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Broadcast Channel Coding: Algorithmic Aspects and

Non-Signaling Assistance

Omar Fawzi
∗

Paul Fermé
†

Abstract

We address the problem of coding for classical broadcast channels, which entails maximizing the
success probability that can be achieved by sending a �xed number of messages over a broadcast channel.
For point-to-point channels, Barman and Fawzi found in [1] a (1−e−1)-approximation algorithm running
in polynomial time, and showed that it is NP-hard to achieve a strictly better approximation ratio.
Furthermore, these algorithmic results were at the core of the limitations they established on the power
of non-signaling assistance for point-to-point channels. It is natural to ask if similar results hold for
broadcast channels, exploiting links between approximation algorithms of the channel coding problem
and the non-signaling assisted capacity region.

In this work, we make several contributions on algorithmic aspects and non-signaling assisted ca-
pacity regions of broadcast channels. For the class of deterministic broadcast channels, we describe a
(1− e−1)2-approximation algorithm running in polynomial time, and we show that the capacity region
for that class is the same with or without non-signaling assistance. Finally, we show that in the value

query model, we cannot achieve a better approximation ratio than Ω
(

1√
m

)
in polynomial time for the

general broadcast channel coding problem, with m the size of one of the outputs of the channel.

1 Introduction

Broadcast channels, introduced by Cover in [2], describe the simple network communication setting
where one sender aims to transmit individual messages to two receivers. Contrary to point-to-point
channels [3] or multiple-access channels [4, 5], the capacity region of broadcast channels is known only
for particular classes such as the degraded [6, 7, 8], deterministic [9, 10] and semi-deterministic [11].
Only inner bounds [12, 13, 14] and outer bounds [15, 14, 16, 17] on the capacity region are known in
the general setting.

On the one hand, from the point of view of quantum information, it is natural to ask whether addi-
tional resources, such as quantum entanglement or more generally non-signaling correlations between
the parties, changes the capacity region. A non-signaling correlation is a multipartite input-output
box shared between parties that, as the name suggests, cannot by itself be used to send information
between parties. However, non-signaling correlations such as the ones generated by measurements of
entangled quantum particles, can provide an advantage for various information processing tasks and
nonlocal games. The study of such correlations has given rise to the quantum information area known
as nonlocality [18]. For example, in the context of channel coding, there exists classical point-to-point
channels for which quantum entanglement between the sender and the receiver can increase the optimal
success probability for sending one bit of information with a single use of the channel [19, 1]. How-
ever, for classical point-to-point channels, entanglement [20, 21] and even more generally non-signaling
correlations [22] do not change the capacity of the channel.
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In the network setting, the behavior is di�erent. Quek and Shor showed in [23] the existence of
two-sender two-receiver interference channels with gaps between their classical, quantum-entanglement
assisted and non-signaling assisted capacity regions. Following this result, Leditzky et al. [24, 25] showed
that quantum entanglement shared between the two senders of a multiple access channel can strictly
enlarge the capacity region. More speci�cally, a general investigation of non-signaling resources on
multiple-access channel coding was done in [26, 27], where it was notably proved that non-signaling ad-
vantage occurs even for a simple textbook multiple-access channel: the binary adder channel. However,
the in�uence of nonlocal resources on broadcast channels has been comparably less studied. We only
know that quantum entanglement shared between decoders does not change the capacity region [28].

On the other hand, from an algorithmic point of view, an important question is the complexity of
the channel coding problem, which entails maximizing the success probability that can be achieved by
sending a �xed number of messages over a channel. However, as solving exactly this problem is NP-
hard, a natural question that arises is its approximability. For point-to-point channels, Barman and
Fawzi found in [1] a (1− e−1)-approximation algorithm running in polynomial time. They showed that
it is NP-hard to approximate the channel coding problem in polynomial time for any strictly better
ratio. For `-list-decoding, where the decoder is allowed to output a list of ` guesses, a polynomial-time

approximation algorithm achieving a 1− ``e−`

`! ratio was found in [29], and it was shown to be NP-hard
to do better in [30]. For multiple-access channel coding, the complexity of the problem can be linked
to the bipartite densest subgraph problem [31, 32], which cannot be approximated within any constant
ratio under a complexity hypothesis on random k-SAT formulas [33]. However, the approximability of
broadcast channel coding has not been addressed in the literature.

In the point-to-point scenario studied in [1], the existence of a constant-ratio approximation al-
gorithm is linked to the equality of the capacity regions with and without non-signaling assistance.
Indeed, giving non-signaling assistance to the channel coding problem turns it into a linear program,
thus computable in polynomial time. In fact, it is equal to its natural linear relaxation, which is a
common strategy towards approximating an integer linear program. Showing that this approximation
strategy guarantees a constant ratio is the key ingredient in proving the equality of the capacity regions
with and without non-signaling assistance. This raises the following questions on broadcast channels:
Does the capacity region of the broadcast channel change when non-signaling resources between parties
are allowed? What is the best approximability ratio of the broadcast channel coding problem? How
those two questions are related?

Contributions As a �rst result, we prove that the sum success probabilities of the broadcast
channel coding problem are the same with and without non-signaling assistance between decoders; see
Theorem 4.2. This strengthens a result by [28] establishing that entanglement between the decoders
does not change the capacity region.

The main focus of this paper is to study the in�uence of sharing a non-signaling resource between the
three parties. Our main result shows that for the class of deterministic broadcast channels, non-signaling
resources shared between the three parties does not change the capacity region; see Theorem 5.8
and Corollary 5.9. In order to prove this result, we consider the algorithmic problem of optimal
channel coding for a deterministic broadcast channel. For this problem, we describe a (1 − e−1)2-
approximation algorithm running in polynomial time. This is achieved through a graph interpretation
of the problem, where one aims at partitioning a bipartite graph into k1 and k2 parts, such that the
resulting quotient graph is the densest possible; see Proposition 5.5 and Theorem 5.6. To prove our
result on the limitations of non-signaling assistance for deterministic broadcast channels, we use the
same ideas as the ones involved in the analysis of the approximation algorithm.

As far as hardness is concerned, we consider the subproblem of broadcast channel coding where the
number of messages one decoder is responsible of is maximum. This subproblem can be interpreted as a
social welfare maximization problem. In the theory of fair division [34, 35], social welfare maximization
entails partitioning a set of goods among agents in order to maximize the sum of their utilities. The
social welfare problem has been extensively studied through a black box approach [36], which led to
a precise analysis of achievable approximation ratio as well as hardness results [37, 38], depending
on the class of utility functions considered and the type of black box access to them. We re�ne the
hardness result for the class of fractionally sub-additive utility functions to the subclass coming from

2



the broadcast channel coding subproblem interpretation. Speci�cally, we show that in the value query

model, we cannot achieve a better approximation ratio than Ω
(

1√
m

)
in polynomial time, with m the

size of one of the outputs of the channel: see Theorem 6.5. This gives some evidence that the broadcast
channel coding problem might be hard to approximate. Following the previous discussion on the links
between approximation algorithms and non-signaling capacity regions, this hardness evidence is a �rst
step towards showing that sharing a non-signaling resource between the three parties of a broadcast
channel can enlarge its capacity region.

Organization In Section 2, we introduce some basic de�nitions as well as useful notions that will
be used throughout this work. In Section 3, we de�ne precisely the di�erent versions of the broadcast
channel coding problem depending on the choice of objective value, and show that they all lead to
the same capacity region. In Section 4, we de�ne the di�erent non-signaling assisted versions of the
broadcast channel coding problem. In particular, we show that the sum success probabilities with and
without non-signaling assistance shared between decoders are the same, and that it implies that the
related capacity regions are the same. In Section 5, we address both algorithmic aspects and capacity
considerations of deterministic broadcast channels. Speci�cally, we describe a (1−e−1)2-approximation
algorithm running in polynomial time for that class, and we show that the capacity region for that
class is the same with or without non-signaling assistance. Finally, in Section 6, we show that in the

value query model, we cannot achieve a better approximation ratio than Ω
(

1√
m

)
in polynomial time

for the general broadcast channel coding problem, with m the size of one of the outputs of the channel.

2 Preliminaries

2.1 Broadcast Channels

Formally, a broadcast channel is given by a conditional probability distribution on input X and
two outputs Y1 and Y2, so W := (W (y1, y2|x))y1∈Y1,y2∈Y2,x∈X , with W (y1y2|x) ≥ 0 and such that∑
y1∈Y1,y2∈Y2

W (y1y2|x) = 1. We de�ne its marginals W1 and W2 respectively by W1(y1|x) :=∑
y2∈Y2

W (y1y2|x) and W2(y2|x) :=
∑
y1∈Y1

W (y1y2|x). We will denote such a broadcast channel
by W : X → Y1 × Y2. The tensor product of two broadcast channels W : X → Y1 × Y2 and
W ′ : X ′ → Y ′1 × Y ′2 is denoted by W ⊗ W ′ : X × X ′ → (Y1 × Y ′1) × (Y2 × Y ′2) and de�ned by
(W ⊗W ′)(y1y′1y2y′2|xx′) := W (y1y2|x) ·W ′(y′1y′2|x′). We de�ne W⊗n(yn1 y

n
2 |xn) :=

∏n
i=1W (y1,iy2,i|xi),

for yn1 := y1,1 . . . y1,n ∈ Yn1 and yn2 := y2,1 . . . y2,n ∈ Yn2 and xn := x1 . . . xn ∈ Xn. We will use the
notation [k] := {1, . . . , k}.

2.2 Capacity Regions

Given a notion of success probability S(W,k1, k2), that is to say the probability of correctly encoding
and decoding k1 and k2 messages for the channel W , we can de�ne the related capacity region.

De�nition 2.1 (Capacity Region C[S](W ) for a success probability S(W,k1, k2)). A rate pair (R1, R2)
is S-achievable (for the channel W ) if:

lim
n→+∞

S(W⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne the S-capacity region C[S](W ) as the closure of the set of all achievable rate pairs (for the
channel W ).

2.3 Negatively Associated Random Variables

We present a weaker notion of independence for random variables which is called negative association
as introduced in [39], for which the Cherno�-Hoe�ding bounds still hold.

3



De�nition 2.2. Random variables X1, . . . , Xn are said to be negatively associated if for every pair of
disjoints subsets I, J of [n] and (coordinate-wise) increasing functions f, g, we have:

E[f({Xi : i ∈ I})) · g({Xi : i ∈ J})] ≤ E[f({Xi : i ∈ I})] · E[g({Xi : i ∈ J})] .

Proposition 2.3 (Property P1 of [39]). A pair of random variable X,Y is negatively associated if and
only if:

∀x ∈ X ,∀y ∈ Y, PXY (x, y) ≤ PX(x)PY (y) .

Proposition 2.4 (Property P4 of [39]). A subset of two or more negatively associated random variables
is negatively associated.

Proposition 2.5 (Property P5 of [39]). A set of independent random variables is negatively associated.

Proposition 2.6 (Property P6 of [39]). Increasing functions de�ned on disjoint subsets of a set of
negatively associated random variables are negatively associated.

Proposition 2.7 (Property P7 of [39]). The union of independent sets of negatively associated random
variables is negatively associated.

De�nition 2.8 (Permutation Distribution). Let x = (x1, . . . , xk) ∈ Rk. A permutation distribution
is the joint distribution of the vector X = (X1, . . . , Xk) which takes as values all k! permutations of x
with equal probabilities, each being 1

k! .

Proposition 2.9 (Theorem 2.11 of [39]). A permutation distribution is negatively associated.

Proposition 2.10 (Cherno�-Hoe�ding bound). Let X1, . . . , Xn be negatively associated Bernouilli
random variables of parameter p. Then for 0 < ε ≤ 1

2 :

P

(
1

n

n∑
i=1

Xi > (1 + ε)p

)
≤ e−

pnε2

4 .

Proof. Usual proofs of the Cherno�-Hoe�ding bound work in the same way with negatively associated
variables as pointed out by [40]. So, one obtain as in the original proof (Theorem 1 of [41]) that:

P

(
1

n

n∑
i=1

Xi > (1 + ε)p

)
≤ e−D((1+ε)p||p)n ,

with D (x||y) := x ln
(
x
y

)
+ (1 − x) ln

(
1−x
1−y

)
the Kullback�Leibler divergence between Bernoulli dis-

tributed random variables with parameters x and y. As D ((1 + ε)p||p) ≥ ε2p
4 for 0 < ε < 1

2 , we recover
the expected bound.

3 Broadcast Channel Coding

3.1 Broadcast Channels

The coding problem for a broadcast channel W : X → Y1 × Y2 can be stated in the following way.
We want to encode a pair of messages belonging to [k1] × [k2] into X . The pair is given as input to
W , which results in two random outputs in Y1 and Y2. From the output in Y1 (resp. Y2), we want
to decode back the original message in [k1] (resp. [k2]). We will call e : [k1] × [k2] → X the encoder,
d1 : Y1 → [k1] the �rst decoder and d2 : Y2 → [k2] the second decoder. The scenario is depicted in
Figure 1.

We will call p1(W, e, d1) (resp. p2(W, e, d2)) the probability of successfully decoding the �rst (resp.
second) message, i.e. that j1 = i1 (resp. j2 = i2), given that the encoder is e and the decoder is d1
(resp. d2). We will also consider p(W, e, d1, d2), the probability of successfully decoding both messages,
i.e. that j1 = i1 and j2 = i2, given that the encoder is e and the decoders are d1, d2.

We aim to �nd the best encoder and decoders according to some �gure of merit. However, to do
so, we need a one-dimensional real-valued objective to optimize. This leads to two di�erent quantities.
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Figure 1: Coding for a broadcast channel W .

3.2 The Sum Success Probability

We will focus �rst on maximizing p1(W,e,d1)+p2(W,e,d2)
2 over all encoders e and decoders d1, d2. We

will call Ssum(W,k1, k2) the resulting maximum sum probability of successfully encoding and decoding
the messages through W , given that the input pair of messages is taken uniformly in [k1] × [k2].
Ssum(W,k1, k2) is the solution of the following optimization program:

maximize
e,d1,d2

1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)
d1(i1|y1) + d2(i2|y2)

2

subject to
∑
x∈X

e(x|i1i2) = 1,∀i1 ∈ [k1], i2 ∈ [k2]∑
j1∈[k1]

d1(j1|y1) = 1,∀y1 ∈ Y1

∑
j2∈[k2]

d2(j2|y2) = 1,∀y2 ∈ Y2

e(x|i1i2), d1(j1|y1), d2(j2|y2) ≥ 0

(1)

Proof. One should note that we allow in fact non-deterministic encoders and decoders for generality
reasons, although the value of the program is not changed as it is convex. Besides that remark, let us
name I1, I2, J1, J2, X, Y1, Y2 the random variables corresponding to i1, i2, j1, j2, x, y1, y2 in the coding
and decoding process. Then, given e, d1, d2 and W , the objective value of the previous program comes
from:

p1(W, e, d1) = P (J1 = I1) =
1

k1k2

∑
i1,i2

P (J1 = i1|I1 = i1, I2 = i2)

=
1

k1k2

∑
i1,i2,x

e(x|i1i2)P (J1 = i1|i1, i2, X = x)

=
1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)P (J1 = i1|i1, i2, x, Y1 = y1, Y2 = y2)

=
1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1) ,

(2)

and symmetrically for p2(W, e, d2), which leads to the announced objective value.

One can rewrite this optimization program in a more convenient way, proving that Ssum(W,k1, k2)
depends only on the marginals of W :
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Proposition 3.1.

Ssum(W,k1, k2) = maximize
e,d1,d2

1

2k1k2

∑
i1,x,y1

W1(y1|x)d1(i1|y1)
∑
i2

e(x|i1i2)

+
1

2k1k2

∑
i2,x,y2

W2(y2|x)d2(i2|y2)
∑
i1

e(x|i1i2)

subject to
∑
x∈X

e(x|i1i2) = 1,∀i1 ∈ [k1], i2 ∈ [k2]∑
j1∈[k1]

d1(j1|y1) = 1,∀y1 ∈ Y1

∑
j2∈[k2]

d2(j2|y2) = 1,∀y2 ∈ Y2

e(x|i1i2), d1(j1|y1), d2(j2|y2) ≥ 0

(3)

Proof. It follows from the de�nitionsW1(y1|x) :=
∑
y2
W (y1y2|x) andW2(y2|x) :=

∑
y1
W (y1y2|x).

3.3 The Joint Success Probability

We will now focus on maximizing p(W, e, d1, d2) over all encoders e and decoders d1, d2. We will call
S(W,k1, k2) the resulting maximum probability of successfully encoding and decoding the messages
through W , given that the input pair of messages is taken uniformly in [k1]× [k2]. S(W,k1, k2) is the
solution of the following optimization program:

S(W,k1, k2) := maximize
e,d1,d2

1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1)d2(i2|y2)

subject to
∑
x∈X

e(x|i1i2) = 1,∀i1 ∈ [k1], i2 ∈ [k2]∑
j1∈[k1]

d1(j1|y1) = 1,∀y1 ∈ Y1

∑
j2∈[k2]

d2(j2|y2) = 1,∀y2 ∈ Y2

e(x|i1i2), d1(j1|y1), d2(j2|y2) ≥ 0

(4)

The proof is the same as in the sum probability scenario. We de�ne the (resp. sum) capacity region
using De�nition 2.1 by C(W ) := C[S](W ) (resp. Csum(W ) := C[Ssum](W )).

The objective values of those two optimization programs are not the same, but S(W,k1, k2) and
Ssum(W,k1, k2) still characterize the same capacity region [42]:

Proposition 3.2. For any broadcast channel W , C(W ) = Csum(W ).

Proof. Let us focus on error probabilities rather than success ones. Call them respectively E(W,k1, k2) :=
1 − S(W,k1, k2) and Esum(W,k1, k2) := 1 − Ssum(W,k1, k2). Let us �x a solution e, d1, d2 of the opti-
mization program computing S(W,k1, k2). Let us remark �rst that:∑

i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2) = k1k2 ,
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thus, the value of the maximum error for those encoder and decoders is:

E(W,k1, k2, e, d1, d2) := 1− 1

k1k2

 ∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1)d2(i2|y2)


=

1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)

− 1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1)d2(i2|y2)

=
1

k1k2

 ∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2) [1− d1(i1|y1)d2(i2|y2)]

 .

(5)

Similarly, the value of the sum error Esum(W,k1, k2, e, d1, d2) is equal to:

1− 1

k1k2

 ∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)
d1(i1|y1) + d2(i2|y2)

2


=

1

k1k2

 ∑
i1,i2,x,y1,y2

W (y1y2)e(x|i1i2)

[
1− d1(i1|y1) + d2(i2|y2)

2

] .

(6)

However, for x, y ∈ [0, 1], we have that:

1− xy ≥ max (1− x, 1− y) ≥ 1− x+ y

2
,

and:

1− xy ≤ (1− x) + (1− y) = 2

(
1− x+ y

2

)
.

This means that, for all e, d1, d2, we have:

Esum(W,k1, k2, e, d1, d2) ≤ E(W,k1, k2, e, d1, d2) ≤ 2Esum(W,k1, k2, e, d1, d2) ,

so, maximizing over all e, d1, d2, we get:

Esum(W,k1, k2) ≤ E(W,k1, k2) ≤ 2Esum(W,k1, k2) .

Thus, up to a multiplicative factor 2, the error is the same. In particular, when one of those errors
tends to zero, the other one tends to zero as well. This implies that the capacity regions are the
same.

4 Non-Signaling Assistance

In this section, we will consider the broadcast channel coding problem with additional resources, in
order to determine how these resources a�ect its success probabilities as well as the capacity regions
that can be de�ned from them.

4.1 Non-Signaling Assistance Between Decoders

Here, we consider the case where the receivers are given non-signaling assistance. This resource, which
is a theoretical but easier to manipulate generalization of quantum entanglement, can be characterized

7



as follows. A non-signaling box d(j1j2|y1y2) is any joint conditional probability distribution such that
the marginal from one party is independent of the other party's input, i.e. we have:

∀j1, y1, y2, y′2,
∑
j2

d(j1j2|y1y2) =
∑
j1

d(j1j2|y1y′2) ,

∀j2, y1, y2, y′1,
∑
j1

d(j1j2|y1y2) =
∑
j1

d(j1j2|y′1y2) .
(7)

Thus, when receivers are given non-signaling assistance, the product d1(j1|y1)d2(j2|y2) is replaced by
the non-signaling box d(j1j2|y1y2). Thus, we de�ne the joint and sum success probabilities SNSdec(W,k1, k2)
(resp. SNSdec

sum (W,k1, k2)) by:

maximize
e,d1,d2

1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d(i1i2|y1y2)

(
resp. maximize

e,d1,d2

1

2k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)
∑
j2

d(i1j2|y1y2)

+
1

2k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)
∑
j1

d(j1i2|y1y2)
)

subject to
∑
x

e(x|i1i2) = 1∑
j2

d(j1j2|y1y2) =
∑
j1

d(j1j2|y1y′2)

∑
j1

d(j1j2|y1y2) =
∑
j1

d(j1j2|y′1y2)

∑
j1,j2

d(j1j2|y1y2) = 1

e(x|i1i2), d(j1j2|y1y2) ≥ 0

(8)

The (resp. sum) capacity region with non-signaling assistance between decoders is de�ned using
De�nition 2.1 by CNSdec(W ) := C[SNSdec ](W ) (resp. CNSdec

sum (W ) := C[SNSdec
sum ](W )).

We will now show that sum and joint capacity regions with non-signaling assistance between de-
coders are the same.

Proposition 4.1. For any broadcast channel W , CNSdec
sum (W ) = CNSdec(W ).

Proof. Given an encoder e and a non-signaling decoding box d, the maximum success probability of
encoding and decoding correctly with those is given by:

SNSdec(W,k1, k2, e, d) :=
1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d(i1i2|y1y2) .

This should be compared to the sum success probability SNSdec
sum (W,k1, k2, e, d) of encoding and

decoding correctly with those:

1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)

[∑
j2
d(i1j2|y1y2) +

∑
j1
d(j1i2|y1y2)

2

]
.

Similarly to what was done in Proposition 3.2, we focus on error probabilities rather than success
probabilities. This leads again to:

ENSdec(W,k1, k2, e, d) =
1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2) [1− d(i1i2|y1y2)] ,
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and ENSdec
sum (W,k1, k2, e, d) equal to:

1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)

[
1−

∑
j2
d(i1j2|y1y2)

2
+

1−
∑
j1
d(j1i2|y1y2)

2

]
.

But we have that:

1− d(i1i2|y1y2) ≥ max

1−
∑
j2

d(i1j2|y1y2), 1−
∑
j1

d(j1i2|y1y2)


≥

1−
∑
j2
d(i1j2|y1y2)

2
+

1−
∑
j1
d(j1i2|y1y2)

2
,

(9)

since d(j1j2|y1y2) ∈ [0, 1], and we have that:

1−
∑
j2

d(i1j2|y1y2) + 1−
∑
j1

d(j1i2|y1y2)

= 1− d(i1i2|y1y2) + 1−
∑

(j1,j2)∈S

d(j1j2|y1y2)

≥ 1− d(i1i2|y1y2) ,

(10)

with S := {(i1, j2) : j2 ∈ [k2]− {i2}} t {(j1, i2) : j1 ∈ [k1]− {i1}}.
Thus, this implies that:

ENSdec
sum (W,k1, k2, e, d) ≤ ENSdec(W,k1, k2, e, d) ≤ 2ENSdec

sum (W,k1, k2, e, d) ,

and by maximizing over all e and d:

ENSdec
sum (W,k1, k2) ≤ ENSdec(W,k1, k2) ≤ 2ENSdec

sum (W,k1, k2) .

As before, this implies that the capacity regions are the same.

We will now prove that sum success probabilities of the broadcast channel coding problem are the
same with and without non-signaling assistance between decoders. In particular, this implies that
non-signaling resources shared between decoders does not change the capacity region. Note that, after
the publication of [28], Pereg et al. added a remark to the arXiv version of their paper that their result
stating that entanglement shared between decoders does not change the capacity of a broadcast channel
could be generalized to non-signaling assistance. The theorem below strengthens this result showing
that non-signaling assistance between the decoders cannot increase the sum success probability even
in the one-shot setting and for arbitrary broadcast channels.

Theorem 4.2. For any broadcast channel W and k1, k2, we have Ssum(W,k1, k2) = SNSdec
sum (W,k1, k2).

As a consequence, C(W ) = CNSdec(W ).

Proof. In the sum scenario, since the objective function does not depend on the product d1(j1|y1)d2(j2|y2)
but only on the marginals d1(j1|y1) and d2(j2|y2), the non-signaling box won't give additional decoding
power. Indeed, for any encoder e and non-signaling decoding box d, we have that:

SNSdec
sum (W,k1, k2, e, d) :=

1

2k1k2

∑
i1,x,y1

W1(y1|x)

∑
j2

d(i1j2|y1y2)

∑
i2

e(x|i1i2)

+
1

2k1k2

∑
i2,x,y2

W2(y2|x)

∑
j1

d(j1i2|y1y2)

∑
i1

e(x|i1i2) .

(11)

Thus, by choosing d1(j1|y1) :=
∑
j2
d(j1j2|y1y2) and d2(j2|y2) :=

∑
j1
d(j1j2|y1y2), which are well-

de�ned since d is a non-signaling box, we have Ssum(W,k1, k2, e, d1, d2) = SNSdec
sum (W,k1, k2, e, d). By
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optimizing over all e and d, SNSdec
sum (W,k1, k2) ≤ Ssum(W,k1, k2). Since the inequality is obvious in

the other direction, as d(j1j2|y1y2) := d1(j1|y1)d2(j2|y2) is always a non-signaling box, we have that
Ssum(W,k1, k2) = SNSdec

sum (W,k1, k2). This implies in particular that the capacity regions are the same,
i.e. Csum(W ) = CNSdec

sum (W )
Finally, since C(W ) = Csum(W ) by Proposition 3.2 and CNSdec

sum (W ) = CNSdec(W ) by Proposition 4.1,
we get that C(W ) = CNSdec(W ).

4.2 Full Non-Signaling Assistance

In this section, we will consider the case where the sender and the receivers are given non-signaling
assistance. This means that a three-party non-signaling box P (xj1j2|(i1i2)y1y2) will replace the
product e(x|i1i2)d1(j1|y1)d2(j2|y2) in the previous objective values. A joint conditional probability
P (xj1j2|(i1i2)y1y2) is a non-signaling box if the marginal from any two parties is independent of the
remaining party's input:

∀j1, j2, i1, i2, y1, y2, i′1, i′2,
∑
x

P (xj1j2|(i1i2)y1y2) =
∑
x

P (xj1j2|(i′1i′2)y1y2) ,

∀x, j2, i1, i2, y1, y2, y′1,
∑
j1

P (xj1j2|(i1i2)y1y2) =
∑
j1

P (xj1j2|(i1i2)y′1y2) ,

∀x, j1, i1, i2, y1, y2, y′2,
∑
j2

P (xj1j2|(i1i2)y1y2) =
∑
j2

P (xj1j2|(i1i2)y1y
′
2) .

(12)

The scenario is depicted in Figure 2.

e d1 d2

j1 j2

(i1, i2)

W

y1
y2

x

P (xj1j2|(i1i2)y1y2)

j1 j2

(i1, i2)

W

y1
y2

x

Figure 2: A non-signaling box P replacing e, d1, d2 in the coding problem for the broadcast channel W .

The cyclicity of Figure 2 is at �rst sight counter-intuitive. Note �rst that P being a non-signaling
box is completely independent of W : in particular, the variables y1, y2 do not need to follow any laws
in the de�nition of P being a non-signaling box. Therefore, the remaining ambiguity is the apparent
need to encode and decode at the same time. However, since P is a non-signaling box, we won't need
to do both at the same time, although the global correlation between the sender and the receivers will
be characterized only by P (xj1j2|(i1i2)y1y2); see [27] for a detailed discussion on that matter, the same
paradox occurring for multiple-access channels and broadcast channels.

We will call the maximum sum success probability SNS
sum(W,k1, k2), which is given by the following
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linear program, where the constraints translate precisely the fact that P is a non-signaling box:

SNS
sum(W,k1, k2) := maximize

P

1

2k1k2

∑
i1,x,y1

W1(y1|x)
∑
i2,j2

P (xi1j2|(i1i2)y1y2)

+
1

2k1k2

∑
i2,x,y2

W2(y2|x)
∑
i1,j1

P (xj1i2|(i1i2)y1y2)

subject to
∑
x

P (xj1j2|(i1i2)y1y2) =
∑
x

P (xj1j2|(i′1i′2)y1y2)∑
j1

P (xj1j2|(i1i2)y1y2) =
∑
j1

P (xj1j2|(i1i2)y′1y2)

∑
j2

P (xj1j2|(i1i2)y1y2) =
∑
j2

P (xj1j2|(i1i2)y1y
′
2)

∑
x,j1,j2

P (xj1j2|(i1i2)y1y2) = 1

P (xj1j2|(i1i2)y1y2) ≥ 0

(13)

Since it is given as a linear program, the complexity of computing SNS
sum(W,k1, k2) is polynomial in

the number of variables and constraints (see for instance Section 7.1 of [43]), which is a polynomial in
|X |, |Y1|, |Y2|, k1 and k2.

Similarly, we de�ne the maximum joint success probability SNS(W,k1, k2) in the following way:

SNS(W,k1, k2) := maximize
P

1

k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)P (xi1i2|(i1i2)y1y2)

subject to
∑
x

P (xj1j2|(i1i2)y1y2) =
∑
x

P (xj1j2|(i′1i′2)y1y2)∑
j1

P (xj1j2|(i1i2)y1y2) =
∑
j1

P (xj1j2|(i1i2)y′1y2)

∑
j2

P (xj1j2|(i1i2)y1y2) =
∑
j2

P (xj1j2|(i1i2)y1y
′
2)

∑
x,j1,j2

P (xj1j2|(i1i2)y1y2) = 1

P (xj1j2|(i1i2)y1y2) ≥ 0

(14)

We can rewrite both these programs in more convenient and smaller linear programs:

Proposition 4.3.

SNS
sum(W,k1, k2) = maximize

p,r,r1,r2

1

2k1k2

(∑
x,y1

W1(y1|x)r1x,y1 +
∑
x,y2

W2(y2|x)r2x,y2

)
subject to

∑
x

rx,y1,y2 = 1∑
x

r1x,y1 = k2∑
x

r2x,y2 = k1∑
x

px = k1k2

0 ≤ rx,y1,y2 ≤ r1x,y1 , r
2
x,y2 ≤ px

px − r1x,y1 − r
2
x,y2 + rx,y1,y2 ≥ 0

(15)
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SNS(W,k1, k2) = maximize
p,r,r1,r2

1

k1k2

∑
x,y1,y2

W (y1y2|x)rx,y1,y2

subject to
∑
x

rx,y1,y2 = 1∑
x

r1x,y1 = k2∑
x

r2x,y2 = k1∑
x

px = k1k2

0 ≤ rx,y1,y2 ≤ r1x,y1 , r
2
x,y2 ≤ px

px − r1x,y1 − r
2
x,y2 + rx,y1,y2 ≥ 0

(16)

Proof. One can check that given a solution of the original program, the following choice of variables is
a valid solution of the second program achieving the same objective value:

rx,y1,y2 :=
∑
i1,i2

P (xi1i2|(i1i2)y1y2) ,

r1x,y1 :=
∑

j2,i1,i2

P (xi1j2|(i1i2)y1y2) ,

r2x,y2 :=
∑

j1,i1,i2

P (xj1i2|(i1i2)y1y2) ,

px :=
∑

j1,j2,i1,i2

P (xj1j2|(i1i2)y1y2) .

(17)

For the other direction, given those variables, a non-signaling probability distribution P (xj1j2|(i1i2)y1y2)
is given by, for j1 6= i1 and j2 6= i2:

P (xi1i2|(i1i2)y1y2) =
rx,y1,y2
k1k2

,

P (xj1i2|(i1i2)y1y2) =
r2x,y2 − rx,y1,y2
k1k2(k1 − 1)

,

P (xi1j2|(i1i2)y1y2) =
r1x,y1 − rx,y1,y2
k1k2(k2 − 1)

,

P (xj1j2|(i1i2)y1y2) =
px − r1x,y1 − r

2
x,y2 + rx,y1,y2

k1k2(k1 − 1)(k2 − 1)
.

(18)

As before, we de�ne the (resp. sum) capacity region with non-signaling assistance using De�ni-
tion 2.1 by CNS(W ) := C[SNS](W ) (resp. CNS

sum(W ) := C[SNS
sum](W )).

Proposition 4.4. For any broadcast channel W , CNS(W ) = CNS
sum(W ).

Proof. Let us show that:

2SNS
sum(W,k1, k2)− 1 ≤ SNS(W,k1, k2) ≤ SNS

sum(W,k1, k2) .

This will imply in particular that:

lim
n→+∞

SNS(W⊗n, d2R1ne, d2R2ne) = 1 ⇐⇒ lim
n→+∞

SNS
sum(W⊗n, d2R1ne, d2R2ne) = 1 ,

12



thus de�ne the same capacity region.
Let us consider an optimal solution px, rx,y1,y2 , r

1
x,y1 , r

2
x,y2 of the program computing SNS

sum(W,k1, k2).
We have:

SNS
sum(W,k1, k2) =

1

k1k2

( ∑
x,y1,y2

W (y1y2|x)
r1x,y1 + r2x,y2

2

)
.

However r1x,y1 + r2x,y2 ≤ px + rx,y1,y2 so we get that:

SNS
sum(W,k1, k2) ≤ 1

2k1k2

( ∑
x,y1,y2

W (y1y2|x) (px + rx,y1,y2)

)

=
1

2
+

1

2

[
1

k1k2

( ∑
x,y1,y2

W (y1y2|x)rx,y1,y2

)]

≤ 1

2
+

1

2
SNS(W,k1, k2) ,

(19)

since px, rx,y1,y2 , r
1
x,y1 , r

2
x,y2 is a valid solution of the program computing SNS(W,k1, k2).

On the other hand, consider now px, rx,y1,y2 , r
1
x,y1 , r

2
x,y2 an optimal solution of the program com-

puting SNS(W,k1, k2). We have that rx,y1,y2 ≤ r1x,y1 , r
2
x,y2 so we have that rx,y1,y2 ≤

r1x,y1
+r2x,y2
2 and

thus:

SNS(W,k1, k2) =
1

k1k2

( ∑
x,y1,y2

W (y1y2|x)rx,y1,y2

)

≤ 1

k1k2

( ∑
x,y1,y2

W (y1y2|x)
r1x,y1 + r2x,y2

2

)
≤ SNS

sum(W,k1, k2) ,

(20)

since px, rx,y1,y2 , r
1
x,y1 , r

2
x,y2 is a valid solution of the program computing SNS

sum(W,k1, k2). This prove the

inequalities 2SNS
sum(W,k1, k2)− 1 ≤ SNS(W,k1, k2) ≤ SNS

sum(W,k1, k2), and thus concludes the proof.

5 Approximation Algorithm for Deterministic Broadcast Chan-

nel Coding

In this section, we will address the question of the approximability of S(W,k1, k2), in the restricted
scenario of a deterministic broadcast channel W . Speci�cally, we study the problem of �nding a code
e : [k1]× [k2]→ X , d1 : Y1 → [k1], d2 : Y2 → [k2] that maximizes the program computing S(W,k1, k2).
Note that the restriction to deterministic codes does not a�ect the value of the objective of the program
which is convex, and that the problem is as hard as �nding any code maximizing the program computing
S(W,k1, k2), as a deterministic code with a better or equal value can be retrieved easily from any code.

We say thatW is deterministic if ∀x, y1, y2,W (y1y2|x) ∈ {0, 1}. We can then de�ne (W1(x),W2(x))
as the only pair (y1, y2) such thatW (y1y2|x) = 1, which exists uniquely asW is a conditional probability
distribution. Thus, the deterministic broadcast channel coding problem can be de�ned in the following
way:

De�nition 5.1 (DetBCC). Given a deterministic channelW and integers k1 and k2, the deterministic
broadcast channel coding problem, which we call DetBCC, entails maximizing

S(W,k1, k2, e, d1, d2) :=
1

k1k2

∑
i1,i2

1d1(W1(e(i1i2)))=i11d2(W2(e(i1i2)))=i2

over all functions e : [k1]× [k2]→ X , d1 : Y1 → [k1], d2 : Y2 → [k2].
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5.1 Reformulation as a Bipartite Graph Problem

We will reformulate DetBCC as a bipartite graph problem. But �rst, let us introduce some notations:

De�nition 5.2 (Graph notations). Consider a bipartite graph G = (V1 t V2, E ⊆ V1 × V2):

1. GP1,P2 , the quotient of G by partitions P1,P2 of respectively V1, V2, is de�ned by:

GP1,P2 := (P1 t P2, {(p1, p2) ∈ P1 × P2 : E ∩ (p1 × p2) 6= ∅}) .

2. eG(P1,P2) := |EGP1,P2 | is the number of edges of GP1,P2 .

3. NP1,P2

G (p) := NGP1,P2 (p) is the set of neighbors of p ∈ P1 t P2 in the graph GP1,P2 .

4. Similarly, degP1,P2

G (p) := degGP1,P2 (p) is the degree, i.e. the number of neighbors, of p in the
graph GP1,P2 .

5. We will use V1, V2 in previous notations when we do not partition on the left and right part
respectively (or identify those to trivial partitions in singletons). For instance, GV1,V2 = G.

6. We will use the notations e(P1,P2), NP1,P2
(p) and degP1,P2

(p) when the graph G considered is
clear from context.

Now, let us remark that a deterministic channel W , up to a permutation of elements of X , is
characterized by the following bipartite graph:

De�nition 5.3 (Bipartite Graph GW associated with the deterministic channel W ).

GW := (Y1 t Y2, E = {(y1, y2) ∈ Y1 × Y2 : ∃x ∈ X , y1 = W1(x) and y2 = W2(x)}) .

Indeed, permuting the elements of X does not change GW nor S(W,k1, k2). As a consequence, up to
a multiplicative factor k1k2, we will show that DetBCC is equivalent to the following bipartite graph
problem:

De�nition 5.4 (DensestQuotientGraph). Given a bipartite graph G = (V1 t V2, E) and integers
k1, k2, the problem DensestQuotientGraph entails maximizing eG(P1,P2), the number of edges of
the quotient graph of G by P1,P2, over all partitions P1 of V1 in k1 parts and P2 of V2 in k2 parts.

Proposition 5.5. Given a deterministic channel W and integers k1, k2, it is equivalent to solve Det-
BCC on W,k1, k2 or DensestQuotientGraph on GW , k1, k2. That is to say, given an optimal
solution of one of those problems, one can e�ciently construct an optimal solution of the other. Further-
more, their optimal values satisfy k1k2DetBCC(W,k1, k2) = DensestQuotientGraph(GW , k1, k2).

Proof. Consider an optimal solution e, d1, d2 of DetBCC. Note that d1 de�nes a partition P1 of Y1
in k1 parts and d2 de�nes a partition P2 of Y2 in k2 parts, with Pibb := {yb ∈ Yb : db(y) = ib} for
b ∈ {1, 2}. Then we have:

k1k2S(W,k1, k2, e, d1, d2) =
∑
i1,i2

1i1=d1(W1(e(i1,i2)))1i2=d2(W2(e(i1,i2)))

=
∑
i1,i2

1
W1(e(i1,i2))∈P

i1
1
1
W2(e(i1,i2))∈P

i2
2
.

(21)

However, since we consider an optimal solution, we have that:

1
W1(e(i1,i2))∈P

i1
1
1
W2(e(i1,i2))∈P

i2
2

= max
x∈X

1
W1(x)∈P

i1
1
1
W2(x)∈P

i2
2
,

as e(i1, i2) appears only here in the objective value. Thus:

k1k2S(W,k1, k2, e, d1, d2) =
∑
i1,i2

max
x∈X

1
W1(x)∈P

i1
1
1
W2(x)∈P

i2
2

=
∑
i1,i2

1∃(y1,y2)∈EGW :y1∈P
i1
1 and y2∈P

i2
2

=
∑
i1,i2

1
EGW ∩(Pi11 ×P

i2
2 )6=∅

= eGW (P1,P2) ,

(22)
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which proves that given an optimal solution of DetBCC, one can e�ciently construct a solution P1,P2

of DensestQuotientGraph such that:

eGW (P1,P2) = k1k2DetBCC(W,k1, k2) .

For the other direction, consider an optimal solution P1,P2 of DensestQuotientGraph. We
have as before that:

eGW (P1,P2) =
∑
i1,i2

max
x∈X

1
W1(x)∈P

i1
1
1
W2(x)∈P

i2
2
.

Now, let us de�ne e(i1, i2) ∈ argmaxx∈X1W1(x)∈P
i1
1
1
W2(x)∈P

i2
2

and db(yb) the index ib such that

yb ∈ Pibb , for b ∈ {1, 2}. With those de�nitions, we get again that:

max
x∈X

1
W1(x)∈P

i1
1
1
W2(x)∈P

i2
2

= 1
W1(e(i1,i2))∈P

i1
1
1
W2(e(i1,i2))∈P

i2
2

= 1i1=d1(W1(e(i1,i2)))1i2=d2(W2(e(i1,i2))) ,
(23)

and thus we have:
eGW (P1,P2) =

∑
i1,i2

max
x∈X

1
W1(x)∈P

i1
1
1
W2(x)∈P

i2
2

=
∑
i1,i2

1i1=d1(W1(e(i1,i2)))1i2=d2(W2(e(i1,i2)))

= k1k2S(W,k1, k2, e, d1, d2) ,

(24)

which proves that given an optimal solution of DensestQuotientGraph, one can e�ciently construct
a solution e, d1, d2 of DetBCC such that:

k1k2S(W,k1, k2, e, d1, d2) = DensestQuotientGraph(GW , k1, k2) .

In particular, this implies that the optimal objective values satisfy:

k1k2DetBCC(W,k1, k2) = DensestQuotientGraph(GW , k1, k2) .

Therefore, the solutions of both problems constructed throughout the proof are in fact optimal.

Remark. Note that all bipartite graphs can be written as GW for some deterministic broadcast channel
W , with W unique up to a permutation of X .

5.2 Approximation Algorithm for DensestQuotientGraph

In this section, we will sort out how hard is DensestQuotientGraph, and thanks to Proposition 5.5,
how hard is it to solve DetBCC.

Theorem 5.6. There exists a polynomial-time (1−e−1)2-approximation algorithm for DensestQuo-
tientGraph. Furthermore, it is NP-hard to solve exactly DensestQuotientGraph.

Corollary 5.7. There exists a polynomial-time (1 − e−1)2-approximation algorithm for DetBCC.
Furthermore, it is NP-hard to solve exactly DetBCC.

The approximation algorithm is a two-step process. First, we consider the problem of maximizing∑k2
i2=1 min

(
k1,degV1,P2

(Pi22 )
)
over all partitions P2 of V2 in k2 parts. We will show that this is a

special case of the submodular welfare problem, which can be approximated within a factor 1− e−1 in
polynomial time [44]. We then choose the partition P1 on V1 in k1 parts uniformly at random. This
partition pair will give an objective value e(P1,P2) within a (1−e−1)2 factor from the optimal solution
in expectation.
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Proof of Theorem 5.6. Consider �rst the hardness result. Let us show that the decision version of
DensestQuotientGraph is NP-complete. It is in NP, the certi�cate being the two partitions and
the selection of edges between those partitions. It is NP-hard as one of its particular cases is the
SetSplitting problem (see for instance [45]), in the case where k1 = 2 and k2 = |V2|, by interpreting
the neighbors of v2 ∈ V2 as a set covering elements of V1.

We will show nonetheless that this problem can be approximated within a factor (1 − e−1)2 in
polynomial time. First we consider the case where k2 = |V2|. We can then always assume that the
right partition is P2 := {{v2} : v2 ∈ V2}, which leads necessarily to a greater or equal number of edges
in the quotient graph that with any other right partition. So, in that setting, we only need to �nd a
partition of V1 in k1 parts maximizing the number of edges between vertices in the right part and the
quotient of the left vertices.

First, the maximum value we can get is upper bounded by
∑
v2∈V2

min (k1,deg(v2)). Indeed, each
vertex of v2 can be connected at most to the k1 parts of V1, so its contribution is bounded by k1, and
there needs to be an edge to each part it is connected, so its contribution is also bounded by deg(v2).
Let us show that if we take a partition P1 of V1 uniformly at random, we get:

EP1
[e(P1, V2)] ≥

(
1−

(
1− 1

k1

)k1) ∑
v2∈V2

min (k1,deg(v2))

≥ (1− e−1) max
P1

e(P1, V2) .

(25)

We have e(P1, V2) =
∑
v2∈V2

degP1,V2
(v2), so by linearity of expectation EP1

[e(P1, V2)] =
∑
v2∈V2

EP1
[degP1,V2

(v2)].

However degP1,V2
(v2) = |{i1 ∈ [k1] : N(v2) ∩ Pi11 6= ∅}|. Recall also that for any v1, P

(
v1 ∈ Pi11

)
= 1

k1
since the partition is taken uniformly at random. Thus, we get:

EP1
[degP1,V2

(v2)] = EP1

[
|{i1 ∈ [k1] : N(v2) ∩ Pi11 6= ∅}|

]
= EP1

[
k1∑
i1=1

1
N(v2)∩P

i1
1 6=∅

]

=

k1∑
i1=1

EP1

[
1
N(v2)∩P

i1
1 6=∅

]
=

k1∑
i1=1

P
(
N(v2) ∩ Pi11 6= ∅

)
=

k1∑
i1=1

(
1− P

(
N(v2) ∩ Pi11 = ∅

))
=

k1∑
i1=1

1−
∏

v1∈N(v2)

P
(
v1 6∈ Pi11

)
=

k1∑
i1=1

1−
∏

v1∈N(v2)

P
(
v1 6∈ Pi11

) = k1

(
1−

(
1− 1

k1

)deg(v2)
)
,

(26)

since P
(
v1 6∈ Pi11

)
= 1− 1

k1
and |N(v2)| = deg(v2). So, in all:

EP1
[e(P1, V2)] =

∑
v2∈V2

EP1
[degP1,V2

(v2)] = k1
∑
v2∈V2

(
1−

(
1− 1

k1

)deg(v2)
)
.

However, the function f : x 7→ 1−
(

1− 1
k1

)x
is nondecreasing concave with f(0) = 0, so f(x)

x ≥ f(y)
y

for x ≤ y. In particular, we have that:

f(min(k1,deg(v2))) ≥ min(k1,deg(v2))

k1
f(k1) ,
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and thus:

EP1
[e(P1, V2)] ≥ k1

∑
v2∈V2

(
1−

(
1− 1

k1

)min(k1,deg(v2))
)

≥ k1
∑
v2∈V2

min(k1,deg(v2))

k1

(
1−

(
1− 1

k1

)k1)

≥

(
1−

(
1− 1

k1

)k1) ∑
v2∈V2

min (k1,deg(v2))

≥ (1− e−1) max
P1

e(P1, V2) .

(27)

Let us now consider the general case with k2 unconstrained. We apply the previous discussion on
the graph GV1,P2 for some �xed partition P2 of V2. Since eGV1,P2 (P1,P2) = e(P1,P2), we have the
upper bound:

max
P1

e(P1,P2) ≤
k2∑
i2=1

min
(
k1,degV1,P2

(Pi22 )
)
,

and the previous algorithm gives us a partition P1 of V1 such that:

e(P1,P2) ≥ (1− e−1)

k2∑
i2=1

min
(
k1,degV1,P2

(Pi22 )
)
.

Therefore, let us focus on the following optimization problem:

max
P2

k2∑
i2=1

min
(
k1,degV1,P2

(Pi22 )
)
,

We will give a (1− e−1)-approximation algorithm running in polynomial time for this problem. In
all, this will allow us to get in polynomial time a partition pair (P1,P2) such that:

e(P1,P2) ≥ (1− e−1)

k2∑
i2=1

min
(
k1,degV1,P2

(Pi22 )
)

≥ (1− e−1)2 max
P2

k2∑
i2=1

min
(
k1,degV1,P2

(Pi22 )
)

≥ (1− e−1)2 max
P1,P2

e(P1,P2) .

(28)

The problem maxP2

∑k2
i2=1 min

(
k1,degV1,P2

(Pi22 )
)
is a particular instance of the submodular wel-

fare problem from [44]. Note that degV1,P2
(Pi22 ) = deg

V1,{P
i2
2 ,V2−P

i2
2 }

(Pi22 ), as the degree of Pi22 does

not depend on the rest of the partition P2. Then, h(S2) := min
(
k1,degV1,{S2,V2−S2}(S2)

)
, for S2 ⊆ V2,

is a nondecreasing submodular function, as S2 7→ degV1,{S2,V2−S2}(S2) is a nondecreasing submodular

function on V2 and min(k1, ·) is nondecreasing concave. Thus, we want to maximize
∑k2
i2=1 h(Si2)

where (Si2)i2∈[k2] is a partition of items in V2 among k2 bidders. It is a particular case of the submod-
ular welfare problem where each nondecreasing submodular utility weight is the same for all bidders
and equal to h. Thus, thanks to [44], there exists a polynomial-time (1 − e−1)-approximation of

maxP2

∑k2
i2=1 min

(
k1,degV1,P2

(Pi22 )
)
.

5.3 Non-Signaling Assisted Capacity Region for Deterministic Channels

Thanks to Theorem 5.6 and Proposition 5.5, there exists a constant-factor approximation algorithm
for the broadcast channel coding problem running in polynomial time. We aim to show here that the
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non-signaling assisted value is linked by a constant factor to the unassisted one. Indeed, the hope is
that the non-signaling assisted program is linked to the linear relaxation of the unassisted problem,
thus is likely a good approximation since the broadcast channel coding problem can be approximated
in polynomial time.

This turns out to be true, and will be proved through the following theorem:

Theorem 5.8. If W is a deterministic broadcast channel, then for all `1 ≤ k1 and `2 ≤ k2:(
1− kk11 e

−k1

k1!

)(
1−

(
1− 1

`1

)k1)(
1−

(
1− 1

`2

)k2)
SNS(W,k1, k2) ≤ S(W, `1, `2) .

Corollary 5.9. For any deterministic broadcast channel W , CNS(W ) = C(W ).

Proof. We apply Theorem 5.8 on the deterministic broadcast channel W⊗n.

We �x k1 = 2nR1 , k2 = 2nR2 and `1 = 2nR1

n , `2 = 2nR2

n . Since 1−
(
1− 1

`

)k ≥ 1− e− k` , we get:(
1− kk11 e

−k1

k1!

)(
1− e−n

)2
SNS(W⊗n, 2nR1 , 2nR1) ≤ S

(
W⊗n,

2nR1

n
,

2nR2

n

)
.

As

(
1− k

k1
1 e−k1

k1!

)
(1− e−n)

2
tends to 1 when n tends to in�nity, we get ∀ε > 0, ∃N ∈ N, ∀n ≥ N :

(1− ε)SNS(W⊗n, 2nR1 , 2nR1) ≤ S(W⊗n, 2n(R1− log(n)
n ), 2n(R2− log(n)

n )) .

Thus, if lim
n→+∞

SNS(W⊗n, 2nR1 , 2nR1) = 1, we have that for all R′1 < R1 and R′2 < R2:

lim
n→+∞

S(W⊗n, 2nR
′
1 , 2nR

′
1) ≥ 1− ε .

Since this is true for all ε > 0, we get in fact that lim
n→+∞

S(W⊗n, 2nR
′
1 , 2nR

′
1) = 1. This implies that

CNS(W ) ⊆ C(W ), and thus that the capacity regions are equal as the other inclusion is always satis�ed.

Let us now prove the main result:

Proof of Theorem 5.8. The proof will be done in three parts. We will work on the graph GW (see
De�nition 5.3).

1. First, we prove that for any partition P2 of Y2 in `2 parts:

S(W, `1, `2) ≥

(
1−

(
1− 1

`1

)k1) ∑`2
i2=1 min

(
k1,degY1,P2

(Pi22 )
)

k1`2
.

2. Then, we show that there exists a partition P2 such that:∑`2
i2=1 min

(
k1,degY1,P2

(Pi22 )
)

k1`2

≥

(
1− kk11 e

−k1

k1!

)(
1−

(
1− 1

`2

)k2) min
(
k1k2,

∑
y1

min(k2,deg(y1))
)

k1k2
.

(29)

3. Finally, we prove that:

min
(
k1k2,

∑
y1

min(k2,deg(y1))
)

k1k2
≥ SNS(W,k1, k2) .
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By combining these three inequalities, we get precisely the claimed result.

1. This part shares a lot of similarities with the proof of Theorem 5.6, which we will adapt to this
particular situation. Let us show that if we take a partition P1 of Y1 of size `1 uniformly at
random, we get, for some �xed P2 of size `2:

EP1 [eGW (P1,P2)] ≥ `1
k1

(
1−

(
1− 1

`1

)k1) `2∑
i2=1

min
(
k1,degY1,P2

(Pi22 )
)
.

Since `1`2S(W, `1, `2) = maximize
P1 in `1 parts,P2 in `2 parts

eGW (P1,P2) by Proposition 5.5, this will imply

that:

S(W, `1, `2) ≥ 1

`1`2
EP1

[eGW (P1,P2)]

≥

(
1−

(
1− 1

`1

)k1) ∑`2
i2=1 min

(
k1,degY1,P2

(Pi22 )
)

k1`2
.

(30)

We have that eGW (P1,P2) =
∑`2
i2=1 degP1,P2

(Pi22 ), so by linearity of expectation, we have that

EP1
[eGW (P1,P2)] =

∑`2
i2=1 EP1

[degP1,P2
(Pi22 )], so we will focus on the contribution of one par-

ticular Pi22 .

Then, we have that degP1,P2
(Pi22 ) = |{i1 ∈ [`1] : NY1,P2(Pi22 )∩Pi11 6= ∅}|. Recall that P

(
v1 ∈ Pi11

)
=

1
`1

for any v1 since the partition is taken uniformly at random. Thus:

EP1
[degP1,P2

(Pi22 )] = EP1

[
|{i1 ∈ [`1] : NY1,P2

(Pi22 ) ∩ Pi11 6= ∅}|
]

= EP1

[
`1∑
i1=1

1
NY1,P2

(Pi22 )∩Pi11 6=∅

]
=

`1∑
i1=1

EP1

[
1
NY1,P2

(Pi22 )∩Pi11 6=∅

]

=

`1∑
i1=1

P
(
NY1,P2

(Pi22 ) ∩ Pi11 6= ∅
)

=

`1∑
i1=1

(
1− P

(
NY1,P2

(Pi22 ) ∩ Pi11 = ∅
))

=

`1∑
i1=1

1−
∏

v1∈N(Pi22 )

P
(
v1 6∈ Pi11 )

) = `1

1−
(

1− 1

`1

)degY1,P2
(Pi22 )

 .

(31)

So, in all we have that:

EP1 [eGW (P1,P2)] =

`2∑
i2=1

EP1 [degP1,P2
(Pi22 )]

= `1

`2∑
i2=1

1−
(

1− 1

`1

)degY1,P2
(Pi22 )

 .

(32)

However the function f : x 7→ 1−
(

1− 1
`1

)x
is nondecreasing concave with f(0) = 0, so f(x)

x ≥ f(y)
y

for x ≤ y. In particular, we have that:

f(min(k1,degY1,P2
(Pi22 ))) ≥

min(k1,degY1,P2
(Pi22 )))

k1
f(k1) ,
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and thus:

EP1
[eGW (P1,P2)] ≥ `1

`2∑
i2=1

1−
(

1− 1

`1

)min(k1,degY1,P2
(Pi22 ))


≥ `1

∑`2
i2=1 min(k1,degY1,P2

(Pi22 ))

k1

(
1−

(
1− 1

`1

)k1)

=
`1
k1

(
1−

(
1− 1

`1

)k1) `2∑
i2=1

min
(
k1,degY1,P2

(Pi22 )
)
,

(33)

which concludes the �rst part of the proof.

2. Let us take P2 a partition of Y2 of size `2 uniformly at random, and let us prove that:

E

[
`2∑
i2=1

min
(
k1,degY1,P2

(Pi22 )
)]

is greater than or equal to:

`2
k2

(
1− kk11 e

−k1

k1!

)(
1−

(
1− 1

`2

)k2)
min

(
k1k2,

∑
y1

min(k2,deg(y1))

)
.

First,
∑`2
i2=1 min

(
k1,degY1,P2

(Pi22 )
)

=
∑`2
i2=1 ϕ(degY1,P2

(Pi22 )) with ϕ(j) := min(k1, j) which
is a concave function. The Poisson concavity ratio, introduced in [30], is de�ned by αϕ =

infx∈R+
E[ϕ(Poi(x))]

ϕ(x) and is equal to 1 − k
k1
1 e−k1

k1!
for that particular function [30]. We will use

the following property from [30]:

Proposition 5.10 (Lemma 2.2 from [30]). For ϕ concave, and p ∈ [0, 1]m, we have:

E

[
ϕ

(
m∑
i=1

Ber(pi)

)]
≥ E

[
ϕ

(
Poi

(
m∑
i=1

pi

))]
.

Let us �nd the law of degY1,P2
(Pi22 ):

degY1,P2
(Pi22 ) =

∑
y1

1
N(y1)∩P

i2
2 6=∅

=
∑
y1

(
1− 1

N(y1)∩P
i2
2 =∅

)
=
∑
y1

(
1− 1∀y2∈N(y1),y2 6∈P

i2
2

)
=
∑
y1

Ber

(
1−

(
1− 1

`2

)deg(y1)
) (34)

Thus:

E
[
ϕ(degY1,P2

(Pi22 ))
]

= E

[
ϕ

(∑
y1

Ber

(
1−

(
1− 1

`2

)deg(y1)
))]

≥ E

[
ϕ

(
Poi

(∑
y1

(
1−

(
1− 1

`2

)deg(y1)
)))]

by Proposition 5.10

≥ αϕϕ

(∑
y1

(
1−

(
1− 1

`2

)deg(y1)
))

by de�nition of αϕ.

(35)

But: ∑
y1

(
1−

(
1− 1

`2

)deg(y1)
)
≥
∑
y1

(
1−

(
1− 1

`2

)min(k2,deg(y1))
)

≥

(
1−

(
1− 1

`2

)k2) 1

k2

∑
y1

min (k2,deg(y1)) ,

(36)
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as before. Since ϕ is concave and ϕ(0) = 0, we have in particular that for all 0 ≤ c ≤ 1 and
x ∈ R, ϕ(cx) ≥ cϕ(x). We know also that ϕ is nondecreasing. This implies that:

ϕ

(∑
y1

(
1−

(
1− 1

`2

)deg(y1)
))

≥ ϕ

((
1−

(
1− 1

`2

)k2) 1

k2

∑
y1

min (k2,deg(y1))

)

≥

(
1−

(
1− 1

`2

)k2)
ϕ

(
1

k2

∑
y1

min (k2,deg(y1))

)
,

(37)

as 0 ≤ 1−
(

1− 1
`2

)k2
≤ 1. Thus E

[
ϕ(degY1,P2

(Pi22 )))
]
is larger than or equal to:

αϕ

(
1−

(
1− 1

`2

)k2)
min

(
k1,

1

k2

∑
y1

min (k2,deg(y1))

)

=
1

k2

(
1− kk11 e

−k1

k1!

)(
1−

(
1− 1

`2

)k2)
min

(
k1k2,

∑
y1

min (k2,deg(y1))

) (38)

since αϕ = 1− k
k1
1 e−k1

k1!
.

Finally, E
[∑`2

i2=1 min
(
k1,degY1,P2

(Pi22 )
)]

=
∑`2
i2=1 E

[
ϕ(degY1,P2

(Pi22 ))
]
, so we get that:

E

[
`2∑
i2=1

min
(
k1,degY1,P2

(Pi22 )
)]

is larger than or equal to:

`2
k2

(
1− kk11 e

−k1

k1!

)(
1−

(
1− 1

`2

)k2)
min

(
k1k2,

∑
y1

min (k2,deg(y1))

)
.

Thus, in particular, there exists some partition P2 that satis�es the same inequality, which con-
cludes the second part of the proof.

3. Let us consider an optimal solution rx,y1,y2 , px, r
1
x,y1 , r

2
x,y2 of the program computing SNS(W,k1, k2),

so that SNS(W,k1, k2) = 1
k1k2

∑
x rx,W1(x),W2(x).

(a) It comes directly from rx,y1,y2 ≤ px that:∑
x

rx,W1(x),W2(x) ≤
∑
x

px = k1k2 .

(b)
∑
x rx,W1(x),W2(x) =

∑
y1

∑
x:W1(x)=y1

rx,y1,W2(x) and we have that:

i.
∑
x:W1(x)=y1

rx,y1,W2(x) ≤
∑
x:W1(x)=y1

1 = deg(y1) ,

ii.
∑
x:W1(x)=y1

rx,y1,W2(x) ≤
∑
x:W1(x)=y1

r1x,y1 ≤
∑
x r

1
x,y1 = k2 ,

so
∑
x:W1(x)=y1

rx,y1,W2(x) ≤ min(k2,deg(y1)), and thus:∑
x

rx,W1(x),W2(x) ≤
∑
y1

min(k2,deg(y1)) .

In all, we get that:

SNS(W,k1, k2) =
1

k1k2

∑
x

rx,W1(x),W2(x) ≤
min

(
k1k2,

∑
y1

min(k2,deg(y1))
)

k1k2
,

which concludes the third and last part of the proof.
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6 Hardness of Approximation for Broadcast Channel Coding

Since broadcast channels are more general than point-to-point channels (by de�ning W1(y1|x) :=
Ŵ (y1|x) for Ŵ a point-to-point channel and taking W2(y2|x) = 1

|Y2| a completely trivial channel),

computing a single value S(W,k1, k2) is NP-hard, and it is even NP-hard to approximate within a
better factor than 1− e−1, as a consequence of the hardness result for point-to-point channels from [1].

The goal of this section is to give some evidence for the hardness of approximation of the general
broadcast channel coding problem, speci�cally that it cannot be approximated in polynomial time
within a Ω(1) factor. This suggests that non-signaling assistance might enlarge the capacity region of
the channel as discussed in the introduction.

Formally, one would want to show that it is NP-hard to approximate this problem within a Ω(1)

factor in polynomial time. We were however unable to prove this. Instead, we will prove a Ω
(

1√
m

)
-

approximation hardness in the value query model.
First, let us introduce formally the problem:

De�nition 6.1 (BCC). Given a channelW and integers k1, k2, the broadcast channel coding problem,
which we call BCC, entails maximizing:

S(W,k1, k2, e, d1, d2) :=
1

k1k2

∑
i1,i2,y1,y2

W (y1y2|e(i1, i2))1d1(y1)=i1,d2(y2)=i2 ,

over all functions e : [k1]× [k2]→ X , d1 : Y1 → [k1] and d2 : Y2 → [k2].

As in the deterministic case, we restrict ourselves to deterministic encoders and decoders, which
does not change the value nor the hardness of the problem. Also, it can be equivalently stated in terms
of partitions corresponding to d1, d2 as:

Proposition 6.2 (Equivalent formulation of BCC). Given a channel W and integers k1 and k2, the
broadcast channel coding problem, which we call BCC, entails maximizing:

1

k1k2

∑
i1,i2

max
x

∑
y1∈P

i1
1 ,y2∈P

i2
1

W (y1y2|x) ,

over all partitions P1 of Y1 in k1 parts and P2 of Y2 in k2 parts.

6.1 Social Welfare Reformulation

The social welfare maximization problem is de�ned as follows: given a set M of m items as well as
k bidders with their associated utilities

(
vi : 2M → R+

)
i∈[k], the goal is to partition M between the

bidders to maximize the sum of their utilities. Formally, we want to compute:

maximize
P partition in k parts of M

k∑
i=1

vi
(
Pi
)
.

Let us show that the subproblem of BCC restricted to k2 = |Y2| can be reformulated as a particular
instance of the social welfare maximization problem. In that case, it is easy to see that P2 = ({y2})y2∈Y2

is always an optimal solution. Indeed, for any partition P2, we have:

1

k1|Y2|
∑
i1,i2

max
x

∑
y1∈P

i1
1 ,y2∈P

i2
2

W (y1y2|x) ≤ 1

k1|Y2|
∑
i1,i2

∑
y2∈P

i2
2

max
x

∑
y1∈P

i1
1

W (y1y2|x)

=
1

k1|Y2|
∑
i1

∑
y2∈Y2

max
x

∑
y1∈P

i1
1

W (y1y2|x) .

(39)

Therefore, the objective function becomes:

S1(W,k1,P1) :=
1

k1

k1∑
i1=1

f1W (Pi11 ) with f1W (S1) :=
1

|Y2|
∑
y2

max
x

∑
y1∈S1

W (y1y2|x) .
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Hence, up to a multiplicative factor k1, maximizing S1(W,k1,P1) over all partitions P1 of size k1
is a particular case of the social welfare maximization problem with a common utility f1W for all k1
bidders.

6.2 Value Query Hardness

Let us �rst introduce the value query model. As described in [37, 38], a value query to a utility v asks
for the value of some input set S ⊆M , and gets as response v(S) ∈ R+. In the value query model, we
aim at solving the social welfare maximization problem accessing the data only through value queries
to (vi)i∈[k].

This is more restricted than using any algorithm, but in such a model, it is possible to show
unconditional lower bounds on the number of queries needed to solve a given problem within an
approximation rate. In the case of the social welfare maximization problem with XOS utility functions,
the approximation rate achievable in polynomial time has been proved in [37, 38] to be of the order of

Θ
(

1√
m

)
. Speci�cally, in [37], a Ω

(
1

m
1
2

)
-approximation in polynomial time was given, and in [38], it

has been shown that any Ω
(

1

m
1
2
−ε

)
-approximation for ε > 0 requires an exponential number of value

queries. We will adapt their proof in the particular case of one common XOS utility function of the
form f1W for some broadcast channel W . But �rst, let us introduce the de�nition of XOS functions
and prove that f1W is one of those.

De�nition 6.3. A linear valuation function (also known as additive) is a set function a : 2M → R+

that assigns a nonnegative value to every singleton {j} for j ∈ M , and for all S ⊆ M it holds that
a(S) =

∑
j∈S a({j}).

A fractionally sub-additive function (XOS) is a set function f : 2M → R+, for which there is a �nite
set of linear valuation functions A = {a1, . . . , a`} such that f(S) = maxi∈[`] ai(S) for every S ⊆M .

Remark. Note that the size of A is not bounded in the de�nition.

Proposition 6.4. f1W is XOS.

Proof.

f1W (S) =
1

|Y2|
∑
y2

max
x

∑
y1∈S1

W (y1y2|x) = max
λ:Y2→X

aλ(S) , where

aλ(S) =
1

|Y2|
∑
y2

∑
y1∈S

W (y1y2|λ(y2)) =
∑
y1∈S

[
1

|Y2|
∑
y2

W (y1y2|m(y2))

]

=
∑
y1∈S

aλ({y1})) with aλ({y1})) =
1

|Y2|
∑
y2

W (y1y2|λ(y2)) ∈ R+

(40)

So f1W is the maximum of the set of aλ for λ ∈ XY1 , which are linear valuation functions, thus f1W
is XOS.

Let us now state the value query hardness of approximation of the broadcast channel problem:

Theorem 6.5. In the value query model, for any �xed ε > 0, a Ω
(

1

m
1
2
−ε

)
-approximation algorithm

for the broadcast channel coding problem on W,k1, k2, restricted to the case of |Y2| = k2 and m =
|Y1| = k21, requires exponentially many value queries to f1W .

Remark. As our problem is a particular instance of the social welfare maximization problem with XOS

functions, the polynomial-time Ω
(

1

m
1
2

)
-approximation from [37] works also here.

Proof. The proof is inspired by Theorem 3.1 of [38]. We will show using probabilistic arguments that

any Ω
(

1

m
1
2
−ε

)
-approximation algorithm requires an exponential number of value queries. Let us �x a

small constant δ > 0. We choose k1 ∈ N as the number of messages (the bidders) and the output space
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Y1 := [m] with m := k21 (the items). Then, we choose uniformly at random an equi-partition of Y1 in
k1 parts of size k1, which we name T1, . . . , Tk1 .

Let us de�ne now Y2 := [m+ k1 + 1]. We take X := Y2 = [m+ 1 + k1] as well. We can now de�ne
our broadcast channel W , with some positive constant C to be �xed later to guarantee that W is a
conditional probability distribution. Let us de�ne its value for y2 = 1:

W (y11|x) := C ×


m2δ

1y1=x when 1 ≤ x ≤ m ,
1

m
1
2
−δ when x = m+ 1 ,

1y1∈Tj when 1 ≤ j := x− (m+ 1) ≤ k1 .

Then, we de�ne other y2 inputs as translations of W (y11|x). Speci�cally, we de�ne:

W (y1y2|x) := W (y11|ty2−1(x)) with ts(x) := 1 + [(x− 1 + s) mod (m+ k1 + 1)] .

All coe�cients are nonnegative. SoW will be a channel if for all x,
∑
y1,y2

W (y1y2|x) = 1. However,
one has, for some �xed x0:∑

y1,y2

W (y1y2|x0) =
∑
y1

∑
y2

W (y1y2|x0) =
∑
y1

∑
y2

W (y11|ty2−1(x0)) =
∑
y1

∑
x

W (y11|x)

= C
∑
y1

 ∑
1≤i≤m

m2δ
1y1=i +

1

m
1
2−δ

+
∑

1≤j≤k1

1y1∈Tj


= C

 ∑
1≤i≤m

m2δ +m× 1

m
1
2−δ

+
∑

1≤j≤k1

k1


= 1 ,

(41)

by choosing C = 1

m1+2δ+m
1
2
+δ+m

, which does not depend on x0. Thus, we have de�ned a correct

instance of our problem. Note that on this instance, we have:

f1W (S) =
1

|Y2|
∑
y2

max
x

∑
y1∈S

W (y1y2|x) =
∑
y2

max
x

∑
y1∈S

W (y11|ty2−1(x))

=
m+ k1 + 1

|Y2|
max
x

∑
y1∈S

W (y11|x) since ty2−1 bijection

=
C(m+ k1 + 1)

|Y2|
×max


m2δ|{i} ∩ S| for 1 ≤ i ≤ m

1

m
1
2
−δ |S|

|Tj ∩ S| for 1 ≤ j ≤ k1

(42)

Let us also consider an alternate broadcast channel W ′, with the only di�erence that 1y1∈Tj is re-
placed by 1

m
1
2
, for j ∈ [k1]. For that channel, the constant C remains the same (since

∑
j

∑
y1
1y1∈Tj =

k1 × k1 = k1 ×m× 1
k1

=
∑
j

∑
y1

1

m
1
2
), so we get that:

f1W ′(S) =
C(m+ k1 + 1)

|Y2|
×max


m2δ|{i} ∩ S| for 1 ≤ i ≤ m

1

m
1
2
−δ |S|

1

m
1
2
|S| for 1 ≤ j ≤ k1

=
C(m+ k1 + 1)

|Y2|
×max

{
m2δ|{i} ∩ S| for 1 ≤ i ≤ m

1

m
1
2
−δ |S|

(43)

since 1

m
1
2
|S| ≤ 1

m
1
2
−δ |S|. Let us consider normalized versions v(S) := |Y2|

C(m+k1+1f
1
W (S) and v′(S) :=

|Y2|
C(m+k1+1f

1
W ′(S), so distinguishing between v and v′ is the same as distinguishing between f1W and
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f1W ′ . We will prove that it takes an exponential number of value queries to distinguish between v
and v′. On the one hand, one can easily show that the maximum value of the social welfare problem
with v′ is (k1 − 1)m2δ + 1

m
1
2
−δ (m − (k1 − 1)) = O(m

1
2+2δ), obtained taking (k1 − 1) singletons as

the �rst components of the partition (the bidders), giving the rest of Y1 (the items) to the last. On
the other hand, the maximum value of the social welfare problem with v is k1 × k1 = m, obtained
with the partition T1, . . . , Tk1 . The fact that it requires an exponential number of value queries to
distinguish between the two situations will imply that one cannot get an approximation rate better

than Ω
(

1

m
1
2
−2δ

)
in less than an exponential number of value queries.

We will now prove that distinguishing between v and v′ requires an exponential number of value
queries. Note �rst that v(∅) = v′(∅) = 0, so we do not need to consider empty sets.

Let us �x some non-empty set S ⊆ [m]. Let us de�ne the random boolean variables Xi
j := 1i∈Tj

for j ∈ [k1] and i ∈ [m]. By construction of the random equi-partition T1, . . . , Tk1 , (Xi
j)i∈[m] is a

permutation distribution (see De�nition 2.8) of (0, . . . , 0, 1, . . . , 1) with m− k1 zeros and k1 ones, each
Xi
j following a Bernouilli law of parameter p := 1

k1
. Thus it is negatively associated by Proposition 2.9,

and the sub-family (Xi
j)i∈S is negatively associated as well by Proposition 2.4. Note in particular that

|Tj ∩ S| =
∑
i∈S X

i
j is a sum of negatively associated Bernouilli variables of the same parameter p, so

the version of the Cherno�-Hoe�ding bound from Proposition 2.10 holds.
Let us �rst assume that S is of size 0 < |S| ≤ m

1
2+δ. Then, we have that 1

m
1
2
−δ |S| ≤ m2δ, so we

get that v′(S) = m2δ. On the other hand, we have that:

v(S) = max

{
m2δ

|Tj ∩ S| for 1 ≤ j ≤ k1
(44)

Thus, v(S) is di�erent from v′(S) if and only if ∃j ∈ k1, |Tj ∩ S| > m2δ. But, we have:

P
(
∃j ∈ k1, |Tj ∩ S| > m2δ

)
≤
∑
j∈[k1]

P
(
|Tj ∩ S| > m2δ

)
by union bound

=
∑
j∈[k1]

P

(∑
i∈S

Xi
j > m2δ

)
=
∑
j∈[k1]

P

 1

|S|
∑
i∈S

Xi
j >

1 +

m2δ

[S| − 1

p

 p


≤
∑
j∈[k1]

P

 1

|S|
∑
i∈S

Xi
j >

1 +

m2δ

|S|

p

 p


≤
∑
j∈[k1]

exp

(
−p|S|

4

(
m2δ

p|S|

)2
)

by Proposition 2.10

=
∑
j∈[k1]

exp

(
− 1

4p|S|
m4δ

)
≤
∑
j∈[k1]

exp

(
−m

−δ

4
m4δ

)
since

1

p|S|
=

k1
|S|
≥ m−δ

= m
1
2 e−

m3δ

4 .

(45)

Thus, this event occurs with exponentially small probability (on the choice of the partition T1, . . . , Tk1).

Let us now study the case of S of size |S| > m
1
2+δ. Then, we have that 1

m
1
2
−δ |S| > m2δ, so we get

that v′(S) = 1

m
1
2
−δ |S|. On the other hand, we have that:

v(S) = max

{
1

m
1
2
−δ |S|

|Tj ∩ S| for 1 ≤ j ≤ k1
(46)
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Thus, v(S) is di�erent from v′(S) if and only if ∃j ∈ [k1], |Tj ∩ S| > 1

m
1
2
−δ |S|. But, we have:

P
(
∃j ∈ [k1], |Tj ∩ S| >

1

m
1
2−δ
|S|
)
≤
∑
j∈[k1]

P
(
|Tj ∩ S| >

1

m
1
2−δ
|S|
)

by union bound

=
∑
j∈[k1]

P

(∑
i∈S

Xi
j >

1

m
1
2−δ
|S|

)
=
∑
j∈[k1]

P

 1

|S|
∑
i∈S

Xi
j >

1 +

1

|S|m
1
2
−δ |S| − 1

p

 p


≤
∑
j∈[k1]

P

(
1

|S|
∑
i∈S

Xi
j >

(
1 +

1

m
1
2
−δ

p

)
p

)

=
∑
j∈[k1]

P

(
1

|S|
∑
i∈S

Xi
j >

(
1 +mδ

)
p

)
since p =

1

k1
=

1

m
1
2

≤
∑
j∈[k1]

exp

(
−p|S|

4
m2δ

)
by Proposition 2.10

≤
∑
j∈[k1]

exp

(
−m

δ

4
m2δ

)
since p|S| = |S|

k1
≥ mδ

= m
1
2 e−

m3δ

4 .

(47)

Thus, this event occurs with exponentially small probability as well. We have then that for all set

S, P (v(S) 6= v′(S)) ≤ pleak := m
1
2 e−

m3δ

4 , which is an exponentially small bound that does not depend
on S.

Hence, for every set S, only with exponentially small probability pleak can one distinguish between
v and v′. For some �xed algorithm A, let us consider the sequence L of queries made by A before
it is able to distinguish between v and v′: L := (S1, . . . , Sn), with v(Si) = v′(Si) for i ∈ [n] and
v′(Sn+1) > v(Sn+1). L is independent of T1, . . . Tk1 as no information from this partition is leaked
before Sn+1. Thus, for such an algorithm to be correct, it should work for any equi-partition T1, . . . Tk1 .
We have:

P (∃i ∈ [n] : v(Si) 6= v′(Si)) ≤
n∑
i=1

P (v(Si) 6= v′(Si)) = npleak by union bound.

In particular, this implies that:

P (∀i ∈ [n] : v(Si) = v′(Si)) ≥ 1− npleak .

So, if 1 − npleak > 0, i.e. n < 1
pleak

, then there exists some equi-partition T1, . . . Tk1 such that our
algorithm outputs a sequence L of queries of length n before being able to distinguish between v and
v′. In particular, we can take n = 1

2pleak
so that L is of exponential size. Hence, for any algorithm A,

there exists some equi-partition T1, . . . Tk1 such that A needs an exponential number of value queries to
distinguish between v and v′. This concludes the proof of the theorem for any deterministic algorithm.

Finally, the hardness result holds also for randomized algorithms. Indeed, let us call As, the running
algorithm conditioned on its random bits being s. As is deterministic so the previous proof holds: with
high probability p, the sequence of b 1−p

pleak
c queries does not reveal anything to distinguish between v

and v′, although it is of exponential size in m. Then, averaging over all its random bitstrings, the same
result holds, as pleak is independent of the equi-partition T1, . . . , Tk1 .

6.3 Limitations of the Model

The main weakness of the previous result is that it highly relies on the restriction that one has access to
the data only through value queries. Indeed, if one has access to the full data, it is possible to read the
partition T1, . . . , Tk1 which gives the optimal solution directly. This weakness comes from the fact that
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our utility function f1W can be described by polynomial-size data, as it is characterized by a broadcast
channel W , whereas if we write it in the XOS form as a maximum of linear valuation functions, it will
in general have an exponential-size de�ning set of linear valuation functions.

7 Conclusion

We have studied several algorithmic aspects and non-signaling assisted capacity regions of broadcast
channels. We have shown that sum success probabilities of the broadcast channel coding problem
are the same with and without non-signaling assistance between decoders, and that it implied that
non-signaling resource shared between decoders does not change the capacity region. For the class of
deterministic broadcast channels, we have described a (1− e−1)2-approximation algorithm running in
polynomial time, and we have shown that the capacity region for that class is the same with or without
non-signaling assistance. Finally, we have shown that in the value query model, we cannot achieve a

better approximation ratio than Ω
(

1√
m

)
in polynomial time for the general broadcast channel coding

problem, with m the size of one of the outputs of the channel.
Our results suggest that non-signaling assistance could improve the capacity region of general broad-

cast channels, which is left as a major open question. An intermediate result would be to show that it is
NP-hard to approximate the broadcast channel coding problem within any constant ratio, strengthen-
ing our hardness result without relying on the value query model. Finally, one could also try to develop
approximations algorithms for other sub-classes of broadcast channels, such as semi-deterministic or
degraded ones. This could be a crucial step towards showing that the capacity region for those classes
is the same with or without non-signaling assistance.
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