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The Rhind 2÷n table and fraction reckoning in ancient Egypt: an ingenious combination of summation and divisibility properties
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Except for the fraction 2/3, Egyptian scribes used only unit fractions, i.e. fractions with numerators equal to unity. They expressed all other fractions as a sum of these unit fractions. They used tables such as the Rhind table, providing decompositions of numbers written as 2/n with n an odd integer (from three to 101) into a sum of unit fractions, for which the decomposition procedure remains today mysterious. Here, we propose a simple and unique procedure based on elementary integer summations with which to reproduce the entire Rhind table. We add two prioritized selection criteria and discuss some of the Egyptian scribes' possible preferences, finally resulting in the Rhind table decompositions in 87.8% of cases at the first attempt. All the remaining cases can also be calculated using our procedure, with the same criteria and preferences, but differently prioritised. In addition to understanding how ancient Egyptians computed, this simple procedure improves our understanding of perceptions of numbers in ancient Egypt.

Introduction

The Rhind Mathematical Papyrus (RMP) was copied around 1650 BCE by a scribe called Ahmose (or Ahmes), on the basis of documents dating from a few centuries previously. It is one of the most complete documents we have on Egyptian mathematical knowledge, in the Egyptian Middle Kingdom. Along with a series of mathematical problems with their solutions, the papyrus includes the so-called "2÷n table", a table for dividing the number 2 by all odd integers ranging from 3 to 1 (p. 50, [START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF]. The result of each division is expressed as a sum of what we today call unit fractions (i.e. fraction with numerator equal to 1). In general, there are many ways to express the result of a division into a sum of unit fractions, but the scribe did choose each time a specific decomposition. Two different questions then arise. Firstly, did the scribe use a single and coherent process to decompose fractions? Secondly, did he choose "randomly" a specific decomposition amongst others, or was he following a set of precise selection criteria? Some historians of ancient Egyptian mathematics think that the table was "a result of experience and (presumably) a trial and error process, rather than a systematic execution of a set of rules" (p. 96, [START_REF] Imhausen | Mathematics in Ancient Egypt -A Contextual History[END_REF]. Conversely, others think that the scribe followed a unique and coherent procedure and, since the beginning of the twentieth century, mathematicians and historians have endeavoured to discover the principles leading to the Rhind table decompositions, but so far, no convincing demonstration has been given to unambiguously explain how they were computed and selected. If it exists, such a procedure should respect several constraints as shown by past attempts (p. 24, [START_REF] Clagett | Ancient Egyptian Science, A Source Book[END_REF]). First, it should consist in a decomposition process and should recover all double decompositions of the Rhind table or explain why it sometimes fails. In addition, the process should have been within the capacity of Egyptian scribes at the time. Most importantly, as any decomposition process usually provides several solutions, the procedure should include a criteria list (also attainable at that time) for selecting the right decomposition among others. So far, all procedures proposed in the literature have fallen short of the mark with a few remaining fractions of the table (p. 28, Clagett 1999;[START_REF] Imhausen | Ancient Egyptian mathematics: New perspectives on old sources[END_REF], thus encouraging a continued search for a more exhaustive procedure.

In this study, our objective was to provide a unique and most fundamental procedure to recover all the decompositions found in the Rhind table. Based on a simple principle often used in the Egyptian sources, a combination of integer summations and divisibility conditions, the decomposition process proposed here enables us to calculate all the decompositions given in the Rhind table. This process is additive in spirit, in perfect agreement with what historians know about Egyptian arithmetic (p. 73, [START_REF] Neugebauer | The exact sciences in Antiquity[END_REF]). In addition, we propose a short criteria list, slightly different to the ones found in the literature, along with some preferences on the numbers used, to rigorously select the relevant decomposition. We venture that this procedure (i.e. the process combined with the criteria) provides the inner essence of fraction reckoning in ancient Egypt.

Egyptian arithmetic and the Rhind table

Our knowledge of Egyptian arithmetic of Middle Kingdom come from the Rhind Mathematical Papyrus (RMP, 1650bc), and a few other documents such as the Egyptian Mathematical Leather Roll (EMLR, 1650 bc) and the Kahun Fragments (1825 bc). Yet the RMP is far more complete: it contains also some problems with their solutions. In this section we start with a brief survey of the basic knowledge about Egyptian arithmetic that will be necessary in our study of the Rhind table. We then remind one of the most important earlier attempts to crack the Rhind table code.

1.1 Basics: number system and fractions

The number system used in ancient Egypt can be described in modern terminology as a decimal system without positional (place-value) notation (p. 18, Imhausen 2016). The Egyptians used specific symbols for the powers of ten up to one million. In hieroglyphic writing, a number was written as a juxtaposition of these symbols. Additions and subtractions were easily performed by adding or subtracting the corresponding symbols. Multiplications and divisions were reduced to the same process of addition, making the whole procedure of Egyptian mathematics essentially additive (p. 73, [START_REF] Neugebauer | The exact sciences in Antiquity[END_REF]). Indeed, Egyptian sources show that multiplication was usually performed by the so-called method of duplication (p. 18, Gillings 1972). Division was performed in a similar way, by doing a multiplication in reverse (p. 38, Burton 2011).

Yet, division cannot always be done using integers, and fractions often appear mandatory. In ancient Egypt, the concept of fraction was rather different than the one we use in modern mathematics. Egyptians considered only inverses of integers, or parts of a whole, which, in the hieroglyphic writing were represented by placing the hieroglyphic sign (an open mouth) on top of the integer. In other words, the fractions were "parts of a whole" (i.e. unity). The only exception is two thirds (2/3) 1 , 1 Another "complementary fraction" had a special sign, the fraction 3/4, but it plays no role in the arithmetical procedures of ancient Egyptians (p. 74, Neugebauer, 1969). which had its own symbol and was seen as the complementary part of 1/3 (p. 128, Ritter 2000). For Egyptian scribes, the fractional number we represent today by m/n consisted of a sum of different inverses, written in descending order (p. 54, Imhausen 2016). The reader may find more details on the prehistory of Egyptian fractions and their development in the literature [START_REF] Ritter | Metrology and the Prehistory of Fractions[END_REF].

From our modern point of view, calculations with Egyptian fractions may seem cumbersome, and for this reason, many authors have argued that Egyptian mathematics was awkward (for a short review of various opinions see p. 48, [START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF]. But all numeration systems have their own difficulty, and one possible response to this difficulty is to make the calculations once and for all, and to record the results in a table for later use (p. 129, Ritter 2000). To ease our presentation in this paper, we will use modern notations and terminology. In particular, we will refer to inverses as unit fractions, i.e. fractions with a numerator equals to unity. More generally, we will write the result of the division of two integers in modern notations without loss of rigour and generality, as the fraction m/n, and call m the numerator and n the denominator of the fraction.

The Rhind 2÷n table

Since Egyptian techniques of multiplication and division frequently involved the doubling of a number, the scribes often had to confront the double of a unit fraction, the fraction 2/n in our modern notations, which must then be written as a sum of distinct unit fractions. When n is an even number, the fraction 2/n is easily expressed as a unit fraction (p. 75, Neugebauer 1969), but when n is odd, the computation becomes much more difficult, thus justifying the preparation of tables. A "table of doubles" consists of giving a decomposition for each fraction 2/n into a sum of unit fractions. To our knowledge, such tables are found in two sources: at the beginning of the Rhind Mathematical Papyrus (for odd n from 3 to 101), hereafter called RMP, and in the Lahun fragment UC 32159 (for odd n from 3 to 21, [START_REF] Imhausen | Ancient Egyptian mathematics: New perspectives on old sources[END_REF]. The entries of the Lahun fragment are identical to the corresponding entries of the Rhind papyrus, showing that the decompositions of 2/n were not chosen on a personal basis by a specific scribe, but for various reasons, had to be precisely these ones.

The Rhind table is far more important than the Lahun fragment, not only because of its length, but also because for each fraction, associated with the chosen decomposition into unit fractions, a verification of the result is provided. More precisely, the scribe first provides the decomposition and then execute a multiplication of the given result by the respective value n to verify that this decomposition is correct (p. 122, Clagett 1999). This verification highly depends on the chosen decomposition. The study of these computations is of interest, but it was not our objective in this paper: following other scholars, we only focused on the critical question "How and why does Ahmose choose these specific decompositions (and not others)?" The first two columns of table 1 provide all 50 decompositions of the Rhind table (see also p.50, [START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF]). Many historians have contributed to the study of the Rhind table [START_REF] Abdulaziz | On the Egyptian method of decomposing 2/n into unit fractions[END_REF][START_REF] Bruins | Platon et la table égyptienne 2/n[END_REF][START_REF] Neugebauer | Die Grundlagen der ägyptischen Bruchrechnung[END_REF][START_REF] Van Der Waerden | The (2:n) table in the Rhind Papyrus[END_REF][START_REF] Vogel | Die Algebra der Ägypter des Mittleren Reiches[END_REF]. So far no convincing demonstration has been provided to exhaustively explain how the decompositions of the Rhind table were computed. The common flaw of these past attempts is that they all rely on modern techniques (e.g. formulae, m/n fractions), for computation and not for notation motivations, which were unlikely to have been used by Egyptian scribes. In addition, they all left aside part of the procedure, or part of the table, still unexplained by the proposed process (p. 28, [START_REF] Clagett | Ancient Egyptian Science, A Source Book[END_REF]. As any process to decompose fractions 2/n (n an odd integer strictly greater than two) lead to several options, these past studies have been systematically associated with selection criteria to select one option over another. Hereafter, we focus on one of the major past attempts, the Bruins-Gillings' procedure, and involving important techniques for our proposition. A more detailed survey of other attempts may be found in [START_REF] Abdulaziz | On the Egyptian method of decomposing 2/n into unit fractions[END_REF][START_REF] Clagett | Ancient Egyptian Science, A Source Book[END_REF]).

The Bruins-Gillings procedure

The "Bruins-Gillings procedure" as we call it, is based on an earlier method [START_REF] Bruins | The part in ancient Egyptian mathematics[END_REF][START_REF] Bruins | Platon et la table égyptienne 2/n[END_REF]. It generally recognised among Historians as one of the most realistic attempt to crack the Rhind table code. This general method consists in choosing a suitable composite number m and, and in a kind of "scaling", changing the fraction denominator and then expressing the numerator as a sum of divisors of the denominator:

2 𝑝𝑝 � 𝑚𝑚 𝑚𝑚 � = 2 𝑝𝑝 � 𝑎𝑎+𝑏𝑏+𝑐𝑐+𝑑𝑑 𝑚𝑚 � = 2𝑎𝑎 𝑚𝑚𝑝𝑝 + 2𝑏𝑏 𝑚𝑚𝑝𝑝 + 2𝑐𝑐 𝑚𝑚𝑝𝑝 + 2𝑑𝑑 𝑚𝑚𝑝𝑝 (1)
If m is an even number and a common multiple of a, b, c, and d, then this formula directly decomposes the initial fraction into a sum of unit fractions.

Gillings explained that this process is probably "closer to an acceptable theory" [START_REF] Gillings | The recto of the Rhind Mathematical Papyrus How did the ancient Egyptian scribe prepare it ?[END_REF][START_REF] Gillings | The recto of the Rhind Mathematical Papyrus and the Egyptian Mathematical Leather Roll[END_REF], as it is attainable by Egyptians and provides most of the fraction of the Rhind Table . This method thus suggests decomposing the numerator into a sum of divisors of the denominator, a technique often used by ancient Egyptians. We make an extensive use of this property in section 2.

The selection criteria: The search for the selection criteria used by Ahmose of the Bruins-Gillings procedure is as important as the search for the decomposition process. Their proposed criteria are the following (p. 49, Gillings 1972): i) small denominators are preferred, but none as large as one thousand; ii) the result of decomposition should not use more than four unit fractions and be as short as possible; iii) the denominators are listed in an increasing order and a trivial decomposition such as 2/n = 1/n + 1/n is forbidden; iv) the size of the first denominator of a decomposition is critical and should be as small as possible, but a slightly greater first denominator is preferred if it greatly reduces the last denominator; v) decompositions using even numbers are preferred to decompositions with odd numbers. Even though these criteria were discussed in the past [START_REF] Bruckheimer | Some comments on R.J. Gillings' analysis of the 2/n table in the Rhind Papyrus[END_REF], they are today accepted by most historians. However, Abdulaziz revisits Gillings' five criteria and keeps criteria ii) and iii) which, by themselves, define the decomposition issue: to build the Rhind table supposes to search for decompositions shorter than four unit fractions, with denominators all distinct and listed in an increasing order [START_REF] Abdulaziz | On the Egyptian method of decomposing 2/n into unit fractions[END_REF]. Abdulaziz also keeps criterion v) without modification or precision. Yet, criteria i) and iv) are modified to increase the selection accuracy and reduce the number of solutions: criterion i Abdulaziz ) the greatest denominator of the 2/n decomposition should not exceed 10n. So, the threshold now depends on n, which seems logical and is in agreement with the Rhind table; iv Abdulaziz ) the size of the first (smallest) denominator is the primary criterion and should be as great as possible. This last criterion modification has a huge impact on the direction used to decompose and on the final decomposition.

Limitations

While the Bruins-Gillings decomposition process could provide all the expected values, it hides how to choose the central element of the decomposition (i.e. the number m). In the general case, more than one value of m could apply to equation (1), giving then different decompositions into unit fractions. For the completeness of the process, one should be able to write an algorithm to select the appropriate value of m. The further application of selection criteria does not efficiently provide a unique decomposition for a specific fraction 2/n. In particular, criteria iv) and v) are defined as primary to the others. So, we may wonder which of these two criteria should be used first? The study of the Rhind table does not allow us to prioritize these two criteria. Which decomposition, for example, if the first (smallest) denominator is odd? Furthermore, these two criteria are sometimes in conflict with the second (a decomposition of minimum length (ii)). In addition to these limits, the first criterion (i) imposing the threshold of one thousand is deduced from the Rhind table (the highest used is 890, Table 1). Despite this criterion's link to the decimal system used by ancient Egyptians [START_REF] Clagett | Ancient Egyptian Science, A Source Book[END_REF][START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF], other threshold values might be selected (e.g. 900 or, as claimed by Abdulaziz, a value proportional to the number n whose double is searched for). Ultimately, it would be unrealistic to neglect the human factor in the decomposition process. The author of the papyrus possibly worked without a criterion priority order, and/or could have selected on a case-by-case basis, according to the easiest or most appropriate decomposition for ulterior use (a point further discussed). The process we propose in section 2 is in the direct line with the Bruins-Gillings procedure. We essentially suggest a specific way of implementing the procedure, along with more accurate tools to select the appropriate decomposition.

A realistic decomposition process

The Gillings-Bruins procedure fails to convincingly reproduce the entire Rhind table. Yet, it has important advantages. First, it lies on a principle commonly found in Egyptian sources to decompose a fraction m/n as a sum of unit fractions: that of splitting the numerator m into a sum of divisors of the denominator n. This is in good agreement with the additive spirit of Egyptian mathematics (p. 73, Neugebauer 1969). Second, every fraction 2/n in the table could be reached by the process, once one find a method to recover the m value in equation ( 1). One task to improve the Gillings-Bruins procedure is thus to select this appropriate value. In this section we start by providing a simple interpretation of the Gillings-Bruins equation ( 1). This will allow describing elementary and unique procedure to build the entire Rhind table.

The central process

All numbers involved in the Rhind Table are relatively small, say, less than thousand. We assume that the scribe had sufficient knowledge to recognise multiples and divisors of such small numbers. Since our aim is to improve and complete the Bruins-Gillings procedure, we start with the study of the decomposition process and discuss the Gillings selection criteria in a later section. We will focus on the abovementioned principle: expressing the numerator as a sum of divisors of the denominator.

More generally, this principle consists in splitting a number into a sum of divisors of a second number. This suggests that the Bruins-Gillings' decomposition process can be reduced to the search of simple relationships involving only integers with specific divisibility properties. For this purpose, we use the following lemma:

Lemma

For each integer m such that n/2 < m < n, it follows that 2𝑚𝑚 = 𝑛𝑛 + 𝑟𝑟, where r is an odd integer strictly between 0 and n. If r can be written as a sum of s divisors of m, then the fraction 2/n can be decomposed into a sum of s + 1 unit fractions.

Indeed, if 𝑟𝑟 = 𝑟𝑟 1 + ⋯ + 𝑟𝑟 𝑠𝑠 , with 𝑚𝑚 = 𝑟𝑟 1 𝑘𝑘 1 = ⋯ = 𝑟𝑟 𝑠𝑠 𝑘𝑘 𝑠𝑠 , the relationship: 2𝑚𝑚 = 𝑛𝑛 + 𝑟𝑟 1 + ⋯ + 𝑟𝑟 𝑠𝑠
(2) provides the development into unit fractions by dividing by the product mn:

2 𝑛𝑛 = 1 𝑚𝑚 + 1 𝑘𝑘 1 + ⋯ + 1 𝑘𝑘 𝑠𝑠 If 𝑟𝑟 𝑖𝑖
values are all distinct and different from m, the associated decomposition is acceptable for ancient Egyptians as all denominators are distinct too. Here again, we wrote any fraction in modern notations without loss of rigour and generality.

This lemma aims at translating the fraction decomposition issue in terms of simple relationships between integers. Instead of directly searching for some decompositions into unit fractions, one searches for relationships 2𝑚𝑚 = 𝑛𝑛 + 𝑟𝑟 1 + ⋯ + 𝑟𝑟 𝑠𝑠 where 𝑟𝑟 𝑖𝑖 values are all distinct divisors of m yet different from m. To decreasingly rank 𝑟𝑟 𝑖𝑖 values might ease the process. This principle is commonly used by Egyptian scribes (e.g., see the decomposition of 19÷8 in problems 24 and 25 of the RMP).

Therefore, we propose a decomposition process based on the following algorithm: b. If m or mn is a multiple of r, then a relationship of length two is obtained. Note that the value

𝑚𝑚 = 𝑛𝑛+1 2
will always provide a relevant relationship of length 2, because 𝑟𝑟 = 1 is a divisor of m;

c. If r is not a divisor of m or mn, search for all possible divisors of m, and write all possible additions with two or three divisors of m; d. All sums equal to r provide relevant relationships of length 3 or 4.

At this stage, two remarks should be made. First, dividing the trivial relationship 4 = 2 × 2 = 3 + 1 by 6 = 3 × 2, leads to the central decomposition 2/3 = 1/2 + 1/6. This decomposition is often used in Egyptian sources, and has been proposed to recover the RMP decomposition for all multiples of three (van der Waerden 1980). Second, this lemma allows explaining the following formula, first proposed by Vogel (1929) for the decompositions into two unit fractions:

2 𝑛𝑛 = 1 𝑛𝑛+1 2 + 1 𝑛𝑛 (𝑛𝑛+1) 2 
Indeed, the value 𝑚𝑚 = 𝑛𝑛+1 2 leads to 2𝑚𝑚 = 𝑛𝑛 + 1. Vogel's formula follows simply by dividing by

𝑛𝑛 (𝑛𝑛+1) 2 .
The correspondence between the RMP decompositions and the integer relationships as described above is high (Table 1). All decompositions of the Rhind table can be obtained by the proposed process, except the value n = 101. We exclude this case (n = 101) from our study, but we shall see later that it can be obtained in a similarly additive way.

In general, the proposed process implies the testing of a large number of values of m, most of them not producing any relevant relationships. And for a given value of m, the process sometimes provides several solutions. With the help of a computer, one can instantaneously compute several decompositions of each fraction 2/n. Yet, the scribe had to compute by hand, and to test most solutions, according to some selection criteria. Even with some help, the process to compute all decompositions and then select the appropriate ones may have been long and painful. We hypothesize here that ancient Egyptians had a practical knowledge of integers fine enough to shortcut some of these computations. This is why we believe Egyptians developed a practical process to best exploit the abovementioned algorithm. In the following section, we study and discuss the application of our algorithm, thus leading us to distinguish between various n values.

Implementation of the process

Here, we give some clues to reduce the trials of the m values in our algorithm. Short decompositions seem to be preferred by ancient Egyptians (p. 49, Gillings 1972). Let n be an odd integer form 3 to 99. Decompositions of length equal to two are obtained with equalities of the type 2𝑚𝑚 = 𝑛𝑛 + 𝑟𝑟 where m or mn is a multiple of r. If m is a multiple of r, so is n (or equivalently, if r is a divisor of m, it is also a divisor of n). Consequently, in such relationships, the a priori appropriate values of r are constrained by the integer n. The prior knowledge of the divisibility of n allows us to guess the required r value and thus the integer m in advance.

The situation drastically changes depending on whether n is composite (i.e. numbers which are, by definition, not prime numbers) or not. Indeed, appropriate values of r should also divide n, which considerably reduces the choices. In particular, if n is a prime number, the sole suitable r value is unity, and it leads to the trivial relationship 2𝑚𝑚 = 𝑛𝑛 + 1 obtained with the value 𝑚𝑚 = 𝑛𝑛+1 2

. No doubt that ancient Egyptians are able to assess whether a number is multiple of others or not, at least for small numbers.

Composite numbers

If n = pq, where p and q are integers such that p < q, we suggest that the scribe needs to test only the following four relationships:

𝑛𝑛 + 1 = 2𝑚𝑚, 𝑛𝑛 + 𝑝𝑝 = 2𝑚𝑚, 𝑛𝑛 + 𝑞𝑞 = 2𝑚𝑚, 𝑛𝑛 + 𝑝𝑝 2 = 2𝑚𝑚,
respectively corresponding to the four following values of m:

𝑚𝑚 = 𝑛𝑛 + 1 2 , 𝑚𝑚 = 𝑝𝑝(𝑞𝑞 + 1) 2 , 𝑚𝑚 = 𝑞𝑞(𝑝𝑝 + 1) 2 and 𝑚𝑚 = 𝑝𝑝(𝑞𝑞 + 𝑝𝑝) 2 
Indeed, possible values for the divisor r are unity, p and q, respectively corresponding to the first three relationships above. The fourth relationship should also be tested, because since n is a multiple of p, so is m, and the product nm is a multiple of p 2 . Consequently, the relationship 2𝑚𝑚 = 𝑛𝑛 + 𝑝𝑝 2 leads to a decomposition into two unit fractions. The scribe could also be tempted to test the value r = q 2 , but this value is too large due to the initial condition (p < q) and leading to 𝑛𝑛 = 𝑝𝑝𝑞𝑞 < 𝑞𝑞 2 . Finally, composite numbers may be decomposed with the four above relationships. It is noticeable that if 𝑛𝑛 = 𝑝𝑝 2 , then two values only should be tested: the second and third values are equal, and the fourth is not acceptable because in this case 𝑚𝑚 = 𝑛𝑛 = 𝑝𝑝 2 . In particular for 𝑛𝑛 = 9, 25 and 49, our process will provide only two different decompositions.

In brief, such observations considerably simplify the decomposition task, as they suggest testing these four relationships only, and then choosing between them. These relationships depend on the chosen factorization for the integer n but, in practice, it is sufficient to choose the p integer as the smallest prime divisor of n to obtain a decomposition of the fraction 2/n. In addition, most of the integers from 3 to 99 involved in the Rhind table are products of two prime numbers, for which the factorization of n is unique.

As an illustration, the decompositions of 35 and 91 are relevant as they are not reckoned by most of the previous proposed procedures [START_REF] Abdulaziz | On the Egyptian method of decomposing 2/n into unit fractions[END_REF][START_REF] Van Der Waerden | The (2:n) table in the Rhind Papyrus[END_REF]. We discuss only the case n = 35 (= 5×7), as the discussion would be similar for n = 91 (= 7×13). Since 35 = 5×7, we need to test the following four relationships:

-35 + 1 = 2×18 (corresponding to 𝑚𝑚 = The scribe chose the decomposition having the largest divisor (25) providing the following decomposition:

2 35 = 1 30 + 1 42
We will study the reason for this choice in detail in the next section considering selection criteria, but note here that this is the decomposition with the smallest last denominator.

Furthermore, this process allows for a new explanation of the so called "red auxiliaries". Indeed, n = 35 is a special case in the Rhind table. It is the sole decomposition showing a second line of computation and using red ink (represented here by bold type) to highlight the number six [START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF]):

35 30 th of 35 is 1 and 1/6 42 th of 35 is 2/3 and 1/6 6 7 5

We may understand this as follows: i) the scribe writes 35 + 25 = 2 × 𝟑𝟑𝟑𝟑 and notices that five is a common factor of 25, 30 and 35. ii) the scribe then computes 30/5 = 6 and 35/5 = 7, and the product 6 × 7 = 𝟒𝟒𝟒𝟒, to find the appropriate decomposition. This interpretation reinforces our belief that the proposed process conveniently represents the roots of Egyptian knowledge in unit fractions.

As a convincing result, 24 of the 25 decompositions of length two in the Rhind table are recovered by this process (96 % success, Table 1). The only exception is the fraction 2/95, which is an exception in the Rhind papyrus too, as this fraction is the sole fraction with a composite denominator associated to a decomposition of length three:

2 95 = 1 60 + 1 380 + 1 570
Yet, even in this case, our process provides this decomposition once the constraint of having two terms has been relaxed. Indeed, for n = 95 = 5 × 19, one deduces the relationship 95 + 25 = 120 = 2 × 60. The scribe may have seen the following relationship: 2 × 60 = 95 + 15 + 10 where 10 and 15 are divisors of 60, precisely leading to the proposed decomposition. Considering this argument, this sole exception no longer appears exceptional.

Prime numbers

For prime numbers p (3 ≤ 𝑝𝑝 ≤ 99) the only possible relationship which can help to decompose the fraction 2/p into two unit fractions is 2𝑚𝑚 = 𝑝𝑝 + 1. The associated decomposition will be usually rejected because it provides a too large denominator (as we will see further). So, in most of the cases, one should start searching for decompositions of length three, then of length four. That is,

starting from 𝑚𝑚 = 𝑛𝑛+3 2
to 𝑚𝑚 = 𝑛𝑛 -1, one searches for relationships 2𝑚𝑚 = 𝑛𝑛 + 𝑟𝑟 1 + 𝑟𝑟 2 , where 𝑟𝑟 1 and 𝑟𝑟 2 are divisors of m. If no satisfying decomposition is found, one then searches for relationships of length four in the same way.

The scribe, working by hand, would be well advised to find a practical method to reduce the number of trials. As n is useless to find the appropriate value of m, it seems interesting to focus on the divisibility of m. We hypothesize that Egyptian scribes knew in advance relevant values of m likely leading to a correct decomposition (i.e. leading to a relevant relationship). It is reasonable to think that they knew integers with more divisors than others, such as 12, 20, 24, 30. These values of the number m are good candidates for decompositions in unit fractions, as any integer is more likely written into sums of two or three divisors of m.

We suggest that the scribe chose the value of m among the following list of "highly divisible" numbers: 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, and 60. Indeed, the first denominator of all decompositions of length three and four in the Rhind table belongs to this list, with no exception (Table 1). In practice, once some selection criteria have been defined (see next section), one can stop the search as soon as a suitable decomposition is found. These values are all even, and the corresponding relationships, if any, then lead to a decomposition with an even first denominator.

Let us take the example n = 41. Hence 21 ≤ 𝑚𝑚 ≤ 40, leading to the following list of candidates {24, 28, 30, 36, 40}. With the smallest value m = 24, one finds: 2×24 = 48 = 41 + 4 + 3 providing a decomposition of length three with the associated denominators 24, 246 and 328. This is the selection of the scribe for the fraction 2/41 (Table 1), meaning that this decomposition satisfies his selection criteria, and hence there is no need to search further.

Over the 24 decompositions concerning prime numbers of the Rhind table, 23 are provided by this process (Table 1). The only exception is n = 5. In this case, the value m = 3 is not an element of our list, but the relationship 2 × 3 = 5 + 1 still provides the decomposition chosen in the RMP. The scribe most likely knew this relationship of length two and considered unnecessary to search for additional decompositions.

The selection stage

In a few cases, the process described above provides a unique decomposition of 2/n into a sum of unit fractions (coinciding with the Rhind table, except for n = 5). Yet, in many cases we still compute several decompositions among which we have to choose. Here, we define some selection criteria and probable "preferences" likely guiding the selection of one decomposition among the others. Remember that all the decompositions produced by our process correspond to a specific integer relationship of the type 2𝑚𝑚 = 𝑛𝑛 + 𝑟𝑟 1 + 𝑟𝑟 2 + 𝑟𝑟 3 where the 𝑟𝑟 𝑖𝑖 are distinct divisors of n listed in decreasing order. Before computing the denominators of the associated decompositions, we try to reduce the number of possibilities by examining the integer relationships, which are easier to handle, and postpone the computations of the fractions.

"Objective" selection criteria

We first define a short set of "objective" selection criteria. They are called "objective" because these criteria are directly applicable to integer relationships, without any comparison of denominators. i) In a first step, one selects the shortest possible relationship (i.e. with two, then three, up to four terms). ii)

A relationship of length 3 or 4 with the smallest (last) divisor greater than m/10 is accepted. For decomposition of length 2, the smallest divisor should be greater than m/12.

Here, we take inspiration from Gillings and Abdulaziz (section 1.3). Indeed, criterion i) is no more than Gillings' second criterion [START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF]. Criterion ii) aims to fix a boundary for the smallest divisor. We follow Abdulaziz (section 1.3) in defining the largest boundary, yet with a slight difference for decompositions of length two. In term of the unit fractions, the criterion ii) allows to reject a decomposition with a last denominator greater than 10n, or greater than 12n for decomposition of length 2. This is justified by the previous (i) criterion, although keeping the denominators of the same magnitude of order. Like the number ten, 12 is a number well known to Egyptians [START_REF] Abdulaziz | On the Egyptian method of decomposing 2/n into unit fractions[END_REF].

For a decomposition of length two, the second criterion (ii) corresponds to the condition 𝑚𝑚 ≤ 12.

For prime numbers p greater than 24, it is thus futile to search for a relationship of length two, because this will not verify this second criterion. A decomposition of length three or four then becomes mandatory. Among the 49 integers of the Rhind table (but 101), 25 are composite and 24 are prime numbers. Indeed, Egyptians were able to distinguish prime numbers as earlier mentioned in the literature (e.g. p. 52 Gillings 1972). This observation is also implicitly deduced from the Rhind table in which all composite numbers (but 95) are decomposed into two unit fractions, while all large (greater than 23) prime numbers are decomposed into three unit fractions.

Table 2 lists all the decompositions provided by our process (as implemented in section 2.2) and verifying criteria i) and ii). Crucially, all RMP decompositions are within this list, except for n = 5, 53 and 95. We have already examined the cases 5 and 95. For n = 53, the decomposition found in the Rhind table can be deduced from the relationship 2×30 = 60 = 53 + 5 + 2. This relationship contradicts the second selection criterion (ii), because 2 < 30 10

= 3. This case is the sole departure from the selection criteria, but not from the proposed process.

Among the other 46 remaining values, our proposed selection criteria lead to a unique choice in 14 cases, coinciding with RMP decompositions. For all the other values, we are left with a maximum of four possible decompositions (Table 2). Hence, both selection criteria are efficient yet insufficient to identify the best decomposition. Hereafter, we discuss the difficult question of precisely identifying the solution provided by the author of the RMP rather than another one. Here, some principles may have likely guided him and Egyptian scribes. We hypothesize that Egyptian scribes had some "preferences" on integer numbers and that these preferences partly (ultimately) guided their decomposition selection.

"Preferences" of Egyptian scribes

What was the author's perception of integers and fractions? More precisely, which numbers seemed to him more advantageous, more practical to handle? This question abandons the pure mathematical issue and merges it with a more psychological issue concerning the mathematical skills of ancient Egypt. Firstly, the Egyptian scribes usually preferred even numbers when multiplying and dividing numbers, such as in the process of duplication [START_REF] Clagett | Ancient Egyptian Science, A Source Book[END_REF][START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF]. Duplication is much easier to perform when it involves unit fractions with even denominators, as these unit fractions are easily simplified (Egyptians knew that 2/2𝑚𝑚 = 1/𝑚𝑚). Another well-known preference is linked to the decimal system used by Egyptians. Indeed, Egyptians knew that multiplication and division by ten were easier to handle (p.159, [START_REF] Duvillié | Sur les traces de l'homo mathematicus : les mathématiques avant Euclide[END_REF]. Furthermore, the Rhind papyrus contains a table of division by ten (p. 133, Clagett 1999). Lastly, it is thought that the scribe preferred to use small denominators [START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF].

After detailed analysis of the Rhind table, we progressively came to believe that the author had the following preferences on numbers which guided him in the chosen decompositions:

1. Parity. This choice is no more than the Gillings' first criterion. 2. Round numbers. Since Egyptians used a decimal system, we can reasonably assert that the scribe would favour decompositions with denominators multiples of ten to ease some computations. We still use this basis today, and thus instantaneously know multiples of ten, as well as to a lesser degree, multiples of five (at least the unit digit can be guessed). Egyptian scribes knew that five is half of ten, and they could easily recognize and write any multiple of five by changing graphemes. Such multiples of five or ten may be called "round numbers", and it seems reasonable to think that Egyptians preferred them as we do. Indeed, in the Rhind table, we find 22 fractions with odd denominators, and almost half (9) of these denominators are multiples of 5. Such a preference is even more relevant when numbers are large, and it seems logical to favour fractions having decompositions for which at least the last denominator is multiple of five or ten. 3. Size. Like most humans today, Egyptian scribes probably preferred small numbers [START_REF] Gillings | Mathematics in the Time of the Pharaohs[END_REF], a preference even more relevant for fraction handling: when n is large, the fraction 2/n becomes more and more difficult to handle. Clearly, the size of the last denominator (organized by increasing sizes) of a decomposition in unit fractions is critical.

Finally, we think that among these preferences, the author of the RMP prioritized them with the following implicit and intuitive hierarchy: first, to prefer even numbers; then round numbers; and lastly, small numbers, although the priority between these last two preferences is not systematic. In the following section, we thus return to the decompositions provided by the choices made of the above-mentioned process and "objective" selection criteria (Table 2). We will then apply the preference hierarchy listed here to converge to a single decomposition for each fraction 2/n (n odd between 3 and 99).

Final match of the decomposition

At this stage, the proposed process, selection criteria and preference hierarchy should merge into a coherent decomposition procedure for each 2/n fraction. In the light of the preferences mentioned, we propose a general path (Fig. 1), or decision tree, to choose a single decomposition for each fraction, among the few remaining possibilities given by our procedure (i.e. process + selection criteria). This is the first stage where the scribe would need to compute the denominators of the unit fractions.

Difficult cases

With the help of these ordered preferences, the proposed procedure rigorously leads to a unique decomposition of each fraction 2/n (n = 3 to 99), and this choice coincides with RMP decomposition except in six cases: n = 5, 35, 51, 53, 57 and 95 (Fig. 1 and Table 2). Cases n = 5, 53 and 95 have already been discussed in section 2 and 3, but the above preferences offer some extra clues in explaining the choices of the scribe.

-Case n = 5. The sole decomposition obtained by our method is of length three and contains three even denominators, among which two are round numbers. Yet, the scribe presents a shortest decomposition based on the relationship 2×3 = 5 + 1, although the value m = 3 is not in the list. -Case n = 53. The relationship 2×36 = 53 + 9 + 6 + 4 provided by our method leads to a decomposition of length four, with first denominator m = 36 and an odd denominator (477), which is not easy to handle. With the above preferences, it seems more economical to prefer the decomposition based on the relationship 2×30 = 53 + 5 + 2, although it does not verify our second selection criterion (ii). Indeed, this relationship provides a decomposition with an odd and round denominator (795).

-Case n = 95. Our procedure leads to two decompositions into two unit fractions with two even denominators, namely .

With our decision tree (Fig. 1), one would select the first containing round numbers, although with some hesitation because in the second decomposition the last denominator is even and far smaller.

As already stated, the author of the RMP wrote

2 95 = 1 60 + 1 380 + 1 570
, which is obtained with the relationship 2 × 60 = 95 + 25 = 95 + 15 + 10. We hypothesize that the scribe rejected the first decomposition because of the large denominator, and noticed than the second one could give a decomposition of length 3 with 3 round denominators.

The three remaining cases illustrate the conflict between the preference for round numbers and the size of these numbers.

- 

Last discussion

In the three last cases (n = 35, 51, 57), the author of the RMP seems to favour a small final denominator instead of two round denominators. These exceptions to the procedure are not numerous enough to unequivocally identify the threshold from which to shift from one preference (here round numbers) to the other (size). It is not certain that Egyptians also used such a threshold. We even believe that the author of the RMP and ancient Egyptians had no final rule on preferring small numbers or round numbers, and likely modulated decomposition selections according to the moment. More than exceptions, these cases possibly reflect unconscious choices of a human (and imperfect) calculator facing a wide range of constraints for the use of unit fractions.

One final comment on the decomposition of 2/101 is necessary. It can be verified that none of the decompositions of 101 provided by our proposed algorithm verify the third selection criterion (ii). Yet, the author's proposition for 101 can be easily deduced from the relationship 12 = 2×6 = 6 + 3 + 2 + 1. Indeed, once divided by 6n, this relationship provides a decomposition of 2/n for any integer n. In particular with n = 101, it provides RMP decomposition for the fraction 2/101 (Table 1.). This example strongly reinforces our belief that Egyptian scribes were indeed using relationships between integers, instead of performing complicated divisions.

Our decomposition procedure does not require any additional knowledge beyond a fluent ability to handle integers and their divisors, and in particular no additional skills commonly found in modern mathematics. We hypothesize and have discussed here how the few remaining exceptions (i.e. provided by our process but rejected by our selection tree, Fig. 1) likely reflect the unconscious choices of a human calculator. The proposed procedure can straightforwardly be generalized to the decomposition in unit fractions of any fraction k/n. It might be interesting to test our working hypothesis in other documents of ancient Egypt such as the Egyptian Mathematical Leather Roll (EMLR) showing 26 decompositions of unit fractions into unit fractions.

Conclusion

Finally, the entire Rhind table can be obtained by a single well-defined process, based on the fact that any integer may be written as the sum of divisors of another integer. The core of this process is based on a combination of integer summations and divisibility conditions. This core knowledge is used in various parts of the Rhind papyrus, and many historians have already acknowledged it as a fundamental Egyptian knowledge. Yet, to our knowledge, none of them explicitly use this knowledge to compute fraction decompositions. In short words, all the Rhind table decompositions could be obtained by completing the number n to a number 2m by adding some specifics divisors of m. A minor exception concerns the fraction 2/101, which can nevertheless be obtained in the same spirit.

We then chose to combine two selection criteria to select the Rhind decompositions in most of the cases, refining the selection criteria formerly proposed by others historians. For the few remaining cases, we hypothesized a plausible set of psychological preferences on numbers attributed to the author of the RMP (and likely to ancient Egyptian scribes). Here again, most of these preferences (except the preference for multiples of five) have been asserted by the same historians. In itself, this threefold procedure already leads to the decomposition of the Rhind table in 87.8% of the cases at the first attempt. For the first time to our knowledge, this procedure is simple enough for a welltrained scribe to compute the entire table within a matter of hours. For this reason, we think this idea is the natural underlying procedure of fraction reckoning in Ancient Egypt. Further we hope, these psychological preferences may help understanding other facets of ancient Egyptian Mathematics.

Table 2 -Decompositions obtained with our procedure, i.e. computed with our process and the application of the selection criteria (i) and (ii).

This table lists all the relationships and associated decompositions obtained with our procedure and satisfying the selection criteria (i) and (ii). The Rhind table decompositions are labelled with an asterisk * and are all found in this list, except for n = 5, 53 and 95. In 14 cases of the total 49, the selection criteria lead to unique choices, which are systematically those of the Rhind table (except for n = 5 and 53). A further selection using the preference hierarchy (as set in Fig. 1) leads to a unique choice (here, in red). This choice coincides with those of the Rhind Starting with the decompositions provided by our process and verifying the selection criteria (i) and (ii) (Table 2), the selection tree allows selecting a single decomposition for each fraction 2/n (n odd between 3 and 99) (in red, Table 2). At this stage, 43 of these decompositions coincide with the Rhind table. Exceptions are of two different kinds. Cases 5, 53 and 95 are specific cases already discussed (in parentheses), while cases 35, 51 and 57 (in blue) reflect the conflict between the preferences for round numbers or size.

  a. Starting with 𝑚𝑚 = 𝑛𝑛+1 2 , compute 𝑟𝑟 = 2𝑚𝑚 -𝑛𝑛 for each integer m such that 𝑛𝑛+1 2 ≤ 𝑚𝑚 ≤ 𝑛𝑛 -1;

  Figure 1.

  Case n = 35. Our mathematical method leads to the relationship 2×20 = 35 + 5, then leading to the following decomposition having two round denominators:

	2 35	=	1 20	+	1 140
	The scribe prefers the relationship 2×30 = 35 + 25, providing the following decomposition:
	2 35	=	1 30	+	1 42
	This decomposition has a single round number, yet with a last denominator much smaller
	than in ours.				
	-Case n = 51. Our mathematical method leads to the relationship 2×30 = 51 + 9, then
	leading to the following decomposition having two round denominators:
	2 51	=	1 30	+	1 170
	The scribe prefers the relationship 2×34 = 51 + 17, providing the following decomposition
	having no round number, and with a last denominator of a similar magnitude of order to our
	decomposition:				
	2 51	=	1 34	+	1 102
	This choice is not clearly justified by our mathematical method or psychological analysis. The
	author of the RMP may have considered 102 smaller enough to be more convenient.
	-Case n = 57. Our mathematical method leads to the relationship 2×30 = 57 + 3, then
	leading to the following decomposition having two round denominators:
	2 57	=	1 30	+	1 570
	The scribe prefers the relationship 2×38 = 57 + 19, providing the following decomposition:
	2 57	=	1 38	+	1 114
	which has no round number, yet with a smaller denominator than in our decomposition.

  table, except for n = 5, 35, 51, 53, 57 and 95.

	n	m	Relation	Décomposition	n	m	Relation	Décomposition
	3	2	2×2=3+1	[2, 6]*	33	18	2×18=33+3	[18, 198]
	5	4	2×4=5+2+1	[4, 10, 20]		21	2×21=33+9	[21, 77]
	7	4	2×4=7+1	[4, 28]*		22	2×22=33+11	[22, 66]*
		6	2×6=7+3+2	[6, 14, 21]	35	20	2×20=35+5	[20, 140]
	9	5	2×5=9+1	[5, 45]				
		6	2×6=9+3	[6, 18]*				
	11	6	2×6=11+1	[6, 66]*				
		8	2×8=11+4+1	[8, 22, 88]				
	13	8	2×8=13+2+1	[8, 52, 104]*				
		12	2×12=13+6+3+2	[12, 26, 52, 78]				
	15	8	2×8=15+1	[8, 120]				
		9	2×9=15+3	[9, 45]				
		10	2×10=15+5	[10, 30]*				
		12	2×12=15+9	[12, 20]				
	17	12	2×12=17+4+3	[12, 51, 68]*				
	19	12	2×12=19+3+2	[12, 76, 114]*				
		18	2×18=19+9+6+2	[18, 38, 57, 171]				
	21	11	2×11=21+1	[11, 231]				
		12	2×12=21+3	[12, 84]				
		14	2×14=21+7	[14, 42]*				
		15	2×15=21+9	[15, 35]				
	23	12	2×12=23+1	[12, 276]*				
		20	2×20=23+10+5+2	[20, 46, 92, 230]				
	25	15	2×15=25+5	[15, 75]*				
	27	15	2×15=27+3	[15, 135]				
		18	2×18=27+9	[18, 54]*				
	29	20	2×20=29+5+4+2	[20, 116, 145, 290]				
		24	2×24=29+12+4+3	[24, 58, 174, 232]*				
	31	18	2×18=31+3+2	[18, 186, 279]				
		20	2×20=31+5+4	[20, 124, 155]*				
		24	2×24=31+8+6+3	[24, 93, 124, 248]				
		28	2×28=31+14+7+4	[28, 62, 124, 217]				
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