timing task. The 

201 coefficient of variations (CV) were typically computed as the standard deviation of the population divided 

202 by the means of the population. The performance in visual counting task was computed as the ratio 

203 between the count reported by participants and the 17 stimuli effectively shown on the screen. 

204 204 

205 MEG acquisition 
 

206 We used a whole head Elekta Neuromag Vector View 306 MEG system (Neuromag Elekta LTD, 

207 Helsinki) equipped with 102 triple sensor elements (one magnetometer and two orthogonal planar 
208 gradiometers) to record electromagnetic brain activity in a magnetically-shielded-room. The sampling 

209 frequency was 1 kHz. A high-pass filter of 0.3 Hz was applied online. Horizontal and vertical electro- 

210 oculograms (EOG) and -cardiogram (ECG) were recorded during the session. Participants' head position 

211 was measured before each block by means of four head position coils (HPI) placed over the frontal and 

212 mastoid areas. 

213 213 

214 MEG pre-processing 
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215 Signal space separation (Taulu and Simola, 2006) was applied to decrease the impact of external noise. 

216 MEG data were notch-filtered at 50 Hz to remove the power line noise. Ocular and cardiac artefacts were 

217 corrected by rejecting independent component analysis (ICA) components computed for MEG data that 

218 most correlated with detected ECG and EOG events. All MEG recordings lasted 2 min, 4 min or 5 min. 
219 For the great majority of the analyses, and unless otherwise specified, we used the first two minutes of 

220 each dataset so as to conduct the analysis on the full set of participants. In the visual counting task, only 

221 the MEG signals outside the evoked responses elicited by the presentation of the annuli was considered 

222 for the burst analysis. To do so, 800 ms of signals were removed following each stimulus presentation. 

223 The output signals consisted of 18 epochs of unequal length. A total duration of 226 s were used for the 

224 MEG analysis in this task. 

225 225 

226 MEG analysis 
 

227 Power Spectrum Density 

228 The continuous resting state recordings were segmented into non-overlapping 5 s epochs to compute the 

229 power spectrum density (PSD). The PSDs were computed using multitaper between 0.1 Hz and 45 Hz. 

230 230 

231 Spontaneous alpha localizer 

232 A cluster-based analysis was performed to localize the significant sensors in the α range (7-14 Hz) 

233 separately for the magnetometers and the gradiometers. In the main text, we report results for the 

234 magnetometers for simplicity and refer to them as “sensors”. All outcomes of our analyses could be 
235 otherwise be replicated for gradiometers. For a complete report and replication, Figure 1-1 and 1-2 

236 provide outcomes of the main findings for the gradiometers. 

237 On a per individual basis, the 1/f trend of the PSDs was compensated for in each epoch and 

238 sensor. For this, we computed the mean PSD per sensor and normalized them by the grand mean PSD 

239 taken over all sensors. To localize sensors most sensitive to α, we ran a cluster-based permutation analysis 

240 (Maris and Oostenveld, 2007) implemented in MNE-Python (Gramfort et al., 2013) by drawing 1000 
241 samples for the Monte Carlo approximation and using FieldTrip's default neighbor templates for the 

242 vectorview MEG system (Oostenveld et al., 2011). The randomization  method identified the MEG 

243 sensors whose statistics exceeded a critical value, with neighboring sensors exceeding the critical value 

244 defining the significant cluster. The p-value was estimated based on the proportion of the randomizations 

245 exceeding the observed maximum cluster-level test statistic. The cluster-forming threshold was set to 
246 .0001, which was equivalent to a t-threshold of 4.2 in an experimental design using 56 participants. Only 

247 clusters with corrected p-values < .05 are reported. Robust clusters of 39 magnetometers and 71 

248 gradiometers were found. 

249 249 

250 Spectral analysis and individual alpha peak (iAPF) detection 

251 The FOOOF algorithm3 (version 1.0.0) was used to parameterize neural power spectra (Donoghue et al., 

252 2020). Settings for the algorithm were as follows: the peak width limits were set to [1.0, 8.0], the maximal 

253 number of peaks was set to 6, the minimum peak height was set to 0.1, the peak threshold was set to 2.0 

254 and the aperiodic mode was fixed. The PSDs of significant sensors were used as FOOOF algorithm input. 

255 The algorithm outputs an estimate of the individual α peak frequency (iAPF) and power. The iAPF was 

256 defined as the local maximum within the frequency range of 7 to 14 Hz, and averaged across significant 
257 sensors on a per individual manner (Fig. 1d-e, Fig. 1g-h, Fig. 3g, Fig. 4b). Hence, α power was the 
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258 average periodic power at iAPF across significant sensors. The median absolute error for iAPF estimation 

259 was between 0.1 Hz for low noise and 1.25 Hz for high noise. 

260 260 

261 Oscillatory bursts analyses 

262 The cycle-by-cycle time-domain analysis was used to detect α oscillatory bursts in the continuous MEG 

263 recordings and to quantify each oscillatory cycle amplitude (Cole and Voytek, 2019). We ran this analysis 

264 for all three tasks on a per individual basis (Fig. 1f, Fig. 1i, Fig. 3h, Fig. 4c). The threshold parameters 

265 used to detect episodes with bursts were as follows: amplitude fraction threshold = .2; amplitude 

266 consistency threshold = .4; period consistency threshold = .4; monotonicity threshold = .8; and minimum 

267 number of cycles = 3. The Neurodsptool was subsequently used to quantify the relative burst time (Cole 
268 et al., 2019), a feature which indicates how bursty a signal is: 100% means the continuous data was 

269 detected as α burst during the entire time (sustained oscillatory signal) whereas 0% means that no α 

270 oscillations were found. Relative burst time and burst amplitude were computed for all selected sensors 

271 and averaged on a per individual basis. The same procedure was ran on all other canonical frequency 

272 bands (Fig. 2d-f). Thresholds for the delta, theta and beta bands were set to: amplitude fraction threshold 
273 = 0.3; amplitude consistency threshold = 0.6; period consistency threshold = 0.5; and monotonicity 

274 threshold = 0.9. 

275 

276 Source estimation of alpha generators 

277 To illustrate the likely cortical generators of the α power, we proceeded with source estimation. The 

278 individuals’ anatomical MRIs were imported and segmented using the FreeSurfer image analysis suites 

279 (http://surfer.nmr.mgh.harvard.edu/). A one-layer boundary element model (BEM) surface was generated 

280 to constrain the forward model. Individual forward solutions (head models: 10,242 

281 icosahedrons/hemisphere; 3.1 mm spacing) were computed using the individual BEM model constrained 

282 by the anatomical MRI (aMRI). The aMRI and the MEG were co-registered using the anatomical 

283 fiducials (nasion; pre-auricular points; head surface) digitized prior to the MEG acquisition with the 
284 MNE-Python suite (Gramfort et al., 2013). To ensure a reliable co-registration, an iterative refinement 

285 procedure was used to realign all digitized points with the individual’s scalp and was manually checked. 

286 We used the noise covariance matrix from one minute of empty room recording prior to the experimental 

287 session and used a Linear Constrained Minimum Variance (LCMV) beamforming (Van Veen et al., 1997) 

288 approach on the whole brain volume, which estimated the activity of each source at the ith voxel for a 

289 given time window. The source estimates were then morphed into a common Freesurfer average brain 

290 (fsaverage) for subsequent group analysis. The activity time courses for each voxel was segmented into 

291 non-overlapping 10 s epochs to compute the power spectrum density (PSD). The PSDs were computed 

292 using multitaper between 0.1 Hz and 20 Hz, then averaged across all epochs to obtain one PSD per voxel, 

293 per individual. Then, we compensated the 1/f trend of the PSDs of each voxel and normalized them by the 

294 grand mean PSD taken over all voxels on a per individual basis. The grand-average source estimates 
295 across participants for retrospective and for prospective condition are presented in Figure 1-3. 

296 296 

297 Statistical analyses 

298 In the retrospective time estimations analyses, the rTE, the iAPF, the α power and the relative burst time 

299 measurements were all normally distributed as assessed by Shapiro-Wilk's test (rTE p = .232, iAPF p = 

300 .903, α power p = .809, relative α burst time p = .156). However, the assumption of normality was not 

301 achieved for the α burst amplitude (p = .011). In the prospective time estimations the pTE, the iAPF, the 

302 periodic α power, the α burst amplitude, and the relative burst time were all normally distributed as 

http://surfer.nmr.mgh.harvard.edu/)
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rTE 

303 assessed by Shapiro-Wilk's test (pTE p = .254, iAPF p = .980, α power p = .909, α burst amplitude p = 

304 .068, relative burst time p = .374). In the visual counting task, the rTE, the iAPF, the periodic α power, 

305 the α burst amplitude and the relative burst time were all normally distributed as assessed by Shapiro- 

306 Wilk's test (rTE p = .168, iAPF p = .499, α power p = .419, relative burst time p = .605). 

307 For all normally distributed variables, we performed Pearson correlation (r). For the non- 

308 normally distributed α burst amplitude in the retrospective time task, we used Spearman correlation (ρ). 

309 For each significant correlation, we performed the Cook’s distance measure to ensure the robustness of 

310 our results. 

311 In the retrospective time analysis, we wished to clarify which of all the predictor variables (α 

312 power, α burst amplitude and α relative burst time) was best at accounting for the variability in 
313 retrospective time estimates (rTE). For this, we devised a statistical approach that was highly sensitive to 

314 the collinearity of the data. First, we orthogonalized the predictor variables using principal component 

315 analysis (PCA). Then, we performed a principal component regression (PCR) to select the best (or 

316 combination of) PCA predictor(s) explaining rTE. Last, we performed multiple linear regressions to 

317 disentangle statistically the best predictor(s) of rTE. Before applying PCA, we observed that the α burst 
318 amplitudes were not normally distributed due to two outlier values. Hence, we replaced these two values 

319 by the mean of the population: the α burst amplitude was then normally distributed as assessed by 

320 Shapiro-Wilk's test (p =.158). The initial eigenvalues indicated that PCA1 and PCA2 explained 84% and 

321 14% of the variance, respectively. We excluded PCA3, which explained only 3% of the variance. Second, 

322 we performed a PCR using PCA1 and PCA2, which showed that PCA1 significantly predicted rTE (β = 

323 0.08, t(53) = 3.83, p < .001) whereas PCA2 did not (β = -0.05, t(53) = -1.02, p = .310). Hence, we 

324 selected PCA1 for the last step. Last, we conducted four independent linear regressions using rTE as 

325 dependent variable and α power, α burst amplitude, α relative burst time and PCA1 as predictors. The 

326 goodness-of-fit of these four models were assessed using the Akaike Information Criterion (AIC; the 

327 lowest the AIC, the better the fit) from which we can conclude that the relative α burst time was the best 

328 predictor of rTE (Table 1). 

329 To compare the the iAPF, the periodic α power, the α burst amplitude and the relative burst time 

330 between retrospective and prospective timing task, we used paired two-sided t-tests. 

331 331 

332 Results 
 

333 In the retrospective time task (Fig. 1a), participants were asked to remain in quiet wakefulness with 

334 opened eyes fixating on a screen placed in front of them while being recorded with MEG. A red dot 

335 signaled the beginning and the end of the recording, which, unbeknownst to participants, lasted 2, 4, or 5 

336 minutes. At the end of the recording, participants were unexpectedly asked to estimate verbally and as 

337 precisely as possible (in minutes, seconds) how much time elapsed between the two red dots. We 

338 characterized participants’ retrospective time estimations as the ratio between their reported duration and 

339 the elapsed time (clock duration) to establish a measure of relative retrospective time estimates (rTE). An 
340 rTE above 1 indicates that participants overestimated elapsed time, an rTE below 1 indicates that 

341 participants underestimated it. On average, participants (N= 56) significantly underestimated the duration 

342 of their quiet wakefulness during the MEG recording (Fig. 1b; rTE = 0.78 +/- 0.26, t(55) = -6.1, p < .001). 

343 The underestimation of rTE strongly indicates that participants did not pay attention to time (Polti et al., 

344 2018), as a lack of explicit orientation to time would predict and as required by the experiment. 

345 One property of duration estimation is its scalar property, in which the variance (𝜎) of a 
346 magnitude estimation increases with its magnitude (𝜇). As several durations were tested, we computed 

347 the coefficients of variation (𝐶𝑉 = 
𝜎rTE/𝜇 ) for each and found that, as predicted by scalar timing, the 
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348 CVs were comparable across durations (Gibbon, 1977) (2 min: CV = 31%, 4 min: CV = 34%, 5 min: CV 

349 = 35%), legitimizing the psychological effectiveness of the retrospective verbal estimations (Chaumon et 

350 al., 2022; Balcı et al., 2023). 

351 Due to the known relation between impulsivity and timing (Wittmann and Paulus, 2008), we also 

352 tested the correlation between rTE and participants' impulsiveness scores (Stanford et al., 2009). We 

353 found no significant correlations (ρ(35) = .90, p = .59) between these two measures, suggesting that rTE 

354 was selective to time estimation and did not reflect an individual’s psychological trait. 

355 355 

356  

357 Fig. 1 Retrospective time estimates. (a) In the retrospective timing task, participants (N=56) stayed in quiet wakefulness during 

358 an MEG recording that could last 2, 4, or 5 minutes. Participants received no additional instructions. At the end of the MEG 

359 recording, they were asked to estimate as best they could the duration that elapsed between the two red dots, marking the 

360 beginning and end of the recording. (b) Distribution of the relative retrospective time estimates (rTE) across participants (N = 

361 56). The dashed purple line delineates equality between subjective (rTE) and objective (clock) duration. The dashed gray line 
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362 indicates the mean rTE across participants, indicating that participants significantly underestimated the elapsed time of their quiet 

363 wakefulness. The lightest gray bar is an outlier. (c) rTE as a function of α power: stronger α power corresponded to longer rTE. 

364 Each dot is a participant. Black line is a regression line and grey shading is 95% CI. Data are reported for magnetometers. Figure 

365 1-1 reports the same outcome for gradiometers. Figure 1-2a provides source estimates. (d-i) Data from two representative 

366 participants P1 and P2. (d) P1 (rTE = 0.27) showed a flatter distribution of power spectral densities across sensors (blue). The 

367 iAPF (dashed purple line) was determined using a spectral model fit fooof (Donoghue et al., 2020). Figure 1-3a provides iAPF as 

368 a function of rTE. (e) Model fit for one sensor (blue) showing the estimated 1/f slope (dashed grey), the full spectral model (red), 

369 and the iAPF (purple dashed line). (f). An oscillatory dynamic analysis (cycle-by-cycle) (Cole and Voytek, 2019) was applied to 

370 the same sensors to detect and quantify the α burstiness over time (green). (g-i). The same characterization of spontaneous 

371 oscillatory dynamics for a second participant P2 (rTE = 1.25). P2 shows stronger α power and α burstiness than P1. *** indicates 

372 p < .001. 

373 We then turned to the individuals’ MEG recordings to quantify α activity. We found that stronger 

374 α power during quiet wakefulness predicted larger rTE (Fig. 1c and Fig 1-1; r(54) = .43, p < .001): the 

375 larger the α power, the longer the retrospective durations. Given this result, we explored individual’s α 

376 peak frequency or iAPF (Haegens et al., 2014), which has been implicated in numerous perceptual timing 

377 experiments (Samaha and Postle, 2015; Cecere et al., 2017; Minami and Amano, 2017; Ronconi et al., 

378 2018; Mioni et al., 2020). At the scale of minutes, and under the assumption that spontaneous α 

379 oscillations are stationary, the α clock hypothesis would have predicted a positive and linear relation 

380 between iAPFs (Fig. 1d-e, 1g-h) and an individual’s rTE (Treisman, 1984). However, we found no 

381 evidence linking iAPF and retrospective duration estimation (r(54) = -.10, p = .469; Figure 1-2), 

382 suggesting the α clock hypothesis does not hold as originally conceived. 
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383 383 

384 Fig. 2 α power and relative α burst time predict retrospective timing. (a) rTE as a function of the relative α burst time (%), 

385 that is, the relative amount of time α was bursting during the quiet wakefulness period participants estimated the duration of. 

386 Participants’ rTE significantly increased with higher relative burst time. Each dot is a participant. P1 (rTE = 0.27) and P2 (rTE = 

387 1.25) are two participants whose spectral dynamics are provided in Fig. 1. Black line is a regression line and grey shading is 95% 

388 CI. Data are reported for magnetometers. Identical outcomes for gradiometers are provided in figure Figure 1-1. (b) Distribution 

389 of α burst amplitude (top panel, orange) and relative α burst time (bottom panel, green) as a function of α power (blue). (c) Left 

390 panel: the relative delta (δ: 1-3 Hz) burst time did not correlate with rTE. Right panel: dynamic oscillatory δ analysis applied to 

391 the data of P1 and P2. (e-f) The same analysis was applied for the theta (θ: 4-7 Hz) and β (15-30 Hz) bands. The relative θ or β 

392 burst times did not significantly correlate with rTE. (h) Left panel: 1/f components do not predict rTE . Right panel: comparison 

393 of the 1/f components of the average power spectrum across epochs and sensors for each participant. For this, the 1/f offset and 

394 exponent per participant were used to reconstruct the aperiodic-only spectrum (Donoghue et al., 2020). Each line shows the 

395 aperiodic spectrum of one participant. The dashed black line shows the mean aperiodic spectrum across participants. The yellow 

396 to brown shading indicates rTE. Figure 2-1 further describes the stability of α burst dynamics over time. 

397 397 

398 The novel observation that α power linearly correlates with individuals’ retrospective duration estimates 

399 relied on time-averaged spectral quantifications, which reduce and impoverish the temporal structure of 
400 brain activity  over minutes to  a single  characterization  (i.e. α power). As neural oscillations show 
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401 burstiness with fluctuating amplitudes, frequencies, and waveform morphologies (Cole  and Voytek, 

402 2017), we asked whether the relation between α power and rTE could be better accounted for by the 

403 dynamics of spectral fluctuations. In particular, we questioned whether the relative burstiness of α 

404 rhythms would be a major predictor of elapsing time. Using state-of-the-art analyses (Cole and Voytek, 
405 2019), we detected the presence of α bursts in the MEG data (Fig. 1f, 1i), quantified their amplitude and 

406 the relative time of α bursts during the time interval participants had to estimate (Fig. 2). The relative 

407 burst time indexes the oscillatory dynamics of α activity and ranges from 0 % to 100 %, signifying no-to- 

408 sustained oscillatory α activity, respectively. 

409 We found a significant positive correlation between rTE and relative α burst time (r(54) = .50, p < 

410 .001; Fig. 2a), indicating that the relative duration estimated retrospectively could be predicted by the 
411 relative amount of α bursts in the absence of overt attention to time. This could be predicted as the mean 

412 spectral estimation of α power intuitively fluctuates with both α burst amplitude (Fig. 2b, upper panel) 

413 and relative α burst time (Fig. 2b, lower panel). Interestingly, these relations held true for the entire period 

414 of quiet wakefulness (Fig. 2-1) indicating that α dynamics were stable throughout the experimental 

415 recordings. 

416 Given that the different α characterizations are highly collinear, we performed a principal 

417 component regression analysis to establish whether the relative α burst time was a better predictor of rTE 

418 than α power, α burst amplitude, or all of them combined (Table 1). The first principal component 

419 significantly predicted rTE (PCA1: β = 0.08, t(53) = 3.83, p < .001; PCA2: β = -0.05, t(53) = -1.02, p = 

420 .310) and it was selected for the independent linear regressions using rTE as dependent variable and α 

421 power, α burst amplitude, α relative burst time and PCA1 as predictors. The goodness-of-fit of these four 

422 models were assessed using the Akaike Information Criterion (AIC; the lowest the AIC, the better the fit) 

423 from which we could conclude that the relative α burst time alone was the best predictor of rTE (Table 1). 

424 

Predictor p-value F-value beta R AIC 

α relative burst time < .0001 *** 18.09 .50 .50 -1.20 

PCA1 (combination of α power, α burst 

amplitude and α relative burst time) 

< .001 *** 14.62 .46 .46 1.56 

α power < .001 *** 12.50 .43 .43 3.32 

α burst amplitude .016 * 6.23 .32 .32 8.86 

425 Table 1. Model comparisons for the prediction models. F-values indicate whether the regression model provides a better fit to 

426 the data than a constant value. Beta provides the standardized regression weights. R represents the zero-order correlation. The 

427 Akaike Information Criterion (AIC) was calculated for all models. A lower AIC value indicates a better fit. The α relative burst 

428 time predictor showed the best fit. 

429 For theoretical reasons our primary working hypothesis targeted α activity. However, because 

430 different oscillations have been reported in timing tasks (Cravo et al., 2011; Kononowicz and van Rijn, 
431 2015; Kononowicz et al., 2019; van Wassenhove et al., 2019; Herbst et al., 2022), we performed the same 

432 analysis across multiple oscillatory bands (δ : 1-4 Hz ; θ : 4-7 Hz; β : 15-30 Hz) to test the spectral 

433 selectivity of our findings. Besides α, none of the tested spectral bursts were indicative of rTE (Fig. 2d-e, 

434 δ : r(54) = -.01,  p = .926 ; θ : ρ(54) = .17, p = .218 ; β : r(54) = .05,  p = .696 ). As the reported activity of 

435 time cells across species spans seconds and minutes (Pastalkova et al., 2008; MacDonald et al., 2011; 
436 Kraus et al., 2015; Issa et al., 2020; Umbach et al., 2020; Aghajan et al., 2022; Cogno et al., 2022; Tsao et 

437 al., 2022), one possibility is that slow-activity building over time would contribute to time estimations. 

438 Slow-activity could be captured as slow aperiodic activity in the spectrum, therefore, we tested whether 
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439 the aperiodic spectrum or slope of the 1/f spectrum - capturing the slowest dynamics in the signals – 

440 would show dependency to participants’ rTE. We found no such correlations (ρ(54) = - .10, p =.516; Fig. 

441 2f). Hence, neither the spectral dynamics in other oscillatory regimes, nor scale-free fluctuations showed 

442 a significant relation with rTE, supporting that α burst time may be selective to retrospective timing. 

443 443 

444 We then asked whether the relation between α burst time and retrospective time estimates would 

445 hold when participants overtly oriented their attention to time. For this, we collected a prospective timing 

446 task in a subset of participants who took part in retrospective time task (N=24). We instructed them 

447 before the MEG recording to keep track of how much time elapses between the two red dots (Fig. 3a, top 

448 panel). We computed the ratio between participants’ verbal time estimates and clock duration as relative 
449 prospective time estimates (pTE). Participants’ pTE showed a significant overestimation of duration spent 

450 in quiet wakefulness (M = 1.20 +/- 0.36 a.u., t(23) = 2.75 , p = .006). This outcome was consistent with 

451 the fact that attention to time dilates its subjective duration (Brown, 1985; Fortin et al., 2007; Polti et al., 

452 2018). A one-tailed paired samples t-test comparing relative time estimates between the retrospective and 

453 prospective tasks showed that participants estimated prospective durations to last significantly longer than 
454 the retrospective ones (t(23) = 4.22 , p < .001; Fig. 3a, bottom panel). 

455 455 

456 456 

457 Last, we wondered whether the relation between α burst time and rTE would hold when 

458 participants were engaged in a non-timing task instead of being in quiet wakefulness. To test this, we ran 

459 another experiment in which naïve participants (N = 23) had to count the total number of faint visual 

460 stimuli (a total of 17 events) presented on the screen during the MEG recording (Fig. 4a). At the end of 

461 the recording, participants were asked to report how many stimuli were detected but also, and 

462 unexpectedly for them, to report how much time elapsed between the two red dots. This experiment 

463 provides a very stringent control by emulating a more ecologically valid situation in which individuals 

464 vacate to occupations distinct from attending to time. Importantly, counting is also known to alter timing 
465 (Gaudreault and Fortin, 2013) and α activity is strongly modulated by visual attention (Hanslmayr et al., 

466 2011; Nobre   and   Van   Ede,   2018).   Thus,   this   control   task   altered   both   a   cognitive   and   a 

467 neurophysiological factor largely predicted to affect timing. On average, participants successfully 

468 reported the number of visual events (percent correct count = 0.99 +/- 0.11). As we predicted, participants 

469 underestimated the duration of the task (rTE = 0.86 +/- 0.31, t(22) = -2.11, p = .023; Fig. 4a). We then 
470 asked whether their rTE could be predicted by α power, which was the case (r(21) = .45, p = .031). We 

471 then replicated the relation between rTE and the relative α burst time (r(21) = .51, p = .013) (Fig. 4d). 

472 These results suggest that despite participants being engaged in a visual counting task, the relative burst 

473 time of α dynamics predicted individuals’ retrospective timing. 

474 474 
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475 475 

476 Fig. 3 Relative α burst time does not predict prospective timing (N = 24). (a) 24 participants who took part in the 

477 retrospective timing task (rTE) were now asked to estimate the duration that will elapse between the beginning and the end of the 

478 recording (prospective timing, pTE). As predicted, participants estimated the relative duration to be significantly longer in the 
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479 prospective task compared to the retrospective task. (b-f). Each dot is a participant. Black lines are regression lines and grey 

480 shading are 95% C.I. Retro is retrospective timing data; Pros is prospective timing data. (b) The relative duration of α burst 

481 showed no significant correlation with pTE. (c) α power (blue) in prospective and retrospective tasks were significantly 

482 correlated and did not significantly differed between the two tasks (t(23) = -1.73 , p = .097, blue box plots). Figure 1-2a and 1-2b 

483 provides source estimates of α power in the retrospective and prospective conditions, respectively.   (d) Participants’ iAPF 

484 (purple) in prospective and retrospective tasks were highly correlated and did not significantly differed (t(23) = -1.08 , p = .289; 

485 purple box plots). (e) α burst amplitude (orange) in the two tasks significantly correlated and did no significantly differed (t(23) = 

486 -0.05 , p = .960; orange box plots). (f) The relative α burst time (green) in prospective and retrospective timing was strongly 

487 correlated but differed between the two tasks: the relative α burst time was significantly higher in prospective than in 

488 retrospective timing task (t(23) = -8.80 , p < .001; green plots). Data from participants P1 and P2 recorded during the prospective 

489 timing task are illustrated with (g) power spectra and (h) oscillatory dynamics. *** indicates p< .001. 

490 490 

491  

492 Fig. 4 α power and relative α burst time predict retrospective timing despite a visual counting task (N = 23). (a) 

493 Participants counted faint visual stimuli displayed at random times on the screen during the MEG recording. No instructions 

494 about timing was provided. Participants performed well on the counting task and retrospectively underestimated the elapsed time. 

495 (b-c) Data from two participants (P3 and P4). (b) P3 (rTE = 0.33) showed a flatter distribution of power spectral densities across 

496 sensors (blue) as compared to P4 (rTE = 1.04). (c) P3 showed fewer oscillatory bursts (green) than P4. To prevent contamination 

497 from the evoked responses elicited by the presentation of visual stimuli, 800 ms were taken out of the burst analysis (shaded 

498 gray). (d) rTE as a function of relative α burst time (%). Participants’ rTE significantly increased with higher relative burst time 

499 and stronger alpha power, replicating and extending our original observations. Each dot is a participant. Black lines are 

500 regression lines and grey shading are 95% CI. 
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501 501 

502 Discussion 
 

503 In this series of experiments, we asked whether dynamic features of spontaneous oscillatory activity can 

504 tell time at the scale of minutes. We explored this question when individuals did not orient their attention 

505 to time (quiet wakefulness; retrospective estimation and episodic time stricto sensu) or when they were 

506 asked to estimate time in advance (prospective timing task). We report the relative time of spontaneous α 

507 bursting activity during quiet wakefulness and during a visual task is a high predictor of participants’ 

508 retrospective duration estimates at the scale of minutes. This relation did not hold for prospective timing, 

509 in which participants were explicitly told to pay attention to time. Our results suggest that spontaneous 
510 mechanisms keeping track of time when the observer is not told to keep track of it (retrospective) may 

511 largely differ from those used when the observer intently keeps track of it (prospective). 

512 Out of the original studies testing the α clock hypothesis and failing to find a direct link with 

513 duration perception at the scale of minutes (Treisman, 1984; Kononowicz and van Wassenhove, 2016; 

514 van Wassenhove et al., 2019), the early study of Werboff (Werboff, 1962) stands out as being the closest 
515 to the current experimental venue. In his study, the author compared the “α wave-count” as the percentage 

516 of time α was present in the EEG signal: individuals with a lower occurrence of α waves underestimated 

517 elapsed time as compared to individuals with more α waves. However, participants were tested at a time 

518 scale of a few seconds (2s and 8s) with a prospective time task. The methodological standards in 1962 are 

519 quite remote from our contemporary ones, making it hard to make a direct comparison with our 

520 observations. In fact, like a majority of early empirical efforts using prospective timing (reviewed in (van 
521 Wassenhove et al., 2019)), we failed to find direct evidence between spontaneous α rhythms and 

522 prospective duration estimation. Attending to time may hinder our ability to capture the endogenous 

523 dynamics of an internal clocking mechanism due to the diversity of cognitive strategies deployed by 

524 participants to keep track of it. Indeed, a great majority of studies use prospective timing tasks, in which 

525 participants pay attention to the temporal statistics of upcoming stimuli (Grondin, 2010; Vatakis et al., 
526 2018; van Wassenhove et al., 2019) engage oscillatory activity for a diversity of sensorimotor and 

527 cognitive factors. These may confound processes that are selective to the representation of time per se. 

528 The retrospective timing tasks used here could be argued to relate to implicit timing (Tsao et al., 2022; 

529 Sawatani et al., 2023). Implicit timing tasks typically explore sub-second-to-second temporal scales 

530 (Nobre et al., 2007; Nobre and Van Ede, 2018), which are crucial for the structuring of sensory 

531 information in perception and temporal expectations. Herein, we explored the time scale of minutes and 

532 used a single-trial approach to ensure that participants were not aware of the goal of our study. Thus, no 

533 (implicit) temporal learning could take place in this experiment. Our approach is important for time scales 

534 that are most relevant to episodic timing and that last several seconds, minutes or hours. Herein, we thus 

535 used a minimalist retrospective time task and the implication of α rhythms in episodic time tracking 

536 became quite salient. 

537 Although our results demonstrate the implication of rhythmic-like activity in episodic timing, we 

538 do not interpret these findings as evidence for a direct implementation of the α clock hypothesis, at least 

539 not in the manner it was initially formulated. Rather, and consistent with an information-theoretic view of 

540 time estimation (Hicks et al., 1976; Gallistel, 1990), we suggest that the retrospective estimation of the 

541 passage of time by participants is linked to episodic memory (Michon, 1975; Block, 1985; MacDonald, 

542 2014) and implemented as a count of bouts of awareness (or “events”) during quiet wakefulness. The α 

543 clock hypothesis presented here is not about counting time per se; rather, it is about counting events 

544 spontaneously and endogenously instantiated as α burst. It is important that we do not interpret such 

545 counting mechanism as an explicit and overt counting process, but as an automatic parsing and time- 

546 stamping mechanism of internal events. Such episodic parsing would be most similar to an information 

547 theoretic event-based clock model (Gallistel, 1990), which can be reconciled with a symbolic approach of 



17  

548 timing in memory (Friedman, 1993) and the possible spontaneous dynamics of timing cells observed in 

549 various species (Pastalkova et al., 2008; MacDonald et al., 2011; Kraus et al., 2015; Issa et al., 2020; 

550 Umbach et al., 2020; Aghajan et al., 2022; Cogno et al., 2022; Tsao et al., 2022). This hypothesis, aligns 

551 well with a recent proposal (Tsao et al., 2022), in that α bursts may instantiate state-dependent network 
552 trajectories ultimately feeding episodic time estimation. 

553 553 

554 During quiet wakefulness, the implication of α rhythms in the regulation of the default-mode 

555 network is expected. In combined EEG and fMRI recordings, the coexistence of positive and negative 

556 fluctuations of neural networks activity with changes in α synchronization have been reported (Goldman 

557 et al., 2002; Laufs et al., 2003; Mantini et al., 2007): increases in α power tend to correlate with an 
558 increase BOLD response in thalamic and insular cortices, whereas a decrease in α power co-occurs with a 

559 decrease in occipital and frontal regions (Goldman et al., 2002; Laufs et al., 2003). Out of six resting-state 

560 networks identified during quiet wakefulness (Mantini et al., 2007), the default mode network (Raichle, 

561 2015) and the dorsal attentional network (Fiebelkorn and Kastner, 2020) have shown significant 

562 congruence with α power fluctuations (Mantini et al., 2007). If the dorsal attention network (Fiebelkorn 
563 and Kastner, 2020) is most readily associated with the functional regulation of visual processing during 

564 perception, the default mode network (Raichle, 2015) is mostly involved in endogenous processing. 

565 While thalamo-cortical circuitries are important contributors to α activity (Steriade et al., 1990; Steriade, 

566 1999; Halgren et al., 2019), a significant implication of hippocampal activity has been reported (Raichle, 

567 2015). The presence of α bursts suggest that recurrent state-dependent networks may mediate transient or 

568 discrete bursts of neural firing in this frequency range. Consistent with this, α rhythms are coupled to the 

569 functional state of the default-mode network (Brookes et al., 2011) and α bursts have recently been 

570 associated with memory replay (Higgins et al., 2021). Consistent with the α clock hypothesis as an event- 

571 based episodic tracking mechanism, a recent study demonstrated that in the absence of sensory 

572 stimulation and feedforward inputs, α activity endogenously regulates spontaneous thoughts from which 

573 high level conscious features can be decoded including the where and what content (Xie et al., 2020). 

574 While α rhythms are the earliest described oscillations in human brain activity (Berger, 1935), 

575 they are notoriously difficult to classify in the taxonomy of neural oscillations drawn from animal 

576 neurophysiology (Buzsaki and Draguhn, 2004; Buzsáki et al., 2013). While α rhythms are sometimes 

577 compared to theta oscillations seen in rodents, human theta and α rhythms show intriguingly divergent 

578 developmental trajectories (Cellier et al., 2021) with the precedence of theta rhythms incrementally 
579 dominated by α rhythms at 7-8 years old. In light of our findings, it would be particularly interesting to 

580 explore how developmental trajectories of episodic timing may or not follow those predicted by 

581 neurophysiology. Additionally, the iAPF increases with age to reach a value stable in adulthood and 

582 decreases again in aging (Lindsley, 1939; Scally et al., 2018; Cellier et al., 2021). We did not observe a 

583 correlational implication of iAPF in this study, but exploiting a larger range of iAPF across ages or 

584 longitudinally may provide reliable insights. 

585 Taken together, we propose that a large-scale endogenous regulation of α burst activity may 

586 contribute to the internal counting of events and bouts of conscious moments, which may support time 

587 keeping mechanisms for the individual’s episodic when. Given the simplicity of our experimental 

588 protocol, we believe that this novel α clock hypothesis could be tested in a large range of healthy and 

589 clinical population and could provide a neural marker for the passage of time. We interpret our findings as 

590 suggesting that in the absence of attention to time and temporal task demands, α bursts may embody 

591 discrete states of awareness like timestamps in our episodic landscape, from which accurate duration 

592 estimates can be recollected retrospectively, in the individual’s future. 

593 593 

594 594 
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774 

775 Extended Data 

776       Figure 1-1. α burstiness in gradiometers. The same analysis performed in Fig. 2a was replicated with 

777 gradiometers. The spontaneous α localizer resulted in 71 gradiometers used for the α cycle-by-cycle 

778      analysis. Each dot represents an individual participant. The black line is the regression line and the grey 

779       shading is 95% CI. A significant positive correlation between α power (M = 0.76 +/- 0.28 a.u.) and rTE 

780 was observed. The correlation between rTE and relative burst time (M = 45 +/- 6%) was also significant. 

781 

782   Figure 1-2. Cortical generators of α. a.The grand-average source estimates of α activity collected in the 

783       main retrospective task was computed across participants (N = 50; 5 out of 56 participants did not have 

784   aMRI). b. The same analysis performed for the prospective task data (N = 22; 2 out of 24 participants did 

785 not have an aMRI). 

786 

787 Figure 1-3. No relationship between an individual’s α peak frequency (iAPF) and retrospective 

788       duration estimation (rTE). Each dot represents an individual. The black line is the regression line and 

789       the grey shading is 95% CI. a. Magnetometers: no significant correlations were found between rTE and 

790 iAPF. The mean iAPF was 10.5 Hz (+/- 0.78 Hz). b. Gradiometers: no correlations between iAPF and 

791 rTE. Black lines are regression lines and shaded areas are 95% CI. 

792 

793   Figure 2-1. Stability of spontaneous α dynamics during quiet wakefulness. To test whether the 

794      properties of α dynamics showed a continuous trend in the course of the MEG recordings, we computed 

795 the α power, the iAPF, the α burst amplitude and the relative α burst time in moving windows of 30 s over 

796 the first 240 s of the quiet wakefulness recordings (n = 41; 4 min and 5 min conditions). Each dot 

797     represents an individual participant. Non-parametric repeated measures Friedman test (non-normal 

798    distribution) were performed using time windows (8) as main factor. One boxplot is a time window. a. A 

799      main effect of windows was found on α power (2(7, 40) = 67.3, p < .001). A pairwise Wilcoxon signed 

800   rank test showed that α power showed initially less amplitude than in the rest of the recording (*p < .001) 

801 with α power reaching a plateau within 60s (p = 1). b. iAPF was stable throughout and did not change 

802 over time (2(7, 40) = 7, p > .05). α burst amplitude (c) and relative burst time (d) were initially 

803 significantly lower than in the rest of the recordings (α burst amplitude: 2(7, 40) = 61.7, * p < .001; 

804 relative α burst: 2(7, 40) = 53.7, * p < .001). 
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