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ON A NON-HOMOGENEOUS PANTOGRAPH
FUNCTIONAL DIFFERENTIAL EQUATION

by Guoting CHEN, Huan DAI & Changgui ZHANG (*)

Abstract. — This paper is devoted to the analytical study of the non-homoge-
neous functional differential equation y′(x) = ay(qx) + by(x) + 1

x
, where q is a

constant in (0, 1) and where a and b are two non-zero real or complex numbers.
This equation represents a q-perturbation of the first-order ODE y′(x) = by(x)+ 1

x
,

that admits an irregular singular point at infinity in the complex plane. First, comb-
ing hypergeometric-type and q-hypergeometric-type power series yields solutions
at zero and infinity. Next, using the Laplace transform allows us to convert this
equation into a first-order linear q-difference equation. In this way, we express the
above-mentioned power series-type solutions in terms of Laplace integrals involving
the Jacobi theta functions. Finally, we get the connection formula between solu-
tions at zero and infinity, which plays a crucial role in determining the asymptotic
behavior of solutions at infinity.
Résumé. — Cet article est consacré à l’étude analytique de l’équation fonction-

nelle différentielle non-homogène y′(x) = ay(qx)+by(x)+ 1
x
, où q est une constante

de l’intervalle ]0, 1[ et où a et b sont des nombres réels ou complexes non nuls. Cette
équation représente une q-perturbation de l’équation différentielle du premier ordre
y′(x) = by(x) + 1

x
, qui possède une singularité irrégulière à l’infini dans le plan

complexe. Tout d’abord, en combinant deux types de séries entières qui sont hy-
pergéométriques et q-hypergéométriques, nous en obtenons des solutions en zéro et
à l’infini. Ensuite, à l’aide de la transformée de Laplace, nous transformons l’équa-
tion fonctionnelle différentielle en une equation linéaire aux q-différence du premier
ordre. Ainsi, les solutions évoquées ci-dessus de type séries entières sont-elles expri-
mées par des intégrales de Laplace dans lesquelles apparaissent les fonctions theta
de Jacobi. Finalement, nous obtenons la formule de connexion entre les solutions
en zéro et à l’infini, laquelle joue un rôle crucial pour déterminer le comportement
asymptotique de solutions à l’infini.

Keywords: differential q-difference equation, Laplace transform, Jacobi theta function,
connection formula, asymptotic behavior.
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1. Introduction

The functional differential equation

(1.1) y′(x) = ay(qx) + by(x)

represents an idealized mathematical model derived from an industrial
problem concerning the wave motion of the overhead supply line in an
electrified railway system [10], where a, b are non-zero real numbers, and
y is a real-valued function. Equation (1.1) is often called the pantograph
equation, as mentioned in [13], the term “pantograph” comes from Ock-
endon and Tayler [19] and Iserles [12]. It appears in applications in many
areas: analytic number theory [17], nonlinear dynamical systems [8], etc.
Several extensions of equation (1.1) had been widely studied [3, 4, 5, 6, 24,

25]. For instance, Carr and Dyson [5] analyzed the asymptotic behavior of
solutions of equation (1.1) with Re(b) = 0 but b 6= 0. Kato and Mcleod [15]
studied the existence and uniqueness of solutions of (1.1) with y(0) = 1 and
obtained the asymptotic form of solutions as x→∞, where a is a possibly
complex constant. Shaldanbayev et al. [24] discussed the spectral properties
of the associated Cauchy problem to (1.1) with b = 0, they obtained that in
the case of 0 < q < 1, the Cauchy problem is always a Volterra problem; in
the case of q > 1, the problem is not solvable for all values of a. The series
solutions at zero of (1.1) belong to a family of hypergeometric-type and
q-hypergeometric-type series. See [11, p. 4, formula (1.2.22)] and [1, 26].
Note that Ismail and Zhang applied a technique of integral representations
for certain entire q-functions to obtain the convergent asymptotic series
expansion of the large zeros of the Ramanujan entire function [14].
In addition to the research on the homogeneous equation (1.1), sev-

eral studies have also been devoted to investigating its corresponding non-
homogeneous form. For example, Lim [16] studied the asymptotic bounds
of solutions of the non-homogeneous functional differential equation (for
0 < q < 1),

(1.2) y′(x) = ay(qx) + by(x) + g(x),

where g is a continuous function defined on [0,∞) such that g(x) = O(xα)
for x→∞.
In this paper, we shall study (1.2) from the point of view of analytic

approaches so that g will be some analytic function. To simplify, we suppose
that g is a rational function, leading to the classification of three distinct
cases:

Case 1: g is a polynomial;
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Case 2: g is of the form 1
xm , m > 0;

Case 3: g is of the form 1
(x−c)m , m > 0 and c 6= 0.

For Case 1, if g is a polynomial, then equation (1.2) has a unique polynomial
solution of the same degree as g. The treatment of Case 3, being more
complex, is left for future work. In this paper, we only treat Case 2. Initially,
a unique polynomial transformation exists, allowing us to convert equation
(1.2) with g(x) = 1

xm into an equation with g(x) = 1
x (see Proposition

2.1). Therefore, we are led to the study of a non-homogeneous functional
differential equation

(1.3) y′(x) = ay(qx) + by(x) + 1
x
,

where a, b are non-zero complex numbers. The boundary-value problem
with y(0) = 1 is “well-posed” if 0 < q < 1, but not if q > 1 (see [15]).
Consequently, this paper will only deal with the case 0 < q < 1.
Furthermore, for equation (1.3), it suffices only to consider the case where

b = −1 or b = 0, as we will always assume that x belongs to C∗ or to the
Riemann surface C̃∗ of the logarithm function. Indeed, if b 6= 0, by making
x = − t

b and u(t) = y(x) = y(− t
b ), one gets u′(t) = − 1

by
′(− t

b ). Letting
x = − t

b into (1.3) gives that

u′(t) = αu(qt)− u(t) + f(t),

where α = −ab 6= 0 and f(t) = − 1
b g(− t

b ) = 1
t . This is to say, we shall

consider the equation given by the following:

(1.4) y′(x) = αy(qx)− y(x) + 1
x
.

On the one hand, the corresponding homogeneous equation associated
with (1.4) is:

(1.5) y′(x) = αy(qx)− y(x).

Zhang [28] proved that if y(0) = 1, the unique power series solution can
be expressed by a linear combination of all the elements of a system of
fundamental solutions at∞ in the complex plane. Termed as the connection
formula between solutions at 0 and ∞, this formula plays an important
role in determining the asymptotic behavior of the solution of this Cauchy
problem. Note that the difference between two solutions of equation (1.4)
is a solution of equation (1.5). This simple observation will play a key role
in our study.
On the other hand, if α = 0 in equation (1.4), the corresponding non-

homogeneous ODE is the well-known Euler differential equation, whose
power series solution at ∞ is simply the divergent series

∑
n>0 n!x−n−1

TOME 1 (-1), FASCICULE 0
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(see Malgrange [18] and Ramis [20]). Even in this simple case, solutions of
equation (1.4) include some complex properties!
The present paper aims to study the asymptotic behavior of solutions

of (1.4). Hence, we first study the connection formula between solutions of
equation (1.4) at 0 and∞. Because the theory of elliptic functions is closely
related to the analytic theory of linear functional q-difference equations
[2, 27, 23, 9, 22], we use the Jacobi theta function to express solutions of
(1.4).
The paper is organized as follows. In Section 2, we will construct solutions

at 0 and ∞ by means of convergent power series and the logarithm func-
tion. In Section 3, equation (1.4) is transformed into a linear q-difference
equation by means of the Laplace transform. This gives two integral solu-
tions, whose relationship is obtained by using the associated q-difference
equation. In Section 4, it is shown that one of these two integral solutions
can be identified with a distinguished solution whose behavior near zero
depends of the so-called critical value “γ0”, the other one being the power
series solution at infinity. In Section 5, the connection formula between
solutions near zero and infinity is obtained by combining the results from
Sections 3 and 4. In this way, we obtain the asymptotic behaviors at in-
finity over the right half-plane for all the solutions of (1.4) that can be
expressed in terms of power series and the logarithm function. Notice that
this is done using the above-mentioned critical value γ0, which depends on
the Euler’s constant. Finally, we will note how to interpret our results by
means of that obtained in the paper [16].
We first introduce some notations. Denote C̃∗ = C∗∪{∞} as the Riemann

surface of the logarithm function, and log as the principal branch value of
the logarithm function defined over C̃∗. Thus, xa = ea log x for all a ∈ C
and x ∈ C̃∗.
For any α ∈ C and n > 1, we define (α)n and (α;q)n in the following

form:

(α)n =
n−1∏
j=0

(α+ j) and (α;q)n =
n−1∏
j=0

(1− αqj),

and we denote usually (α;q)0 = (α)0 = 1. One can easily get that (α;q)n
and (α)n can be extended to (α;q)∞ and (α)∞ respectively, as n→∞. It
is obvious to see that the following relation holds:

(1.6) (αq−n; q)n = (−1)n
( q
α

;q
)
n

(α
q

)n
q−

n(n−1)
2 .

ANNALES DE L’INSTITUT FOURIER
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The Jacobi theta function θ(q;x) is defined by

θ(q;x) =
∑
n∈Z

q
n(n−1)

2 xn;

we write it as θ(x) in the absence of ambiguity. It verifies the following
functional equation:

(1.7) θ(qnx) = q−
n(n−1)

2 x−nθ(x), for n ∈ Z.

Following [28], we define

(1.8) F0(α;q, x) =
∑
n>0

(−1)n(α;q)n
n! xn,

and we recall that F0(α;q, x) is the unique solution of homogeneous equa-
tion (1.5) with the initial condition y(0) = 1. The following identities can
be found in [1, p. 490, Corollary 10.2.2 (a)-(b)], which will be used in this
paper:

(1.9)
∑
n>0

xn

(q;q)n
= 1

(x;q)∞
, |x| < 1, |q| < 1,

and

(1.10)
∑
n>0

(−1)nq
n(n−1)

2 xn

(q;q)n
= (x;q)∞, |q| < 1.

2. Solutions expressed in terms of power series

As stated in the Introduction, this paper is devoted to Case 2, where
equation (1.2) has the form g(x) = 1

xm . Notice that this can be converted
into equation (1.4) by a simple transformation using the following propo-
sition. Therefore, we will only consider equation (1.4) in the rest of this
paper.

Proposition 2.1. — Let m be an integer with m > 1. If α /∈ {q, q2, · · · ,

qm−1}, then there is a unique transformation of the form y(x) =
m−1∑
j=1

ajx
−j+

dz(x), where aj , d ∈ C∗, such that the equation y′(x) = αy(qx)−y(x)+ 1
xm

is converted to z′(x) = αz(qx)− z(x) + 1
x .

TOME 1 (-1), FASCICULE 0
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Proof. — By direct computation, one gets that, for j = 1, 2, · · · , m− 1,

aj = −(αq−m+1;q)m−j−1
(j − 1)!
(m− 1)! , d = (αq−m+1;q)m−1

(m− 1)! .

�

Remark 2.2. — If α = qk for some k ∈ {1, 2, · · · ,m − 1}, then there is

a transformation of the form y(x) =
m−1∑
j=k

ajx
−j + z(x), such that equation

y′(x) = αy(qx)−y(x)+ 1
xm can be converted to the homogeneous equation

z′(x) = αz(qx)− z(x).

We now study solutions of equation (1.4) by means of power series at
zero. For this purpose, we need the following lemma.

Lemma 2.3. — Let F0(α;q, x) be as in (1.8), and let u, v be two conver-
gent power series. The function

y(x) = u(x) log x+ v(x)

is a solution of equation (1.4) iff the two functions u(x) and v(x) satisfy
the following equations:

(2.1)
u′(x) = αu(qx)− u(x), u(0) = 1,
v′(x) = αv(qx)− v(x) + α ln q · u(qx)− u(x)

x + 1
x .

Hence, u(x) = F0(α;q, x).

Proof. — By substituting y(x) = u(x) · log x+ v(x) into (1.4), we obtain
that

(2.2)
log x[u′(x)− αu(qx) + u(x)] = 0,
v′(x) = αv(qx)− v(x) + α ln q · u(qx)− u(x)

x + 1
x ,

The first equation of (2.2) is equivalent to equation (1.5), hence u(x) =
u0 F0(α;q, x), where u0 = u(0). Furthermore, the second equation of (2.2)
admits a power series solution v only when u(0) = 1. So, we find the system
given in (2.1). �

Lemma 2.4. — Let y(x) be an analytic solution of equation (1.5) on an
interval (0, a) (a > 0). Then, y(x) = 0 for all x ∈ (0, a) iff lim

x→0
y(x) = 0.

Proof. — Set z(x) = y(x)ex for x ∈ (0, a). Then

z′(x) = (αy(qx)− y(x))ex + y(x)ex = αexy(qx) = αe(1−q)xz(qx).

ANNALES DE L’INSTITUT FOURIER
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If 0 < x0 < x < x1 < a, then, one has

z(x) = z(x0) + α

∫ x

x0

e(1−q)tz(qt)dt.

Hence, by taking x0 → 0, we obtain

z(x) = α

∫ x

0
e(1−q)tz(qt)dt,

which implies that, for all x ∈ (0, x1],

|z(x)| 6 |α|x1e
(1−q)x1 max

0<t6qx1
|z(t)|.

Consequently, it follows that

|y(x)| 6 |α|x1e
−xe(1−q)x1 max

0<t6qx1
|ety(t)| 6 Cx1 max

0<t6qx1
|y(t)|,

where C = |α|ex1 . Therefore,

max
x∈(0,x1]

|y(x)| 6 Cx1 max
0<t6qx1

|y(t)|;

and by iteration, we obtain

max
x∈(0,x1]

|y(x)| 6 Cnqn(n−1)/2xn1 max
0<t6qnx1

|y(t)|.

Finally, taking n→ +∞, one gets that max
0<x6x1

|y(x)| = 0, which completes
the proof. �

As usual, we denote by Hn =
n∑
k=1

1
k
, the n-th harmonic number.

Theorem 2.5. — Let α /∈ qZ60 . For any constant c0, we define

(2.3) F (α;q, c0, x) = (c0 + log x)F0(α;q, x) + F1(α;q, x),

where F0(α;q, x) is as in (1.8) and where

(2.4) F1(α;q, x) =
∑
n>1

(
Hn +

n−1∑
k=0

αqk ln q
1− αqk

) (−1)n−1(α;q)n
n! xn.

Then the function F (α;q, c0, x) is a unique analytic solution on C̃∗ of equa-
tion (1.4) with the initial asymptotic condition y(x) = log x+ c0 + o(1) as
x→ 0 along a certain direction.

Proof. — Since F0(α;q, x) is an analytic solution of equation (1.5), sub-
stituting F (α;q, c0, x) into equation (1.4), we see that the first equation in
(2.1) is satisfied. By taking v(x) = F1(α;q, x), the second equation in (2.1)
is satisfied.

TOME 1 (-1), FASCICULE 0
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Since the sequence |1 + αqk−1(k ln q − 1)]| is convergent as k → ∞,
then there exists a constant C1 such that |1 + αqk−1(k ln q − 1)]| 6 C1,
for all k > 1. Because α 6∈ q−N, there exists a constant C2 such that
|1− αqk−1| > C2 for all k > 1. Therefore, for n > 1,∣∣ n∑

k=1

(−1)n−1(α;q)n[1 + αqk−1(k ln q − 1)]
n!k(1− αqk−1)

∣∣ 6 C1|(α;q)n|
C2(n− 1)! .

Hence, the radius of convergence of F1(α;q, x) is ∞.
Furthermore, it is trivial that F (α;q, c0, x) = log x+ c0 + o(1) as x → 0

along any direction. From the analysis above, the function F (α;q, c0, x) is
a solution of equation (1.4) as described in the theorem.
For uniqueness, we can easily see that using a suitable change of variable,

the difference of two solutions with the given asymptotic initial condition
satisfies the conditions of Lemma 2.4. �

Next, we look for a power series solution at ∞.

Theorem 2.6. — If α /∈ qZ>0 , then the following power series

(2.5) G(α;q, x) = x−1
∑
n>0

(−1)n+1α−(n+1)q(n+1)(n+2)/2n!
(α−1q;q)n+1

x−n

represents the unique analytic solution of equation (1.4) in C∗∪{∞} which
vanishes at infinity.

Proof. — We suppose y =
∑
n>0 anx

−n−1 and substitute it into equation
(1.4), then

−
∑
n>0

(n+ 1)anx−n−2 =
∑
n>0

(αq−n−1 − 1)anx−n−1 + x−1.

Comparing the coefficients of x−1, one obtains a0 = 1
1−αq−1 (for α 6= q).

By comparing the coefficients of x−2, x−3, · · · , we have (αq−n−1 − 1)an =
−nan−1 for n > 1. Therefore,

an = n

1− αq−n−1 an−1 = · · · = (−1)nα−nqn(n+3)/2n!
(α−1q2;q)n

a0

for α /∈ qZ>0 . Thus, the expression for an is unique. Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1) qn+2

|α− qn|
= 0 ,

the power series (in 1
x )G(α;q, x) defined by (2.5) is the unique analytic solu-

tion of equation (1.4) in Riemann sphere C∗∪{∞}, such that lim
x→∞

G(α;q, x)
= 0. �

ANNALES DE L’INSTITUT FOURIER
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Remark 2.7. — When α 6= 1, any analytic solution at infinity is null
there. In this case, G(α;q, x) is the unique analytic solution at infinity.

This comes from the fact that lim
x→∞

(y′(x) − 1
x ) = 0, which implies that

(α− 1) lim
x→∞

y(x) = 0.
The connection formula between F (α;q, c0, x) and G(α;q, x) will be given

in Section 5. In formula (2.5), one can notice that, for any α /∈ qZ>0 ,

(2.6)
∣∣∣ α−(n+1)

(α−1q;q)n+1

∣∣∣ = 1
|(α− q)(α− q2) · · · (α− qn+1)| 6

1
εn+1 ,

where ε = min
k∈Z>0

|α− qk|. Furthermore, we have the following Remark.

Remark 2.8. — The function F (α;q, c0, x) of Theorem 2.5 is analytic
for α /∈ qZ60 , while the function G(α;q, x) of Theorem 2.6 is analytic for
α /∈ qZ>0 .

Indeed, by using the uniform convergence theorem, one can see that
F0(α;q, x) and F1(α;q, x) are respectively analytic for (α, x) ∈ C × C and
for all (α, x) ∈ C× C such that αqk 6= 1 for any k ∈ Z>0. This implies the
analyticity of F (α;q, c0, x) for (α, x) ∈

(
C \ qZ60

)
×C. In the same way, we

get the analyticity of G(α;q, x), by using (2.6).

3. Laplace integral solutions and the relationship between
them

In this section, we will look for solutions of (1.4) in the form of Laplace
integral. For the convergence of Laplace integral, we refer to [18, p. 216,
Definition A.2.3], whose main content is: Let f ∈ C2([0,+∞)). Suppose
there are A,B > 0 such that |f(x)| 6 AeBx, then the function ξ 7→∫ +∞

0 f(x)e−xξdx converges for Re(ξ) > B. It is denoted Lf , Laplace trans-
form of f , which holomorphic for Re(ξ) > B. We first give an elementary
lemma as follows.

Lemma 3.1. — Assume that d ∈ R, ε > 0, and h is an analytic function
in the open sector {t ∈ C̃∗

∣∣| arg(t)−d| < ε}, verifying h(t) = O(t) for t→ 0,
and h(t) = O(eλ|t|) for t→∞ (λ > 0). An integral of the form

y(x) =
∫ ∞eid

0
h(t)e−tx dt

t

TOME 1 (-1), FASCICULE 0
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is a solution of equation (1.4) in the domain

Sdε,λ =
⋃

δ∈(d−ε,d+ε)

{x ∈ C̃∗
∣∣Re(xeiδ) > λ}

if and only if the function h(t) satisfies

(3.1) αh(t) + (qt− 1)h(qt) = −qt.

Proof. — One has 1
x

=
∫ ∞eid

0
te−tx

dt
t

for Re(xeid) > 0, and y(x) can

be extended into an analytic function in Sdε,λ under the given conditions.
Thus, we can obtain the result by substituting y(x) in equation (1.4). �

3.1. Two types of Laplace integral solutions

Suppose φ(t) =
∑
n>1 φnt

n and substisute it into equation (3.1). Com-
paring the coefficients of tn, we obtain

(3.2) φ1 = 1
1− αq−1 , and for n > 2, φn = 1

1− αq−nφn−1.

Next, we use it to get an integral solution of equation (1.4), as shown in
the following lemma.

Lemma 3.2. — Let α /∈ qZ>0 , d ∈ [0, 2π], and

(3.3) φ(t) =
∑
n>0

φn+1t
n+1 =

∑
n>0

tn+1

(αq−n−1;q)n+1
.

Then the integral L[d]
1 (α;q, x) =

∫ ∞eid
0

φ(t)e−tx dt
t

is an analytic solution

of equation (1.4) for x in the Riemann surface C̃∗ such that arg(x) ∈
(−d− π

2 ,−d+ π
2 ).

Consequently, glueing all the functions L[d]
1 (α;q, x) (d ∈ [0, 2π]) gives rise

to an analytic solution of equation (1.4) in C∗∪{∞}, which will be denoted
by L1(α;q, x).

Proof. — First, from (3.2) and (1.6), we have φn = O(α−nqn(n+1)/2), we
get that φ(t) is an entire function satisfying (3.1) and φ(0) = 0. According
to Lemma 3.1, it suffices to prove that φ(t) has at most exponential growth
at ∞.
From [21, p. 59, Proposition 2.1], we obtain that∣∣∣φ(t)

t

∣∣∣ 6 Ce− (log |t/α√q|)2
2 ln q , as |t| → +∞.

ANNALES DE L’INSTITUT FOURIER
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Therefore, as t → ∞ in C, φ(t) = O(eλ|t|) for any λ > 0. Hence, the
integral L[d]

1 (α;q, x) is well-defined in any direction d ∈ [0, 2π]. This is to
say, there is no singular direction. Thus, one obtains an analytic function
on C∗ ∪ {∞}. �

Note that the proof above for Lemma 3.2 is based on a basic idea of the
Borel-Laplace summation theory (see [18, p. 216, Proposition A.2.3]).

Theorem 3.3. — If α /∈ qZ>0 , then the relation

(3.4) G(α;q, x) = L1(α;q, x)

holds for x ∈ C∗ ∪ {∞}.

Proof. — By the definition in (2.5), one can get that

G(α;q, x) =
∑
n>0

n!
(αq−n−1;q)n+1

x−n−1.

Given any direction d and x such that Re(xeid) > 0, by using dominated
convergence theorem, we have

L
[d]
1 (α;q, x) =

∫ ∞eid
0

e−txφ(t)dt
t

=
∑
n>0

n!
(αq−n−1;q)n+1

x−n−1.

Then G(α;q, x) = L
[d]
1 (α;q, x). By the analytic continuation process, rela-

tion (3.4) holds for all x ∈ C∗ ∪ {∞}. �

In the following, we will introduce another kind of integral solution.

Lemma 3.4. — Let |α| < 1, d ∈ (0, 2π), and

(3.5) ψ(t) = (α;q)∞
∑
n>0

αn t

(q;q)n(qn − t) .

The integral

(3.6) L
[d]
2 (α;q, x) =

∫ ∞eid
0

ψ(t)e−tx dt
t

is an analytic solution of equation (1.4) for x in the Riemann surface C̃∗
such that arg(x) ∈ (−d− π

2 ,−d+ π
2 ).

Consequently, glueing all the functions L[d]
2 (α;q, x) (d ∈ (0, 2π)) gives rise

to an analytic solution of equation (1.4) for arg(x) ∈ (− 5π
2 ,

π
2 ), which will

be denoted by L2(α;q, x).

TOME 1 (-1), FASCICULE 0
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Proof. — To see that L[d]
2 (α;q, x) is a solution of (1.4), we first prove that

ψ(t) is a solution of (3.1) (Lemma 3.1). Letting g(t) = ψ(t)/t, we only need
to prove that g(t) is a solution of

(3.7) (1− t)g(t)− α

q
g( t
q

) = 1.

It can be proved by direct computation with the help of the following
identity:

(α;q)∞
∑
n>0

αn

(q;q)n
= 1.

Then ψ(t) is a solution of equation (3.1).
Next, we consider the growth of ψ(t) at infinity to prove the convergence

of the integral. Since

|ψ(t)| 6|(α;q)∞|
∑
n>0

|α|n(|qn|+ |t− qn|)
(q;q)n|qn − t|

=|(α;q)∞|
∑
n>0

|α|nqn

(q;q)n|qn − t|
+ |(α;q)∞|

∑
n>0

|α|n

(q;q)n
,

(3.8)

the function ψ(t) is bounded as t → ∞ in any direction d ∈ (0, 2π). The
result follows by applying Lemma 3.1 (λ = 0, d = ε = π). �

The following theorem describes the Stokes phenomenon of L2(α;q, x).

Theorem 3.5. — Let |α| < 1 and arg(x) ∈ (− 5π
2 ,−

3π
2 ), the following

formula holds:

(3.9) L2(α;q, xe2πi)− L2(α;q, x) = 2πi(α;q)∞
∑
n>0

αne−q
nx

(q;q)n
,

the right-hand side of (3.9) is a solution of the homogenous equation (1.5).

Proof. — Let L be any smooth and anti-clockwise curve whose interior
contains the set {1, q, q2 · · · }. By the residue theorem,

L2(α;q, xe2πi)− L2(α;q, x) =
∫
L

(α;q)∞
∑
n>0

αn

(q;q)n(t− qn)e
−txdt

= 2πi(α;q)∞
∑
n>0

αne−q
nx

(q;q)n
,

which is (3.9). Since |α| < 1, the series in (3.9) is convergent for Re(x) > 0,
which is satisfied when arg(x) ∈ (− 5π

2 ,−
3π
2 ). By direct calculation, one can

prove that the right-hand side of (3.9) is a solution of equation (1.5). �
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3.2. Relationship between the two Laplace integrals

We have established that L1(α;q, x) and L2(α;q, x) are solutions of equa-
tion (1.4). Then L1(α;q, x) − L2(α;q, x) is a solution of the homogeneous
equation (1.5). We now study the link formula between L1(α;q, x) and
L2(α;q, x), by giving an explicit expression of L1(α;q, x) − L2(α;q, x). For
doing this, we should study the relation between the functions φ and ψ.

Lemma 3.6. — Let ψ(t) be as in Lemma 3.4. For |t| > 1, the following
equation holds:

ψ(t) = −
∑
n>0

(α;q)n
(1
t

)n
.

Proof. — By using 1
1− qnt

=
∑
m>0( q

n

t )m for every fixed n, equation (3.5)
becomes

(3.10) ψ(t) = −(α;q)∞
∑

n>0,m>0

(αqm)n

(q;q)n

(1
t

)m
.

For every fixed m, by applying equation (1.9), we obtain

(3.11) (α;q)∞
∑
n>0

(αqm)n

(q;q)n
= (α;q)∞

(αqm;q)∞
= (α;q)m.

Putting (3.11) into (3.10) allows us to complete the proof. �

The functions φ and ψ are solutions of (3.1), and φ is an entire function
while ψ has simple poles on the set qN. The homogeneous equation of (3.1)
has special solutions, for example,

(3.12) H(t) =
θ(− q

α t)
( qα ;q)∞( 1

t ;q)∞
,

who has the same poles as ψ. We will obtain the relationship between
φ(t), ψ(t), and H(t), as shown in Lemma 3.7. From (1.6), we have

(3.13) φ(t) =
∑
n>0

tn+1

(αq−n−1;q)n+1
=
∑
n>0

q
n(n+1)

2

( qα ;q)n+1

(
− qt

α

)n+1
.

According to the definition of basic hypergeometric series in [11, p. 4, for-
mula (1.2.22)]:

rφs(a1, a2, · · · , ar;b1, b2, · · · , bs;q, z)

=
∑
n>0

(a1;q)n(a2;q)n · · · (ar;q)n
(q;q)n(b1;q)n · · · (bs;q)n

[
(−1)nq

n(n−1)
2

]1+s−r
zn,
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the right-hand side of the series in (3.13) can be viewed as a basic hyperge-
ometic series, written as 1φ1(q; qα ;q, qtα )−1. The connection formula for 2φ1
is proposed in [11, p. 117, formula (4.3.2)], and the following relationship
can also be regarded as the connection formula for 1φ1.

Lemma 3.7. — Let φ(t) and ψ(t) be as in (3.3) and (3.5). For |t| > 1,
the following equation holds:

(3.14) φ(t) = H(t) + ψ(t).

Proof. — Let c = − q
α , equation (3.12) can be rewritten as H(t) =

θ(ct)
(−c;q)∞( 1

t ;q)∞
. From formula (1.9), we have, for |t| > 1,

1
( 1
t ;q)∞

=
∑
k>0

1
(q;q)k

(1
t

)k
.

Multiplying with the series θ(ct) =
∑
l∈Z q

l(l−1)
2 (ct)l, we obtain

H(t) = 1
(−c;q)∞

∑
k>0

1
(q;q)k

(1
t

)k∑
l∈Z

q
l(l−1)

2 (ct)l = H+(t) +H−(t),

where

H+(t) =
∑
k>0

∑
l>k

clq
l(l−1)

2

(−c;q)∞(q;q)k
tl−k, H−(t) =

∑
k>0

∑
l6k

clq
l(l−1)

2

(−c;q)∞(q;q)k
(1
t

)k−l
.

Letting m = l − k and replacing l with k +m, it follows that

H+(t) =
∑

m>0,k>0

(cqm)kq
k(k−1)

2 q
m(m−1)

2

(−c;q)∞(q;q)k
(ct)m.

By applying equation (1.10), for fixed m, we have
∑
k>0

(cqm)kq
k(k−1)

2

(q;q)k =

(−cqm;q)∞. Therefore,

H+(t) =
∑
m>0

(−cqm;q)∞
(−c;q)∞

q
m(m−1)

2 (ct)m =
∑
m>0

q
m(m−1)

2

( qα ;q)m
(− q
α
t)m = φ(t).

Next, letting n = k − l and replacing l with k − n, we have

H−(t) =
∑

n>0,k>0

ck−nq
(k−n)(k−n−1)

2

(−c;q)∞(q;q)k
(1
t

)n
.
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Since (k−n)(k−n−1)
2 = k(k−1)

2 + n(n+1)
2 − kn, by summing on k and using

equation (1.10), we obtain

H−(t) =
∑
n>0

cn(1
t
)n,

where

cn =
(− c

qn ;q)∞
(−c;q)∞

c−nq
n(n+1)

2 = (− c

qn
;q)nc−nq

n(n+1)
2 .

By using formula (1.6), we have cn = (α;q)n. From Lemma 3.6, we can
obtain that H−(t) = −ψ(t), which completes the proof. �

Remark 3.8. — We note that equation (3.14) is still valid for all t ∈
C∗\qN. This property will be used in the sequel.

We obtain the link formula between the two integral solutions as follows.

Theorem 3.9. — Let |α| < 1 and α /∈ qZ>0 . For any x verifying
arg(x) ∈

(
− 5π

2 ,
π
2
)
, there exists a direction d ∈ (0, 2π) such that the fol-

lowing relation holds:

(3.15) L1(α;q, x) = L2(α;q, x) +
∫ ∞eid

0
e−txH(t)dt

t
.

Proof. — For any given such x, one can find a direction d ∈ (0, 2π) such
that arg(x) ∈

(
−d− π

2 ,−d+ π
2
)
, the theorem follows by using Lemma 3.7,

Remark 3.8 and integration. �

4. Expression of integral solutions in terms of series

This section focuses on exploring the relationship between series and
integral solutions, which is structured into the following aspects. By ap-
plying perturbations of the equation, we derive an alternative expression
for L2(α;q, x), which is represented in terms of series expansions at zero.
Finally, we establish the link formula between F (α;q, c0, x) and L2(α;q, x)
by using Theorem 3.3.

4.1. Perturbations of the parameter α

The idea of perturbations of the equation gives another representation
of L2(α;q, x). In the following, we consider α as a parameter close to zero.

TOME 1 (-1), FASCICULE 0
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If α = 0, then equation (1.4) becomes

(4.1) y′(x) = −y(x) + 1
x
,

which has the divergent series solution
∑
n>0 n!( 1

x )n+1. From the Definition
1.3.1.2 in [18]: We place ourselves in the plane of τ = 1

x .
∑ an

τn is Borel-
summable in U = {Re(τ) > 0}, of sum f , if:

∃C > 0, ∀n ∈ N, ∀τ ∈ U,
∣∣f(τ)−

∑
k<n

ak
τk
∣∣ 6 Cn · n!

|τ |n
.

We obtain that, given any d ∈ (0, 2π), the corresponding Borel-sum in the
direction d is

E[d](x) =
∫ ∞eid

0
e−xt

dt
1− t ,

for Re(xeid) > 0, i.e., arg(x) ∈ (−d − π
2 ,−d + π

2 ). By the analytic contin-
uation process, it yields a function E(x), which is a solution of (4.1) for
arg(x) ∈ (− 5π

2 ,
π
2 ) on C̃∗, for more details, see Ramis [20, p. 183, Definition

3.1] and Malgrange [18, p. 217, Proposition A.2.4].
Since L2(α;q, x) is a solution of (1.4) with α 6= 0 and E(x) is a solution

of (1.4) with α = 0 , equation (1.4) can be seen as the perturbation of
equation (4.1). We expect to expand L2(α;q, x) as a perturbation series
related to E(x).

Proposition 4.1. — Let α 6= 0 and |α| < 1. For arg(x) ∈ (− 5π
2 ,

π
2 ) on

C̃∗, the following relation holds

(4.2) L2(α;q, x) = (α;q)∞
∑
n>0

αn

(q;q)n
E(qnx).

Consequently, L2(α;q, x)→ E(x) as α→ 0.

Proof. — For any given x with arg(x) ∈ (− 5π
2 ,

π
2 ), one can find a direc-

tion d ∈ (0, 2π) such that arg(x) ∈
(
−d− π

2 ,−d+ π
2
)
. By the definition of

L2(α;q, x), we have

L
[d]
2 (α;q, x) = (α;q)∞

∫ ∞eid
0

∑
n>0

αn t

(q;q)n(qn − t)e
−tx dt

t
,

where the series under the integral verifies (3.8). Since∫ ∞eid
0

t

qn − t
e−tx

dt
t

= E[d](qnx),

we can apply the dominated convergence theorem to obtain (4.2). �
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Let α 6= 0 and close to 0. Note that a function in the form y(x) =∑
n>0 yn(x)αn is a solution of equation (1.4) iff the functions yn(x) satisfy

the following system of differential equations:

(4.3) y′0(x) + y0(x) = 1
x ,

y′n+1(x) + yn+1(x) = yn(qx), n > 0.

By using equations (1.10) and (4.2), we obtain the following corollary,
which gives a particular solution to the above system.

Corollary 4.2. — For arg(x) ∈ (− 5π
2 ,

π
2 ), a particular solution of sys-

tem (4.3) is given by the following

yn(x) =
n∑
k=0

(−1)kqk(k−1)/2

(q;q)k(q;q)n−k
E(qn−kx), for n > 0.

4.2. Relationship between L2(α;q, x) and F (α;q, c0, x)

To derive the link formula between L2(α;q, x) and F (α;q, c0, x), we will
express L2(α;q, x) in terms of power series at 0. This is done by establishing
the relationship between E(x) and the series solution at 0 of equation (4.1),
because formula (4.2) indicates that L2(α;q, x) can be expressed in terms
of E(x), and E(x) is a solution of (4.1).

Lemma 4.3. — Let γ = Γ′(1) be Euler’s constant ([7, p. 185, formula
(10.8.1)]) and

(4.4) wγ(x) = γe−x + e−x log(eiπx) +
∑
n>1

n−1∑
k=0

(−1)k

(n− k)(n− k)! k!x
n.

Then, for arg(x) ∈ (− 5π
2 ,

π
2 ), we have E(x) = wγ(x).

Proof. — Choose d = π for E[d](x). Given x such that arg(x) ∈ (− 3π
2 ,−

π
2 ),

we have Re(x) < 0, and

E[π](x) =
∫ ∞eiπ

0

e−tx

1− tdt = −
∫ +∞

0

etx

1 + t
dt.

From [7, p. 276, formula (14.1.10)], we have the exponential integral

E1(z) :=
∫ ∞

1

e−zt

t
dt = −γ − Ln(z)−

∑
k>1

(−1)kzk

k!k ,

TOME 1 (-1), FASCICULE 0
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where Re(z) > 0. If z = eiπx, then we have

E[π](x) = −e−xE1(eiπx) = γe−x + e−x log(eiπx) + e−x
∑
k>1

xk

k!k ,

One completes the proof by direct computation and analytic continuation.
�

Remark 4.4. — The series in (4.4) has another expression as follows

(4.5) wγ(x) = γe−x + e−x log(eiπx) +
∑
n>1

(−1)n−1Hn

n! xn.

By utilizing formula (4.2) and Lemma 4.3, we have the following corol-
lary.

Corollary 4.5. — Let |α| < 1 and arg(x) ∈ (− 5π
2 ,

π
2 ). The function

L2(α;q, x) can be expressed in terms of wγ(x) as follows:

(4.6) L2(α;q, x) = (α;q)∞
∑
m>0

αm

(q;q)m
wγ(qmx).

The following lemma presents a relation that will be used to study the
relationship between L2(α;q, x) and solutions at 0 of equation (1.4).

Lemma 4.6. — For any |x| < 1, the following equation holds

(4.7)
∑
m>0

mxm

(q;q)m
= 1

(x;q)∞

∑
k>0

xqk

1− xqk .

Proof. — For any |x| < 1, by using (1.9), we have[ x

(x;q)∞

]′
=
[ ∑
m>0

xm+1

(q;q)m

]′
=
∑
m>0

(m+ 1)xm

(q;q)m
,

then∑
m>0

mxm

(q;q)m
=
[ x

(x;q)∞

]′
−
∑
m>0

xm

(q;q)m

= (x;q)∞ − x[(x;q)∞]′

(x;q)2
∞

−
∑
m>0

xm

(q;q)m
= −x[(x;q)∞]′

(x;q)2
∞

.

Since [(x;q)∞]′ = (x;q)∞
∑
k>0

−qk
1−xqk , equation (4.7) can be easily proved.

�

We now examine the relationship between L2(α;q, x) and F (α;q, c0, x)
where the function F (α;q, c0, x) is defined in Theorem 2.5. For a special
value of c0, we have the following result.
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Theorem 4.7. — Let α /∈ qZ60 and arg(x) ∈ (− 5π
2 ,

π
2 ). The following

relation holds:

(4.8) L2(α;q, x) = F (α;q, γ0, x),

where

(4.9) γ0 =
∑
k>0

αqk ln q
1− αqk + γ + iπ.

Proof. — According to Remark 2.8, the function F (α;q, γ0, x) is analytic
for α /∈ qZ60 . Thus, we need only to establish the validity of (4.8) for
|α| < 1.

First, we have (see [28, p. 7, Proposition 2.1])

F0(α;q, x) = (α;q)∞
∑
m>0

αme−q
mx

(q;q)m
=
∑
m>0

(−1)m(α;q)m
m! xm.

Then, from (4.5) and (4.6), we obtain

L2(α;q, x) = (log(eiπx) + γ)F0(α;q, x) +A1 +A2,

where

A1 = (α;q)∞
∑
m>0

αm

(q;q)m
(log(qm))e−q

mx

and

A2 = (α;q)∞
∑
m>0

αm

(q;q)m

∑
n>1

n∑
k=1

(−1)n−1

n!k qmnxn.

By using the exponential series and inversion of the summation order of
convergent power series, we get

A1 = (α;q)∞(ln q)
∑
m>0

mαm

(q;q)m

∑
k>0

(−qmx)k

k!

= (α;q)∞(ln q)
∑
k>0

(−x)k

k!
∑
m>0

m(αqk)m

(q;q)m
.

By applying (3.11) and Lemma 4.6, we further have

A1 = (α;q)∞(ln q)
∑
k>0

(−x)k

k!(αqk;q)∞

∑
m>0

αqk+m

1− αqk+m

=
∑
n>0

∑
k>n

αqk ln q
1− αqk

(−1)n(α;q)n
n! xn.
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Together with (1.9), we get

A2 = (α;q)∞
∑
n>1

n∑
k=1

( ∑
m>0

αmqmn

(q;q)m
) (−1)n−1

n!
xn

k
=
∑
n>1

(−1)n−1Hn

n! (α;q)nxn.

Hence,

A1 +A2 = F1(α;q, x) +
∑
k>0

αqk ln q
1− αqkF0(α;q, x)

Thus, the proof is complete. �

5. Connection formula and asymptotic behaviors

We recall that F (α;q, c0, x) and G(α;q, x) are as in (2.3) and (2.5). In this
section, we first introduce some lemmas about q-periodic functions. Then,
we present the connection formula between F (α;q, c0, x) and G(α;q, x) for
a special case c0 = γ0. The asymptotic behaviors of F (α;q, γ0, x) are ob-
tained using the connection formula. Finally, we draw conclusions about
the connection formula and the asymptotic behaviors at ∞ of solutions
around zero for the general case.

5.1. Two families of q-periodic functions

Let µ be a fixed complex number such that α = qµ and − π
| ln q| < Im(µ) 6

π
| ln q| . There are infinity numbers of µl = µ + iκl (l ∈ Z and κ = − 2π

ln q ),
such that qµl = α. All values of µl form a set, which we call Λα = {µl ∈
C : qµl = α}.

Lemma 5.1. — Let α /∈ qZ. For arg(x) ∈ (− 5π
2 ,

π
2 ), the function

(5.1) gn(α;q, x) =
∑
µl∈Λα

Γ(n+ µl)x−µl
1− e2πiµl

, n > 0

is an analytic solution of the equation y(x) = αy(qx).

Proof. — For µl ∈ Λα, we have

(5.2)
∣∣x−µl ∣∣ =

∣∣e−(Re(µl)+iIm(µl))(log |x|+i arg(x))∣∣ = eIm(µl) arg(x)|x|−Re(µ).

Therefore,

(5.3) |1− e2πiµl | > |1− |e2πiµl || = |1− e−2πImµe−2πκl|.
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Since α /∈ qZ, we have µl /∈ Z ⊕ iκZ. By using Stirling’s formula for the
Gamma function (see [1, p. 21, Corollary 1.4.4]), it yields that

(5.4) Γ(n+ µl) =
√

2π|Im(µl)|n+Re(µl)− 1
2 e−

π|Im(µl)|
2

(
1 +O

( 1
|Im(µl)|

))
as |Im(µl)| → +∞.

(i) If Im(µl) > 0 (l > 0), then for Im(µl) = Im(µ) + κl, we have

Γ(n+ µl) = O
(
ln+Re(µ)− 1

2 e−
πκl

2
)
, as l→ +∞.

Together with equations (5.2) and (5.3), we obtain that∣∣∣ ∑
Im(µl)>0

Γ(n+ µl)x−µl
1− e2πiµl

∣∣∣
6 CeIm(µ) arg(x)

∑
l∈Z>0

ln+Re(µ)− 1
2 eκl(arg(x)−π2 )

1− e−2πIm(µ)−2πκl |x|−Re(µ).

(5.5)

The series of the right-hand side of (5.5) is convergent if the ratio of two
consecutive terms tends to a limit smaller than 1, that is to say:

lim
l→+∞

∣∣(1+1
l

)n+Re(µ)− 1
2 (1− e−2πImµ−2πκl)eκ(arg(x)−π2 )

1− e−2πImµ−2πκ(l+1)

∣∣ = eκ(arg(x)−π2 ) < 1,

i.e. arg(x) < π
2 .

(ii) If Im(µl) < 0 (l < 0), then equation (5.4) becomes

Γ(n+ µl) = O
(
(−Im(µl))n+Re(µ)− 1

2 e
πIm(µl)

2
)
, as Im(µl)→ −∞.

By taking m = −l, we have

Γ(n− µm) = O
(
(−m)n+Re(µ)− 1

2 e−
πκm

2
)
, as m→ +∞.

Equation (5.2) becomes
∣∣x−µl ∣∣ = e(Im(µ)−κm) arg(x)|x|−Re(µ). Therefore, we

have ∣∣∣ ∑
Im(µl)<0

Γ(n+ µl)x−µl
1− e2πiµl

∣∣∣
6 CeIm(µ) arg(x)

∑
m∈Z>0

mn+Re(µ)− 1
2 e−κm(arg(x)+π

2 )

e−2πIm(µ)+2πκm − 1
|x|−Re(µ).

(5.6)

The series of the right-hand side of (5.6) is convergent if

lim
m→+∞

∣∣(1 + 1
m

)n+Re(µ)− 1
2 (1− e−2πImµ+2πκm)e−κ(arg(x)+π

2 )

1− e−2πImµ+2πκ(m+1)

∣∣
= e−κ(arg(x)+ 5π

2 ) < 1,

i.e. arg(x) > − 5π
2 .
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To sum up, the Laurent series in (5.1) is convergent if the series of the
right-hand side of (5.5) and (5.6) are convergent. Therefore, the function
gn(α;q, x) is well-defined and analytic for arg(x) ∈ (− 5π

2 ,
π
2 ).

Finally, it is obvious that gn(α;q, x) satisfies αy(qx) = y(x) by direct
computation. �

Remark 5.2. — For arg(x) ∈ (−π2 ,
π
2 ), let

hn(α;q, x) = gn(α;q, x)− gn(α;q, xe−2πi).

Then, we have hn(α;q, x) =
∑
µl∈Λα

Γ(n+ µl)x−µl .

Lemma 5.3. — For any fixed n, the functions ĝn(α;q, x) = xµgn(α;q, x)
and ĥn(α;q, x) = xµhn(α;q, x) are q-periodic functions and bounded as
x→∞ in any direction d ∈ (− 5π

2 ,
π
2 ) and d ∈ (−π2 ,

π
2 ) respectively.

Proof. — Both gn(α;q, x) and hn(α;q, x) are solutions of equation y(x) =
αy(qx), it is easy to verify that ĝn and ĥn are q-periodic functions, i.e., satis-
fying ŷ(qx) = ŷ(x). We only need to prove that ĝn satisfies |ĝn(α;q, x)| 6 C
as x→∞ in any direction arg(x) ∈ (− 5π

2 ,
π
2 ), for ĥn, we change the direc-

tion to arg(x) ∈ (−π2 ,
π
2 ).

For any d ∈ (− 5π
2 ,

π
2 ) and x ∈ [ 1

q e
id, 1

q2 e
id], ŷ(x) = ŷ(qx), where qx ∈

[eid, 1
q e
id]. Therefore, using the continuity and taking C = max

x∈[eid, 1
q e
id]
|ŷ(x)|,

we have |ŷ(x)| 6 C for all x = teid with t > 1. �

5.2. The connection formula for the critical value c0 = γ0

In this section, we will present the connection formula between F (α;q, γ0,
x) and G(α;q, x). We first introduce a lemma that will be used later.

Define e(q;x) = e−
log2 x√

q

2 ln q . One can get that both e(q;x) and θ(q;x) satisfy
equation xy(qx) = y(x). Let q∗ = e−2πκ and x∗ = x−iκ. From [1, p. 498,
(10.4.2)] and [28, p. 12, (4.2)], we have

(5.7) θ(q;eiπx) =
√
κ e(q;eiπx)θ(q∗;eiπx∗),

and from [28, p. 12, Lemma 4.1], we have

(5.8) θ(q;− qµx)
θ(q;− x) = q−µ(µ−1)/2(eiπ)−µ θ(q

∗;− e2πiµx∗)
θ(q∗;− x∗) .
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Lemma 5.4. — Let µ ∈ C \ Z. The following relation holds:

(5.9)
θ(q;− qµ

t )
( 1
t ;q)∞

= κ(qµ, q1−µ; q)∞
i(q;q)∞

∑
n>0

∑
l∈Z

(−1)nqn(n+1)/2tn+µ+iκl

(q;q)n(1− e2πi(µ+iκl))

for arg(t) ∈ (0, 2π).

Proof. — Let x = 1
t . Since arg(t) ∈ (0, 2π), we have arg(x) ∈ (−2π, 0).

Then
|x∗| = eκ arg(x) ∈ (e−2κπ, 1) = (q∗, 1).

From [1, p. 502, (10.5.3)]: for |q| < 1 and |ba−1| < 1,∑
l∈Z

(a;q)l
(b;q)l

xl = (ax;q)∞(q/ax;q)∞(q;q)∞(b/a;q)∞
(x;q)∞(b/ax;q)∞(b;q)∞(q/a;q)∞

,

letting q = q∗, x = x∗, a = e2πiµ and b = q∗e2πiµ yields that

(5.10) θ(q∗;− e2πiµx∗)
θ(q∗;− x∗) = θ(q∗;− e2πiµ)

(q∗, q∗)3
∞

∑
l∈Z

x∗l

1− e2πiµq∗l
.

From (5.8) and (5.10), we have

θ(q;− qµx)
θ(q;− x) = q−µ(µ−1)/2(eiπ)−µ θ(q

∗;− e2πiµ)
(q∗, q∗)3

∞

∑
l∈Z

x∗l

1− e2πiµq∗l
.

By using (5.7) to θ(q∗;− e2πiµ) and (q∗;q∗)∞ = q1/24
√
κ
eκπ/12(q;q)∞, it yields

that

θ(q;− qµx)
(x;q)∞

=κ(qµ, q1−µ; q)∞
i(q;q)∞

( q
x

;q)∞
∑
l∈Z

x−(µ+iκl)

1− e2πi(µ+iκl)

=κ(qµ, q1−µ; q)∞
i(q;q)∞

∑
n>0

(−1)nqn(n+1)/2x−n

(q;q)n

∑
l∈Z

x−(µ+iκl)

1− e2πi(µ+iκl) ,

the series in the right-hand side is normally convergent on any compact of
{x| arg(x) ∈ (−2π, 0)} (|x∗| < 1). The proof is completed by replacing x
with 1

t . �

Theorem 5.5. — Let α /∈ qZ and γ0 be as in (4.9). The following rela-
tion holds for any x ∈ C̃∗ with arg(x) ∈ (− 5π

2 ,
π
2 ) :

F (α;q, γ0, x) = G(α;q, x) + iκ(α;q)∞
(q;q)∞

∑
n>0

(−1)nqn(n+1)/2

(q;q)n
gn(α;q, x)x−n.
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Proof. — From equations (3.4), (3.15) and (4.8), letting d = π, we have,
for arg(x) ∈ (− 3π

2 ,
π
2 ),

F (α;q, γ0, x) = G(α;q, x)−
∫ ∞eiπ

0

e−tx θ
(
−αt
)(

q
α ;q
)
∞

( 1
t ;q
)
∞

dt
t
.

Assuming that |α| < 1, then we have Re(µ) > 0. From α /∈ qZ, we have
µ + iκl /∈ Z. By using equation (5.9), Lebesgue’s dominated convergence
Theorem and ∫ ∞

0
e−ttn+µ+iκl dt

t
= Γ(n+ µ+ iκl),

we obtain the equation give in the theorem, where gn(α;q, x) is shown
in Lemma 5.1. By applying Remark 2.8 and analytic continuation, the
equation in the theorem holds for any value of α and arg(x) ∈ (− 5π

2 ,
π
2 ). �

Then, we obtain the asymptotic form of solution at zero for the critical
value c0 = γ0.

Theorem 5.6. — Let α /∈ qZ and γ0 be as in (4.9). Then the following
relation holds:

(i) If |α| < q, then

F (α;q, γ0, x) = 1
1− αq−1x

−1 + o(x−1)

as x→∞ in any direction arg(x) ∈ (−π2 ,
π
2 ).

(ii) If |α| > q, then

F (α;q, γ0, x) = iκ(α;q)∞
(q;q)∞

ĝ0(α;q, x)x−µ + o(x−µ)

as x→∞ in any direction arg(x) ∈ (−π2 ,
π
2 ), where ĝ0(α;q, x) is a bounded

q-periodic function shown in Lemma 5.3 with n = 0.
(iii) If |α| = q, then

F (α;q, γ0, x) = 1
1− αq−1x

−1 + iκ(α;q)∞
(q;q)∞

ĝ0(α;q, x)x−µ + o(x−1)

as x→∞ in any direction arg(x) ∈ (−π2 ,
π
2 ).

Proof. — In order to study the asymptotic behavior of F (α;q, c0, x), we
distinguish two cases:

ANNALES DE L’INSTITUT FOURIER



ON A NON-HOMOGENEOUS PANTOGRAPH EQUATION 25

(i) If |α| < q, then −Re(µ) = − ln |α|/ ln q < −1. From Theorem 5.5, we
have

F (α;q, γ0, x) = x−1[ 1
1−αq−1 +

∑
n>1

α−(n+1)q(n+1)(n+2)/2n!
(α−1q;q)n+1

x−n

+O(x−Re(µ)+1)
]

= 1
1−αq−1x

−1[1 +O(x−1) +O(x−Re(µ)+1)
]

as x→∞ in any direction arg(x) ∈ (−π2 ,
π
2 ).

(ii) If |α| > q, then Re(µ) − 1 < 0. By using Lemma 5.3 and Theorem
5.5, it follows that

F (α;q, γ0, x) = iκ(α;q)∞
(q;q)∞

g0(α;q, x) + x−µ
[
O(x−1) +O(xRe(µ)−1)

]
as x→∞ in the direction arg(x) ∈ (−π2 ,

π
2 ).

(iii) If |α| = q, then we assume that µ = 1 + ia
ln q (a /∈ 2πZ). From

Theorem 5.5, we have

F (α;q, γ0, x) = 1
1− αq−1x

−1[1 +O(x−1)
]

+ ĝ0(α;q, x)x−µ
[
1 +O(x−1)

]
,

the proof is thus completed. �

5.3. Concluding results for general c0

From the above analysis, we draw conclusions about the connection for-
mula and asymptotic behaviors in the general case.

Corollary 5.7. — Let α /∈ qZ. The following relation holds for any
c0 ∈ C∗ and x ∈ C̃∗ with arg(x) ∈ (−π2 ,

π
2 ) :

F (α;q, c0, x) = G(α;q, x)
+ iκ(α;q)∞

(q;q)∞

∑
n>0

(−1)nqn(n+1)/2

(q;q)n

[
gn(α;q, x) + c0−γ0

2πi hn(α;q, x)
]
x−n.

Proof. — The proof is completed, by using Theorem 5.5,

F (α;q, c0, x) = F (α;q, γ0, x) + (c0 − γ0)F0(α;q, x),

and the connection formula

F0(α;q, x) = κ(α;q)∞
2π(q;q)∞

∑
n>0

(−1)nqn(n+1)/2

(q;q)n
hn(α;q, x)x−n,

for arg(x) ∈ (−π2 ,
π
2 ) in [28, p. 6, Theorem 1.2]. �

Therefore, we obtain the asymptotic form at∞ of solutions around zero.
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Theorem 5.8. — Let α /∈ qZ.
(i) If |α| < q, then

F (α;q, c0, x) = x−1

1− αq−1 + o(x−1),

as x→∞ in any direction arg(x) ∈ (−π2 ,
π
2 ).

(ii) If |α| > q, then

F (α;q, c0, x) = iκ(α;q)∞
(q;q)∞

(
ĝ0(α;q, x) + c0 − γ0

2πi ĥ0(α;q, x)
)
x−µ + o(x−µ),

as x→∞ in any direction arg(x) ∈ (−π2 ,
π
2 ), where the functions ĝ0(α;q, x)

and ĥ0(α;q, x) are bounded q-period functions in any direction arg(x) ∈
(−π2 ,

π
2 ), as shown in Lemma 5.3 with n = 0.

(iii) If |α| = q, then

F (α;q, c0, x)

= x−1

1− αq−1 + iκ(α;q)∞
(q;q)∞

(
ĝ0(α;q, x) + c0 − γ0

2πi ĥ0(α;q, x)
)
x−µ + o(x−1),

as x→∞ in any direction arg(x) ∈ (−π2 ,
π
2 ).

Proof. — Similar to the proof of Theorem 5.6, it can be easily obtained
by the above corollary. �

From the above results, we remark that for small |α|, equation (1.4) be-
haves like a differential equation. In contrast, for large |α|, the q-difference
operator plays a more central role than the differential operator.
As mentioned in the Introduction, Lim obtained the asymptotic bound-

aries for all solutions of equation (1.2). We now compare the asymptotic
form obtained in this paper with the results in [16]. In this paper, the
non-homogeneous term g(x) = 1

x has a sigularity at 0, which is defined on
(0,∞), does not satisfy the condition in [16] that g is defined on [0,∞), but
it satisfies other conditions such as g = O(x−1) and g′ = O(x−2) (equiva-
lent to the case where α = −1 in [16]). Recall Lim’s results in [16, Theorem
1] (let’s make α = −1 for comparison):
Let b < 0. Assume that g′ exists. Let g(x) = O(x−1) and g′(x) = O(x−2).

Then:
(i) If ln |b/a|

ln q > −1, every solution of (1.2) is O(x
ln |b/a|

ln q ) as x→∞.

(ii) If ln |b/a|
ln q = −1, every solution of (1.2) is O(x

ln |b/a|
ln q ln x) as x→∞.

(iii) If ln |b/a|
ln q < −1, every solution of (1.2) is O(x−1) as x→∞.

From the tranform shown in the Introduction, we know that α = −ab .
Therefore, the above case (i) is equivalent to: if |α| > q, every solution
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of (1.2) is O(x−
ln |α|

ln q ) as x → ∞, which is consistent with the case (ii) in
Theorem 5.8 (because ln |α|

ln q = Re(µ) and every solution is O(x−Re(µ)) as
x → ∞). The above case (iii) is equivalent to: if |α| < q, every solution
of (1.2) is O(x−1) as x → ∞, which is also consistent with the case (i) in
Theorem 5.8.
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