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Characterizing endogenous delta 
oscillations in human MEG
Harish Gunasekaran , Leila Azizi , Virginie van Wassenhove  & Sophie K. Herbst *

Rhythmic activity in the delta frequency range (0.5–3 Hz) is a prominent feature of brain dynamics. 
Here, we examined whether spontaneous delta oscillations, as found in invasive recordings 
in awake animals, can be observed in non-invasive recordings performed in humans with 
magnetoencephalography (MEG). In humans, delta activity is commonly reported when processing 
rhythmic sensory inputs, with direct relationships to behaviour. However, rhythmic brain dynamics 
observed during rhythmic sensory stimulation cannot be interpreted as an endogenous oscillation. 
To test for endogenous delta oscillations we analysed human MEG data during rest. For comparison, 
we additionally analysed two conditions in which participants engaged in spontaneous finger tapping 
and silent counting, arguing that internally rhythmic behaviours could incite an otherwise silent 
neural oscillator. A novel set of analysis steps allowed us to show narrow spectral peaks in the delta 
frequency range in rest, and during overt and covert rhythmic activity. Additional analyses in the 
time domain revealed that only the resting state condition warranted an interpretation of these 
peaks as endogenously periodic neural dynamics. In sum, this work shows that using advanced 
signal processing techniques, it is possible to observe endogenous delta oscillations in non-invasive 
recordings of human brain dynamics.

Delta-band activity is a prominent feature of neural dynamics traditionally observed during states of absence of 
consciousness, such as non-REM sleep in animals1,2 and humans3–5. Delta-band activity in the local field potential 
has also been reported during wakefulness in animals6–8. In humans, a number of brain regions including the 
frontal, temporal, and occipital areas as well as the hippocampus show delta-band activity4,9,10, when recorded 
invasively with electrocorticography (ECoG) and intracranial electroencephalography (iEEG) in patients with 
treatment-resistant epilepsy.

Rhythmic brain dynamics provide a natural biological implementation of temporal structures, which have 
long been assigned a functional role in perception and cognition11–13. Delta-band activity (0.5–3 Hz) could be 
important in this respect, as its biophysical properties allow for the synchronization of larger networks of brain 
areas to a common temporal regime14–16. Seminal work in non-human primates has shown that delta oscillations 
emulate the temporal structure of sensory inputs by entraining to it8,17–20. Aligning the phase of slow oscillations 
to the temporal structure of external inputs tunes the excitability of the respective sensory areas to relevant 
inputs, locally modulating the spike rate of neurons21,22. More globally, slow oscillations have also been shown 
to orchestrate an oscillatory hierarchy through phase-coupling8,23,24.

The frequency range of the delta band also coheres well with natural rhythms that constrain auditory inputs 
like speech or music25–27, and active sensing28,29. Building on the work in non-human primates, an important body 
of research demonstrated that delta band activity measured in the human magneto- / and electro- encephalogram 
(M/EEG) can phase-lock to periodic inputs, surfacing as increased stimulus-brain coherence in auditory and 
motor areas30–42, a mechanism termed neural entrainment.

Entrainment can implement a temporal structure in attention as postulated in the influential theory of 
dynamic attending43,44. Crucially, entrainment in the narrow sense assumes an endogenous, physiological 
predisposition of the neural system to oscillate at particular frequency ranges, which can then emulate the 
exogenous input through phase shifts and phase alignment45–48. However, it is difficult to conclude on the 
existence of endogenous delta oscillations in the presence of periodic input signals, which passively drive brain 
activity leading to higher power in the same frequency range.

An active role of delta phase entrainment is suggested by its modulation through top-down influences such as 
the attended sensory modality17,31,49, task demands20, perceptual grouping50, and hierarchical rhythmic structure 
of inputs51. Furthermore, entrainment can occur selectively to one frequency present in the input40, and be 
sustained after the offset of the periodic stimulus52, but see53 and still affect behaviour52,54,55, for a review see56. 
Finally, previous studies have shown that entrainment scales with the strength of temporal predictions, surfacing 
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as enhanced phase coherence in anticipation of temporally predictive input32,35,42. Also, tonic increases in delta 
amplitude, observed during the reading of numbers and mental calculation, and a working memory task3,57,58, 
suggest that there are experimental conditions devoid from periodic stimulation that can enhance delta-band 
activity, favouring the existence of endogenous delta oscillations.

Still, there is a missing link between the invasively proven existence of spontaneous delta oscillations, and 
the delta-like signals revealed by non-invasive neuroimaging studies. The superposition of various signals in 
human M/EEG recordings makes it difficult to separate endogenously oscillatory from stimulus-evoked activity. 
This issue bears the risk of conflating pre-stimulus oscillatory signatures (i.e. delta phase) with post-stimulus 
evoked activity59–61, thereby challenging the interpretation of the above-described stimulus-brain coherence 
as an endogenous oscillation. Few studies have tested for the presence of endogenous oscillatory activity in 
the delta band35,62,63, see also64 for a similar approach in the theta band36, and none have unequivocally shown 
the existence of an endogenous delta oscillation underlying the observed effects. Hence, to date we do not 
know whether delta phase locking observed in human M/EEG recordings truly reflects the entrainment of an 
endogenous oscillation46,48.

To start closing this gap, we set out to test the presence of endogenous oscillatory delta activity in human MEG 
signals, recorded at rest. It is however possible, that despite a pre-disposition to oscillate at a particular frequency, 
the brain does not spontaneously do so, and hence we would not see oscillatory activity in the resting state 
recordings. Periodic (or quasi-periodic) sensory input could incite an otherwise silent oscillator36,47,65. To avoid 
the above-described confound between endogenously periodic signals and the passive tracking of exogenous 
periodicities in sensory inputs, we additionally analysed MEG signals recorded while participants engaged in 
spontaneous overt or covert rhythmic behaviours. The frequency of such behaviours has been argued to reflect 
a stable internal prior66–69, but see70.

Currently, the state-of-the-art criterion for periodic brain activity, or oscillations, is to observe a peak in the 
power spectrum in a narrow frequency range71, a definition most commonly used to study alpha oscillations. 
Peaks in the delta frequency range are not spontaneously visible from M/EEG spectra recorded during wake, 
due to the generally higher amplitudes at low frequencies, the 1/f property72,73. Dedicated signal processing 
techniques can overcome this issue74.

From a set of data collected in the context of a different protocol75, three conditions were selected, to reflect 
different degrees of participants’ engagement in spontaneous rhythmic behaviour: (1) resting (eyes open) – no 
rhythmic behaviour, (2) spontaneous finger tapping – overt engagement in rhythmic motor behaviour, and (3) 
silent counting – covert rhythmic behaviour. Using specifically adapted signal processing techniques, we were 
able to observe delta band peaks in the power spectrum in all three conditions, with meaningful topographies 
but heterogeneous peak frequencies. However, the interpretation of these peaks as strictly oscillatory remains 
somewhat questionable in the presence of evoked activity. In the resting condition, additional time-domain 
analyses76 suggest the presence of endogenously periodic neural dynamics in the delta range.

Methods
Participants and data acquisition.  MEG recordings of 22 right handed participants, recruited as part 
of a protocol assessing time perception75, were used for this study. All participants had normal or corrected-
to-normal vision without any known neurological or psychiatric disorders. The experimental protocol was 
approved by the local Ethics Committee on Human Research ’Comité de Protection des Personnes Sud-Est VI’ 
(protocol: CEA 100 049 / ID RCB: 2018-A02586-49), and all participants provided written informed consent in 
accordance with this protocol, and in in conformity with the Declaration of Helsinki (2018).

Two participants had noisy MEG data and two participants did not comply with the task, yielding a total 
of 18 participants for the final analysis (10 males; age = 26 years, SD = 5). The MEG data were collected using 
the whole-head Elekta Neuromag Vector View 306 MEG system (Neuromag Elekta LTD, Helsinki) in a 
magnetically shielded room at a sampling rate of 1000 Hz. The MEG system had 204 planar gradiometers and 
102 magnetometers that measure the relative magnetic field strength (fT/cm) and absolute magnetic fields (fT), 
respectively. The direct current (DC) method was adopted during recording such that no high-pass filters were 
applied, to allow investigating low frequency components in the data. Horizontal and vertical electro-oculograms 
(EOG) and the electro-cardiogram (ECG) were recorded during the session. Participant’s head position was 
measured before each run by means of four head position indicator coils placed over the frontal and mastoid 
areas. For behavioural responses, participants pressed one button on a Fiber Optic Response Pad (Elekta), using 
the index finger of their right hand.

From the original data set, we selected three runs per participant (runs 1, 5, and 7 in 14 participants, runs 2, 
4, and 6 in three participants, and runs 2, 7, and 6 in one participant due to a technical problem in run 4). The 
differences in run numbers were due to a change in the protocol after the initial participants.

Experimental conditions and tasks.  The experiment (depicted in Fig.  1) was presented through 
Psychtoolbox77,78 for Matlab R2016a. From the 12 conditions recorded in the original study (total duration: 
34  min), we chose three experimental conditions for this analysis: resting (eyes open), spontaneous finger 
tapping, and silent counting. The three conditions were chosen to vary the level of rhythmic behaviour, in order 
to examine the presence of delta oscillatory activity in the brain recordings. During rest, the participants were 
supposedly not engaged in any rhythmic activity, and hence this condition was selected to examine the presence 
of spontaneous endogenous delta oscillations in the absence of rhythmic behaviour. In the spontaneous tapping 
condition, participants were actively engaged in overtly rhythmic motor behaviour, and we hypothesised that 
this condition was the most likely to result in a peak in the power spectrum at the individual tapping rate, 
possibly a signature of an endogenous neural oscillator. We also hypothesized that silent counting may engage 
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participants’ auditory and articulatory systems in a covertly rhythmic manner, which should result in a peak in 
the power spectrum around the counting rate.

In all runs, the beginning and end were marked by the French word "début" ("start") appearing on the screen 
for 1 s followed by a black screen lasting 4 s. The participant was instructed to start resting, tapping, or counting 
when a red circle briefly appeared (0.5 s) on the screen and until the same circle reappeared to mark the end of 
the run. Participants were instructed to steadily fixate the cross on the screen for the whole time and to sit as 
still as possible. During resting blocks, participants were informed that the aim was to record their brain activity 
at rest, and were only instructed to fixate the cross on the screen between the two occurrences of the red circle. 
Spontaneous tapping was executed on a tablet with the index finger of the right hand, at the individual’s own 
preferred pace. During silent counting, participants were asked to silently count without opening the mouth, 
and to report the final number after the run. Participants were not informed about the duration of each run.

During both tapping and counting, participants were additionally asked to estimate the duration of the run 
in seconds, resulting in a dual-task situation. The final duration had to be stated out loud to the experimenter 
by the interphone system. During rest, participants were not informed that they had to estimate duration. Four 
participants were asked for a retrospective duration estimate after the end of the run, but then the experimental 
protocol was changed. Due to this change in the experimental protocol, the runs were of slightly different 
duration, lasting 120 s for resting (300 s in the four participants for whom run 2 was used), 120 s for tapping 
(180 s if run 4 or 7 was used), and 240 s for counting (300 s if run 6 was used). As described below, we only used 
the first 120 s of MEG recordings from all runs.

Analyses of the behavioural data.  Behavioural tapping rate.  Participants’ button presses were 
registered as time-stamped events with the MEG data, sampled at 1000 Hz. In accordance with the analyses of 
the MEG data (described below), the button-press time-series (coded as 0 when no button press occurred, and 
1 when a press occurred) were subjected to a spectral analysis, by computing the Welch periodogram with a 
frequency resolution of 0.1 Hz, as implemented in MNE Python79,80. Resulting power values were transformed 
to decibel (dB). A peak detection algorithm implemented in Scipy81 was used to detect all peaks in the frequency 
range between 0.1 and 4 Hz. Then, the most prominent peak (according to scipy’s peak_prominences function) 
was retained as the behavioural tapping rate.

Covert behavioural counting rate.  Assuming that individuals silently counted, the covert individual counting 
frequencies were estimated by dividing the final number reported by the participant by the run’s duration (240 or 
300 s). Since the counting was silent, we had no trace of the regularity of each individual’s counting. This measure 
was not available for one participant, who did not report a final count.

Relative subjective duration estimates.  To obtain the relative individual subjective duration estimates for the 
tapping and counting runs, we divided the duration in seconds reported by the participant by the duration of the 
corresponding run. This way, relative estimates below one reflect underestimation, and relative estimates above 
one reflect overestimation of the run’s duration.

MEG pre‑processing.  MEG data were processed using MNE python79,80. The pre-processing consisted of 
the following steps: applying spatial signal source separation (SSS), low pass filtering, down-sampling, epoching, 
manual inspection and rejection of noisy epochs, and removal of ocular and cardiac artifacts using independent 
component analysis (ICA).

The raw data (DC, no high-pass filter was used) were corrected for environmental noise through spatial signal 
source separation, using the Maxfilter algorithm as implemented in MNE python, with the middle run (tapping) 
being used as a reference run to re-align the head coordinates. The algorithm also interpolates bad sensors, which 
are typically characterized by heavy distortions, flux jumps, baseline drifts, etc., and were identified through 
visual inspection for each individual.

Experimental design
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Figure 1.   Experimental design. Experimental conditions selected from an existing dataset. We chose three 
conditions devoid of external stimulation, yet varying in the amount of internal rhythmic behaviour: Resting 
with eyes open (no rhythmic behaviour), spontaneous finger tapping (overt rhythmic behaviour), and silent 
counting (covert rhythmic behaviour).
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Low-pass filtering was applied with a 100 Hz cut-off using a hamming windowed zero phase FIR filter. No 
high-pass filter was applied to avoid any signal distortion in the lower frequency ranges. The filtered data was 
down-sampled to 256 Hz. We then segmented the first 120 s of data from each run into 10 s long epochs with 8 s 
overlap, resulting in 168 epochs per participant. We subtracted the mean of each epoch for baseline correction, 
and applied linear detrending over the 10 s window. Noisy epochs were identified and rejected through visual 
inspection (21 epochs, in one participant only). For further analysis, we only used the 102 magnetometers.

Importantly, a well-known artifact of physiological origin apparent in human MEG, cardiac activity, lies in the 
same frequency range as the delta-band activity of interest. Therefore we applied an extended ICA procedure to 
ensure its complete removal. ICA was run in two steps: first, we ran one ICA on the epoched data of all conditions 
jointly, to identify and remove ocular artifacts, and second, we ran another ICA to identify cardiac artifacts. All 
ICAs were run on the epoched data, high-pass filtered at 1 Hz only for this purpose. For the detection of artefacts 
related to the electro-oculogram (EOG), we used an inbuilt routine in MNE python, which uses the signal from 
the external electrodes to estimate a participant’s typical EOG activity, and returns the ICA components that 
correlate with these typical events (threshold: 3.0, z-score).

In order to best identify and remove the cardiac artifacts, we then used the EOG-cleaned data, and ran a set 
of ICAs, iterating over the number of ICA components, a parameter that determines the partition of variance 
explained by each component. Inspection of the ICA results had revealed that when using the same partition 
of variance for each participant, residual cardiac artifacts were left in the data. More specifically, the number 
of components parameter determines the number of principal components (during a pre-whitening principal 
component analysis, PCA) that are passed to the ICA algorithm during fitting, and is given as a proportion 
of variance explained, from 0 to 1. We here parametrized the proportion between 0.849 and 0.999, in steps 
of 0.025. Components in the MEG data reflecting cardiac activity were estimated by computing the typical 
cardiac event from the external recordings of cardiac activity (threshold 0.1, cross-trial phase statistics82). For 
each decomposition, we then identified the components correlating best with the typical ECG event of each 
participant. To determine the best decomposition for each participant, we iterated across all versions of the data 
after running ICA and rejecting the cardiac components, and computed an ECG score: the power ratio at the 
individual ECG peak in the MEG data, before and after the removal of the ECG components. The individual 
ECG peak frequency was first determined based on the power spectrum computed directly on the ECG recording 
(Welch power spectral density). We then computed a spatial filter based on the peak’s topography in the MEG 
data (activity distribution across sensors at the peak frequency). The power ratio of this peak (dot product of all 
sensors multiplied with the spatial filter) was computed before and after component removal via ICA, and the 
ICA solution which yielded the greatest reduction in the cardiac peak topography was retained for the participant.

Spectral analyses.  From the cleaned epochs we computed the power spectral density (PSD, see Fig. 2A for 
an exemplary participant) using Welch’s periodogram with a frequency resolution of 0.1 Hz, resulting in power 
estimates at 1281 frequency values. The power spectrum for each magnetometer was obtained by averaging the 
power spectrums across all the epochs. Power spectra were cut at 45 Hz and transformed to decibel (dB).

A major concern when analysing delta band activity in M/EEG data, is that the peaks assumed to reflect 
narrow-band periodic activity lie in the high-power region of the 1/f aperiodic spectral component. To separate 
aperiodic spectral components from periodic ones, we applied the irregular resampling technique IRASA74. 
The IRASA technique consists in down-sampling the epoched data in the time domain at pairwise non-integer 
values (here: 0.1 to 0.95 with a 0.05 increment), before computing the power spectrum. The 1/f power spectrum 
is obtained as the geometric mean of the power spectra at different resampling values (for an exemplary depiction 
see Fig. 2B).

To obtain the residual or oscillatory power spectra (Fig. 2C), we subtracted for each participant and at each 
sensor the 1/f power spectrum from the full power spectrum. For further analysis, we divided the power spectrum 
into the canonical frequency bands, described in the literature83, namely delta: 0.2–3.5 Hz, theta: 4–7 Hz, alpha: 
8–12 Hz, beta: 15–30 Hz. The frequency range of delta activity was deliberately chosen slightly larger than 
the intended frequency band (0.5–3 Hz, with some variation in the literature) to allow the peak detection 
method described below to find peaks close to the desired cut-offs. Figure 2 (right column) depicts the average 
topographies per canonical frequency band for an exemplary participant. Note the similarities in topographies 
between the full and 1/f spectrum especially in the delta band, which confirm the dominance of 1/f activity in 
the low frequency range. The theta, alpha, and beta bands were analysed similarly to the delta band, to validate 
the analysis pipeline on frequency bands for which peaks are more commonly reported in the literature.

Detection of spectral peaks.  Per participant and condition, we identified spectral peaks in a given 
canonical frequency range. We assumed that if an oscillation is present, it should be reflected in higher power for 
a narrow range of frequencies at several sensors, while spurious peaks should vary in frequency across sensors. 
We thus extracted from each sensor the most prominent peak using peak finding algorithms implemented in 
Scipy81, and applied k-means clustering as implemented in Scikit-learn see also36,84, to then identify peaks with 
coherent frequency across sensors (see Fig. 3). While peaks with coherent frequency across sensors are more 
likely to reflect an underlying oscillation, this procedure does not provide a statistical test for oscillatory activity. 
The reason for not performing statistics at this point is that the peaks are defined per individual, and they are 
highly heterogenous, which does not allow for robust group statistics, as done for instance in the analyses SSVEP 
or ASSR (visual / auditory evoked steady state responses), when the expected peak frequency is known precisely.

To obtain the peak frequency for each sensor, we applied a peak finding algorithm (scipy function find_peaks) 
which can result in several peaks, and in a second step computed peak prominences (scipy function peak_
prominence) to select one peak per sensor as the one with maximal prominence. This resulted in 102 spectral 
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A) Full power spectrum

B) 1/f power spectrum

C) Oscillatory power spectrum
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Figure 2.   Exemplary power spectra from a single participant in the tapping condition. (A) Full power spectra 
(0.1–45 Hz). Left: Welch’s power spectral density computed on 10 s long epochs, then averaged (grey lines depict 
the spectra of the 102 magnetometers, black line depicts average over sensors). The coloured shades depict the 
canonical frequency bands: delta (red, 0.5–3 Hz), theta (grey, 4–7 Hz), alpha (green, 8–12 Hz), beta (purple, 
15–30 Hz). Right: Topographies averaged within in the canonical frequency bands. (B) 1/f power spectra. 
Left: Power spectra computed on irregularly resampled data to obtain only the aperiodic components (IRASA 
method). Right: Topographies averaged in the canonical frequency bands. (C) Oscillatory power spectra, 
obtained from subtracting the 1/f power spectra (depicted in B) from the full power spectra (depicted in A). 
Right: Topographies averaged in the canonical frequency bands.
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peaks per canonical frequency band and condition, i.e. one per magnetometer. Once 102 peaks were identified 
for a given frequency band and condition, we applied k-means clustering of peak frequencies to identify the 
most consistent peak frequencies across sensors.

To determine the appropriate number of clusters, we used the so-called ’elbow method’ (depicted by the 
inset in Fig. 3A), which consists in iterating over a range of possible n-clusters (here: 1 to 11), fitting the 
k-means algorithm for each n, and computing the inertia of the solution (automatically returned by Skicit-
learn’s KMeans function). The inertia of the solution is a measure of goodness of fit of the solution, quantified 
as the sum of squared distances of samples to their closest cluster centre. The obtained vector of inertias over 
n-clusters was then examined for a flattening of the inertia values with higher n, i.e. an ’elbow’, using Skicit-learn’s 
KneeLocator function. Such a flattening reflects that the obtained solution does not improve strongly with higher 
n, and therefore the last n before the flattening is retained as the best and most parsimonious solution, and 
the k-means algorithm is fitted again with this n (average n across participants and conditions = 2.82, min = 2, 
max = 4, SD = 0.45). To characterize the clusters, we computed the peak frequency as the mode of the cluster 
(the frequency at which most of the contributing sensors showed a peak), the peak power as the average power 
over the contributing sensors at the peak frequency, as well as the strength of the peak as the number of sensors 
contributing to the cluster. The same method was applied to the theta, alpha, and beta bands (see Figures S1, 
S2, S3).

Peak sorting.  The k-means clustering procedure produced several clusters per canonical frequency band, 
identified by their peak frequency, and ordered by cluster size (i.e., the number of sensors showing a peak at or 
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Figure 3.   Peak finding method. Exemplary participant, delta-band. (A): K-means clustering. Per condition 
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clustered using the k-means algorithm. Histograms depict the sensor counts per cluster, the brightness codes for 
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all sensors (grey lines), and the sensors in each cluster (coloured lines). The vertical dashed lines depict the peak 
frequency of each cluster. (C): Cluster topographies. Power distribution across all sensors at the cluster’s peak 
frequency (± 0.1 Hz). The white circles depict the sensors selected as part of the cluster.
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close to this frequency). Depending on the frequency band at hand, we made different assumptions to group 
clusters across participants for further analysis.

Delta band.  We reasoned that the individual behavioural tapping frequency (see Fig. 4) might result from an 
endogenously present oscillation at that frequency, or else, that spectral (MEG) peaks in the tapping condition 
reflect the periodically reoccurring tapping evoked response. Spectral peaks in the vicinity of the individual 
tapping rate were found for all participants, but varied in strength (hence cluster order), which prevented us 
from simply retaining the first cluster in the delta band. We thus identified for each participant one peak in 
the delta range (from the two to four peaks found by the k-means clustering) that was closest to the individual 
tapping rate. We further hypothesized that the individual tapping rate could reflect the stable frequency of an 
internal oscillator, which should then also be apparent in the resting and counting conditions in the absence 
of overt motor tapping. Thus we also identified peaks close to the individual tapping rate from the resting and 
counting runs. A second, higher delta peak was identified for all conditions, lying above the individual tapping 
rate. Here, we only selected peaks with higher frequencies, because for most participants the behavioural tapping 
rate was in the lower range of the delta band. A higher peak was not found in one participant in the tapping 
condition, and three participants in the resting condition, for which we then retreated to selecting the strongest 
cluster after removal of the tapping peak. Third, we identified the peak closest to the individual counting rate 
from all three runs. In sum, for delta, three types of peaks were obtained: the one closest to tapping, high delta, 
and closest to counting (see Fig. 5, Table 1).

Theta and alpha bands.  For both the theta and the alpha bands, we retained the first cluster (largest number 
of sensors) as the peak (see Figure S4, S5, Table 1), as these frequency-bands were not of primary interest to the 
study.

Beta band.  In the beta band, visual inspection showed that most participants’ first two clusters captured two 
distinct frequency ranges, namely a lower beta, and a higher beta cluster. As the strength varied between those 
two clusters across participants, we grouped the first two clusters for each participant into low beta and high beta 
peaks (Figure S4, S5 Table 1).

Statistical comparisons between conditions.  To assess differences in delta-band activity between 
experimental conditions, we tested for condition differences in peak frequency, power, and the number of 
sensors contributing to a peak (Fig. 6, Table 2). Paired two-sided t-tests were performed for all frequency bands 
and peak types, with a critical threshold of p < 0.01 to account for multiple testing.

Correlation analyses.  We were interested in whether delta-band peak frequencies correlate between 
conditions, or with the behavioural signatures, notably tapping rate. Simply correlating the peak frequencies 
would be trivial, as we had selected the delta peaks by their closeness to the behavioural tapping rate, hence 
introducing a strong correlation between behavioural rates and the peak frequencies. Instead of correlating the 
frequency values, we thus computed residuals from the linear fit between the peak frequency and the behavioural 
tapping rate, and respectively also the counting rate (in Hz). To compare the residuals between conditions, we 
used paired two-sided t-tests, as well as Pearson correlation coefficients (significance tests for correlations were 
performed with respect to Student’s t-distribution, with N − 2 degrees of freedom) (Fig. 7).
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Sensitivity analysis.  Likely, the relatively small sample size (N = 18) limited our ability to detect significant 
differences and correlations85. A sensitivity analysis using G-Power86 indeed indicated that only correlations 
above 0.61 (0.55 for one-sided tests), and mean differences with an effect size of 0.89 (Cohen’s d) could be 
detected with 80% power.

Tapping evoked responses.  A spectral peak in the tapping condition would likely already result from 
the periodic occurrence of the sensorimotor evoked responses during tapping itself87,88. To analyse the evoked 
response (see Fig. 8) we epoched the data from the tapping conditions, time-locked to the registered button 
presses (− 2 to 4 s), baseline corrected (whole epoch) and detrended the epochs linearly over the full window. 
We then applied the ICAs computed for all runs to these epochs and rejected the previously identified ocular 
and cardiac components. To compute the peak topography, we averaged the epochs for each participant and 
applied Scipy’s peak detection algorithm in the window of 0–0.25  s post-tap to extract the largest peak and 
compute its peak topography. We then correlated this topography (one amplitude value per sensor) with the 
peak topography at the delta peaks for each participant to test for spatial overlap.

Analyses of oscillatory bursts.  We performed a confirmatory analysis (depicted in Fig.  9) to further 
assess whether the spectral peaks we identified reflect endogenous periodicities in the time-domain data, which 
are likely not fully stationary. To this end, we quantified oscillatory bursts using the cycle-by-cycle toolbox76. To 
our knowledge, this method has so far not been used for frequencies as low as delta. To test whether the sensors 
identified as having a spectral peak in a given canonical frequency band really show stronger periodic activity, 
we assessed the time-domain signal of those sensors for bursts. The data were band-pass filtered between 0.5 and 
4.5 Hz prior to performing the analysis. The filter band was chosen somewhat larger than the band of interest 
to allow for transition bands. The cycle-by-cycle algorithm labels peaks and troughs in the filtered time-domain 
signals, and then computes several statistics to identify truly periodic episodes, defining oscillatory bursts. The 
threshold parameters used to detect episodes with bursts were adapted for the delta band: amplitude fraction 
threshold = 0.05, amplitude consistency threshold = 0.4, period consistency threshold = 0.4, monotonicity 
threshold = 0.95, minimum number of cycles = 2.

To confirm whether the peaks detected in the spectral analyses described above reflect endogenous 
periodicities, we computed the by-cycle analysis on the signals from the sensors identified as belonging to a 
given cluster (sensors with peak), and on a random selection of sensors of the same number not belonging to 
the cluster (no peak, averaged over 50 repetitions of random selection for stability). We ran this analysis for all 
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three conditions, and per participant (Fig. 9, see Figure S6 for the other canonical frequency bands; thresholds 
for the theta/ alpha/ beta bands: amplitude fraction threshold = 0.3, amplitude consistency threshold = 0.6, period 
consistency threshold = 0.6, monotonicity threshold = 0.95). The detected burst episodes were summarized by the 
average burst amplitude, burst period, duration, and number of bursts, on which we performed paired samples 
t-tests between the two types of sensors (with peak and without peak, threshold p < 0.01).

Results
Behavioural results.  Tapping and counting rates.  Individual tapping rates were estimated through 
spectral analyses of the button press times as illustrated in Fig. 4A (mean rate = 1.17 Hz, SD = 0.6 Hz, Fig. 4B 
shows the distributions). Individual covert counting rates were estimated by dividing the final count number 
reported by the participant by the duration of the task (mean = 0.93 Hz, SD = 0.3 Hz, measure available for 17 of 
18 participants, Fig. 4B). Overt tapping and covert counting rates were found in the same range (no significant 
difference: T(16) = -1.21 , p = 0.45), and did not correlate within participants (Pearson’s r(15) = -0.28, p = 0.28, 
Fig. 4C).

Subjective duration estimates.  The relative subjective duration estimates (estimated duration in seconds divided 
by the run’s duration) were 1.14 (SD = 0.40) and 0.91 (SD = 0.34) for the tapping and counting runs, respectively. 
Relative duration estimates did not correlate significantly within participants between the tapping and counting 
runs (Pearson’s r(16) = 0.33, p = 0.19, not shown). In the tapping run, there was no significant correlation between 
the overt individual tapping rate and the relative duration estimate (r(16) =  − 0.20, p = 0.42), in the counting 
run, there was a strong correlation between the covert counting rate and the estimated duration (r(15) = 0.94, 
p < 0.01). We also tested whether the spectral peak frequencies (reported in detail below) correlated with the 
subjective duration estimates for the respective runs, in all frequency bands, but no significant correlations were 
found (p > 0.09).

Spectral peak detection.  Spectral peaks were identified for all participants in all conditions and frequency 
bands, including the delta range (see Table 1 for peak frequencies, power, and the number of sensors per peak 
cluster). As shown in Fig. 5, the group topography, computed by averaging across participants’ topographies 
at their individual delta peaks, shows a typical profile of frontocentral activity, likely emerging from motor 
and auditory regions. Importantly, and in particular for the delta band, the topographies of oscillatory activity 
averaged across the canonical frequency band resembled the topographies of the 1/f activity (see Fig. 2), while 
the averaged topographies at individually detected peak frequencies show distinct frontocentral profiles (Figs. 3 
and 5). Individual peak sensors (depicted by coloured markers on the topographies, Fig. 5) show that the sensors 

Table 1.   Results of the peak clustering and sorting procedure. Different peaks were identified per canonical 
frequency band (delta, theta, alpha, beta, left column) and condition. The table indicates the average peak 
frequency across participants, as well as its standard deviation (SD), average power, its standard deviation, as 
well as number of sensors per cluster and its SD.

Freq.band Peak type Condition Freq. (mean, Hz) Freq.(SD, Hz) Power (mean, dB) Power (SD, dB)
Number of sensors 
(mean)

Number of sensors 
(SD)

DELTA

Tapping rate

Rest 1.25 0.43 3 0.64 11.06 5.07

Tap 1.37 0.5 3.69 1 18.11 12.94

Count 1.56 0.56 2.75 0.58 13.61 5.21

High delta

Rest 2.29 0.5 2.97 1.04 13.67 5.04

Tap 2.35 0.53 3.05 1.06 12.72 6.02

Count 2.09 0.57 3.51 1.29 14.94 9.85

Counting rate

Rest 1.22 0.32 3.22 0.73 11.47 4.13

Tap 1.08 0.32 3.33 0.96 11.41 7.03

Count 1.15 0.33 2.97 0.65 11.76 4.58

THETA First

Rest 5.29 0.59 3.55 0.82 14.39 5.19

Tap 5.38 0.54 3.89 1.94 17.61 9.6

Count 5.31 0.35 3.55 0.81 15.78 5.73

ALPHA First

Rest 10.33 0.8 12.46 4.53 24.89 13.36

Tap 10.48 0.62 11.75 4.28 22.17 10.47

Count 10.18 0.84 12.32 4.75 28.44 14.6

BETA

Low

Rest 19.53 2.01 5.74 2 11.56 9.96

Tap 18.96 2.13 6.23 2.27 9.61 4.5

Count 19.16 2.49 5.43 1.82 8.89 4.79

High

Rest 23.75 2.03 5.37 2.01 9.06 4.7

Tap 23.57 1.92 5.12 2.38 10.17 4.51

Count 23.24 2.08 5.44 2.5 9.78 4.06
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at which the strongest delta power was detected varies across participants, but generally cluster in accordance 
with the average topographies.

As described in Sect. "Peak sorting", three types of peaks were selected from the clustering procedure: one 
being closest to the individual’s behavioural tapping rate, separately identified per condition (average peak 
frequencies in resting, tapping, counting runs: 1.25 Hz (SD = 0.43), 1.37 Hz (0.5), 1.56 Hz (0.56), respectively; 
average power in rest, tap, count: 3 dB (SD = 0.64), 3.69 dB (SD = 1), 2.75 dB (SD = 0.58), respectively, see Fig. 6, 
Table 1). The second peak was selected as being above the individual’s tapping rate (average peak frequencies in 
resting, tapping, counting runs: 2.29 Hz (SD = 0.5), 2.35 Hz (SD = 0.53), 2.09 (SD = 0.57), respectively; average 
power in rest, tap, count: 3.15 dB (SD = 1.04), 3.31 dB (SD = 1.06), 3.06 dB (SD = 1.29)). The third peak was 
selected as closest to the individual’s counting rate (average peak frequencies in resting, tapping, counting runs: 
1.22 Hz (SD = 0.32), 1.08 Hz (SD = 0.32), 1.15 (SD = 0.33), respectively; average power in rest, tap, count: 3.22 dB 
(SD = 0.73), 3.33 dB (SD = 0.96), 2.97 dB (SD = 0.65)).

No significant differences in delta peak frequency (Fig. 6A, Table 2), were found between the three conditions 
(two comparisons marginal: p = 0.023, 0.056, all other p-values > 0.21), at all three peaks. The peak frequencies 
selected close to the counting rate were not significantly different from the peaks selected close to the tapping 
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Table 2.   Statistical tests of peak frequency, peak power, and number of sensors between conditions per 
canonical frequency band. DF Degrees of freedom. Significant values are in [bold].

Freq.band Peak type Cond 1 Cond 2 Peak frequency Peak power
Number of 
sensors DF

T P T P T P

DELTA

Tapping rate

Rest Tap − 1.11 0.284 − 3 0.008 − 2.52 0.022 17

Rest Count − 2.49 0.023 1.38 0.186 − 1.43 0.171 17

Tap Count − 2.05 0.056 3.49 0.003 1.21 0.242 17

Higher

Rest Tap − 0.39 0.702 − 0.26 0.8 0.68 0.503 17

Rest Count 1.01 0.328 − 1.75 0.098 − 0.49 0.629 17

Tap Count 1.32 0.205 − 1.25 0.228 − 0.76 0.459 17

Counting rate

Rest Tap 1.29 0.216 − 0.35 0.732 0.04 0.970 16

Rest Count 0.75 0.465 1.56 0.139 − 0.21 0.835 16

Tap Count − 0.78 0.446 1.2 0.249 − 0.27 0.793 16

THETA First

Rest Tap − 0.53 0.606 − 0.75 0.466 − 1.32 0.203 17

Rest Count − 0.14 0.891 0.02 0.987 − 0.74 0.472 17

Tap Count 0.47 0.645 0.91 0.375 0.68 0.503 17

ALPHA First

Rest Tap − 1.07 0.301 0.8 0.436 0.91 0.375 17

Rest Count 1.43 0.17 0.18 0.857 − 0.85 0.41 17

Tap Count 1.91 0.074 − 0.7 0.492 − 2.37 0.03 17

BETA

Low

Rest Tap 1.06 0.303 − 0.97 0.347 0.71 0.489 17

Rest Count 0.57 0.574 0.69 0.502 1.05 0.31 17

Tap Count − 0.41 0.69 2.34 0.032 0.48 0.639 17

High

Rest Tap 0.39 0.699 0.56 0.582 − 0.83 0.42 17

Rest Count 0.89 0.384 − 0.15 0.883 − 0.49 0.63 17

Tap Count 0.63 0.539 − 0.92 0.372 0.38 0.711 17
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rate, although the difference was marginally significant for the data recorded from the counting condition (rest: 
T(16) =  − 0.04, p = 0.97; tap: T(16) = − 1.64, p = 0.12; count: T(16) = − 2.41, p = 0.03).

Peak power at the individual tapping rate was significantly higher in the tapping condition (paired samples 
t-test, tapping > resting: T(17) = 3.0, p < 0.01; tapping > counting: T(17) = 3.49, p < 0.01, Fig. 6B). We did not find 
a similar pattern for peaks identified by being close to the individual counting rate, that is no enhanced peak 
power in the counting condition (all p > 0.4). The number of sensors showing a peak at the detected frequency was 
marginally larger in the tapping condition compared to resting (tapping > resting: T(17) = 2.52, p = 0.02, Fig. 6C).
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Figure 7.   Correlation analyses (delta band). (A) Correlations between the individual tapping rate and the 
frequencies of the spectral peaks identified in the delta band, per condition. The coloured line indicates the 
estimated correlation and the grey line the unity-line. Each dot is one cluster per participant with brighter 
colours indicating stronger clusters. The number of clusters identified varied over participants, hence the 
number of dots vary between panels. Significance values are indicated as follows: * p < 0.05; ** p < 0.01; n.s. not 
significant. Note that the significant correlations trivially result from selecting the peaks closest to the behavioral 
tapping rate. (B) Correlations between the individual counting rate and the frequencies of the spectral peaks. 
Same as in A, but with respect to the behavioural counting rate. (C) Residual differences between the frequency 
of the spectral peak identified as nearest to the individual tapping rate, and the behavioural tapping rate per 
condition. Residuals were significantly smaller in the tapping condition compared to resting and counting. 
(D) Residual differences between the frequency of the spectral peak identified as nearest to the individual 
counting rate, and the behavioural counting rate per condition. Residuals were smallest in tapping. (E). Pearson 
correlations between the spectral peak residuals, that is the frequency of the spectral peak identified as nearest 
to the individual tapping rate after accounting for the correlations shown in (A), for pair-wise combinations of 
conditions. No significant correlations were found between conditions.
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Delta peaks: correlation analyses.  As intended by the peak selection procedure, the spectral peaks 
identified as closest to the behavioural tapping rate showed strong correlations with the tapping rate in all 
conditions (Fig. 7A). While this correlation is trivially related to our peak selection, it does reflect that in every 
participant a spectral peak could be found in the vicinity of the spontaneous tapping rate. The spectral peaks 
identified as closest to the behavioural counting rate showed no significant correlation with the counting rate in 
the resting and counting condition, but in the tapping condition (Fig. 7B), suggesting that the spectral peaks in 
the counting runs did not result from covert counting, but rather overlapped with the tapping peaks.

We then calculated the residual frequency differences after accounting for the correlation between tapping 
rates and peak frequencies (by subtracting the frequency values predicted by the linear fit). The residuals were 
significantly smaller in the tapping condition compared to rest and count (tap < rest: T(17) = 3.38, p < 0.01; 
tap < count: T(17) = 6.28, p < 0.01, Fig. 7C), indicating that stronger activity around the individual behavioural 
tapping rate was present in the MEG recordings of the tapping condition. We performed the same analysis for the 
peaks selected as closest to the behavioural counting frequency, but the residuals frequency difference between 
the spectral peaks and counting rate were also smallest in tapping and not counting (Fig. 7D), confirming once 
more that the selected peaks did not distinctively result from covert counting.

Only for the peaks identified by tapping behavior, we then further tested the residuals for correlations across 
conditions, hypothesizing that an endogenous oscillation present in all conditions would result in relatively stable 
peak frequencies (and hence stable residuals from the behavioural tapping rate) across conditions. However, no 
significant correlations were found (Fig. 7E, tapping and counting: r(16) = 0.44, p = 0.07; tapping and resting: 
r(16) =  − 0.18, p = 0.48; counting and resting: r(16) = 0.05, p = 0.84).

In an additional control analysis (not shown), we also extracted the first peak, defined as the cluster with the 
largest number of sensors from the delta band instead of dividing peaks by their closeness to the behavioural 
tapping or counting rate. No significant correlations were found between the strongest spectral peak in the 
tapping condition and tapping behaviour (r(16) = 0.09, p = 0.72) or the strongest peak in the counting condition 
and counting behaviour (r(15) = − 0.43, p = 0.12). The absence of a significant correlation, especially in the case 
of tapping, can be explained by the existence of multiple heterogeneous peaks per participant and condition. 
The clustering approach found a peak close to the behavioural tapping rate for each participant, but this was not 
necessarily the strongest cluster.

Comparison of tapping evoked activity with spectral peaks.  To explore whether the spectral peaks 
observed in the MEG activity during tapping reflect the periodic occurrence of the tapping evoked response, or 
an ongoing oscillation, we compared the topographies of the two neural signatures (Fig. 8). For the spectral peak 
at the tapping rate, correlations between the topographies of the tapping evoked response (Fig. 8A) and the peak 
topography were found in the majority of participants (13/ 18, Fig. 8B/C top). The topography of the higher delta 
peak correlated with the topography of the tapping evoked response in eleven participants (Fig. 8B/C bottom). 
While it was expected to see a correlation between the peak at the tapping rate and the tapping evoked response, 
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it is more surprising that the topographies of the higher delta peaks also correlate with the tapping evoked 
response. Two explanations can be thought of: either the higher peak also partially reflects the periodically 
occurring evoked response, or it reflects an oscillation in overlapping brain regions.

Oscillatory bursts.  In a confirmatory analysis, we compared different statistics of oscillatory burst episodes 
in the delta band (burst amplitude, frequency, count, and duration) between sensors at which a spectral peak 
had been identified and a random selection of sensors without a peak (see Fig. 9). For the delta peaks close to 
the individual tapping rate, the only significant difference was found in burst frequency in the tapping condition 
with a higher frequency at the no-peak sensors (T(17) = 3.32, p < 0.01). In the resting condition, we found 
significantly higher burst counts (T(17) = 3.5, p < 0.01) and longer burst duration (more cycles, T(17) = 3.29, 
p < 0.01, Fig. 9B) for the higher delta band, in the sensors with peaks (marginally more bursts counted also in the 
counting condition: T(17) = 2.06, p = 0.06). The finding that the overall amplitude did not differ at the sensors 
with peaks compared to no peaks can be explained by the broader frequency range used in this analysis, while as 
reported above, the peak detection procedure showed variability in frequency across participants.

Theta‑, alpha‑, beta‑bands.  For validation of the approach, we also ran this analyses on the other 
canonical frequency bands (see supplementary Fig. 5), and found strong differences in the alpha band for all 
burst statistics in the resting condition (all p < 0.01), marginally more and longer bursts in the low beta band 
(p = 0.05, 0.03), and marginally longer burst episodes in the high beta band (p = 0.05), for the tapping condition 
only.

Discussion
Summary.  Here, we assessed whether endogenous delta oscillations can be observed in non-invasively 
recorded human brain dynamics. As per the current state of the art, we define oscillations by a narrow peak 
in the power spectral density71. We analysed an existing MEG dataset75, from which we selected three runs 
during which participants either rested, or engaged in rhythmic behaviour through spontaneous finger tapping 
(overt engagement of the motor system) and silent counting (covert engagement of the auditory-motor system), 
and concurrent prospective timing. Dedicated signal processing techniques were applied, involving a multi-step 
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procedure for removal of confounding artifacts in the delta frequency range (cardiac activity), and separation 
of aperiodic (1/f) components of the power spectrum from periodic components. Our results clearly show that 
narrow spectral peaks can be observed in the delta band in human MEG but require refined signal processing 
techniques. The peaks were heterogenous across conditions and participants, and partially overlapped with 
evoked activity, but intrinsic periodicities were identified during rest.

Locally oscillating neural populations.  A first important observation was that several spectral peaks 
were detected in the delta band per participant and condition (Figs. 3 and 5). Peaks were heterogenous with 
respect to the peak frequency, topographical distribution across sensors, and strength, i.e., the number of sensors 
showing a peak at a given frequency. Crucially, on average, or in a group statistical approach, no coherent peaks 
could be found, while individual power spectra do show signatures of oscillatory activity. This suggests that 
what we pick up in the M/EEG is the synchronous signal from relatively small, and spatially local neuronal 
populations. This point has long been made by Hari et al., who reported "…that synchronous activity of 1% of 
cells in a cortical area of 1 cm2 would determine 96.5% of the total signal"89 (caption of their Fig. 12, p.60). The 
current literature often considers neural oscillations as a rather widespread phenomenon, but recent studies have 
started to separate local oscillators. For example, one study investigated local alpha oscillations in auditory areas 
in humans with depth electrodes implanted in temporal regions and reported two distinct oscillators in primary 
and secondary auditory areas90, see also91. Another study used high density EEG to show that the seemingly 
paradoxical observation of theta oscillations surfacing during both rest and cognitive effort reflects separable 
neural dynamics92. The sparseness and variability of oscillating populations and their differential contributions 
to the recorded signals likely exacerbate divergences between existing human M/EEG studies, and should thus 
be taken into account more thoroughly. We hope that the work presented here provides an example and some 
possible guidelines in this direction, especially for the case of slow oscillations.

Do spectral peaks reflect endogenous periodicities?  A critical question is whether the spectral 
peaks that we identified truly qualify as endogenous oscillations, versus reflect periodically occurring evoked 
activity. The peaks found in the tapping condition were closer to the individual tapping rate, and stronger in 
power compared to the resting and counting conditions (Fig. 6 and 7), reflecting enhanced delta activity when 
participants engaged in tapping. This is in line with previous studies that linked self-paced tapping to neural 
dynamics in the delta frequency range93,94, but did not distinguish between evoked responses and oscillatory 
dynamics. Here, we observed the strongest delta activity at central and frontal sensors, but the peak topographies 
correlated with the topographies of the tapping evoked response in the majority of participants (Fig. 8). This 
suggests that the spectral peak in the vicinity of the individual tapping rate reflects at least in part the periodically 
occurring sensorimotor evoked responses59,87, and neural signatures of spontaneous movement95. We thus 
cannot claim that the peaks in the tapping condition reflect endogenously periodic activity. This questions the 
commonly used practice to search for spectral peaks when analysing neural oscillations, at least in the presence 
of other potential sources of periodic activity. Future functional studies will be necessary to compare delta 
activity in MEG recordings across different tasks.

To further investigate whether the spectral peaks reflect intrinsic periodicities, we performed a confirmatory 
analysis to classify non-stationary oscillatory delta band bursts in the time domain (Fig. 9)76. We found 
significantly enhanced oscillatory activity in the high delta band during resting, namely more and longer burst 
episodes in the sensors forming the peak cluster. While the application of this method to low frequency oscillation 
such as delta should be further validated, our finding provides preliminary evidence for spontaneous delta band 
oscillations in non-invasive human MEG recordings during rest.

The topography of the high delta peaks during rest (Fig. 5, top right panel), confirmed as oscillatory in 
the additional analysis, suggests motor, frontal, and possibly also auditory generators, in line with previous 
studies9,39,96. Notably, these oscillatory bursts occurred at frequencies above the behavioural tapping rate, pointing 
towards independency between tapping-evoked delta activity and endogenous oscillations. It might be the case 
that an activation of the auditory system by sensory inputs would have engaged internal oscillators in auditory 
regions more strongly, as endogenous delta oscillations have previously been reported in primary auditory 
cortices8, an assumption that can be tested in future work.

We also examined the hypothesis that spontaneous rhythmic activity is orchestrated by a stable internal 
frequency, i.e. a propensity of the relevant neural populations to oscillate at this frequency, by correlating peaks in 
tapping and counting behaviour and delta peaks across conditions66–69,97. The behavioural frequencies measured 
in tapping (1.17 Hz) and counting (0.91 Hz) were clearly in the delta range, albeit somewhat lower than the 
frequencies of the spectral peaks in the MEG data (avg. tapping peak: 1.39 Hz, avg. peak above tapping: 2.43 Hz, 
avg. counting peak. 1.24 Hz), and lower than the preferred frequency recently reported for auditory-motor 
synchronization (1.7 Hz69). There was no correlation of peak frequencies across conditions after controlling 
for the peak selection frequencies (Fig. 7C), which would have been expected if the peaks observed in the 
three conditions resulted from a stable neural oscillation. The behavioural frequencies measured in tapping and 
counting also did not correlate within individuals (Fig. 4). Thus, the assumption that spontaneous rhythmic 
motor behaviour (overt as in tapping, or covert as in counting) reflects the frequency of a common neural 
oscillator could not be confirmed here. However, it is possible that the small N underlying the correlation analyses 
prevented such an observation85.

Comparison between the present results and previous invasive studies.  As mentioned before, 
the existence of endogenous delta oscillations and their roles for cognitive processing are derived from seminal 
animal work. In humans, the availability of invasive recordings is very limited, but several studies provided 
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important insights from intracranial recordings in epilepsy patients. Our results align with these studies 
in several aspects, notably the observation of delta activities in various brain areas, and the variability of the 
oscillatory patterns over time. In a task-based study, Besle et al.31 show indirect evidence for endogenous delta 
oscillations by observing phase resets in a wide-spread network including motor cortex, orbitofrontal cortex, 
angular gyrus, and parietal regions (70% of recording sites), suggesting endogenous delta oscillations occur 
in many brain regions. In the same line, a seminal investigation by Halgren et al.9 addressed the generators of 
endogenous delta activity across cortical areas (frontal, parietal, temporal) and cortical layers. Delta (and theta) 
activity was prominently observed during sleep and wakefulness (rest) at all recording sites, with local generators 
in superficial cortical layers. Our results align with this work and underline the necessity to go beyond Fourier-
based methods, to assess to what extent peaks observed in low frequency bands reflect intrinsic periodicities. 
In an analysis restricted to auditory areas, Neymotin and al.98 identified ’oscillatory events’ occurring regularly 
in resting state data. Both the local field potentials (non-human primates) and intracranial EEG recordings 
(humans) showed prominent delta activity. Yet, the oscillations were not stationary, and occur for 3 cycles on 
average in the delta band, which nicely matches with our time-domain analyses.

In sum, there is clear evidence for endogenous delta oscillations in various areas of the human brain, mostly 
supported by local invasive recordings, and in line with the host of task-based studies describing activities in the 
delta band. As evidence converges that delta oscillations are local and not stationary, it will be crucial to take into 
account the biological properties of these dynamics in the study of cognitive processing in humans.

Theta, alpha, and beta bands.  For validation of the analysis pipeline, and comparison, the same 
analyses were run on three other canonical frequency bands (see supplementary Figures): theta (4–7 Hz), alpha 
(8–12 Hz), and beta (15–30 Hz). Most participants had several peaks per frequency band with considerable 
variation in the peak frequencies. Further examination of the time domain signal for intrinsic periodicities using 
the cycle-by-cycle method showed that besides the delta band, the only clearly oscillatory activity was found in 
the alpha band, confirming previous studies75,99.

While recently new methods have been proposed for the analysis of neural oscillations76,98,100, most have 
been validated in the alpha band (but see101) for a refined examination of neural dynamics in the the beta band. 
In the alpha range, dominant spectral peaks can be easily identified, and periodic activity can be spotted in the 
time domain with the naked eye. It is currently an open question whether those methods perform less well when 
detecting oscillations at slower frequencies, or whether dynamics in other frequency bands differ so strongly 
in their characteristics from the prominent alpha activity that it is even questionable whether they qualify as 
endogenous oscillations. A better understanding of the characteristics of neural oscillations beyond stationary 
sinusoids is required to move forward on these questions102.

Surprisingly, we observed no enhanced beta power in the tapping condition, previously reported during 
auditory-motor synchronization103–105. Beta oscillations have also been reported to reflect explicit duration 
estimates106–108, and implicit non-rhythmic temporal predictions30,32,109. As recently reported, beta oscillations 
occur as short bursts at specific moments in time, rather than as stationary oscillations110,111, which might explain 
why we did not observe increased power during the whole tapping run. This further supports the notion that 
Fourier based methods do not account well for the non-stationarities present in the brain dynamics and thus miss 
the presence of oscillations. In line with this assumption, the additional time domain analyses indicated at least 
marginally more and longer burst counts in beta during tapping (supplementary Figure S6, bottom left panel).

Outlook.  Delta oscillations seem indicative of a critical balance between widely synchronized and local 
activity, where too much synchronization is a signature of pathological brain activity112, but local oscillations 
appear crucial for engaging with a particular task. The presented results argue for the necessity to characterize 
delta oscillatory profiles per individual, namely in terms of peak frequency and topography. These individual 
profiles, obtained based on the methodological guidelines we outlined, can be used as the basis for future studies 
interested in the functional relevance of slow neural oscillations. The outlined procedures can be used to derive 
a spatio-spectral filter (or localizer), serving to extract the signal of interest, for instance when interested in 
mechanisms of synchronization to external rhythms113, or memory consolidation, functionally linked to delta 
oscillations. This approach can also be applied in the assessment of clinical populations that show characteristic 
alterations in delta oscillations9,114,115, for instance in schizophrenia, where increased delta oscillatory power 
is observed over frontal regions. The approach proposed here will hopefully help to promote a more unified 
reporting of the physiological characteristics of delta oscillations relevant to a particular task, or pathology, to 
eventually enable meta-analytic approaches as currently available for alpha oscillations116.

Limitations.  Here, we present a first attempt to assess endogenous delta oscillations in non-invasive MEG 
recordings in humans. While our work shows that spectral peaks can be observed in the delta band, we would not 
want to assume that those peaks reflect endogenous oscillations in all experimental conditions. One particular 
limitation was the rather short recordings we used (2 min per condition and participant). Given the observation 
that oscillatory episodes might be transient98,101 short recordings might have resulted in a low signal to noise 
ratio. Longer datasets should be screened for endogenous delta oscillations with the same methods to observe 
their consistency over time, and their relationship with mental states and behavioural tasks in awake human 
participants. Longer datasets would also allow to address phase-amplitude coupling between delta oscillations 
and higher band power, as previously observed8,9. Furthermore, the small sample size (N = 18) might have 
limited our chances to find significant differences and correlations85, which should be considered in interpreting 
the results.
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Conclusions
Here we examined whether endogenous delta oscillations can be observed in non-invasive MEG recordings 
in humans, by analysing human resting state recordings. To test whether spontaneous rhythmic behaviours 
incite an otherwise silent internal oscillator, we also selected conditions in which participants engaged in 
spontaneous finger tapping and silent counting. Narrow spectral peaks in the delta frequency range were found 
in all conditions, but additional analyses targeting non-stationary oscillations in the time domain showed that 
only the resting state data warranted an interpretation of endogenously periodic neural dynamics. We hope that 
the novel set of analyses steps and results presented here will foster a more detailed investigation of spontaneous 
oscillations in low frequency bands in humans, and thus contribute to better standards in characterizing the 
physiological signals underlying a hypothesized functional mechanism, and enable comparison across studies 
in healthy and clinical populations.

Data and code availability
Raw magnetoencephalography recordings, as well as the pre-processed epochs for all three runs per participant 
are available together with the complete analysis pipeline (python code), and the behavioural data on the Open 
Science Framework under this link: https://​osf.​io/​bp52j/.
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