
HAL Id: hal-04233066
https://hal.science/hal-04233066

Submitted on 9 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regional climate downscaling over Europe: perspectives
from the EURO-CORDEX community

Daniela Jacob, Claas Teichmann, Stefan Sobolowski, Eleni Katragkou, Ivonne
Anders, Michal Belda, Rasmus Benestad, Fredrik Boberg, Erasmo Buonomo,

Rita Cardoso, et al.

To cite this version:
Daniela Jacob, Claas Teichmann, Stefan Sobolowski, Eleni Katragkou, Ivonne Anders, et al.. Regional
climate downscaling over Europe: perspectives from the EURO-CORDEX community. Regional En-
vironmental Change, 2020, 20 (2), pp.51. �10.1007/s10113-020-01606-9�. �hal-04233066�

https://hal.science/hal-04233066
https://hal.archives-ouvertes.fr


https://doi.org/10.1007/s10113-020-01606-9

ORIGINAL ARTICLE

Regional climate downscaling over Europe: perspectives
from the EURO-CORDEX community

Daniela Jacob1 · Claas Teichmann1 · Stefan Sobolowski2 · Eleni Katragkou3 · Ivonne Anders4 ·Michal Belda5 ·
Rasmus Benestad6 · Fredrik Boberg7 · Erasmo Buonomo8,9 · Rita M. Cardoso10 · Ana Casanueva11 ·
Ole B. Christensen7 · Jens Hesselbjerg Christensen2,12 · Erika Coppola13 · Lesley De Cruz14 · Edouard L. Davin15 ·
Andreas Dobler6 ·Marta Domı́nguez16 · Rowan Fealy17 · Jesus Fernandez11 ·Miguel Angel Gaertner18 ·
Markel Garcı́a-Dı́ez11 · Filippo Giorgi13 · Andreas Gobiet4 · Klaus Goergen19,20 · Juan José Gómez-Navarro21 ·
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Abstract
The European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate
and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional
Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection
framework and improving communication with both the General Circulation Model (GCM) and climate data user
communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections
of unprecedented size and resolution (0.11◦ EUR-11 and 0.44◦ EUR-44 domains). Additionally, the inclusion of empirical-
statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches
provide a foundation for scientific studies within the climate research community and others. The value of the EURO-
CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services.
Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant
challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The
first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in
collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European
climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer
collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and
continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
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Introduction

The World Climate Research Programme (WCRP) estab-
lished the Task Force for Regional Climate Downscaling
(TFRCD) in 2009, which created the Coordinated Regional
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climate Downscaling Experiment (CORDEX) initiative to
advance and coordinate the science and application of
regional climate downscaling through global partnerships
(Giorgi et al. 2009). The major goals of CORDEX are
as follows: (i) to better understand relevant regional/local
climate phenomena, their variability and changes, through
downscaling, (ii) to evaluate and improve regional climate
downscaling models and techniques, (iii) to produce coor-
dinated sets of regional downscaled projections worldwide,
and (iv) to foster communication and knowledge exchange
with users of regional climate information. Working towards
these goals also helps address WCRP Grand Challenges
such as: Water for the food baskets of the world, Clouds
circulation and climate sensitivity, Weather and climate
extremes, Carbon feedbacks in the climate system, Melt-
ing ice and global consequences, and Regional sea-level
change and coastal impacts. CORDEX was recently added
as a major project under the WCRP auspices and is also
included as a diagnostic Model Intercomparison Project
(MIP) in CMIP6 (Gutowski et al. 2016). Each regional team
can coordinate its own simulations and associated research
activities. The EURO-CORDEX community, in particular,
has established itself as a key contributor to CORDEX, with
more than 30 modelling groups collaborating in the sim-
ulation of the European climate, across all scenarios, and
making the regional climate model (RCM) data publicly
available and accessible in particular via the Earth System
Grid Federation (ESGF). Further, many of the groups in the
EURO-CORDEX community have contributed with a wide
range of simulations of regional climates in other CORDEX
regions and have played an instrumental role in defining
standards for the ESGF publication.

This community is organized in a way that allows
both a high level of coordination as well as flexibility
(e.g., dynamic structures to address emergent scientific
challenges). EURO-CORDEX celebrated 10 years as an
active consortium in 2019. The scientific output along
with the substantial contributions to open archives (e.g.,
Earth System Grid Federation, https://esgf.llnl.gov) marks
EURO-CORDEX as a success. However, Europe enjoys
many financial and institutional advantages compared with
other regions that should not be ignored. Despite this, there
are many aspects to EURO-CORDEX’s success that do
not rely on these advantages but rather on the members’
commitment to a strongly coordinated, organized and
community-based effort. The authors hope that the lessons
learned from the experience of the EURO-CORDEX
community can be applied as a model for other CORDEX
regions as they evolve.

EURO-CORDEX is driven by scientific challenges,
aligned with the first two goals of the WCRP-CORDEX

initiative. EURO-CORDEX has made substantial progress
in addressing the following specific challenges:

– Added value of regional downscaling with respect to
scale, uncertainty, processes, and phenomena (Torma
et al. 2015; Giorgi and Gutowski 2015; Prein and
Gobiet 2016; Fantini et al. 2018; Coppola et al. 2018a;
Soares and Cardoso 2017).

– Impacts of coupled processes and land-atmosphere (L-
A) feedbacks in a regional context, Knist et al. (2017)
and Davin et al. (2020).

– Improve the understanding of regional phenomena in a
climate change context, in particular extreme weather
events e.g., heat waves, storms, winds, floods, droughts,
precipitation, Termonia et al. (2018) and Belušić et al.
(2017) and their attribution to human activities (Stott
et al. 2015; Luu et al. 2018; Philip et al. 2018; Kew et al.
2018).

– Cross cutting themes: e.g., water resources/hydrological
cycle (Donnelly et al. 2017), energy-climate nexus
(Jerez et al. 2015; Tobin et al. 2016; Tobin et al. 2018)

The strategic challenges confronting EURO-CORDEX
are closely aligned with the goals of CORDEX mentioned
above. Although progress on point (i) has been demon-
strated, substantial gaps remain and EURO-CORDEX will
need to address the following issues related to point (ii) over
the coming years:

– Quality control: EURO-CORDEX certified process-
based assessments, which seek to attribute model
performance to emerging processes, e.g., conditions
originating from the interaction of components of a
complex system.

– Creation of climate information through

– stronger involvement of the statistics community
and “big data” analytics strategies as well
as stronger engagement with programs and
bodies which focus on vulnerability, impacts,
adaptation and climate services (VIACS) such
as GEWEX (www.gewex.org), Copernicus
Climate Change Service (C3S; https://climate.
copernicus.eu) and Future Earth (www.
futureearth.org).

– development of approaches to assess the
credibility and robustness of multi-model-
multi-method ensemble projections, and to
synthesize these into user-relevant narratives
(Benestad et al. 2017a)

– Knowledge transfer and exchange with the GCM com-
munity, in particular by contributing to the WCRP
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Grand Challenges relevant for Europe and by quanti-
fying the GCM limitations induced by simulating the
climate at low resolution (Giorgi et al. 2016).

As the needs of researchers and policy makers become ever
more focused on local to regional impacts and phenomena
(including features such as urban environments, hydrology,
vegetation, land use) so must EURO-CORDEX evolve.

This manuscript is meant to provide a brief history of
EURO-CORDEX and its predecessors (“A brief history
of EURO-CORDEX”), the evolution of the community
and its current organization (“Organizational structure
of EURO-CORDEX”), the EURO-CORDEX modelling
framework (“EURO-CORDEX modelling framework”), its
scientific advances to date (“Scientific advances”) and what
these advances mean for the future (“Key messages and
outlook”).

A brief history of EURO-CORDEX

EURO-CORDEX stems from the achievements of former
EU projects on regional climate modelling such as
PRUDENCE and ENSEMBLES (Christensen et al. 2007;
van der Linden and Mitchell 2009). In launching the
CORDEX initiative, WCRP recognized that in order
to produce, maintain and continuously analyze large
ensembles of regional climate simulations, a large, long-
lasting and coordinated community effort is needed.
Therefore the EURO-CORDEX community was formed in
order to sustain and provide a structure for these activities
concentrated on the European domain. As such, EURO-
CORDEX has always been a voluntary, self-organized and
dynamic community that can grow and evolve with the
changing landscape of climate research, high-performance
computing and user needs. Due to the fact that EURO-
CORDEX builds on the efforts of previous projects and
incorporates their lessons, it is also a role model for other
CORDEX communities who are engaging in this type of
effort for the first time.

Being a voluntary effort without base funding (similar
to the larger CORDEX initiative and other endeavors
such as CMIP), EURO-CORDEX nevertheless leverages
its activities to obtain national and European funding. It
also relies heavily on the enthusiasm and engagement of
the participating researchers and institutions. The EURO-
CORDEX consortium meets yearly in the Climate Service
Center in Hamburg, Germany (GERICS). The number
of registered participants from the 1st General Assembly
(GA) in 2011 to the 8th GA in 2018 grew from 40
to 64, with representatives from 18 European countries
(Table 1). At the first meeting, the foundation for the

activities of the upcoming years has been laid, including
the modelling protocol that forms the backbone of the
EURO-CORDEX ensemble. Since then, yearly meetings
have provided an opportunity for presenting and discussing
the major EURO-CORDEX activities and outcomes, and
to decide about future plans and strategies. The EURO-
CORDEX community also provided a strong contribution
to the two International Conferences on Regional Climate
- CORDEX (Brussels, November 2013 and Stockholm,
May 2016). In preparation for the Brussels conference the
EURO-CORDEX community produced a press release to
announce the release of the EURO-CORDEX data (based
on studies by Jacob et al. 2014 and Vautard et al. 2013)
entitled “New, detailed climate projections for Europe
reveal changes in extreme events and open the way for
climate change impact studies.” Further research activities
were discussed including the analysis of low emission
scenarios, including the + 1.5 ◦C and + 2 ◦C global warming
targets, which resulted in recent studies that use many
EURO-CORDEX simulations to assess the impacts of these
warming targets over Europe (Jacob et al. 2018; Kjellström
et al. 2018; Teichmann et al. 2018). General assemblies
are also an opportunity to reflect critically on the work
performed and address emergent challenges.

EURO-CORDEX is conceived as both a dynamical and a
statistical downscaling activity. Modelling groups focusing
on dynamical downscaling are using the following regional
climate modelling systems: ALADIN-Climate (Colin et al.
2010), CCLM (Böhm et al. 2006; Will et al. 2017; Rockel
et al. 2008), HIRHAM (Christensen et al. 2007), RACMO
(Van Meijgaard et al. 2012), RCA (Samuelsson et al. 2011),
RegCM (Giorgi et al. 2012), REMO (Jacob et al, 2012,
2014), PROMES (Domı́nguez et al. 2010; Domı́nguez et al.
2013), WRF (Skamarock and Klemp 2008), and ALARO-0
(Giot et al. 2016; Termonia et al. 2018).

Modelling groups focusing on empirical statistical
downscaling (ESD) employ a wide range of approaches
(Benestad et al. 2017a; Maraun et al. 2015, 2018; Gutiérrez
et al. 2018; Hertig et al. 2018; Soares et al. 2018; Widmann
et al. 2019). The two approaches to downscaling are seen
as complementary within the EURO-CORDEX community,
each with its relative strengths.

Organizational structure of EURO-CORDEX

In order to evolve and adequately address emerging
challenges, the EURO-CORDEX community has refined
its structure during its existence. Initially, two coordinators
were sufficient to manage the dynamically downscaled
ensemble. However, new challenges meant that it was
necessary to expand the number of coordinating members.
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Table 1 EURO-CORDEX General Assembly (GA) participation and milestones

Date General Assembly Decisions/milestones Participants Countries

11/2011 First Organize modelling and evaluation activities;
create databases in ESGF format, experimental
design, requirements for simulations

37 14

01/2012 Second Collect observational datasets; application of
statistical downscaling techniques

44 13

10/2013 Third Preparation for the International CORDEX con-
ference 2013

28 13

03/2014 Fourth Enhance integration with impact modelling; focus
on science

30 12

01/2015 Fifth Encompass both statistical and dynamical down-
scaling methods; scientific focus on land use
change impacts

47 13

01/2016 Sixth New organizational structure; Prepare for 2nd
EURO-CORDEX phase; FPS preparations

49 16

01/2017 Seventh Launch of flagship pilot studies 55 17

01/2018 Eighth Establish new research themes 64 18

The new structure, shown in Fig. 1, is an outcome of the
6th GA in 2016. There, the EURO-CORDEX community
acknowledged that downscaling is achievable through
different approaches, and that dynamical and statistical
approaches are complementary to each other with different
strengths and weaknesses. Both approaches are needed
to address the challenges ahead. As a result, there are
now two working groups devoted to specifically tackle

issues related to dynamical and statistical downscaling,
respectively, although they interact with each other.

Further, a third working group was formed explicitly
focussing on Climate Information Distillation (CID). As
discussed previously, this activity emerged as the scientific
community acknowledged the challenges that users face
when adopting climate data in decision-making contexts.
The vast amounts of data produced from multi-model

Fig. 1 Organizational structure
of EURO-CORDEX based on
the decision in the 6th GA. Point
of contacts (POCs) are shown
for each of the
EURO-CORDEX pillars
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ensembles with different model combinations make state-
of-the-art statistical methods necessary in order to make
sense of all the data, however, the statistics community has
not yet been widely engaged in the analysis of the data
(Benestad et al. 2017b). This activity is seen as crucial to
the effective integration and collaboration between EURO-
CORDEX and the VIACS/policy communities, as this is
where the output of the scientific activity makes its way into
decision-making. Deser et al. (2012) pointed out that GCMs
produce pronounced chaotic variations on regional scales
even over decades, and demonstrated that one model with
slightly different initial conditions could produce a wide
range of local scenarios. One important question therefore
concerns the minimum size of a reliable ensemble that is
not susceptible to random fluctuations and the law of small
numbers (Benestad et al. 2017b). Given the multiplicity
of messages, users may be inadequately prepared to
incorporate state-of-the-art climate information or may
make inappropriate decisions if messages from limited, non-
robust, unreliable subsets of data are adopted (Fernández
et al. 2019). Currently, a group of scientists is forming to
tackle the issue of CID, including dynamical and statistical
downscaling researchers from EURO-CORDEX, but also
global climate modelers, atmospheric dynamicists, climate
service providers and philosophers. Initial teleconferences

took place during spring of 2018 and additional activities
are planned.

EURO-CORDEXmodelling framework

In order to assure a high-quality and easy to handle
ensemble of simulations, the EURO-CORDEX modelling
strategy was implemented at the first GA. It consists of a
controlled experiment setup containing a fixed simulation
domain (Fig. 2), predefined horizontal grid spacings, an
evaluation simulation for each model used within EURO-
CORDEX and a historical and climate change simulations,
following the endorsed CORDEX protocol (Giorgi and
Gutowski 2015). The following are the time periods covered
by the simulations: Evaluation (ERA-Interim), 1989–2008;
Control, 1951–2005; Scenarios, 2006–2100.

Within EURO-CORDEX, one domain with two resolu-
tions is used for the RCM simulations: the EUR-44 domain
at 0.44◦ grid spacing, which is similar to what is used in
the first phase of CORDEX experiments, and the EUR-11
domain at 0.11◦ grid spacing. Therefore, together with an
ensemble at the CORDEX standard resolution (at 0.44◦),
an ensemble of high-resolution regional climate simula-
tions has been created (at 0.11◦), aiming at better resolving

Fig. 2 EURO-CORDEX model
domain at 0.11◦ resolution
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meteorological phenomena, including extreme events, over
Europe. At both resolutions, three types of experiments
are performed: reanalysis-driven evaluation runs designed
to assess RCM capacity to properly simulate regional cli-
mate in a “perfect” boundary conditions setup, GCM-driven
historical simulations, and GCM-driven climate projections
designed to assess current and future climate change. GCM
simulations are directly downscaled using RCMs (GCM
to EUR-11) or via an intermediate step using a EUR-44
simulation which is then downscaled to EUR-11 (GCM to
EUR-44 to EUR-11) (Fig. 3). Simulations are accessible
via the ESGF data distribution facility at both a resolution
of 0.44◦, but also at a higher resolution of 0.11◦ which is
unique within the CORDEX framework.

All regional models used in EURO-CORDEX are
evaluated using reanalysis-forced simulations (left hand
side in Fig. 3) before running regional climate change
projections driven by GCM forcing (right hand side in
Fig. 3). Evaluation simulations are driven by “quasi-
observational” data (ERA-Interim reanalysis; Dee et al.
2011) offering a robust basis for joint evaluation studies,
atmospheric process analysis, comparison with previous
projects, e.g., ENSEMBLES, and detailed evaluation
against observational data. This provides some information
about the performance of the individual RCMs over Europe,
along with the presence of common systematic biases.
Data are quality controlled before being uploaded to
the ESGF repository, and best practices on the use of
the regionally downscaled ensembles are provided (see
https://euro-cordex.net). Furthermore, a joint errata service,
accessible via https://euro-cordex.net, has been set in
place in order to inform users on erroneous or equivocal
simulation output.

In EURO-CORDEX, the choice of the driving GCM for
the climate projection runs is largely up to each participating
modelling group, given that it is a voluntary effort. This
kind of approach can result in an ensemble of opportunity
that might suffer from inconsistent climate change signals
(Turco et al. 2013) or be biased towards a few preferred
GCMs (Fernández et al. 2019). To avoid this, there has been
a strong effort within EURO-CORDEX, and also from other
initiatives, to analyze the driving GCMs, both regarding
their performance (e.g., Cattiaux et al. 2013; McSweeney
et al. 2014; Brands et al. 2013; Belda et al. 2015) and the
spread of their mean seasonal temperature and precipitation
changes (following the methods of Mendlik and Gobiet
(2015) and McSweeney et al. (2014), or using a climate
classification in Belda et al. (2016) or for their changes
in weather regime frequency (Cattiaux et al. 2013). These
analyses serve as support in the selection of forcing GCMs,
in the sense of performance under current climate, but
also in order to span the full spread of the GCM climate
change signals over Europe. So while EURO-CORDEX
does not explicitly follow a systematic experimental design
as proposed by McSweeney et al. (2014) it does incorporate
selection criteria. Further, most of the GCMs used in EURO-
CORDEX are among those listed as well performing by
McSweeney et al. (2014) for Europe. Nevertheless, the
GCM-RCM simulation matrix is sparse. Therefore, national
projects such as ReKlies-DE (http://reklies.hlnug.de) and
international activities such as the EU-funded Copernicus
Climate Change Services (C3S; https://climate.copernicus.
eu) are supporting EURO-CORDEX in filling this GCM-
RCM-simulation matrix in a coordinated effort. There have
also been C3S projects for the evaluation and quality control
(EQC) of climate model data (https://climatedatasite.net/).

Fig. 3 Schematic description of
the EURO-CORDEX
experiment protocol. For further
details refer to the text
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Scientific advances

Early on, EURO-CORDEX committed itself to make
data available through open access services such as
the ESGF (https://esg-dn1.nsc.liu.se/projects/esgf-liu/) and
climate impact web portals (https://climate4impact.eu).
The availability of a large multi-model ensemble in a
coordinated framework (evaluation, historical and future
simulations), on different spatial resolutions and for a
range of Representative Concentration Pathways (RCPs) is
a significant contribution to the climate science community.
It has provided the researchers with a solid basis from
which to investigate present and future European climate,
and assess uncertainty on continental to regional scales.

At the eighth GA (January 2018), a renewed commitment
was made towards community-driven research on high-
impact topics with a focus on contributing to the next
IPCC assessment report. These topics include the following:
urban scale issues, added value, impacts (with a focus
on extremes), emergent constraints, interactions/feedbacks,
and dynamics/thermodynamics. Another outcome of the
GA was the establishment of a EURO-CORDEX errata
page where issues noted by modelling teams and users
are gathered, described and addressed in an accessible
and transparent manner. A third decision was to update
and improve model/experiment documentation. This will
include synchronizing EURO-CORDEX documentation
with ongoing C3S-funded projects.

Evaluation studies and projections of future
European climate

The EURO-CORDEX evaluation simulations have served
as the data-pool for a series of investigations concerning
current European climate and the ability of regional models
to accurately represent its state, its range of uncertainty and
systematic model biases on a continental (e.g., Kotlarski
et al. 2014; Katragkou et al. 2015; Garcı́a-Dı́ez et al. 2015)
or regional level (e.g., Belušić et al. 2017; Dyrrdal et al.
2017). These simulations also provide a basis for assessing
the added value, or lack thereof, of regional climate models.
One way to look at downscaling is that information is added,
with an improved physical understanding (i.e., though
explicit inclusion of more processes/phenomena) and more
geographical detail. At the same time, the downscaling
can also introduce new errors and biases (e.g., additional
uncertainties, mismatches between GCM and RCM in
terms of parameterizations). The case for added value
is where the addition of information dominates over the
addition of uncertainty. However, the question of added
value also depends on how the results are being used. For
example, there is recent work that shows that the biases

and uncertainty in GCM-RCM chains are not additive, i.e.,
uncertainty does not increase with each downscaling step
and that RCMs in the EURO-CORDEX framework improve
on the GCMs even at larger scales (Sørland et al. 2018).

The added value of higher resolution simulations was
also addressed, both directly and indirectly, in a number
of studies including dynamical downscaling (Warrach-Sagi
et al. 2013; Torma et al. 2015; Casanueva et al. 2016b;
Coppola et al. 2018a; Prein and Gobiet 2016; Ivanov et al.
2017; Soares and Cardoso 2017; Fantini et al. 2018; Sørland
et al. 2018) and statistical methods (Casanueva et al. 2016a;
Soares et al. 2018). Joint evaluation studies also focused on
extreme climate events, such as heat waves (Vautard et al.
2013; Lhotka et al. 2017) and extreme precipitation (Fantini
et al. 2018), medicanes (Gaertner et al. 2018) or physical
process analysis, such as land-atmosphere interactions (e.g.,
Davin et al. 2016; Knist et al. 2017) and coastal circulations
(Cardoso et al. 2016). Many of these examples point to an
added value of regional downscaling by including processes
or phenomena that are missing from coarser resolution
models (e.g., Prein et al. 2015; Cardoso et al. 2016; Davin
et al. 2016; Knist et al. 2017; Fantini et al. 2018). In
other cases, such as in studies focusing on mean climate
conditions involving spatially or temporally averaged fields
(e.g., Kotlarski et al. 2014; Casanueva et al. 2016b) and/or
phenomena with strong links to large scale circulation
(Vautard et al. 2013), the added value is less apparent.
However, a comprehensive assessment of added value in
CORDEX RCM simulations is still lacking.

The historical and projection simulation datasets are the
basis for the investigation of current and future European
climate, including investigation of uncertainty stemming
from model variability and projection scenarios. Jacob
et al. (2014) used the higher resolution (0.11◦) EURO-
CORDEX simulations to show the overall spatial patterns
for temperature and precipitation changes and related
indices are similar to those of ENSEMBLES, with a
slightly stronger mean precipitation increase over most of
Europe and a reduced northwards shift of Mediterranean
drying evolution. Bador et al. (2017) investigated the
evolution of the record temperatures showing that maximum
temperatures above 50 ◦C can occur at the end of the
21st century under the RCP8.5 scenario. Tramblay and
Somot (2018) used the EUR-11 EURO-CORDEX ensemble
to investigate the intensity and the time of emergence
of the response of Mediterranean extreme precipitation
to climate change. They showed a robust north-south
pattern with increase (resp. decrease) in the North (resp.
South) of the basin. Related to these projected shifts
are projected changes in extreme dry spells, which may
increase in duration and extent over the Mediterranean
basin (Raymond et al. 2019). Jerez et al. (2015) and
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Bartók et al. (2017) compared changes in solar radiation
projected by global and regional EURO-CORDEX climate
models and reported a discrepancy between the results in
the GCM/RCM ensembles, namely increasing/decreasing
trends for the period 2006–2100 over Europe under
RCP8.5. Tobin et al. (2016) analyzed changes in surface
wind speed and wind power in Europe, using EURO-
CORDEX simulations, and Tobin et al. (2018) assessed
general changes in electricity production in Europe. Others
have also investigated renewable energy projections and
note a more challenging environment for wind energy
management in the future (Moemken et al. 2018). Several
other studies used the EURO-CORDEX projections to
focus on regional/national level (e.g., Smiatek et al. 2016;
Rulfová et al. 2016; Ouzeau et al. 2016; Soares and Cardoso
2017; Hosseinzadehtalaei et al. 2018; Bador et al. 2017;
Fernández et al. 2019; Huebener et al. 2017; Kjellström
et al. 2016; Rajczak and Schär 2017; Púčik et al. 2017; Frei
et al. 2018; Termonia et al. 2018; Prein and Gobiet 2016;
Stepanek et al. 2016; Cardoso et al. 2018) others applied
statistical downscaling methods, to further downscale the
regional climate information (e.g., Dosio 2016; Mezghani
et al. 2017) while others, after adopting bias adjustment
techniques, use EURO-CORDEX data for local applications
(Reder et al. 2018; Croce et al. 2018).

EURO-CORDEX simulations were recently used to
assess the human influence in recent individual extreme
events, together with other projection ensembles, a type
of analysis which is called “event attribution” (Stott et al.
2015). EURO-CORDEX does not include pre-industrial
simulations but changes between an earlier historical period
(e.g., 1971–2000) and a “current climate” period (e.g.,
2001–2030) allows to estimate a lower bound of human
influence on regional climate events. In this way, Kew et al.
(2018) showed that heat waves such as the 2017 summer
“Lucifer” heat wave in Southern Europe had a probability
that had strongly increased due to human influence. Other
cases were studied using EURO-CORDEX, such as the
extreme precipitations over the Cévennes mountains range
(Luu et al. 2018), the European drought of Summer 2015
in Central Europe (Hauser et al. 2017) the extreme wind
stagnation of December 2016 (Vautard et al. 2018), and the
winter wind storms of January 2018 (Vautard et al. 2019).
The added value of high resolution was demonstrated in
particular for the Mediterranean heavy precipitations. As
a final example, Giorgi et al. (2016) showed the added
value of high-resolution RCMs in the projection of summer
precipitation changes over high mountainous areas (e.g., the
Alps). An overview of EURO-CORDEX publications can
be found in the EURO-CORDEX publication web pages
(http://euro-cordex.net).

Flagship pilot studies

The flagship pilot studies (FPS) initiative was established
by the CORDEX Scientific Advisory Team as an additional
activity to the core work of CORDEX, analogous to
the MIPs of Coupled Model Intercomparison Project
(CMIP) (Gutowski et al. 2016). These are “bottom up”
initiatives and benefit the larger CORDEX/Working Group
on Regional Climate (WGRC, https://www.wcrp-climate.
org/regional-climate) bodies through linking to the wider
climate research community, such as the newly established
MIPs and other WCRP core projects. The EURO-CORDEX
community submitted two successful FPS applications, one
on the climatic impacts of land cover changes and one
jointly with the Med-CORDEX community (Ruti et al.
2016; Somot et al. 2018) on convective phenomena through
the use of very high-resolution convection-permitting
regional climate models (CPRCMs). These computationally
intensive projects started up in 2017 and just recently begun
to produce results.

FPS I Land Use and Climate Across Scales

Land Use and Climate Across Scales (LUCAS) is a new
initiative on coordinated regional climate experiments for
Europe including land use change forcing (https://www.
hzg.de/ms/cordex fps lucas/). It was initiated jointly by
EURO-CORDEX and LUCID (Land-Use and Climate,
IDentification of robust impacts, http://www.lucidproject.
org.au). Land use change (including land cover and/or
land management changes) is an important anthropogenic
forcing on climate, and its direct biophysical effect on
temperature can locally or regionally be of the same order of
magnitude as the effect from global greenhouse gas forcing,
but there are still uncertainties in magnitude and sign of
many land-induced changes (de Noblet-Ducoudré et al.
2012; Lejeune et al. 2017; Perugini et al. 2017; Cherubini
et al. 2018). Even more important for impact studies, many
numerical experiments have highlighted the strong impact
land uses may have on extreme events (e.g., Pitman et al.
2012; Davin et al. 2014; Thiery et al. 2017; Lejeune et al.
2018; Berckmans et al. 2019).

The LUCAS initiative is complementary to the Land Use
Model Intercomparison Project (Lawrence et al. 2016) in
that LUMIP focuses on the global scale, while LUCAS
investigates regional impacts, using higher resolution, closer
to the scale at which the biogeophysical effect of LUC has
the strongest impacts. Up till now, this human forcing is not
accounted for in RCM climate change projections. RCMs
have been applied individually for investigating impacts of
land use changes on regional climate in different world
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regions (e.g., see reviews of Pielke et al. 2011; Lawrence
and Vandecar 2015; Santanello et al. 2018). Most results
are model specific and therefore do not allow one to
derive robust conclusions. In LUCAS, for the first time
an ensemble of RCMs will be used in coordinated land
use change (LUC) experiments, focusing on anthropogenic
land cover conversions and potentially on land management
practices during its later phase. The LUCAS modelling
framework is visualized in Fig. 4.

The overall objectives of LUCAS are (i) to identify
robust biophysical impacts of land use change on climate
across regional-to-local spatial scales and at various time
scales, from extreme events to multi-decadal trends, and
(ii) to provide robust information in support of effective
land use practices and also help guide decisions on land
management from unintended consequences. The questions
to be addressed are:

– How sensitive are regional climate models to land
use change and how is this interrelated to land-
atmosphere coupling in different regions among the
suite of models?

– How large is the relative contribution of land use change
compared with other forcings in the detection of past
and potential future climate trends?

– How do land use practices modulate climate variability?
Can local land use change modulate extreme climate
conditions?

– What is the effect of spatial resolution on the magnitude
and robustness of land use change-induced climate
changes?

– What errors do we make on the downscaled
climate change if we ignore land use change?
This is especially important for subsequent
impact studies.

Regional Climate 
System

z

spatio-temporal dis-/aggregation

Observations RCMs

Terrestrial 
Biosphere

Atmosphere

Terrestrial 
Hydrosphere

Soil

two-way
coupling

multi-
compartment

GCM / Reanalyses 
boundary forcing

Feedbacks

Land cover and 
land use changes 
incl. land 
management

General Circulation Models / Global Re-analyses

LUCAS Model ing  &  Eva luat ion  Framework

GHG & aerosol 
emissions / 
concentrations

Historic observations and past re-constructions  
Scenarios and future projections (e.g. RCPs / SSPs)

Evaluation 

Fig. 4 LUCAS modelling framework. Land use and climate change
experiments are performed with several RCMs. They represent pro-
cesses in atmosphere, terrestrial biosphere, hydrosphere and pedo-
sphere. RCMs which apply a two-way coupling between the atmo-
sphere and the terrestrial components, enable the investigation of
land-atmosphere feedbacks. The evaluation experiments are driven
by reanalysis data and compared with observational data. Multi-
compartment observational data on consistent temporal and spatial
scales enable the evaluation of land-atmosphere feedbacks. The cli-
mate change experiments are driven by GCMs. Greenhouse gas (GHG)

and aerosol concentrations are prescribed to the model simulations
according to observed past concentrations for historical time peri-
ods, and according to different RCPs for climate change projections.
Land cover and land use changes are implemented into the RCMs
according to observed past re-constructions for historical time periods,
and according to different Shared Socio-Economic Pathways (SSPs),
which are linked to certain RCPs, respectively. Additional land use
change experiments are designed, for which specific land use forcings
are developed and implemented
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It is clear that the outcome of these simulations will be lim-
ited as long as the representation of surface fluxes, boundary
layer turbulence, and cloud microphysics cannot be veri-
fied and improved. Therefore, these modelling efforts will
be accompanied by field experiments on land-atmosphere
feedback (Wulfmeyer et al. 2018), which are currently being
evaluated or prepared, e.g., at the TERENO sites (Bogena
2016) and the new Land-Atmosphere Feedback Observatory
(LAFO; see https://lafo.uni-hohenheim.de).

Cropland management as well as human water use by
water extraction and irrigation is an emerging topic and
has the potential to either enhance or dampen temperature
extremes (Becker et al. 2013; Davin et al. 2014; Thiery
et al. 2017; Keune et al. 2018). Also, the collaboration
between the FPS LUCAS on land-atmosphere feedback,
the WRCP LoCo community (Santanello et al. 2018) and
experiments on land-atmosphere feedback (Wulfmeyer et al.
2018) including groundwater dynamics (Keune et al. 2016)
should be intensified.

FPS II convective phenomena at high resolution over
Europe and the Mediterranean

The second FPS mobilizes the EURO- and MED-CORDEX
communities and aims to bring fresh perspectives and
expertise on issues surrounding convective phenomena.
Present and future convective extremes and their processes
are under investigation with convection-permitting regional
climate models (CPRCMs), at resolutions finer than
3 km, over selected sub-regions of Europe and the
Mediterranean (Fig. 5). Advanced statistical techniques will
also be employed in parallel to evaluate the performance

Fig. 5 Mandatory domain for the FPS on convective phenomena (red
box). The dashed blue line corresponds to the northern boundary of the
Med-CORDEX domain

of dynamical models, to potentially serve as emulators
of convective extremes, and to detect and attribute
their changes. These so-called emulators use empirical
relationships between large scales features and local
phenomena such as precipitation in ways similar to
statistical downscaling but then add additional detail to
obtain, e.g., sub-daily rainfall (Mezghani et al. 2019). The
FPS aims to extend these to also include information from
the dynamical downscaling. The added value of CPRCMs
is well established now, especially for mesoscale convective
systems, rainfall extremes, diurnal cycles, regional snow
cover, etc. (see Ban et al. 2014; Prein et al. 2015, 2017a;
Berthou et al. 2018; Sørland et al. 2018; Lüthi et al.
2019; Scaff et al. 2019). What has not been done as yet,
is to explore these advances in an ensemble framework,
which will allow us to better estimate uncertainty, quantify
robustness and elucidate key driving processes. The added
value of explicitly simulating deep convection will be
rigorously evaluated with respect to both coarser resolution
simulations up to GCM scales and VIACS applications.
The CPRCM simulations will also serve as references and
help developing convection parameterizations in standard
RCMs and GCMs. The availability of observational datasets
at very high resolutions in both space and time allows
unprecedented evaluation opportunities (e.g., Lussana et al.
2018; Hiebl and Frei 2016, 2018; Frei 2014).

This FPS has three main scientific questions with many
attendant sub-topics and questions:

– How do convective events and associated damaging
phenomena (heavy precipitation, wind storms, flash-
floods) respond to changing climate conditions in
different climatic regions of Europe?

– Does an improved representation of convective pro-
cesses and precipitation at convection-permitting scales
lead to downscaled as well as upscaled added value?

– To what extent do lateral boundaries affect convection-
permitting model (CPM) performance and how can
corresponding errors be reduced?

– Is it possible to complement costly convection-
permitting experiments with physically defensible
statistical downscaling approaches such as “convection
emulators” that mimic CPMs and are fed by output from
conventional-scale climate models?

Convective extreme events are a priority under the
WCRP Grand Challenge on weather and climate extremes,
because they carry both society-relevant and scientific
challenges that can be tackled in the coming years. Further,
“coordinated modelling programs are crucially needed to
advance parameterizations of unresolved physics and to
assess the full potential of CPMs” (Prein et al. 2015).
The project involves over 20 modelling teams and consists
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of three modelling steps: test cases, evaluation runs and
scenario runs. A presentation of the project and preliminary
results appear in Coppola et al. (2018b). Figure 6 shows
results from a test case over Switzerland and highlights the
ensemble performance in reproducing an extreme Foehn
event in November of 2014. The ensemble mean spatial
pattern correlations for this event were over 0.90. However,
the ensemble exhibits much larger spread for events that
are more weakly forced by the synoptic background state
and have strong orographic and/or land-ocean interactions.
Simulations over climate scales (10 years time slices)
under present and future conditions are ongoing. A small
ensemble has recently been completed (fall 2019) and a

number of investigations are underway with results expected
in late 2019/early 2020.

Keymessages and outlook

The scientific challenges EURO-CORDEX faces will
require broad community-based research. Given the frag-
mented nature of funding for EURO-CORDEX and
CORDEX generally, there is a need for funding that tar-
gets these types of research initiatives. Only in this way
will significant improvements in fundamental understand-
ing emerge. A non-exhaustive list of directed research

Fig. 6 Time series of 12 hourly
accumulated precipitation for a
Foehn event over southern
Switzerland (black line/dots, in
mm on the right hand y-axis)
during the event and temporal
evolution of the spatial
correlation (lefthand y-axis) of
the accumulated 12 hourly
precipitation between the
simulations and observations,
panel a. Number of models with
a correlation greater than 0.5 for
WL simulation (in blue) and CM
simulation (in red). Time series
of the accumulated precipitation
averaged over the region covered
by the observations for each
model (colored lines) versus
observations (black line), panel
b. Time series of accumulated
hourly precipitation for the
ensemble means of the WL and
CM simulations versus
observations (blue, red and
black lines, respectively), panel
c (Reproduced from Coppola
et al. (2018b))
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recommendations are presented below. These are fol-
lowed by more detailed descriptions of key messages and
the future outlook from the EURO-CORDEX community,
which include not only research but also necessary expan-
sion of the community to include additional perspectives.

– Research towards a more comprehensive and improved
understanding of regional climate processes and their
drivers, in particular with respect to extremes and place
these within the context of the Sustainable Development
Goals and WCRP Grand Challenges.

– Research towards transient continental-scale ensemble
kilometer scale modelling (i.e., convection permitting)
has the potential to substantially reduce uncertainties
in future climate projections and enhance our under-
standing of high-impact weather events under climate
change; the community is moving in this direction
but such initiatives require significant and sustained
investment in personnel and resources

– Research support for the interdisciplinary community
that will be needed to further develop Regional Earth
system models that are able to better simulate the
human impact on local and regional climate (e.g.,
vegetation feedbacks, hydrology and water resources,
irrigation for agricultural production, urban climate,
regional sea-level rise, storm surge modelling, coupled
glacier modelling)

– Research that explicitly links observations to model
development and improvement through collaborative
community efforts that focus on regional and local
process studies that make use of, e.g., field campaign
data to improve the representation of processes and
feedbacks in regional models.

Linking with climate services

In addition to generating a unique dataset to address many
scientific issues pertaining to climate downscaling, the
first phase of EURO-CORDEX has already had a tremen-
dous impact on the provision of regional climate services.
For example, several “official” national climate scenar-
ios (examples include France (http://www.drias-climat.fr),
Switzerland (www.ch2018.ch), Austria, Norway (https://
klimaservicesenter.no), Spain (http://escenarios.adaptecca.
es) and Belgium (http://www.euro-cordex.be) for national
climate change adaptation strategies are nowadays based
on EURO-CORDEX. In addition, EURO-CORDEX will
be at the heart of the coming C3S European climate ser-
vice for future projections (e.g., the Copernicus Climate
Change Service project C3S34b, PRINCIPLES, https://
climate.copernicus.eu). It has also been used in proof-of-
concept European climate services, for instance to help the
energy sector facing climate change impacts and climate

variability in developing renewable energies, or water, such
as in the C3S CLIM4ENERGY and SWICCA projects
(https://climate.copernicus.eu). Operational implementation
is currently underway.

Despite the scientific progress and overall success
of the EURO-CORDEX initiative, there are a number
of challenges confronting it. These challenges are of
both scientific and strategic nature. For example, simply
generating and disseminating downscaled regional climate
projections in the absence of good experimental design
and without proper context, guidance and tailoring, will,
at best, not serve user communities’ needs optimally and,
at worst, potentially lead to misleading strategies (Dilling
and Berggren 2014). Avoiding such pitfalls will require
both scientific advances on uncertainty quantification
and verification metrics needed to produce robust and
reliable projections, as well as strategic partnerships with
outside collaborators in the VIACS communities. EURO-
CORDEX is directly addressing these challenges through
the establishment of strategic partnerships (e.g., with the
CMIP6-endorsed VIACS advisory board (Ruane et al.
2016) and a dedicated effort on CID (Fig. 1).

In the second phase of EURO-CORDEX, the ensemble
of EUR-44 and EUR-11 simulations will be extended to
serve as a robust basis for further studies and VIACS
applications. Additional EURO-CORDEX objectives are
to foster the creation of climate information including
the interface to users and to integrate empirical statistical
downscaling. The new structure of EURO-CORDEX (see
Fig. 1) reflects these aims and gives us a good basis
for future cooperation and collaborations with the broader
community of climate change, sustainability and social
transformations researchers. It is an ambitious and exciting
platform but one that is timely and has a proven and
dedicated community of practice built to support it.

Integrating statistical methods

As noted previously, the volume of data produced in the
EURO-CORDEX downscaling activities requires advanced
statistical techniques for robust analyses (Benestad et al.
2017a, b). Better integration of these techniques and col-
laboration with external experts is a key strategic aim for
EURO-CORDEX. Steps have already been taken with par-
ticipation of EURO-CORDEX teams in the EU COST
Action ES1102 “VALUE” (Maraun et al. 2015), where
statistical downscaling groups organized themselves to sys-
tematically investigate statistical downscaling and bias cor-
rection methods. In a first experiment, VALUE investigated
the downscaling skill of some 50 statistical methods for
present climate, when driven with reanalysis-based predic-
tors. These results have recently been published in a special
issue (Maraun et al. 2017, 2018; Gutiérrez et al. 2018;
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Hertig et al. 2018; Soares et al. 2018). These types of
activities have been integrated into the ESD pillar into
EURO-CORDEX (Fig. 1), and a new call for the next exper-
iment will be issued shortly. This experiment will inves-
tigate the overall skill of statistically downscaled GCMs
in present climate and the plausibility and uncertainties of
future projections based on statistical downscaling.

Receiving support from computer science

The fields of climate science and climate change impacts
heavily rely on computationally-intensive simulations and
data centers should be aware of the wealth of data
that is to come from the EURO-CORDEX community
due to increasing ensemble sizes and heading towards
convection-permitting resolutions. For instance, the effort
in the setup and performance of CPM simulations was
exemplified in latitude-belt runs by Schwitalla et al. (2017)
or European, CPM simulations by Leutwyler et al. (2016)
and on global scales by Heinzeller et al. (2016). On the
other hand the climate modelling community, enabled by
ever increasing high-performance computing resources, is
facing large challenges related to new, emerging computing
paradigms using, e.g., new microarchitectures such as GPUs
(Lawrence et al. 2018) and finding more efficient ways to
handle and store the massive amounts of data produced by
CPM simulations. Additionally, there will be even more
requests from VIACS communities for this data and online
processing services to reduce the data volume on the
server side. VIACS will have to bring together the large
amount of high-resolution climate data and the requests
of their customers for local climate information. They are
challenged by the need of quick answers on the one hand
and the desire to deliver high-quality well thought out and
crafted products on the other. To address this issue targeted
research and development to simplify and democratize data
access and analysis and improve guidance for end-users in
an era of data volume explosion will be needed. Here, a
closer collaboration with the EURO-CORDEX community
will help to address the challenges and fulfill mutual
requirements.

Fostering cooperation withWCRP activities

The regional activities in WCRP are receiving increased
visibility at present, and it is incumbent upon all involved to
look for synergies across these activities. EURO-CORDEX,
and CORDEX more generally, has a critical role to play
in realizing WCRP’s new scientfic objectives, in particular
objective 4 “Bridging science and society” (WCRP Joint
Scientific Committee (JSC) 2019). The EURO-CORDEX
community itself is also challenged by the WCRP and
CORDEX-specific grand scientific challenges. Some of

them can be addressed together with other communities,
such as VIACS or the larger climate science community
including CMIP6. Here, closer and more active interaction
is essential. Besides the scientific challenges, it is also
necessary to support VIACS communities by providing well
designed, large ensembles of climate simulations in a well-
documented and usable way. As a promising development,
a robust community has formed around convection-
permitting modelling and two successful WCRP-GEWEX
sponsored workshops, with strong participation from the
EURO-CORDEX community, have been held in Boulder,
Colorado. While advances are coming quickly, there are a
number of challenges for this community to address (Prein
et al. 2017b). EURO-CORDEX and its affiliated Flagship
Pilot Studies are right at the forefront of this effort.

Collaboration with the GCM community

Finally, there is a tremendous strategic opportunity for
EURO-CORDEX to pursue synergies with climate research
activities mainly focused on GCM modelling through the
establishment of CORDEX as a diagnostic MIP within
the CMIP6 framework. This is also a non-trivial task,
since institutional, disciplinary and philosophical barriers
often remain between the two communities. However,
increasing collaboration is very important, as CPMs are
approaching the global scale and can be operated without
lateral boundaries (e.g., Schwitalla et al. 2017). There
exist a number of opportunities to evaluate upscaled
added value, investigate emergent constraints on climate
change at regional scales, provide feedback into GCMs
to improve parameterizations, and for collaboration with
higher resolution, convection-permitting GCMs.
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respectively), as well as the Jülich Supercomputing Centre (JSC) for
compute time on JURECA through the grant JJSC39 and the Vienna
Scientific Cluster (VSC) through the grants 70992 and 71193.

Funding Information Open Access funding provided by Projekt
DEAL.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Bador M, Terray L, Boé J, Somot S, Alias A, Gibelin A-L, Dubuisson
B (2017) Future summer mega-heatwave and record-breaking
temperatures in a warmer France climate. Environ Res Lett
12(7):074025. https://doi.org/10.1088/1748-9326/aa751c

Ban N, Schmidli J, Schär C (2014) Evaluation of the convection-
resolving regional climate modeling approach in decade-long sim-
ulations. J Geophys Res 119(13):7889–7907. https://doi.org/10.
1002/2014JD021478

Bartók B, Wild M, Folini D, Lüthi D, Kotlarski S, Schär C,
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Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär
C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014)
Regional climate modeling on European scales: a joint standard
evaluation of the EURO-CORDEX RCM ensemble. Geosci
Model Dev 7(4):1297–1333. https://doi.org/10.5194/gmd-7-1297-
2014

Lawrence D, Vandecar K (2015) Effects of tropical deforestation
on climate and agriculture. Nat Clim Change 5(1):27–36.
https://doi.org/10.1038/nclimate2430

Lawrence DM, Hurtt GC, Arneth A, Brovkin V, Calvin KV,
Jones AD, Jones CD, Lawrence PJ, de Noblet-Ducoudré N,
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J, Pagé C, Fischer AM, Herrera S, Huth R (2019) Validation
of spatial variability in downscaling results from the VALUE
perfect predictor experiment. Int J Climatol 39(9):3819–3845.
https://doi.org/10.1002/joc.6024

Will A, Akhtar N, Brauch J, Breil M, Davin E, Ho-Hagemann HTM,
Maisonnave E, Thürkow M, Weiher S (2017) The COSMO-
CLM 4.8 regional climate model coupled to regional ocean, land
surface and global earth system models using OASIS3-MCT:
description and performance. Geosci Model Dev 10(4):1549–
1586. https://doi.org/10.5194/gmd-10-1549-2017

Wulfmeyer V, Turner DD, Baker B, Banta R, Behrendt A, Bonin
T, Brewer WA, Buban M, Choukulkar A, Dumas R, Hardesty
RM, Heus T, Ingwersen J, Lange D, Lee TR, Metzendorf
S, Muppa SK, Meyers T, Newsom R, Osman M, Raasch S,
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