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Broadcast Channel Coding: Algorithmic Aspects and Non-Signaling Assistance

We address the problem of coding for classical broadcast channels, which entails maximizing the success probability that can be achieved by sending a xed number of messages over a broadcast channel. For point-to-point channels, Barman and Fawzi found in [1] a (1-e -1 )-approximation algorithm running in polynomial time, and showed that it is NP-hard to achieve a strictly better approximation ratio. Furthermore, these algorithmic results were at the core of the limitations they established on the power of non-signaling assistance for point-to-point channels. It is natural to ask if similar results hold for broadcast channels, exploiting links between approximation algorithms of the channel coding problem and the non-signaling assisted capacity region.

In this work, we make several contributions on algorithmic aspects and non-signaling assisted capacity regions of broadcast channels. For the class of deterministic broadcast channels, we describe a (1 -e -1 ) 2 -approximation algorithm running in polynomial time, and we show that the capacity region for that class is the same with or without non-signaling assistance. Finally, we show that in the value query model, we cannot achieve a better approximation ratio than Ω 1 √ m in polynomial time for the general broadcast channel coding problem, with m the size of one of the outputs of the channel.

Introduction

Broadcast channels, introduced by Cover in [START_REF] Thomas | Broadcast channels[END_REF], describe the simple network communication setting where one sender aims to transmit individual messages to two receivers. Contrary to point-to-point channels [START_REF] Shannon | A mathematical theory of communication[END_REF] or multiple-access channels [START_REF] Herng | Multiple access channels[END_REF][START_REF] Ahlswede | Multi-way communication channels[END_REF], the capacity region of broadcast channels is known only for particular classes such as the degraded [START_REF] Patrick | Random coding theorem for broadcast channels with degraded components[END_REF][START_REF] Gallager | Capacity and coding for degraded broadcast channels[END_REF][START_REF] Ahlswede | Source coding with side information and a converse for degraded broadcast channels[END_REF], deterministic [START_REF] Marton | The capacity region of deterministic broadcast channels[END_REF][START_REF] Semenovich | Capacity of noiseless broadcast channel[END_REF] and semi-deterministic [START_REF] Izrail | Capacity of a broadcast channel with one deterministic component[END_REF].

Only inner bounds [START_REF] Thomas | An achievable rate region for the broadcast channel[END_REF][START_REF] Edward | Random coding theorems for the general discrete memoryless broadcast channel[END_REF][START_REF] Marton | A coding theorem for the discrete memoryless broadcast channel[END_REF] and outer bounds [START_REF] Sato | An outer bound to the capacity region of broadcast channels (corresp.)[END_REF][START_REF] Marton | A coding theorem for the discrete memoryless broadcast channel[END_REF][START_REF] Nair | An outer bound to the capacity region of the broadcast channel[END_REF][START_REF] Gohari | New outer bounds for the two-receiver broadcast channel[END_REF] on the capacity region are known in the general setting. On the one hand, from the point of view of quantum information, it is natural to ask whether additional resources, such as quantum entanglement or more generally non-signaling correlations between the parties, changes the capacity region. A non-signaling correlation is a multipartite input-output box shared between parties that, as the name suggests, cannot by itself be used to send information between parties. However, non-signaling correlations such as the ones generated by measurements of entangled quantum particles, can provide an advantage for various information processing tasks and nonlocal games. The study of such correlations has given rise to the quantum information area known as nonlocality [START_REF] Brunner | Bell nonlocality[END_REF]. For example, in the context of channel coding, there exists classical point-to-point channels for which quantum entanglement between the sender and the receiver can increase the optimal success probability for sending one bit of information with a single use of the channel [START_REF] Prevedel | Entanglement-enhanced classical communication over a noisy classical channel[END_REF][START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF]. However, for classical point-to-point channels, entanglement [START_REF] Bennett | Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels[END_REF][START_REF] Charles | Entanglementassisted classical capacity of noisy quantum channels[END_REF] and even more generally non-signaling correlations [START_REF] Matthews | A linear program for the nite block length converse of Polyanskiy-Poor-Verdú via nonsignaling codes[END_REF] do not change the capacity of the channel.

In the network setting, the behavior is dierent. Quek and Shor showed in [START_REF] Quek | Quantum and superquantum enhancements to two-sender, tworeceiver channels[END_REF] the existence of two-sender two-receiver interference channels with gaps between their classical, quantum-entanglement assisted and non-signaling assisted capacity regions. Following this result, Leditzky et al. [START_REF] Leditzky | Playing games with multiple access channels[END_REF][START_REF] Seshadri | On the separation of correlation-assisted sum capacities of multiple access channels[END_REF] showed that quantum entanglement shared between the two senders of a multiple access channel can strictly enlarge the capacity region. More specically, a general investigation of non-signaling resources on multiple-access channel coding was done in [START_REF] Fawzi | Beating the sum-rate capacity of the binary adder channel with non-signaling correlations[END_REF][START_REF] Fawzi | Multiple-access channel coding with non-signaling correlations[END_REF], where it was notably proved that non-signaling advantage occurs even for a simple textbook multiple-access channel: the binary adder channel. However, the inuence of nonlocal resources on broadcast channels has been comparably less studied. We only know that quantum entanglement shared between decoders does not change the capacity region [START_REF] Pereg | Quantum broadcast channels with cooperating decoders: An information-theoretic perspective on quantum repeaters[END_REF].

On the other hand, from an algorithmic point of view, an important question is the complexity of the channel coding problem, which entails maximizing the success probability that can be achieved by sending a xed number of messages over a channel. However, as solving exactly this problem is NPhard, a natural question that arises is its approximability. For point-to-point channels, Barman and Fawzi found in [START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF] a (1 -e -1 )-approximation algorithm running in polynomial time. They showed that it is NP-hard to approximate the channel coding problem in polynomial time for any strictly better ratio. For -list-decoding, where the decoder is allowed to output a list of guesses, a polynomial-time approximation algorithm achieving a 1 -e - ! ratio was found in [START_REF] Barman | Tight approximation bounds for maximum multi-coverage[END_REF], and it was shown to be NP-hard to do better in [START_REF] Barman | Tight approximation guarantees for concave coverage problems[END_REF]. For multiple-access channel coding, the complexity of the problem can be linked to the bipartite densest subgraph problem [START_REF] Feige | The dense k -subgraph problem[END_REF][START_REF] Fermé | Approximation Algorithms for Channel Coding and Non-Signaling Correlations[END_REF], which cannot be approximated within any constant ratio under a complexity hypothesis on random k-SAT formulas [START_REF] Noga Alon | Inapproximability of densest κ-subgraph from average case hardness[END_REF]. However, the approximability of broadcast channel coding has not been addressed in the literature.

In the point-to-point scenario studied in [START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF], the existence of a constant-ratio approximation algorithm is linked to the equality of the capacity regions with and without non-signaling assistance. Indeed, giving non-signaling assistance to the channel coding problem turns it into a linear program, thus computable in polynomial time. In fact, it is equal to its natural linear relaxation, which is a common strategy towards approximating an integer linear program. Showing that this approximation strategy guarantees a constant ratio is the key ingredient in proving the equality of the capacity regions with and without non-signaling assistance. This raises the following questions on broadcast channels: Does the capacity region of the broadcast channel change when non-signaling resources between parties are allowed? What is the best approximability ratio of the broadcast channel coding problem? How those two questions are related? Contributions As a rst result, we prove that the sum success probabilities of the broadcast channel coding problem are the same with and without non-signaling assistance between decoders; see Theorem 4.2. This strengthens a result by [START_REF] Pereg | Quantum broadcast channels with cooperating decoders: An information-theoretic perspective on quantum repeaters[END_REF] establishing that entanglement between the decoders does not change the capacity region.

The main focus of this paper is to study the inuence of sharing a non-signaling resource between the three parties. Our main result shows that for the class of deterministic broadcast channels, non-signaling resources shared between the three parties does not change the capacity region; see Theorem 5.8 and Corollary 5.9. In order to prove this result, we consider the algorithmic problem of optimal channel coding for a deterministic broadcast channel. For this problem, we describe a (1 -e -1 ) 2approximation algorithm running in polynomial time. This is achieved through a graph interpretation of the problem, where one aims at partitioning a bipartite graph into k 1 and k 2 parts, such that the resulting quotient graph is the densest possible; see Proposition 5.5 and Theorem 5.6. To prove our result on the limitations of non-signaling assistance for deterministic broadcast channels, we use the same ideas as the ones involved in the analysis of the approximation algorithm.

As far as hardness is concerned, we consider the subproblem of broadcast channel coding where the number of messages one decoder is responsible of is maximum. This subproblem can be interpreted as a social welfare maximization problem. In the theory of fair division [START_REF] Brams | Fair division -from cake-cutting to dispute resolution[END_REF][START_REF] Moulin | Fair division and collective welfare[END_REF], social welfare maximization entails partitioning a set of goods among agents in order to maximize the sum of their utilities. The social welfare problem has been extensively studied through a black box approach [START_REF] Blumrosen | On the computational power of iterative auctions[END_REF], which led to a precise analysis of achievable approximation ratio as well as hardness results [START_REF] Dobzinski | An improved approximation algorithm for combinatorial auctions with submodular bidders[END_REF][START_REF] Vahab | Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions[END_REF], depending on the class of utility functions considered and the type of black box access to them. We rene the hardness result for the class of fractionally sub-additive utility functions to the subclass coming from the broadcast channel coding subproblem interpretation. Specically, we show that in the value query model, we cannot achieve a better approximation ratio than Ω 1 √ m in polynomial time, with m the size of one of the outputs of the channel: see Theorem 6.5. This gives some evidence that the broadcast channel coding problem might be hard to approximate. Following the previous discussion on the links between approximation algorithms and non-signaling capacity regions, this hardness evidence is a rst step towards showing that sharing a non-signaling resource between the three parties of a broadcast channel can enlarge its capacity region.

Organization In Section 2, we introduce some basic denitions as well as useful notions that will be used throughout this work. In Section 3, we dene precisely the dierent versions of the broadcast channel coding problem depending on the choice of objective value, and show that they all lead to the same capacity region. In Section 4, we dene the dierent non-signaling assisted versions of the broadcast channel coding problem. In particular, we show that the sum success probabilities with and without non-signaling assistance shared between decoders are the same, and that it implies that the related capacity regions are the same. In Section 5, we address both algorithmic aspects and capacity considerations of deterministic broadcast channels. Specically, we describe a (1-e -1 ) 2 -approximation algorithm running in polynomial time for that class, and we show that the capacity region for that class is the same with or without non-signaling assistance. Finally, in Section 6, we show that in the value query model, we cannot achieve a better approximation ratio than Ω 1 √ m in polynomial time for the general broadcast channel coding problem, with m the size of one of the outputs of the channel.

Preliminaries

Broadcast Channels

Formally, a broadcast channel is given by a conditional probability distribution on input X and two outputs Y 1 and Y 2 , so W := (W (y 1 , y 2 |x)) y1∈Y1,y2∈Y2,x∈X , with W (y 1 y 2 |x) ≥ 0 and such that y1∈Y1,y2∈Y2 W (y 1 y 2 |x) = 1. We dene its marginals W 1 and W 2 respectively by W 1 (y 1 |x) := y2∈Y2 W (y 1 y 2 |x) and W 2 (y 2 |x) := y1∈Y1 W (y 1 y 2 |x). We will denote such a broadcast channel by W : X → Y 1 × Y 2 . The tensor product of two broadcast channels W :

X → Y 1 × Y 2 and W : X → Y 1 × Y 2 is denoted by W ⊗ W : X × X → (Y 1 × Y 1 ) × (Y 2 × Y 2 ) and dened by (W ⊗ W )(y 1 y 1 y 2 y 2 |xx ) := W (y 1 y 2 |x) • W (y 1 y 2 |x ). We dene W ⊗n (y n 1 y n 2 |x n ) := n i=1 W (y 1,i y 2,i |x i ), for y n 1 := y 1,1 . . . y 1,n ∈ Y n 1 and y n 2 := y 2,1 . . . y 2,n ∈ Y n 2 and
x n := x 1 . . . x n ∈ X n . We will use the notation [k] := {1, . . . , k}.

Capacity Regions

Given a notion of success probability S(W, k 1 , k 2 ), that is to say the probability of correctly encoding and decoding k 1 and k 2 messages for the channel W , we can dene the related capacity region.

Denition 2.1 (Capacity Region

C[S](W ) for a success probability S(W, k 1 , k 2 )). A rate pair (R 1 , R 2 )
is S-achievable (for the channel W ) if:

lim n→+∞ S(W ⊗n , 2 R1n , 2 R2n ) = 1 .
We dene the S-capacity region C[S](W ) as the closure of the set of all achievable rate pairs (for the channel W ).

Negatively Associated Random Variables

We present a weaker notion of independence for random variables which is called negative association as introduced in [START_REF] Joag | Negative association of random variables with applications[END_REF], for which the Cherno-Hoeding bounds still hold.

Denition 2.2. Random variables X 1 , . . . , X n are said to be negatively associated if for every pair of disjoints subsets I, J of [n] and (coordinate-wise) increasing functions f, g, we have:

E[f ({X i : i ∈ I})) • g({X i : i ∈ J})] ≤ E[f ({X i : i ∈ I})] • E[g({X i : i ∈ J})] .
Proposition 2.3 (Property P 1 of [START_REF] Joag | Negative association of random variables with applications[END_REF]). A pair of random variable X, Y is negatively associated if and only if: ∀x ∈ X , ∀y ∈ Y, P XY (x, y) ≤ P X (x)P Y (y) .

Proposition 2.4 (Property P 4 of [START_REF] Joag | Negative association of random variables with applications[END_REF]). A subset of two or more negatively associated random variables is negatively associated.

Proposition 2.5 (Property P 5 of [START_REF] Joag | Negative association of random variables with applications[END_REF]). A set of independent random variables is negatively associated. Proposition 2.6 (Property P 6 of [START_REF] Joag | Negative association of random variables with applications[END_REF]). Increasing functions dened on disjoint subsets of a set of negatively associated random variables are negatively associated.

Proposition 2.7 (Property P 7 of [START_REF] Joag | Negative association of random variables with applications[END_REF]). The union of independent sets of negatively associated random variables is negatively associated.

Denition 2.8 (Permutation Distribution

). Let x = (x 1 , . . . , x k ) ∈ R k . A permutation distribution
is the joint distribution of the vector X = (X 1 , . . . , X k ) which takes as values all k! permutations of x with equal probabilities, each being 1 k! .

Proposition 2.9 (Theorem 2.11 of [START_REF] Joag | Negative association of random variables with applications[END_REF]). A permutation distribution is negatively associated. Proposition 2.10 (Cherno-Hoeding bound). Let X 1 , . . . , X n be negatively associated Bernouilli random variables of parameter p. Then for 0 < ε ≤ 1 2 :

P 1 n n i=1 X i > (1 + ε)p ≤ e -pnε 2 4 
.

Proof. Usual proofs of the Cherno-Hoeding bound work in the same way with negatively associated variables as pointed out by [START_REF] Devdatt | Balls and bins: A study in negative dependence[END_REF]. So, one obtain as in the original proof (Theorem 1 of [START_REF] Hoeding | Probability inequalities for sums of bounded random variables[END_REF]) that:

P 1 n n i=1 X i > (1 + ε)p ≤ e -D((1+ε)p||p)n , with D (x||y) := x ln x y + (1 -x) ln 1-x 1-y
the KullbackLeibler divergence between Bernoulli distributed random variables with parameters x and y. As D ((1 + ε)p||p) ≥ ε 2 p 4 for 0 < ε < 1 2 , we recover the expected bound.

3

Broadcast Channel Coding

Broadcast Channels

The coding problem for a broadcast channel W : X → Y 1 × Y 2 can be stated in the following way. We want to encode a pair of messages belonging to ] the second decoder. The scenario is depicted in Figure 1. We will call p 1 (W, e, d 1 ) (resp. p 2 (W, e, d 2 )) the probability of successfully decoding the rst (resp. second) message, i.e. that j 1 = i 1 (resp. j 2 = i 2 ), given that the encoder is e and the decoder is d 1 (resp. d 2 ). We will also consider p(W, e, d 1 , d 2 ), the probability of successfully decoding both messages, i.e. that j 1 = i 1 and j 2 = i 2 , given that the encoder is e and the decoders are d 1 , d 2 .

[k 1 ] × [k 2 ] into X .
We aim to nd the best encoder and decoders according to some gure of merit. However, to do so, we need a one-dimensional real-valued objective to optimize. This leads to two dierent quantities. 

3.2

The Sum Success Probability

We will focus rst on maximizing p1(W,e,d1)+p2(W,e,d2) 2 over all encoders e and decoders d 1 , d 2 . We will call S sum (W, k 1 , k 2 ) the resulting maximum sum probability of successfully encoding and decoding the messages through W , given that the input pair of messages is taken uniformly in

[k 1 ] × [k 2 ]. S sum (W, k 1 , k 2 )
is the solution of the following optimization program: maximize e,d1,d2

1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) d 1 (i 1 |y 1 ) + d 2 (i 2 |y 2 ) 2 subject to x∈X e(x|i 1 i 2 ) = 1, ∀i 1 ∈ [k 1 ], i 2 ∈ [k 2 ] j1∈[k1] d 1 (j 1 |y 1 ) = 1, ∀y 1 ∈ Y 1 j2∈[k2] d 2 (j 2 |y 2 ) = 1, ∀y 2 ∈ Y 2 e(x|i 1 i 2 ), d 1 (j 1 |y 1 ), d 2 (j 2 |y 2 ) ≥ 0 (1) 
Proof. One should note that we allow in fact non-deterministic encoders and decoders for generality reasons, although the value of the program is not changed as it is convex. Besides that remark, let us name I 1 , I 2 , J 1 , J 2 , X, Y 1 , Y 2 the random variables corresponding to i 1 , i 2 , j 1 , j 2 , x, y 1 , y 2 in the coding and decoding process. Then, given e, d 1 , d 2 and W , the objective value of the previous program comes from:

p 1 (W, e, d 1 ) = P (J 1 = I 1 ) = 1 k 1 k 2 i1,i2 P (J 1 = i 1 |I 1 = i 1 , I 2 = i 2 ) = 1 k 1 k 2 i1,i2,x e(x|i 1 i 2 )P (J 1 = i 1 |i 1 , i 2 , X = x) = 1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 )P (J 1 = i 1 |i 1 , i 2 , x, Y 1 = y 1 , Y 2 = y 2 ) = 1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 )d 1 (i 1 |y 1 ) , (2) 
and symmetrically for p 2 (W, e, d 2 ), which leads to the announced objective value.

One can rewrite this optimization program in a more convenient way, proving that S sum (W, k 1 , k 2 )

depends only on the marginals of W : Proposition 3.1.

S sum (W, k 1 , k 2 ) = maximize e,d1,d2

1 2k 1 k 2 i1,x,y1 W 1 (y 1 |x)d 1 (i 1 |y 1 ) i2 e(x|i 1 i 2 ) + 1 2k 1 k 2 i2,x,y2 W 2 (y 2 |x)d 2 (i 2 |y 2 ) i1 e(x|i 1 i 2 ) subject to x∈X e(x|i 1 i 2 ) = 1, ∀i 1 ∈ [k 1 ], i 2 ∈ [k 2 ] j1∈[k1] d 1 (j 1 |y 1 ) = 1, ∀y 1 ∈ Y 1 j2∈[k2] d 2 (j 2 |y 2 ) = 1, ∀y 2 ∈ Y 2 e(x|i 1 i 2 ), d 1 (j 1 |y 1 ), d 2 (j 2 |y 2 ) ≥ 0 (3) 
Proof. It follows from the denitions W 1 (y 1 |x) := y2 W (y 1 y 2 |x) and W 2 (y 2 |x) := y1 W (y 1 y 2 |x).

3.3

The Joint Success Probability

We will now focus on maximizing p(W, e, d 1 , d 2 ) over all encoders e and decoders d 1 , d 2 . We will call S(W, k 1 , k 2 ) the resulting maximum probability of successfully encoding and decoding the messages through W , given that the input pair of messages is taken uniformly in

[k 1 ] × [k 2 ]. S(W, k 1 , k 2 )
is the solution of the following optimization program:

S(W, k 1 , k 2 ) := maximize e,d1,d2 1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 )d 1 (i 1 |y 1 )d 2 (i 2 |y 2 ) subject to x∈X e(x|i 1 i 2 ) = 1, ∀i 1 ∈ [k 1 ], i 2 ∈ [k 2 ] j1∈[k1] d 1 (j 1 |y 1 ) = 1, ∀y 1 ∈ Y 1 j2∈[k2] d 2 (j 2 |y 2 ) = 1, ∀y 2 ∈ Y 2 e(x|i 1 i 2 ), d 1 (j 1 |y 1 ), d 2 (j 2 |y 2 ) ≥ 0 ( 4 
)
The proof is the same as in the sum probability scenario. We dene the (resp. sum) capacity region using Denition 2.1 by

C(W ) := C[S](W ) (resp. C sum (W ) := C[S sum ](W )).
The objective values of those two optimization programs are not the same, but S(W, k 1 , k 2 ) and S sum (W, k 1 , k 2 ) still characterize the same capacity region [42]: Proposition 3.2. For any broadcast channel W , C(W ) = C sum (W ).

Proof. Let us focus on error probabilities rather than success ones. Call them respectively

E(W, k 1 , k 2 ) := 1 -S(W, k 1 , k 2 ) and E sum (W, k 1 , k 2 ) := 1 -S sum (W, k 1 , k 2 ). Let us x a solution e, d 1 , d 2 of the opti- mization program computing S(W, k 1 , k 2 ). Let us remark rst that: i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) = k 1 k 2 ,
thus, the value of the maximum error for those encoder and decoders is:

E(W, k 1 , k 2 , e, d 1 , d 2 ) := 1 - 1 k 1 k 2   i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 )d 1 (i 1 |y 1 )d 2 (i 2 |y 2 )   = 1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) - 1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 )d 1 (i 1 |y 1 )d 2 (i 2 |y 2 ) = 1 k 1 k 2   i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) [1 -d 1 (i 1 |y 1 )d 2 (i 2 |y 2 )]   . (5)
Similarly, the value of the sum error E sum (W, k 1 , k 2 , e, d 1 , d 2 ) is equal to:

1 - 1 k 1 k 2   i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) d 1 (i 1 |y 1 ) + d 2 (i 2 |y 2 ) 2   = 1 k 1 k 2   i1,i2,x,y1,y2 W (y 1 y 2 )e(x|i 1 i 2 ) 1 - d 1 (i 1 |y 1 ) + d 2 (i 2 |y 2 ) 2   . (6) 
However, for x, y ∈ [0, 1], we have that:

1 -xy ≥ max (1 -x, 1 -y) ≥ 1 - x + y 2 ,
and:

1 -xy ≤ (1 -x) + (1 -y) = 2 1 - x + y 2 .
This means that, for all e, d 1 , d 2 , we have:

E sum (W, k 1 , k 2 , e, d 1 , d 2 ) ≤ E(W, k 1 , k 2 , e, d 1 , d 2 ) ≤ 2E sum (W, k 1 , k 2 , e, d 1 , d 2 )
, so, maximizing over all e, d 1 , d 2 , we get:

E sum (W, k 1 , k 2 ) ≤ E(W, k 1 , k 2 ) ≤ 2E sum (W, k 1 , k 2 ) .
Thus, up to a multiplicative factor 2, the error is the same. In particular, when one of those errors tends to zero, the other one tends to zero as well. This implies that the capacity regions are the same.

4

Non-Signaling Assistance

In this section, we will consider the broadcast channel coding problem with additional resources, in order to determine how these resources aect its success probabilities as well as the capacity regions that can be dened from them.

Non-Signaling Assistance Between Decoders

Here, we consider the case where the receivers are given non-signaling assistance. This resource, which is a theoretical but easier to manipulate generalization of quantum entanglement, can be characterized as follows. A non-signaling box d(j 1 j 2 |y 1 y 2 ) is any joint conditional probability distribution such that the marginal from one party is independent of the other party's input, i.e. we have:

∀j 1 , y 1 , y 2 , y 2 , j2 d(j 1 j 2 |y 1 y 2 ) = j1 d(j 1 j 2 |y 1 y 2 ) , ∀j 2 , y 1 , y 2 , y 1 , j1 d(j 1 j 2 |y 1 y 2 ) = j1 d(j 1 j 2 |y 1 y 2 ) . (7) 
Thus, when receivers are given non-signaling assistance, the product d 1 (j 1 |y 1 )d 2 (j 2 |y 2 ) is replaced by the non-signaling box d(j 1 j 2 |y 1 y 2 ). Thus, we dene the joint and sum success probabilities

S NS dec (W, k 1 , k 2 ) (resp. S NS dec sum (W, k 1 , k 2 )
) by: maximize e,d1,d2

1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 )d(i 1 i 2 |y 1 y 2 )
resp. maximize e,d1,d2

1 2k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) j2 d(i 1 j 2 |y 1 y 2 ) + 1 2k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) j1 d(j 1 i 2 |y 1 y 2 ) subject to x e(x|i 1 i 2 ) = 1 j2 d(j 1 j 2 |y 1 y 2 ) = j1 d(j 1 j 2 |y 1 y 2 ) j1 d(j 1 j 2 |y 1 y 2 ) = j1 d(j 1 j 2 |y 1 y 2 ) j1,j2 d(j 1 j 2 |y 1 y 2 ) = 1 e(x|i 1 i 2 ), d(j 1 j 2 |y 1 y 2 ) ≥ 0 (8) 
The (resp. sum) capacity region with non-signaling assistance between decoders is dened using Denition 2.1 by

C NS dec (W ) := C[S NS dec ](W ) (resp. C NS dec sum (W ) := C[S NS dec sum ](W )).
We will now show that sum and joint capacity regions with non-signaling assistance between decoders are the same. Proposition 4.1. For any broadcast channel W , C NS dec sum (W ) = C NS dec (W ).

Proof. Given an encoder e and a non-signaling decoding box d, the maximum success probability of encoding and decoding correctly with those is given by:

S NS dec (W, k 1 , k 2 , e, d) := 1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 )d(i 1 i 2 |y 1 y 2 ) .
This should be compared to the sum success probability S NS dec sum (W, k 1 , k 2 , e, d) of encoding and decoding correctly with those:

1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) j2 d(i 1 j 2 |y 1 y 2 ) + j1 d(j 1 i 2 |y 1 y 2 ) 2 .
Similarly to what was done in Proposition 3.2, we focus on error probabilities rather than success probabilities. This leads again to:

E NS dec (W, k 1 , k 2 , e, d) = 1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) [1 -d(i 1 i 2 |y 1 y 2 )] ,
and E NS dec sum (W, k 1 , k 2 , e, d) equal to:

1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)e(x|i 1 i 2 ) 1 -j2 d(i 1 j 2 |y 1 y 2 ) 2 + 1 -j1 d(j 1 i 2 |y 1 y 2 )
2 .

But we have that:

1 -d(i 1 i 2 |y 1 y 2 ) ≥ max   1 - j2 d(i 1 j 2 |y 1 y 2 ), 1 - j1 d(j 1 i 2 |y 1 y 2 )   ≥ 1 -j2 d(i 1 j 2 |y 1 y 2 ) 2 + 1 -j1 d(j 1 i 2 |y 1 y 2 ) 2 , (9) 
since d(j 1 j 2 |y 1 y 2 ) ∈ [0, 1], and we have that:

1 - j2 d(i 1 j 2 |y 1 y 2 ) + 1 - j1 d(j 1 i 2 |y 1 y 2 ) = 1 -d(i 1 i 2 |y 1 y 2 ) + 1 - (j1,j2)∈S d(j 1 j 2 |y 1 y 2 ) ≥ 1 -d(i 1 i 2 |y 1 y 2 ) , (10) 
with

S := {(i 1 , j 2 ) : j 2 ∈ [k 2 ] -{i 2 }} {(j 1 , i 2 ) : j 1 ∈ [k 1 ] -{i 1 }}.
Thus, this implies that:

E NS dec sum (W, k 1 , k 2 , e, d) ≤ E NS dec (W, k 1 , k 2 , e, d) ≤ 2E NS dec sum (W, k 1 , k 2 , e, d) ,
and by maximizing over all e and d:

E NS dec sum (W, k 1 , k 2 ) ≤ E NS dec (W, k 1 , k 2 ) ≤ 2E NS dec sum (W, k 1 , k 2 ) .
As before, this implies that the capacity regions are the same.

We will now prove that sum success probabilities of the broadcast channel coding problem are the same with and without non-signaling assistance between decoders. In particular, this implies that non-signaling resources shared between decoders does not change the capacity region. Note that, after the publication of [START_REF] Pereg | Quantum broadcast channels with cooperating decoders: An information-theoretic perspective on quantum repeaters[END_REF], Pereg et al. added a remark to the arXiv version of their paper that their result stating that entanglement shared between decoders does not change the capacity of a broadcast channel could be generalized to non-signaling assistance. The theorem below strengthens this result showing that non-signaling assistance between the decoders cannot increase the sum success probability even in the one-shot setting and for arbitrary broadcast channels. Theorem 4.2. For any broadcast channel W and

k 1 , k 2 , we have S sum (W, k 1 , k 2 ) = S NS dec sum (W, k 1 , k 2 ). As a consequence, C(W ) = C NS dec (W ).
Proof. In the sum scenario, since the objective function does not depend on the product d 1 (j 1 |y 1 )d 2 (j 2 |y 2 ) but only on the marginals d 1 (j 1 |y 1 ) and d 2 (j 2 |y 2 ), the non-signaling box won't give additional decoding power. Indeed, for any encoder e and non-signaling decoding box d, we have that:

S NS dec sum (W, k 1 , k 2 , e, d) := 1 2k 1 k 2 i1,x,y1 W 1 (y 1 |x)   j2 d(i 1 j 2 |y 1 y 2 )   i2 e(x|i 1 i 2 ) + 1 2k 1 k 2 i2,x,y2 W 2 (y 2 |x)   j1 d(j 1 i 2 |y 1 y 2 )   i1 e(x|i 1 i 2 ) . (11) 
Thus, by choosing d 1 (j 1 |y 1 ) := j2 d(j 1 j 2 |y 1 y 2 ) and d 2 (j 2 |y 2 ) := j1 d(j 1 j 2 |y 1 y 2 ), which are well-

dened since d is a non-signaling box, we have S sum (W, k 1 , k 2 , e, d 1 , d 2 ) = S NS dec sum (W, k 1 , k 2 , e, d).
By optimizing over all e and d, S NS dec sum (W, k 1 , k 2 ) ≤ S sum (W, k 1 , k 2 ). Since the inequality is obvious in the other direction, as d(j 1 j 2 |y 1 y 2 ) := d 1 (j 1 |y 1 )d 2 (j 2 |y 2 ) is always a non-signaling box, we have that

S sum (W, k 1 , k 2 ) = S NS dec sum (W, k 1 , k 2 )
. This implies in particular that the capacity regions are the same, i.e. C sum (W ) = C NS dec sum (W ) Finally, since C(W ) = C sum (W ) by Proposition 3.2 and C NS dec sum (W ) = C NS dec (W ) by Proposition 4.1, we get that C(W ) = C NS dec (W ).

Full Non-Signaling Assistance

In this section, we will consider the case where the sender and the receivers are given non-signaling assistance. This means that a three-party non-signaling box P (xj

1 j 2 |(i 1 i 2 )y 1 y 2 ) will replace the product e(x|i 1 i 2 )d 1 (j 1 |y 1 )d 2 (j 2 |y 2 ) in the previous objective values. A joint conditional probability P (xj 1 j 2 |(i 1 i 2 )y 1 y 2
) is a non-signaling box if the marginal from any two parties is independent of the remaining party's input:

∀j 1 , j 2 , i 1 , i 2 , y 1 , y 2 , i 1 , i 2 , x P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = x P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) , ∀x, j 2 , i 1 , i 2 , y 1 , y 2 , y 1 , j1 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = j1 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) , ∀x, j 1 , i 1 , i 2 , y 1 , y 2 , y 2 , j2 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = j2 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) . ( 12 
)
The scenario is depicted in Figure 2. The cyclicity of Figure 2 is at rst sight counter-intuitive. Note rst that P being a non-signaling box is completely independent of W : in particular, the variables y 1 , y 2 do not need to follow any laws in the denition of P being a non-signaling box. Therefore, the remaining ambiguity is the apparent need to encode and decode at the same time. However, since P is a non-signaling box, we won't need to do both at the same time, although the global correlation between the sender and the receivers will be characterized only by P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ); see [START_REF] Fawzi | Multiple-access channel coding with non-signaling correlations[END_REF] for a detailed discussion on that matter, the same paradox occurring for multiple-access channels and broadcast channels.

e d 1 d 2 j 1 j 2 (i 1 , i 2 ) W y 1 y 2 x P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) j 1 j 2 (i 1 , i 2 ) W y 1 y 2 x
We will call the maximum sum success probability S NS sum (W, k 1 , k 2 ), which is given by the following linear program, where the constraints translate precisely the fact that P is a non-signaling box:

S NS sum (W, k 1 , k 2 ) := maximize P 1 2k 1 k 2 i1,x,y1 W 1 (y 1 |x) i2,j2 P (xi 1 j 2 |(i 1 i 2 )y 1 y 2 ) + 1 2k 1 k 2 i2,x,y2 W 2 (y 2 |x) i1,j1 P (xj 1 i 2 |(i 1 i 2 )y 1 y 2 ) subject to x P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = x P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) j1 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = j1 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) j2 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = j2 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 )
x,j1,j2

P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = 1 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) ≥ 0 ( 13 
)
Since it is given as a linear program, the complexity of computing S NS sum (W, k 1 , k 2 ) is polynomial in the number of variables and constraints (see for instance Section 7.1 of [START_REF] Gärtner | Understanding and using linear programming[END_REF]), which is a polynomial in

|X |, |Y 1 |, |Y 2 |, k 1 and k 2 .
Similarly, we dene the maximum joint success probability S NS (W, k 1 , k 2 ) in the following way:

S NS (W, k 1 , k 2 ) := maximize P 1 k 1 k 2 i1,i2,x,y1,y2 W (y 1 y 2 |x)P (xi 1 i 2 |(i 1 i 2 )y 1 y 2 ) subject to x P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = x P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) j1 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = j1 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) j2 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = j2 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 )
x,j1,j2

P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = 1 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) ≥ 0 (14) 
We can rewrite both these programs in more convenient and smaller linear programs: Proposition 4.3.

S NS sum (W, k 1 , k 2 ) = maximize p,r,r 1 ,r 2 1 2k 1 k 2 x,y1 W 1 (y 1 |x)r 1 x,y1 + x,y2 W 2 (y 2 |x)r 2 x,y2 subject to x r x,y1,y2 = 1 x r 1 x,y1 = k 2 x r 2 x,y2 = k 1 x p x = k 1 k 2 0 ≤ r x,y1,y2 ≤ r 1 x,y1 , r 2 x,y2 ≤ p x p x -r 1 x,y1 -r 2 x,y2 + r x,y1,y2 ≥ 0 (15) 
S NS (W, k 1 , k 2 ) = maximize p,r,r 1 ,r 2 1 k 1 k 2 x,y1,y2 W (y 1 y 2 |x)r x,y1,y2 subject to x r x,y1,y2 = 1 x r 1 x,y1 = k 2 x r 2 x,y2 = k 1 x p x = k 1 k 2 0 ≤ r x,y1,y2 ≤ r 1 x,y1 , r 2 x,y2 ≤ p x p x -r 1 x,y1 -r 2 x,y2 + r x,y1,y2 ≥ 0 (16) 
Proof. One can check that given a solution of the original program, the following choice of variables is a valid solution of the second program achieving the same objective value:

r x,y1,y2 := i1,i2 P (xi 1 i 2 |(i 1 i 2 )y 1 y 2 ) , r 1 
x,y1 := j2,i1,i2

P (xi 1 j 2 |(i 1 i 2 )y 1 y 2 ) , r 2 
x,y2 := j1,i1,i2

P (xj 1 i 2 |(i 1 i 2 )y 1 y 2 ) , p x := j1,j2,i1,i2 P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) . (17) 
For the other direction, given those variables, a non-signaling probability distribution P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) is given by, for j 1 = i 1 and j 2 = i 2 :

P (xi 1 i 2 |(i 1 i 2 )y 1 y 2 ) = r x,y1,y2 k 1 k 2 , P (xj 1 i 2 |(i 1 i 2 )y 1 y 2 ) = r 2 x,y2 -r x,y1,y2 k 1 k 2 (k 1 -1) , P (xi 1 j 2 |(i 1 i 2 )y 1 y 2 ) = r 1 x,y1 -r x,y1,y2 k 1 k 2 (k 2 -1) , P (xj 1 j 2 |(i 1 i 2 )y 1 y 2 ) = p x -r 1 x,y1 -r 2 x,y2 + r x,y1,y2 k 1 k 2 (k 1 -1)(k 2 -1) . (18) 
As before, we dene the (resp. sum) capacity region with non-signaling assistance using Denition 2.1 by Proof. Let us show that:

C NS (W ) := C[S NS ](W ) (resp. C NS sum (W ) := C[S NS sum ](W )).
2S NS sum (W, k 1 , k 2 ) -1 ≤ S NS (W, k 1 , k 2 ) ≤ S NS sum (W, k 1 , k 2 ) .
This will imply in particular that:

lim n→+∞ S NS (W ⊗n , 2 R1n , 2 R2n ) = 1 ⇐⇒ lim n→+∞ S NS sum (W ⊗n , 2 R1n , 2 R2n ) = 1 ,
thus dene the same capacity region.

Let us consider an optimal solution p x , r x,y1,y2 , r 1 x,y1 , r 2 x,y2 of the program computing S NS sum (W, k 1 , k 2 ).

We have:

S NS sum (W, k 1 , k 2 ) = 1 k 1 k 2 x,y1,y2 W (y 1 y 2 |x) r 1 x,y1 + r 2 x,y2
2 .

However r 1

x,y1 + r 2 x,y2 ≤ p x + r x,y1,y2 so we get that:

S NS sum (W, k 1 , k 2 ) ≤ 1 2k 1 k 2 x,y1,y2 W (y 1 y 2 |x) (p x + r x,y1,y2 ) = 1 2 + 1 2 1 k 1 k 2 x,y1,y2 W (y 1 y 2 |x)r x,y1,y2 ≤ 1 2 + 1 2 S NS (W, k 1 , k 2 ) , (19) 
since p x , r x,y1,y2 , r 1 x,y1 , r 2 x,y2 is a valid solution of the program computing S NS (W, k 1 , k 2 ). On the other hand, consider now p x , r x,y1,y2 , r 1

x,y1 , r 2

x,y2 an optimal solution of the program computing S NS (W, k 1 , k 2 ). We have that r x,y1,y2 ≤ r 1

x,y1 , r 2

x,y2 so we have that r x,y1,y2 ≤ r 1

x,y 1 +r 2

x,y 2 2 and thus:

S NS (W, k 1 , k 2 ) = 1 k 1 k 2 x,y1,y2 W (y 1 y 2 |x)r x,y1,y2 ≤ 1 k 1 k 2 x,y1,y2 W (y 1 y 2 |x) r 1 x,y1 + r 2 x,y2 2 
≤ S NS sum (W, k 1 , k 2 ) , (20) 
since p x , r x,y1,y2 , r 1 x,y1 , r 2 x,y2 is a valid solution of the program computing S NS sum (W, k 1 , k 2 ). This prove the inequalities 2S NS

sum (W, k 1 , k 2 ) -1 ≤ S NS (W, k 1 , k 2 ) ≤ S NS sum (W, k 1 , k 2 )
, and thus concludes the proof.

Approximation Algorithm for Deterministic Broadcast Channel Coding

In this section, we will address the question of the approximability of S(W, k 1 , k 2 ), in the restricted scenario of a deterministic broadcast channel W . Specically, we study the problem of nding a code e :

[k 1 ] × [k 2 ] → X , d 1 : Y 1 → [k 1 ], d 2 : Y 2 → [k 2 ] that maximizes the program computing S(W, k 1 , k 2 ).
Note that the restriction to deterministic codes does not aect the value of the objective of the program which is convex, and that the problem is as hard as nding any code maximizing the program computing S(W, k 1 , k 2 ), as a deterministic code with a better or equal value can be retrieved easily from any code. We say that W is deterministic if ∀x, y 1 , y 2 , W (y 1 y 2 |x) ∈ {0, 1}. We can then dene (W 1 (x), W 2 (x)) as the only pair (y 1 , y 2 ) such that W (y 1 y 2 |x) = 1, which exists uniquely as W is a conditional probability distribution. Thus, the deterministic broadcast channel coding problem can be dened in the following way: Denition 5.1 (DetBCC). Given a deterministic channel W and integers k 1 and k 2 , the deterministic broadcast channel coding problem, which we call DetBCC, entails maximizing

S(W, k 1 , k 2 , e, d 1 , d 2 ) := 1 k 1 k 2 i1,i2 1 d1(W1(e(i1i2)))=i1 1 d2(W2(e(i1i2)))=i2 over all functions e : [k 1 ] × [k 2 ] → X , d 1 : Y 1 → [k 1 ], d 2 : Y 2 → [k 2 ].

Reformulation as a Bipartite Graph Problem

We will reformulate DetBCC as a bipartite graph problem. But rst, let us introduce some notations:

Denition 5.2 (Graph notations). Consider a bipartite graph

G = (V 1 V 2 , E ⊆ V 1 × V 2 ):
1. G P1,P2 , the quotient of G by partitions P 1 , P 2 of respectively V 1 , V 2 , is dened by: 5. We will use V 1 , V 2 in previous notations when we do not partition on the left and right part respectively (or identify those to trivial partitions in singletons). For instance, G V1,V2 = G. 6. We will use the notations e(P 1 , P 2 ), N P1,P2 (p) and deg P1,P2 (p) when the graph G considered is clear from context. Now, let us remark that a deterministic channel W , up to a permutation of elements of X , is characterized by the following bipartite graph: Denition 5.3 (Bipartite Graph G W associated with the deterministic channel W ).

G P1,P2 := (P 1 P 2 , {(p 1 , p 2 ) ∈ P 1 × P 2 : E ∩ (p 1 × p 2 ) = ∅}) .
G W := (Y 1 Y 2 , E = {(y 1 , y 2 ) ∈ Y 1 × Y 2 : ∃x ∈ X , y 1 = W 1 (x) and y 2 = W 2 (x)}) .
Indeed, permuting the elements of X does not change G W nor S(W, k 1 , k 2 ). As a consequence, up to a multiplicative factor k 1 k 2 , we will show that DetBCC is equivalent to the following bipartite graph problem: Denition 5.4 (DensestQuotientGraph). Given a bipartite graph G = (V 1 V 2 , E) and integers k 1 , k 2 , the problem DensestQuotientGraph entails maximizing e G (P 1 , P 2 ), the number of edges of the quotient graph of G by P 1 , P 2 , over all partitions P 1 of V 1 in k 1 parts and P 2 of V 2 in k 2 parts. Proposition 5.5. Given a deterministic channel W and integers k 1 , k 2 , it is equivalent to solve Det-BCC on W, k 1 , k 2 or DensestQuotientGraph on G W , k 1 , k 2 . That is to say, given an optimal solution of one of those problems, one can eciently construct an optimal solution of the other. Furthermore, their optimal values satisfy k 

1 k 2 DetBCC(W, k 1 , k 2 ) = DensestQuotientGraph(G W , k 1 , k 2 ).
k 1 k 2 S(W, k 1 , k 2 , e, d 1 , d 2 ) = i1,i2 1 i1=d1(W1(e(i1,i2))) 1 i2=d2(W2(e(i1,i2))) = i1,i2 1 W1(e(i1,i2))∈P i 1 1 1 W2(e(i1,i2))∈P i 2 2 . (21) 
However, since we consider an optimal solution, we have that:

1 W1(e(i1,i2))∈P i 1 1 1 W2(e(i1,i2))∈P i 2 2 = max x∈X 1 W1(x)∈P i 1 1 1 W2(x)∈P i 2 2
, as e(i 1 , i 2 ) appears only here in the objective value. Thus:

k 1 k 2 S(W, k 1 , k 2 , e, d 1 , d 2 ) = i1,i2 max x∈X 1 W1(x)∈P i 1 1 1 W2(x)∈P i 2 2 = i1,i2 1 ∃(y1,y2)∈E G W :y1∈P i 1 1 and y2∈P i 2 2 = i1,i2 1 E G W ∩(P i 1 1 ×P i 2 2 ) =∅ = e G W (P 1 , P 2 ) , (22) 
which proves that given an optimal solution of DetBCC, one can eciently construct a solution P 1 , P 2 of DensestQuotientGraph such that:

e G W (P 1 , P 2 ) = k 1 k 2 DetBCC(W, k 1 , k 2 ) .
For the other direction, consider an optimal solution P 1 , P 2 of DensestQuotientGraph. We have as before that:

e G W (P 1 , P 2 ) = i1,i2 max x∈X 1 W1(x)∈P i 1 1 1 W2(x)∈P i 2 2 . Now, let us dene e(i 1 , i 2 ) ∈ argmax x∈X 1 W1(x)∈P i 1 1 1 W2(x)∈P i 2 2
and d b (y b ) the index i b such that

y b ∈ P i b b , for b ∈ {1, 2}.
With those denitions, we get again that:

max x∈X 1 W1(x)∈P i 1 1 1 W2(x)∈P i 2 2 = 1 W1(e(i1,i2))∈P i 1 1 1 W2(e(i1,i2))∈P i 2 2 = 1 i1=d1(W1(e(i1,i2))) 1 i2=d2(W2(e(i1,i2))) , (23) 
and thus we have:

e G W (P 1 , P 2 ) = i1,i2 max x∈X 1 W1(x)∈P i 1 1 1 W2(x)∈P i 2 2 = i1,i2 1 i1=d1(W1(e(i1,i2))) 1 i2=d2(W2(e(i1,i2))) = k 1 k 2 S(W, k 1 , k 2 , e, d 1 , d 2 ) , (24) 
which proves that given an optimal solution of DensestQuotientGraph, one can eciently construct a solution e, d 1 , d 2 of DetBCC such that:

k 1 k 2 S(W, k 1 , k 2 , e, d 1 , d 2 ) = DensestQuotientGraph(G W , k 1 , k 2 ) .
In particular, this implies that the optimal objective values satisfy:

k 1 k 2 DetBCC(W, k 1 , k 2 ) = DensestQuotientGraph(G W , k 1 , k 2 ) .
Therefore, the solutions of both problems constructed throughout the proof are in fact optimal.

Remark. Note that all bipartite graphs can be written as G W for some deterministic broadcast channel W , with W unique up to a permutation of X .

Approximation Algorithm for DensestQuotientGraph

In this section, we will sort out how hard is DensestQuotientGraph, and thanks to Proposition 5.5, how hard is it to solve DetBCC.

Theorem 5.6. There exists a polynomial-time (1 -e -1 ) 2 -approximation algorithm for DensestQuo-tientGraph. Furthermore, it is NP-hard to solve exactly DensestQuotientGraph.

Corollary 5.7. There exists a polynomial-time (1 -e -1 ) 2 -approximation algorithm for DetBCC.

Furthermore, it is NP-hard to solve exactly DetBCC.

The approximation algorithm is a two-step process. First, we consider the problem of maximizing

k2 i2=1 min k 1 , deg V1,P2 (P i2 
2 ) over all partitions P 2 of V 2 in k 2 parts. We will show that this is a special case of the submodular welfare problem, which can be approximated within a factor 1 -e -1 in polynomial time [START_REF] Vondrák | Optimal approximation for the submodular welfare problem in the value oracle model[END_REF]. We then choose the partition P 1 on V 1 in k 1 parts uniformly at random. This partition pair will give an objective value e(P 1 , P 2 ) within a (1 -e -1 ) 2 factor from the optimal solution in expectation.

Proof of Theorem 5.6. Consider rst the hardness result. Let us show that the decision version of DensestQuotientGraph is NP-complete. It is in NP, the certicate being the two partitions and the selection of edges between those partitions. It is NP-hard as one of its particular cases is the SetSplitting problem (see for instance [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]), in the case where k 1 = 2 and k 2 = |V 2 |, by interpreting the neighbors of v 2 ∈ V 2 as a set covering elements of V 1 .

We will show nonetheless that this problem can be approximated within a factor (1 -e -1 ) 2 in polynomial time. First we consider the case where k 2 = |V 2 |. We can then always assume that the right partition is P 2 := {{v 2 } : v 2 ∈ V 2 }, which leads necessarily to a greater or equal number of edges in the quotient graph that with any other right partition. So, in that setting, we only need to nd a partition of V 1 in k 1 parts maximizing the number of edges between vertices in the right part and the quotient of the left vertices.

First, the maximum value we can get is upper bounded by v2∈V2 min (k 1 , deg(v 2 )). Indeed, each vertex of v 2 can be connected at most to the k 1 parts of V 1 , so its contribution is bounded by k 1 , and there needs to be an edge to each part it is connected, so its contribution is also bounded by deg(v 2 ). Let us show that if we take a partition P 1 of V 1 uniformly at random, we get:

E P1 [e(P 1 , V 2 )] ≥ 1 -1 - 1 k 1 k1 v2∈V2 min (k 1 , deg(v 2 )) ≥ (1 -e -1 ) max P1 e(P 1 , V 2 ) . ( 25 
)
We have e

(P 1 , V 2 ) = v2∈V2 deg P1,V2 (v 2 ), so by linearity of expectation E P1 [e(P 1 , V 2 )] = v2∈V2 E P1 [deg P1,V2 (v 2 )]. However deg P1,V2 (v 2 ) = |{i 1 ∈ [k 1 ] : N (v 2 ) ∩ P i1 1 = ∅}|. Recall also that for any v 1 , P v 1 ∈ P i1 1 = 1 k1
since the partition is taken uniformly at random. Thus, we get:

E P1 [deg P1,V2 (v 2 )] = E P1 |{i 1 ∈ [k 1 ] : N (v 2 ) ∩ P i1 1 = ∅}| = E P1 k1 i1=1 1 N (v2)∩P i 1 1 =∅ = k1 i1=1 E P1 1 N (v2)∩P i 1 1 =∅ = k1 i1=1 P N (v 2 ) ∩ P i1 1 = ∅ = k1 i1=1 1 -P N (v 2 ) ∩ P i1 1 = ∅ = k1 i1=1   1 - v1∈N (v2) P v 1 ∈ P i1 1   = k1 i1=1   1 - v1∈N (v2) P v 1 ∈ P i1 1   = k 1 1 -1 - 1 k 1 deg(v2) , (26) 
since

P v 1 ∈ P i1 1 = 1 -1 k1 and |N (v 2 )| = deg(v 2 ).
So, in all:

E P1 [e(P 1 , V 2 )] = v2∈V2 E P1 [deg P1,V2 (v 2 )] = k 1 v2∈V2 1 -1 - 1 k 1 deg(v2)
.

However, the function f :

x → 1 -1 -1 k1 x is nondecreasing concave with f (0) = 0, so f (x)
x ≥ f (y) y for x ≤ y. In particular, we have that:

f (min(k 1 , deg(v 2 ))) ≥ min(k 1 , deg(v 2 )) k 1 f (k 1 ) ,
and thus:

E P1 [e(P 1 , V 2 )] ≥ k 1 v2∈V2 1 -1 - 1 k 1 min(k1,deg(v2)) ≥ k 1 v2∈V2 min(k 1 , deg(v 2 )) k 1 1 -1 - 1 k 1 k1 ≥ 1 -1 - 1 k 1 k1 v2∈V2 min (k 1 , deg(v 2 )) ≥ (1 -e -1 ) max P1 e(P 1 , V 2 ) . ( 27 
)
Let us now consider the general case with k 2 unconstrained. We apply the previous discussion on the graph G V1,P2 for some xed partition P 2 of V 2 . Since e G V 1 ,P 2 (P 1 , P 2 ) = e(P 1 , P 2 ), we have the upper bound:

max P1 e(P 1 , P 2 ) ≤ k2 i2=1 min k 1 , deg V1,P2 (P i2
2 ) , and the previous algorithm gives us a partition P 1 of V 1 such that:

e(P 1 , P 2 ) ≥ (1 -e -1 ) k2 i2=1 min k 1 , deg V1,P2 (P i2 2 ) .
Therefore, let us focus on the following optimization problem:

max P2 k2 i2=1 min k 1 , deg V1,P2 (P i2 2 ) ,
We will give a (1 -e -1 )-approximation algorithm running in polynomial time for this problem. In all, this will allow us to get in polynomial time a partition pair (P 1 , P 2 ) such that:

e(P 1 , P 2 ) ≥ (1 -e -1 ) k2 i2=1 min k 1 , deg V1,P2 (P i2 2 ) ≥ (1 -e -1 ) 2 max P2 k2 i2=1 min k 1 , deg V1,P2 (P i2 2 ) ≥ (1 -e -1 ) 2 max P1,P2 e(P 1 , P 2 ) . (28) 
The problem max P2

k2 i2=1 min k 1 , deg V1,P2 (P i2
2 ) is a particular instance of the submodular welfare problem from [START_REF] Vondrák | Optimal approximation for the submodular welfare problem in the value oracle model[END_REF]. Note that deg V1,P2 (P i2

2

) = deg V1,{P i 2 2 ,V2-P i 2 2 } (P i2 
2 ), as the degree of P i2 2 does not depend on the rest of the partition

P 2 . Then, h(S 2 ) := min k 1 , deg V1,{S2,V2-S2} (S 2 ) , for S 2 ⊆ V 2 ,
is a nondecreasing submodular function, as S 2 → deg V1,{S2,V2-S2} (S 2 ) is a nondecreasing submodular function on V 2 and min(k 1 , •) is nondecreasing concave. Thus, we want to maximize k2 i2=1 h(S i2 ) where (S i2 ) i2∈[k2] is a partition of items in V 2 among k 2 bidders. It is a particular case of the submodular welfare problem where each nondecreasing submodular utility weight is the same for all bidders and equal to h. Thus, thanks to [START_REF] Vondrák | Optimal approximation for the submodular welfare problem in the value oracle model[END_REF], there exists a polynomial-time (1 -e -1 )-approximation of max P2 k2 i2=1 min k 1 , deg V1,P2 (P i2

2 ) .

Non-Signaling Assisted Capacity Region for Deterministic Channels

Thanks to Theorem 5.6 and Proposition 5.5, there exists a constant-factor approximation algorithm for the broadcast channel coding problem running in polynomial time. We aim to show here that the non-signaling assisted value is linked by a constant factor to the unassisted one. Indeed, the hope is that the non-signaling assisted program is linked to the linear relaxation of the unassisted problem, thus is likely a good approximation since the broadcast channel coding problem can be approximated in polynomial time. This turns out to be true, and will be proved through the following theorem:

Theorem 5.8. If W is a deterministic broadcast channel, then for all 1 ≤ k 1 and 2 ≤ k 2 :

1 - k k1 1 e -k1 k 1 ! 1 -1 - 1 1 k1 1 -1 - 1 2 k2 S NS (W, k 1 , k 2 ) ≤ S(W, 1 , 2 ) .
Corollary 5.9. For any deterministic broadcast channel W , C NS (W ) = C(W ).

Proof. We apply Theorem 5.8 on the deterministic broadcast channel W ⊗n . We

x k 1 = 2 nR1 , k 2 = 2 nR2 and 1 = 2 nR 1 n , 2 = 2 nR 2 n . Since 1 -1 -1 k ≥ 1 -e -k
, we get:

1 - k k1 1 e -k1 k 1 ! 1 -e -n 2 S NS (W ⊗n , 2 nR1 , 2 nR1 ) ≤ S W ⊗n , 2 nR1 n , 2 nR2 n .
As 1 -

k k 1 1 e -k 1 k1!
(1 -e -n ) 2 tends to 1 when n tends to innity, we get ∀ε > 0, ∃N ∈ N, ∀n ≥ N :

(1 -ε)S NS (W ⊗n , 2 nR1 , 2 nR1 ) ≤ S(W ⊗n , 2 n(R1-log(n) n ) , 2 n(R2-log(n) n ) ) . Thus, if lim n→+∞ S NS (W ⊗n , 2 nR1 , 2 nR1 ) = 1, we have that for all R 1 < R 1 and R 2 < R 2 : lim n→+∞ S(W ⊗n , 2 nR 1 , 2 nR 1 ) ≥ 1 -ε .
Since this is true for all ε > 0, we get in fact that lim n→+∞ S(W ⊗n , 2 nR 1 , 2 nR 1 ) = 1. This implies that C NS (W ) ⊆ C(W ), and thus that the capacity regions are equal as the other inclusion is always satised.

Let us now prove the main result:

Proof of Theorem 5.8. The proof will be done in three parts. We will work on the graph G W (see Denition 5.3).

1. First, we prove that for any partition P 2 of Y 2 in 2 parts:

S(W, 1 , 2 ) ≥ 1 -1 - 1 1 k1 2 i2=1 min k 1 , deg Y1,P2 (P i2 2 ) k 1 2 .
2. Then, we show that there exists a partition P 2 such that:

2 i2=1 min k 1 , deg Y1,P2 (P i2 2 ) k 1 2 ≥ 1 - k k1 1 e -k1 k 1 ! 1 -1 - 1 2 k2 min k 1 k 2 , y1 min(k 2 , deg(y 1 )) k 1 k 2 . (29) 
3. Finally, we prove that:

min k 1 k 2 , y1 min(k 2 , deg(y 1 )) k 1 k 2 ≥ S NS (W, k 1 , k 2 ) .
By combining these three inequalities, we get precisely the claimed result.

1. This part shares a lot of similarities with the proof of Theorem 5.6, which we will adapt to this particular situation. Let us show that if we take a partition P 1 of Y 1 of size 1 uniformly at random, we get, for some xed P 2 of size 2 :

E P1 [e G W (P 1 , P 2 )] ≥ 1 k 1 1 -1 - 1 1 k1 2 i2=1 min k 1 , deg Y1,P2 (P i2 2 ) . Since 1 2 S(W, 1 , 2 ) = maximize P1 in 1 parts,P2 in 2 parts
e G W (P 1 , P 2 ) by Proposition 5.5, this will imply that:

S(W, 1 , 2 ) ≥ 1 1 2 E P1 [e G W (P 1 , P 2 )] ≥ 1 -1 - 1 1 k1 2 i2=1 min k 1 , deg Y1,P2 (P i2 2 ) k 1 2 . (30) 
We have that e G W (P

1 , P 2 ) = 2 i2=1 deg P1,P2 (P i2
2 ), so by linearity of expectation, we have that

E P1 [e G W (P 1 , P 2 )] = 2 i2=1 E P1 [deg P1,P2 (P i2
2 )], so we will focus on the contribution of one particular P i2 2 . Then, we have that deg

P1,P2 (P i2 2 ) = |{i 1 ∈ [ 1 ] : N Y1,P2 (P i2 2 )∩P i1 1 = ∅}|. Recall that P v 1 ∈ P i1 1 = 1 
1 for any v 1 since the partition is taken uniformly at random. Thus:

E P1 [deg P1,P2 (P i2 2 )] = E P1 |{i 1 ∈ [ 1 ] : N Y1,P2 (P i2 2 ) ∩ P i1 1 = ∅}| = E P1 1 i1=1 1 N Y 1 ,P 2 (P i 2 2 )∩P i 1 1 =∅ = 1 i1=1 E P1 1 N Y 1 ,P 2 (P i 2 2 )∩P i 1 1 =∅ = 1 i1=1 P N Y1,P2 (P i2 2 ) ∩ P i1 1 = ∅ = 1 i1=1 1 -P N Y1,P2 (P i2 2 ) ∩ P i1 1 = ∅ = 1 i1=1   1 - v1∈N (P i 2 
2 )

P v 1 ∈ P i1 1 )    = 1   1 -1 - 1 1 deg Y 1 ,P 2 (P i 2 2 )   . (31) 
So, in all we have that:

E P1 [e G W (P 1 , P 2 )] = 2 i2=1 E P1 [deg P1,P2 (P i2 2 )] = 1 2 i2=1   1 -1 - 1 1 deg Y 1 ,P 2 (P i 2 2 )   . (32) 
However the function f :

x → 1-1 -1 1 x is nondecreasing concave with f (0) = 0, so f (x) x ≥ f (y) y for x ≤ y.
In particular, we have that:

f (min(k 1 , deg Y1,P2 (P i2 2 ))) ≥ min(k 1 , deg Y1,P2 (P i2 2 ))) k 1 f (k 1 ) ,
and thus:

E P1 [e G W (P 1 , P 2 )] ≥ 1 2 i2=1   1 -1 - 1 1 min(k1,deg Y 1 ,P 2 (P i 2 2 ))   ≥ 1 2 i2=1 min(k 1 , deg Y1,P2 (P i2 2 )) k 1 1 -1 - 1 1 k1 = 1 k 1 1 -1 - 1 1 k1 2 i2=1 min k 1 , deg Y1,P2 (P i2 2 ) , (33) 
which concludes the rst part of the proof. 2. Let us take P 2 a partition of Y 2 of size 2 uniformly at random, and let us prove that:

E 2 i2=1 min k 1 , deg Y1,P2 (P i2 2 )
is greater than or equal to:

2 k 2 1 - k k1 1 e -k1 k 1 ! 1 -1 - 1 2 k2 min k 1 k 2 , y1 min(k 2 , deg(y 1 )) .
First,

2 i2=1 min k 1 , deg Y1,P2 (P i2 2 ) = 2 i2=1 ϕ(deg Y1,P2 (P i2 2 
)) with ϕ(j) := min(k 1 , j) which is a concave function. The Poisson concavity ratio, introduced in [START_REF] Barman | Tight approximation guarantees for concave coverage problems[END_REF], is dened by

α ϕ = inf x∈R + E[ϕ(Poi(x))] ϕ(x)
and is equal to 1 -

k k 1 1 e -k 1 k1!
for that particular function [START_REF] Barman | Tight approximation guarantees for concave coverage problems[END_REF]. We will use the following property from [START_REF] Barman | Tight approximation guarantees for concave coverage problems[END_REF]: Proposition 5.10 (Lemma 2.2 from [START_REF] Barman | Tight approximation guarantees for concave coverage problems[END_REF]). For ϕ concave, and p ∈ [0, 1] m , we have:

E ϕ m i=1 Ber(p i ) ≥ E ϕ Poi m i=1 p i .
Let us nd the law of deg Y1,P2 (P i2 2 ):

deg Y1,P2 (P i2 2 ) = y1 1 N (y1)∩P i 2 2 =∅ = y1 1 -1 N (y1)∩P i 2 2 =∅ = y1 1 -1 ∀y2∈N (y1),y2 ∈P i 2 2 = y1 Ber 1 -1 - 1 2 deg(y1) (34) 
Thus:

E ϕ(deg Y1,P2 (P i2 2 )) = E ϕ y1 Ber 1 -1 - 1 2 deg(y1) ≥ E ϕ Poi y1 1 -1 - 1 2 deg(y1)
by Proposition 5.10

≥ α ϕ ϕ y1 1 -1 - 1 2 deg(y1)
by denition of α ϕ .

But:

y1 1 -1 - 1 2 deg(y1) ≥ y1 1 -1 - 1 2 min(k2,deg(y1)) ≥ 1 -1 - 1 2 k2 1 k 2 y1 min (k 2 , deg(y 1 )) , (36) 
as before. Since ϕ is concave and ϕ(0) = 0, we have in particular that for all 0 ≤ c ≤ 1 and x ∈ R, ϕ(cx) ≥ cϕ(x). We know also that ϕ is nondecreasing. This implies that:

ϕ y1 1 -1 - 1 2 deg(y1) ≥ ϕ 1 -1 - 1 2 k2 1 k 2 y1 min (k 2 , deg(y 1 )) ≥ 1 -1 - 1 2 k2 ϕ 1 k 2 y1 min (k 2 , deg(y 1 )) , (37) 
as

0 ≤ 1 -1 -1 2 k2 ≤ 1. Thus E ϕ(deg Y1,P2 (P i2 2 )
)) is larger than or equal to:

α ϕ 1 -1 - 1 2 k2 min k 1 , 1 k 2 y1 min (k 2 , deg(y 1 )) = 1 k 2 1 - k k1 1 e -k1 k 1 ! 1 -1 - 1 2 k2 min k 1 k 2 , y1 min (k 2 , deg(y 1 )) (38) 
since

α ϕ = 1 - k k 1 1 e -k 1 k1! . Finally, E 2 i2=1 min k 1 , deg Y1,P2 (P i2 2 ) = 2 i2=1 E ϕ(deg Y1,P2 (P i2 2 
)) , so we get that:

E 2 i2=1 min k 1 , deg Y1,P2 (P i2 2 )
is larger than or equal to:

2 k 2 1 - k k1 1 e -k1 k 1 ! 1 -1 - 1 2 k2 min k 1 k 2 , y1 min (k 2 , deg(y 1 )) .
Thus, in particular, there exists some partition P 2 that satises the same inequality, which concludes the second part of the proof. 3. Let us consider an optimal solution r x,y1,y2 , p x , r 1

x,y1 , r 2

x,y2 of the program computing S NS (W,

k 1 , k 2 ), so that S NS (W, k 1 , k 2 ) = 1 k1k2 x r x,W1(x),W2(x) . (a) It comes directly from r x,y1,y2 ≤ p x that: x r x,W1(x),W2(x) ≤ x p x = k 1 k 2 .

(b)

x r x,W1(x),W2(x) = y1 x:W1(x)=y1 r x,y1,W2(x) and we have that: i.

x:W1(x)=y1 r x,y1,W2(x) ≤ x:W1(x)=y1 1 = deg(y 1 ) , ii.

x:W1(x)=y1 r x,y1,W2(x) ≤ x:W1(x)=y1 r 1 x,y1 ≤ x r 1 x,y1 = k 2 , so x:W1(x)=y1 r x,y1,W2(x) ≤ min(k 2 , deg(y 1 )), and thus: In all, we get that:

S NS (W, k 1 , k 2 ) = 1 k 1 k 2 x r x,W1(x),W2(x) ≤ min k 1 k 2 , y1 min(k 2 , deg(y 1 )) k 1 k 2 ,
which concludes the third and last part of the proof.

Hardness of Approximation for Broadcast Channel Coding

Since broadcast channels are more general than point-to-point channels (by dening W 1 (y 1 |x) := Ŵ (y 1 |x) for Ŵ a point-to-point channel and taking W 2 (y 2 |x) = 1 |Y2| a completely trivial channel), computing a single value S(W, k 1 , k 2 ) is NP-hard, and it is even NP-hard to approximate within a better factor than 1 -e -1 , as a consequence of the hardness result for point-to-point channels from [START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF].

The goal of this section is to give some evidence for the hardness of approximation of the general broadcast channel coding problem, specically that it cannot be approximated in polynomial time within a Ω(1) factor. This suggests that non-signaling assistance might enlarge the capacity region of the channel as discussed in the introduction.

Formally, one would want to show that it is NP-hard to approximate this problem within a Ω(1)

factor in polynomial time. We were however unable to prove this. Instead, we will prove a Ω 1 √ mapproximation hardness in the value query model.

First, let us introduce formally the problem: Denition 6.1 (BCC). Given a channel W and integers k 1 , k 2 , the broadcast channel coding problem, which we call BCC, entails maximizing:

S(W, k 1 , k 2 , e, d 1 , d 2 ) := 1 k 1 k 2 i1,i2,y1,y2 W (y 1 y 2 |e(i 1 , i 2 ))1 d1(y1)=i1,d2(y2)=i2 , over all functions e : [k 1 ] × [k 2 ] → X , d 1 : Y 1 → [k 1 ] and d 2 : Y 2 → [k 2 ].
As in the deterministic case, we restrict ourselves to deterministic encoders and decoders, which does not change the value nor the hardness of the problem. Also, it can be equivalently stated in terms of partitions corresponding to d 1 , d 2 as: Proposition 6.2 (Equivalent formulation of BCC). Given a channel W and integers k 1 and k 2 , the broadcast channel coding problem, which we call BCC, entails maximizing:

1 k 1 k 2 i1,i2 max x y1∈P i 1 1 ,y2∈P i 2 1
W (y 1 y 2 |x) , over all partitions P 1 of Y 1 in k 1 parts and P 2 of Y 2 in k 2 parts.

Social Welfare Reformulation

The social welfare maximization problem is dened as follows: given a set M of m items as well as k bidders with their associated utilities v i : 2 M → R + i∈[k] , the goal is to partition M between the bidders to maximize the sum of their utilities. Formally, we want to compute: maximize

P partition in k parts of M k i=1 v i P i .
Let us show that the subproblem of BCC restricted to k 2 = |Y 2 | can be reformulated as a particular instance of the social welfare maximization problem. In that case, it is easy to see that P 2 = ({y 2 }) y2∈Y2 is always an optimal solution. Indeed, for any partition P 2 , we have:

1 k 1 |Y 2 | i1,i2 max x y1∈P i 1 1 ,y2∈P i 2 2 W (y 1 y 2 |x) ≤ 1 k 1 |Y 2 | i1,i2 y2∈P i 2 2 max x y1∈P i 1 1 W (y 1 y 2 |x) = 1 k 1 |Y 2 | i1 y2∈Y2 max x y1∈P i 1 1 W (y 1 y 2 |x) . (39) 
Therefore, the objective function becomes:

S 1 (W, k 1 , P 1 ) := 1 k 1 k1 i1=1 f 1 W (P i1 1 ) with f 1 W (S 1 ) := 1 |Y 2 | y2 max x y1∈S1
W (y 1 y 2 |x) .

Hence, up to a multiplicative factor k 1 , maximizing S 1 (W, k 1 , P 1 ) over all partitions P 1 of size k 1 is a particular case of the social welfare maximization problem with a common utility f 1 W for all k 1 bidders.

6.2

Value Query Hardness

Let us rst introduce the value query model. As described in [START_REF] Dobzinski | An improved approximation algorithm for combinatorial auctions with submodular bidders[END_REF][START_REF] Vahab | Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions[END_REF], a value query to a utility v asks for the value of some input set S ⊆ M , and gets as response v(S) ∈ R + . In the value query model, we aim at solving the social welfare maximization problem accessing the data only through value queries to

(v i ) i∈[k] .
This is more restricted than using any algorithm, but in such a model, it is possible to show unconditional lower bounds on the number of queries needed to solve a given problem within an approximation rate. In the case of the social welfare maximization problem with XOS utility functions, the approximation rate achievable in polynomial time has been proved in [START_REF] Dobzinski | An improved approximation algorithm for combinatorial auctions with submodular bidders[END_REF][START_REF] Vahab | Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions[END_REF] to be of the order of

Θ 1 √ m . Specically, in [37], a Ω 1 m 1 2
-approximation in polynomial time was given, and in [START_REF] Vahab | Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions[END_REF], it has been shown that any

Ω 1 m 1 2 -ε
-approximation for ε > 0 requires an exponential number of value queries. We will adapt their proof in the particular case of one common XOS utility function of the form f 1 W for some broadcast channel W . But rst, let us introduce the denition of XOS functions and prove that f 1 W is one of those. Denition 6.3. A linear valuation function (also known as additive) is a set function a : 2 M → R + that assigns a nonnegative value to every singleton {j} for j ∈ M , and for all S ⊆ M it holds that a(S) = j∈S a({j}).

A fractionally sub-additive function (XOS) is a set function f : 2 M → R + , for which there is a nite set of linear valuation functions A = {a 1 , . . . , a } such that f (S) = max i∈[ ] a i (S) for every S ⊆ M .

Remark. Note that the size of A is not bounded in the denition. Proposition 6.4.

f 1 W is XOS. Proof. f 1 W (S) = 1 |Y 2 | y2 max x y1∈S1 W (y 1 y 2 |x) = max λ:Y2→X a λ (S)
, where

a λ (S) = 1 |Y 2 | y2 y1∈S W (y 1 y 2 |λ(y 2 )) = y1∈S 1 |Y 2 | y2 W (y 1 y 2 |m(y 2 )) = y1∈S a λ ({y 1 })) with a λ ({y 1 })) = 1 |Y 2 | y2 W (y 1 y 2 |λ(y 2 )) ∈ R + (40) 
So f 1 W is the maximum of the set of a λ for λ ∈ X Y1 , which are linear valuation functions, thus f 1 W is XOS.

Let us now state the value query hardness of approximation of the broadcast channel problem: Theorem 6.5. In the value query model, for any xed ε > 0, a Ω 1 -approximation from [START_REF] Dobzinski | An improved approximation algorithm for combinatorial auctions with submodular bidders[END_REF] works also here.

Proof. The proof is inspired by Theorem 3.1 of [START_REF] Vahab | Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions[END_REF]. We will show using probabilistic arguments that any

Ω 1 m 1 2 -ε
-approximation algorithm requires an exponential number of value queries. Let us x a small constant δ > 0. We choose k 1 ∈ N as the number of messages (the bidders) and the output space

Y 1 := [m]
with m := k 2 1 (the items). Then, we choose uniformly at random an equi-partition of Y 1 in k 1 parts of size k 1 , which we name T 1 , . . . , T k1 .

Let us dene now Y 2 := [m + k 1 + 1]. We take X := Y 2 = [m + 1 + k 1 ] as well. We can now dene our broadcast channel W , with some positive constant C to be xed later to guarantee that W is a conditional probability distribution. Let us dene its value for y 2 = 1:

W (y 1 1|x) := C ×      m 2δ 1 y1=x when 1 ≤ x ≤ m , 1 m 1 2 -δ when x = m + 1 , 1 y1∈Tj when 1 ≤ j := x -(m + 1) ≤ k 1 .
Then, we dene other y 2 inputs as translations of W (y 1 1|x). Specically, we dene:

W (y 1 y 2 |x) := W (y 1 1|t y2-1 (x)) with t s (x) := 1 + [(x -1 + s) mod (m + k 1 + 1)] .
All coecients are nonnegative. So W will be a channel if for all x, y1,y2 W (y 1 y 2 |x) = 1. However, one has, for some xed x 0 : , which does not depend on x 0 . Thus, we have dened a correct instance of our problem. Note that on this instance, we have:

y1,y2 W (y 1 y 2 |x 0 ) = y1 y2 W (y 1 y 2 |x 0 ) = y1 y2 W (y 1 1|t y2-1 (x 0 )) = y1 x W (y 1 1|x) = C y1   1≤i≤m m 2δ 1 y1=i + 1 m 1 2 -δ + 1≤j≤k1 1 y1∈Tj   = C   1≤i≤m m 2δ + m × 1 m 1 2 -δ + 1≤j≤k1 k 1   = 1 , (41) 
f 1 W (S) = 1 |Y 2 | y2 max x y1∈S W (y 1 y 2 |x) = y2 max x y1∈S W (y 1 1|t y2-1 (x)) = m + k 1 + 1 |Y 2 | max x y1∈S W (y 1 1|x) since t y2-1 bijection = C(m + k 1 + 1) |Y 2 | × max      m 2δ |{i} ∩ S| for 1 ≤ i ≤ m 1 m 1 2 -δ |S| |T j ∩ S| for 1 ≤ j ≤ k 1 (42) 
Let us also consider an alternate broadcast channel W , with the only dierence that 1 y1∈Tj is re-

placed by 1 m 1 2 , for j ∈ [k 1 ].
For that channel, the constant C remains the same (since j y1

1 y1∈Tj = k 1 × k 1 = k 1 × m × 1 k1 = j y1 1 m 1 2 
), so we get that:

f 1 W (S) = C(m + k 1 + 1) |Y 2 | × max        m 2δ |{i} ∩ S| for 1 ≤ i ≤ m 1 m 1 2 -δ |S| 1 m 1 2 |S| for 1 ≤ j ≤ k 1 = C(m + k 1 + 1) |Y 2 | × max m 2δ |{i} ∩ S| for 1 ≤ i ≤ m 1 m 1 2 -δ |S| (43) since 1 m 1 2 |S| ≤ 1 m 1 2 -δ |S|. Let us consider normalized versions v(S) := |Y2| C(m+k1+1 f 1 W (S) and v (S) := |Y2| C(m+k1+1 f 1 W (S)
, so distinguishing between v and v is the same as distinguishing between f 1 W and f 1 W . We will prove that it takes an exponential number of value queries to distinguish between v and v . On the one hand, one can easily show that the maximum value of the social welfare problem with

v is (k 1 -1)m 2δ + 1 m 1 2 -δ (m -(k 1 -1)) = O(m 1 2 +2δ
), obtained taking (k 1 -1) singletons as the rst components of the partition (the bidders), giving the rest of Y 1 (the items) to the last. On the other hand, the maximum value of the social welfare problem with v is k 1 × k 1 = m, obtained with the partition T 1 , . . . , T k1 . The fact that it requires an exponential number of value queries to distinguish between the two situations will imply that one cannot get an approximation rate better than

Ω 1 m 1 2 -2δ
in less than an exponential number of value queries.

We will now prove that distinguishing between v and v requires an exponential number of value queries. Note rst that v(∅) = v (∅) = 0, so we do not need to consider empty sets.

Let us x some non-empty set S ⊆ [m]. Let us dene the random boolean variables X

i j := 1 i∈Tj for j ∈ [k 1 ] and i ∈ [m]
. By construction of the random equi-partition T 1 , . . . , T k1 , (X i j ) i∈[m] is a permutation distribution (see Denition 2.8) of (0, . . . , 0, 1, . . . , 1) with m -k 1 zeros and k 1 ones, each X i j following a Bernouilli law of parameter p := 1 k1 . Thus it is negatively associated by Proposition 2.9, and the sub-family (X i j ) i∈S is negatively associated as well by Proposition 2.4. Note in particular that |T j ∩ S| = i∈S X i j is a sum of negatively associated Bernouilli variables of the same parameter p, so the version of the Cherno-Hoeding bound from Proposition 2.10 holds.

Let us rst assume that S is of size 0 < |S| ≤ m -δ |S| ≤ m 2δ , so we get that v (S) = m 2δ . On the other hand, we have that:

v(S) = max m 2δ |T j ∩ S| for 1 ≤ j ≤ k 1 (44) 
Thus, v(S) is dierent from v (S) if and only if ∃j ∈ k 1 , |T j ∩ S| > m 2δ . But, we have: 

P ∃j ∈ k 1 , |T j ∩ S| > m 2δ ≤ j∈[
Thus, this event occurs with exponentially small probability (on the choice of the partition T 1 , . . . , T k1 ).

Let us now study the case of S of size |S| > m 

Thus, this event occurs with exponentially small probability as well. We have then that for all set S, P (v(S) = v (S)) ≤ p leak := m 1 2 e -m 3δ 4 , which is an exponentially small bound that does not depend on S.

Hence, for every set S, only with exponentially small probability p leak can one distinguish between v and v . For some xed algorithm A, let us consider the sequence L of queries made by A before it is able to distinguish between v and v : L := (S 1 , . . . , S n ), with v(S i ) = v (S i ) for i ∈ [n] and v (S n+1 ) > v(S n+1 ). L is independent of T 1 , . . . T k1 as no information from this partition is leaked before S n+1 . Thus, for such an algorithm to be correct, it should work for any equi-partition T 1 , . . . T k1 . We have: In particular, this implies that:

P (∃i ∈ [n] : v(S i ) = v (S i )) ≤
P (∀i ∈ [n] : v(S i ) = v (S i )) ≥ 1 -np leak .
So, if 1 -np leak > 0, i.e. n < 1 p leak , then there exists some equi-partition T 1 , . . . T k1 such that our algorithm outputs a sequence L of queries of length n before being able to distinguish between v and v . In particular, we can take n = 1 2p leak so that L is of exponential size. Hence, for any algorithm A, there exists some equi-partition T 1 , . . . T k1 such that A needs an exponential number of value queries to distinguish between v and v . This concludes the proof of the theorem for any deterministic algorithm.

Finally, the hardness result holds also for randomized algorithms. Indeed, let us call A s , the running algorithm conditioned on its random bits being s. A s is deterministic so the previous proof holds: with high probability p, the sequence of 1-p p leak queries does not reveal anything to distinguish between v and v , although it is of exponential size in m. Then, averaging over all its random bitstrings, the same result holds, as p leak is independent of the equi-partition T 1 , . . . , T k1 .

Limitations of the Model

The main weakness of the previous result is that it highly relies on the restriction that one has access to the data only through value queries. Indeed, if one has access to the full data, it is possible to read the partition T 1 , . . . , T k1 which gives the optimal solution directly. This weakness comes from the fact that our utility function f 1 W can be described by polynomial-size data, as it is characterized by a broadcast channel W , whereas if we write it in the XOS form as a maximum of linear valuation functions, it will in general have an exponential-size dening set of linear valuation functions.

Conclusion

We have studied several algorithmic aspects and non-signaling assisted capacity regions of broadcast channels. We have shown that sum success probabilities of the broadcast channel coding problem are the same with and without non-signaling assistance between decoders, and that it implied that non-signaling resource shared between decoders does not change the capacity region. For the class of deterministic broadcast channels, we have described a (1 -e -1 ) 2 -approximation algorithm running in polynomial time, and we have shown that the capacity region for that class is the same with or without non-signaling assistance. Finally, we have shown that in the value query model, we cannot achieve a better approximation ratio than Ω 1 √ m in polynomial time for the general broadcast channel coding problem, with m the size of one of the outputs of the channel.

Our results suggest that non-signaling assistance could improve the capacity region of general broadcast channels, which is left as a major open question. An intermediate result would be to show that it is NP-hard to approximate the broadcast channel coding problem within any constant ratio, strengthening our hardness result without relying on the value query model. Finally, one could also try to develop approximations algorithms for other sub-classes of broadcast channels, such as semi-deterministic or degraded ones. This could be a crucial step towards showing that the capacity region for those classes is the same with or without non-signaling assistance.
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 2 e G (P 1 , P 2 ) := |E G P 1 ,P 2 | is the number of edges of G P1,P2 . 3. N P1,P2 G (p) := N G P 1 ,P 2 (p) is the set of neighbors of p ∈ P 1 P 2 in the graph G P1,P2 . 4. Similarly, deg P1,P2 G (p) := deg G P 1 ,P 2 (p) is the degree, i.e. the number of neighbors, of p in the graph G P1,P2 .

  Proof. Consider an optimal solution e, d 1 , d 2 of DetBCC. Note that d 1 denes a partition P 1 of Y 1 in k 1 parts and d 2 denes a partition P 2 of Y 2 in k 2 parts, with P i b b := {y b ∈ Y b : d b (y) = i b } for b ∈ {1, 2}. Then we have:

x

  r x,W1(x),W2(x) ≤ y1 min(k 2 , deg(y 1 )) .

  channel coding problem on W, k 1 , k 2 , restricted to the case of |Y 2 | = k 2 and m = |Y 1 | = k 21 , requires exponentially many value queries to f 1 W . Remark. As our problem is a particular instance of the social welfare maximization problem with XOS functions, the polynomial-time Ω 1 m 1 2

1 2

 1 +δ . Then, we have that 1 m 1 2

P 1 2 e -m 3δ 4 .

 14 k1] |T j ∩ S| > m 2δ by union bound =

1 2 1 2 - 1 2 - 1 2 1 m 1 2 -

 1121212112 +δ . Then, we have that 1 m δ |S| > m 2δ , so we get that v (S) = 1 m δ |S|. On the other hand, we have that:v(S) = max 1 m -δ |S| |T j ∩ S| for 1 ≤ j ≤ k 1 (46) Thus, v(S) is dierent from v (S)if and only if ∃j ∈ [k 1 ], |T j ∩ S| > δ |S|. But, we have: P ∃j ∈ [k 1 ], |T j ∩ S| >

P

  (v(S i ) = v (S i )) = np leak by union bound.

  The pair is given as input to W , which results in two random outputs in Y 1 and Y 2 . From the output in Y 1 (resp. Y 2 ), we want to decode back the original message in[k 1 ] (resp. [k 2 ]). We will call e : [k 1 ] × [k 2 ] → X the encoder, d 1 : Y 1 → [k 1 ] the rst decoder and d 2 : Y 2 → [k 2
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