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Diffusion-weighted imaging Superior longitudinal fasciculus ABSTRACT Adaptive behavior 

requires the ability to orient attention to the moment in time at which a relevant event is 

likely to occur. Temporal orienting of attention has been consistently associated with 

activation of the left intraparietal sulcus (IPS) in prior fMRI studies. However, a direct test of 

its causal involvement in temporal orienting is still lacking. The present study tackled this 

issue by transiently perturbing left IPS activity with either online (Experiment 1) or offline 

(Experiment 2) transcranial magnetic stimulation (TMS). In both experiments, participants 

performed a temporal orienting task, alternating between blocks in which a temporal cue 

predicted when a subsequent target would appear and blocks in which a neutral cue provided 

no information about target timing. In Experiment 1 we used an online TMS protocol, aiming 

to interfere specifically with cue-related temporal processes, whereas in Experiment 2 we 

employed an offline protocol whereby participants performed the temporal orienting task 

before and after receiving TMS. The right IPS and/or the vertex were stimulated as active 

control regions. While results replicated the canonical pattern of temporal orienting effects on 

reaction time, with faster responses for temporal than neutral trials, these effects were not 

modulated by TMS over the left IPS (as compared to the right IPS and/or vertex regions) 

regardless of the online or offline protocol used. Overall, these findings challenge the causal 

role of the left IPS in temporal orienting of attention inviting further research on its 

underlying neural substrates. 1. Introduction Our interaction with the environment largely 

depends upon the ability to prioritize and selectively attend to relevant, rather than irrelevant, 

information. Although most studies of selective attention have focused on the spatial domain 

(e.g., Chica et al., 2013; Keefe and Stormer, ¨ 2021; Kuhns et al., 2017), there has also been 

an increase in research on the ability to selectively orient attention to when an event will 

occur, i.e., temporal orienting of attention (e.g., Capizzi et al., 2013; Coull and Nobre, 1998; 

Mento and Tarantino, 2015; Nobre and van Ede, 2018; Rohenkohl et al., 2014; Yeshurun and 

Tkacz-Domb, 2021). One of the most widely used tasks to investigate temporal orienting of 

attention is the temporal orienting task, adapted from Posner’s spatial orienting paradigm 

(Posner, 1980). In a typical implementation of the temporal orienting task (Coull and Nobre, 

1998; Kingstone, 1992), each target presentation is preceded by a symbolic cue that indicates 

one of the two moments in time (early or late) that a target is likely to appear (though note 

that more than two time intervals can be cued; e.g., Coull et al., 2016). Cues can convey 

either correct (valid condition) or incorrect information (invalid condition) about the timing 

of target occurrence, or else they can provide no predictive information with trials equally 

divided between early and late cue-target intervals (neutral condition). The common finding 

is that reaction times (RTs) get faster and accuracy is higher for valid as compared to invalid 

or neutral trials, the so-called “temporal orienting effects” (Capizzi et al., 2012; Correa et al., 

2004; Miniussi et al., 1999; Nobre, 2010). Temporal orienting effects are usually restricted to 

targets appearing at the shorter of the two time intervals, whereas they are reduced or even 
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usually explained by the hazard function, i.e., the conditional probability that an event will 

occur given that it has not yet occurred (Herbst et al., 2018; Janssen and Shadlen, 2005; 

Visalli et al., 2019, 2021). That is, once a target that was cued to appear at the early interval 

fails to materialize, participants simply re-orient their attention to the longer time interval. 

Because of the hazard function, a behavioral advantage is also observed at long compared to 

short interval neutral trials, the so-called “foreperiod effect” (from the time interval between 

the cue and the target commonly termed the foreperiod; Capizzi and Correa, 2018; Niemi and 

Na¨at ¨ ¨ anen, 1981). Performance on the temporal orienting task has been associated with 

activity in a variety of neural regions. Amongst these, functional magnetic resonance imaging 

(fMRI) studies especially point to the left intraparietal sulcus (IPS) as a key substrate for 

temporal orienting of attention (Bolger et al., 2014; Cotti et al., 2011; Coull and Nobre, 1998; 

Coull et al., 2016; Davranche et al., 2011). Indeed, significant activation of the left IPS in 

temporal orienting tasks has been reported independently of task demands (i.e., motor vs. 

perceptual; Davranche et al., 2011), type of responses (i.e., manual vs. saccadic; Cotti et al., 

2011), or type of cues employed to direct attention to time (i.e., rhythms vs. symbolic cues; 

Bolger et al., 2014). However, the contribution of the left IPS to temporal orienting of 

attention is so far limited to correlational fMRI findings. In the present study, we aimed to 

probe the causal role of the left IPS in temporal orienting of attention by perturbing its 

activity with transcranial magnetic stimulation (TMS). If left IPS plays a causal role in the 

ability to orient attention in time, we would expect the behavioral benefits of temporal 

orienting to be modulated following TMS over left IPS as compared to TMS over a control 

region (i.e., right IPS and vertex in Experiment 1; vertex in Experiment 2). No TMS 

modulation should be observed if left IPS activity is not causally related to temporal 

orienting. In addition to TMS, we also acquired Diffusion-Weighted Imaging (DWI) data in 

order to explore the contribution of white matter connections between frontal and parietal 

areas to temporal orienting. Besides the parietal cortex, frontal regions have also been 

involved in temporal orienting of attention (Trivino ˜ et al., 2010, 2011). To our knowledge, 

no previous study has used DWI to explore whether white matter connections between frontal 

and parietal areas contribute to temporal orienting. To this end, we performed tractography of 

the Superior Longitudinal Fasciculus (SLF), an extensive longitudinal white matter tract 

connecting the frontal and parietal lobes. The SLF is composed of three different branches, 

labeled from dorsal to ventral: the SLF I (extending between the superior parietal lobe and 

the dorsal and medial parts of the frontal lobe), the SLF II (connecting the angular gyrus and 

the posterior regions of the superior and middle frontal gyrus), and the SLF III (extending 

between the supramarginal gyrus and the inferior frontal gyrus; Nakajima et al., 2019; 

Rojkova et al., 2016; Thiebaut de Schotten et al., 2011). The SLF has been linked to different 

attentional functions such as spatial orienting, sustained attention, and executive control in 

both healthy (Carretie et al., 2012; Klarborg et al., 2013; Sasson et al., 2012, 2013; Thiebaut 

de Schotten et al., 2011) and pathological populations with attentional deficits (e.g., spatial 

neglect: Doricchi et al., 2008; Thiebaut De Schotten et al., 2014; attention-

deficit/hyperactivity disorder: Chiang et al., 2016; Wolfers et al., 2015). If the SLF also 

contributes to temporal orienting of attention, we would expect a significant correlation 

between the microstructural properties of this tract and temporal orienting effects. 2. 

Experiment 1 In Experiment 1, online repetitive TMS over left IPS, right IPS, and vertex was 

delivered while participants performed a temporal orienting task. Left IPS coordinates (see 



below) were extracted from a previous fMRI study showing greater activity in this area for 

temporally valid compared to neutral trials in both motor and perceptual temporal orienting 

tasks (Davranche et al., 2011). As control regions, both the right IPS and the vertex were 

stimulated. Right IPS coordinates were based on a TMS study providing evidence for the 

causal involvement of the right IPS in spatial orienting of attention (Chica et al., 2011). 

Considering that there was no spatial uncertainty in our temporal orienting task (as cue and 

target stimuli were both centrally displayed), we reasoned that stimulation of the left, but not 

right, IPS should selectively interfere with the ability to orient attention in time. Moreover, by 

stimulating the right IPS, we aimed to ensure that any potential interference by TMS on 

temporal orienting effects was specific to the left IPS only. As an additional control site, we 

stimulated the vertex because of previous reports showing no TMS modulation over the 

vertex on behavioral responses (Jung et al., 2016). TMS pulses were delivered immediately 

after the cue offset in order to selectively interfere with cue-induced temporal orienting 

processes (Davranche et al., 2011). 3. Methods 3.1. Participants Twenty-two participants 

from the University of Granada took part in Experiment 1. Data from one participant were 

excluded because of poor compliance with task instructions (i.e., 9.16% of missed/anticipated 

responses), leaving a final sample size of twenty-one participants (12 females, mean age = 

22.84 years, age range: 19–29 years), which is similar to the sample size of previous TMS 

studies from our group (Chica et al., 2011; Martín-Ar´evalo et al., 2019). A sensitivity power 

analysis (G*Power 3 software; Faul et al., 2007) showed that our sample size was adequate to 

detect significant (α = 0.05) mean differences (one-tailed) between two dependent means 

(i.e., temporal orienting effects between left IPS and control region) with a medium effect 

size d = 0.56 and a statistical power of 0.80. All participants reported to be right-handed, had 

normal or corrected-to-normal vision, and received monetary compensation for their 

participation (10 Euros/hour). All of them signed an informed consent prior to participation 

and completed security protocols for both MRI and TMS (Rossi et al., 2021). None of them 

reported a history of neurological or psychiatric disorders. The study was approved by the 

Ethics Committee of the University of Granada and was conducted in accordance with the 

recommendations of the Declaration of Helsinki. 3.2. Apparatus and stimuli The experiment 

was run on an Intel® Core™ i5-64002 Duo personal computer connected to a 19′′ LCD 

monitor (Benq T903, 1280 × 1024, 60 Hz). Stimulus presentation and data recording were 

controlled by Eprime software (Schneider et al., 2002). The viewing distance was 

approximately 60 cm. All stimuli were white, presented on a black background in the center 

of the screen (Fig. 1A). Stimuli were similar to those used in previous temporal orienting 

studies (Coull et al., 2013, 2016). They included a central stimulus (size: 1.91◦ × 1.91◦ of 

visual angle) comprising three concentric circles that served to create temporal and neutral 

cues, and a target. The temporal cues were associated with the brightening of the smallest 

(inner) and largest (outer) circle. The neutral cue was associated with the brightening of all 

the three circles. The target consisted of the presentation of a cross overlaid on the three 

circles. 3.3. Task and procedure Fig. 1A illustrates the timing and the sequence of events 

forming a trial. Each trial started with the presentation of a blank screen for a random 

duration ranging from 500 to 1500 ms. The cue was then displayed for 500 ms. In the 

temporal condition, the brightening of the inner circle indicated that the target would appear 

after the short foreperiod (300 ms), whereas the brightening of the outer circle was M. 
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(1300 ms). Temporal cues were 100% valid. Participants were explicitly informed about cue 

validity and instructed to use the temporal cues to anticipate target onset. In the neutral 

condition, all three circles brightened meaning that the target was equally likely to appear 

after the short or the long foreperiod (50% probability for each foreperiod). At cue offset, the 

central stimulus comprising all three concentric circles was displayed for the entire 



foreperiod duration. After the foreperiod elapsed, the target (a cross overlaid on the three 

circles) appeared for 150 ms. Participants had to respond to the onset of the cross by pressing 

the left mouse button with their right hand as quickly as possible, while trying to avoid 

anticipations. A maximum of 1500 ms was allowed for responding. However, in case a 

response was initiated before target onset, a visual message, warning the participant to wait 

for the target, was displayed and the trial was repeated. After target response (or after 1500 

ms for a missed response), there was an inter-trial-interval whose duration was adjusted on a 

trial-by-trial basis to never be less than 5 s. During the inter-trialinterval, the central circle 

comprising the three circles was presented. For each stimulation site, there were 2 blocks of 

temporal cue trials and 2 blocks of neutral cue trials, each block containing 40 trials (equally 

divided into short and long foreperiods). Temporal and neutral blocks were alternated, and 

the condition with which participants started was counterbalanced. Before the experimental 

task, participants performed a training session comprising 12 neutral and 22 temporal trials to 

familiarize themselves with the meaning of the cues and the task. 3.4. MRI data acquisition 

Structural images were collected on a 3-T Siemens Trio MRI scanner at the Mind, Brain, and 

Behavior Research Center (CIMCYC) of the University of Granada, using a 32 channel 

whole-head coil. Highresolution T1-weighted anatomical images (Repetition Time [TR] = 

2530 ms, Echo Time [TE] = 3.5 ms, flip angle = 7◦, slice thickness = 1 mm, field of view 

[FOV] = 256 mm) were collected. The DWI sequence consisted of 60 vol at b-value = 1500 

s/mm2 with gradient directions uniformly distributed in space and 6 vol at b-value = 0. For 

each volume, 70 near axial slices were acquired with a posterior–anterior phase of acquisition 

(TR = 8400 ms, TE = 88 ms, voxel size = 2 mm3 isotropic, FOV = 220 mm, GRAPPA in 

plane acceleration factor = 3). 3.5. TMS procedure The TMS session began by determining 

the hotspot for both the right and left first dorsal interosseous (FDI), the optimum site of the 

primary motor cortex (M1) evoking the highest contralateral motor evoked potentials (MEP) 

in the relaxed FDI. Then, we determined the right and left resting motor threshold (rMT), 

defined as the minimum stimulus intensity that elicits MEPs >50 mV in five out of ten 

consecutive trials (Rossini et al., 2015). Electromyography (EMG) and MEPs were recorded 

from left and right FDIs by using snap surface electrodes (Natus Neurology). During the 

experimental task, the stimulation was administered at 120% of each participant’s rMT 

(averaging the rMT from the left and right FDI, and stimulating at a maximal intensity of 

80% of the maximum stimulator output, MSO). Intensity of stimulation was decreased if 

participants presented any signs of discomfort such as blinks, yawn movements, etc. The 

mean stimulation intensity for the left IPS was 72.15 (SD = 8.15), whereas for the right IPS 

and vertex was 73.52 (SD = 8.27). Participants received TMS over the left IPS [Montreal 

Neurological Institute (MNI) coordinates: x = − 33, y = − 45, z = 39, extracted from 

Davranche et al., 2011], the right IPS (MNI coordinates: x = 16, y = − 63, z = 47, extracted 

from Chica et al., 2011), and the vertex (MNI = coordinates: x = 0, y = − 34, z = 78, extracted 

from Martín-Ar´evalo et al., 2019) in counterbalanced order (Fig. 1C). Half of the 

participants started with the vertex stimulation, whereas the other half started with either the 

right or the left IPS stimulation. However, the blocks performed during the vertex stimulation 

(4 in total) were split in such a way that all participants received TMS over the vertex in 

between left and right IPS stimulations. For example, if one participant started with the left 

IPS stimulation, this was followed by vertex, right IPS and again vertex stimulation (i.e., 

LIPS/Vertex/RIPS/Vertex). Likewise, if one participant started with the vertex stimulation, 

then she/he underwent stimulation of the right (or the left) IPS followed by vertex stimulation 

(i. e., Vertex/RIPS/Vertex/LIPS). Trials from the vertex stimulations were collapsed for the 

analysis. Fig. 1. (A). Schematic of the temporal orienting task used in Experiments 1 and 2. 

In Experiment 1, three TMS pulses were applied immediately after cue offset. (B) Illustration 

of the offline repetitive TMS (rTMS) protocol used in Experiment 2. Participants performed 



the temporal orienting task before and after receiving rTMS. (C) Representation of the TMS 

sites for Experiment 1 (LIPS, RIPS, and Vertex) in an axial brain view (Xia et al., 2013). In 

Experiment 2, only LIPS and Vertex were stimulated. M. Capizzi et al. Neuropsychologia 

184 (2023) 108561 4 The stimulation consisted of three TMS pulses at 20 Hz (e.g., 

Fernandez ´ and Carrasco, 2020; Smith et al., 2005), delivered immediately after cue offset 

for a total duration of 150 ms. TMS was applied using a biphasic repetitive stimulator (Super 

Rapid 2, Magstim, Whitland UK) and a 70-mm TMS figure-of-eight refrigerated coil 

(Magstim, Whitland UK) positioned at ~45◦ respect to the scalp (e.g., Chanes et al., 2013; 

Chechlacz et al., 2015; Gallotto et al., 2022; Martín-Ar´evalo et al., 2019). The TMS coil was 

controlled by a robotic arm (TMS Robot; Axilum Robotics) and a TMS neuronavigation 

system (Brainsight; Rogue Systems, Montreal, Canada) with the capacity to estimate and 

track in real time the relative position, orientation, and tilting of the coil on the sectional and 

3D reconstruction of the participants MRI with a precision of 5 mm (Caulfield et al., 2022). 

3.6. Behavioral data analysis Data from the practice session were discarded before any 

further analysis. Trials without responses and trials with premature responses (i. e., RTs 100 

is regarded as extreme evidence, 30–100 very strong evidence, 10–30 strong evidence, 3–10 

moderate evidence, 1–3 weak evidence and 1 no evidence (Wagenmakers et al., 2018). 

Inclusion BFs were obtained through Bayesian model averaging (across all models). 3.7. 

Diffusion weighted imaging (DWI) analysis DWI data were pre-processed in ExploreDTI 

(Leemans and Jones, 2009) to attenuate artifacts commonly observed in diffusion MRI data. 

For each slice, DWI data were simultaneously registered and corrected for subject motion, 

and for eddy current and echo planar imaging distortions, adjusting the gradient accordingly 

(Irfanoglu et al., 2012; Leemans et al., 2009; Leemans and Jones, 2009). Spherical 

deconvolution was then performed employing the damped Richardson–Lucy deconvolution 

algorithm (Dell’Acqua et al., 2010) using StarTrack (http://www.natbrainlab.com). 

Algorithm parameters were α = 2, algorithm iteration = 400, and η = 0.06 and ν = 8 as 

regularization terms (Dell’Acqua et al., 2013). Whole-brain deterministic tractography was 

performed using a modified Euler tractography algorithm [angle threshold = 45◦, absolute 

hindrance modulated (HMOA) threshold = 0.1, and relative threshold = 10%]. Individual 

dissections of the tracts were carried out with the software TrackVis (Wang et al., 2007). The 

3 branches of the SLF (on the left and the right hemisphere) were isolated using a multiple 

region of interest (ROI) approach. Three frontal ROIs around the white matter of the 

superior, middle, and inferior frontal gyri, and a ROI around the white matter of the parietal 

lobe were delineated (see Rojkova et al., 2016; Thiebaut de Schotten et al., 2011, for a 

detailed explanation of the method). Streamlines of the arcuate fasciculus projecting to the 

temporal lobe were excluded by drawing a no-part ROI in the temporal white matter. 

Cingulate fibers were distinguished from the SLF I by delineating the frontal ROI above the 

cingulate sulcus. The HMOA, an index employed as a surrogate for tract microstructural 

organization, was extracted from each dissected tract. The mean HMOA is defined as the 

absolute amplitude of each lobe of the fiber orientation distribution; it is considered highly 

sensitive to axonal myelination, fiber diameter, and axonal density (Dell’Acqua et al., 2013). 

We computed Pearson correlations between temporal orienting effects and the mean HMOA 

of the left and right SLF branches (SLF I, SLF II, and SLF III) separately. As a general 

measure of temporal orienting, we used the RT difference between temporal and neutral trials 

at the short foreperiod during the vertex stimulation. Both temporal orienting and SLF 

measures were normally distributed as assessed with Kolmogorov–Smirnov tests (all ps >. 2). 

Data from 19 participants were used for correlational analyses given that two participants did 

not complete DWI data acquisition. This and all the other correlation analyses reported here 

were corrected for multiple comparisons using a false discovery rate (FDR) correction (p < 

.05; Benjamini and Hochberg, 1995). 4. Results As expected in a temporal orienting task,2 



the main effect of Condition was significant (F(1, 20) = 23.72, p < .001, η2 p = .54), with 

shorter RTs for temporal as compared to neutral trials. The main effect of Foreperiod was 

marginally significant (F(1, 20) = 3.57, p = .073, η2 p = .15), as it was better qualified by a 

significant Condition × Foreperiod interaction (F(1, 20) = 36.33, p < .001, η2 p = .64), such 

that RTs got faster at the long foreperiod as compared to the short foreperiod in the neutral 

condition only (t(20) = 4.74, p < .001, d = 1.03). By contrast, in the temporal condition, RTs 

tended to be faster at the short foreperiod as compared to the long foreperiod (t(20) = 2.05, p 

= .054, d = 0.44). More importantly, reflecting the classic temporal orienting effects, pairwise 

comparisons at each foreperiod showed that RTs were faster for temporal than neutral trials 

at the short foreperiod (t(20) = 5.82, p < .001, d = 1.27), but RTs did not differ between 

temporal and neutral trials at the long foreperiod (t(20) = 1.26, p = .22, d = 0.27). The main 

effect of Region and all interactions involving the Region Factor did not approach 

significance (minimum p = .17; Fig. 2). Despite the lack of a significant Region x Condition 

× Foreperiod interaction in our data, we calculated for each stimulation site an index of 

temporal orienting (i.e., RT difference between temporal and neutral trials at the short 

foreperiod) and compared the magnitude of temporal orienting effects across stimulation sites 

with a one-way ANOVA with Region as factor. This analysis confirmed no difference in 

temporal orienting effects (MeanLIPS = 38.12, SD = 46.29; MeanRIPS = 29.39, SD = 23.11; 

MeanVertex = 37.77, SD = 25.2) between stimulation sites (F(2, 60) = 0.46, p = .6, η2 p = 

.015). The results from the frequentist analysis were supported by Bayesian statistics showing 

that there was extreme evidence for including the main effects of Condition (inclusion BF = 

4.569e+12), Foreperiod (inclusion BF = 312242.312), and their interaction (inclusion BF = 

589757.580). Conversely, there was no evidence for including the main effect of Region 

(inclusion BF = 0.358) as well as all interactions involving the Region factor (inclusion BFs 

for Region x Condition = 0.090, Region x Foreperiod = 0.103, and Region x Condition x 

Foreperiod = 0.019). As concerns the results from DWI tractography, temporal orienting 

effects were not correlated with the HMOA index of any of the left or 2 Although our focus 

was on temporal orienting, the presence of a neutral condition granted us the possibility to 

explore the role of the left IPS in the expression of foreperiod effects and sequential effects 

(SEs; Capizzi et al., 2015; Los et al., 2014; Vallesi et al., 2013). The analysis on SEs can be 

found in the Supplementary material. M. Capizzi et al. Neuropsychologia 184 (2023) 108561 

5 right SLF branches (minimum puncorr = .16). 5. Discussion While our results replicated 

previous findings of temporal orienting effects, with significant benefits for temporal versus 

neutral trials at the short foreperiod (Capizzi et al., 2012; Correa et al., 2004; Coull and 

Nobre, 1998), these effects were not modulated by TMS over the left IPS. Specifically, 

participants showed comparable temporal orienting effects regardless of the stimulation site, 

either left or right IPS or vertex region. Moreover, Bayesian analysis confirmed that our data 

were best represented by a model including both Condition and Foreperiod factors and their 

interaction rather than a model that also included possible interactions with the Region factor. 

The absence of an effect of left IPS stimulation on temporal orienting was unexpected in light 

of previous fMRI studies pointing to this region as a key substrate for orienting attention in 

time (Bolger et al., 2014; Cotti et al., 2011; Coull and Nobre, 1998; Coull et al., 2016; 

Davranche et al., 2011). Although there are multiple possibilities as to why stimulation did 

not elicit an effect (de Graaf and Sack, 2011), one explanation for this null finding relates to 

the use of an online TMS protocol. That is, one could argue that our online TMS approach, 

covering a short temporal range only (i.e., 150 ms), was perhaps inadequate to disrupt 

temporal orienting effects. Another related possibility is that the left IPS might only become 

involved at the moment at which the target is predicted to appear, rather than at the onset of 

the interval being timed. Delivering TMS at cue offset might therefore have spared 

attentional processes that are temporally focused on target onset. Experiment 2 aimed to test 



these possibilities by employing an offline TMS protocol. Offline stimulation would allow 

for a more stringent test of the contribution of the left IPS to temporal orienting by producing 

stronger effects that cover the entire trial. As in Experiment 1, DWI tractography of the SLF 

was performed. 6. Experiment 2 Experiment 2 was a replication of Experiment 1 with the 

critical exception that offline, instead of online, TMS was used. In particular, we devised a 

pre-post design, with a repetitive TMS (rTMS) sequence of 1200 pulses applied at 1 Hz. 

Because an offline TMS procedure involves at least two different sessions to stimulate both 

target and control region (s), in Experiment 2 we simplified the design by keeping only the 

vertex as a control site. 7. Methods 7.1. Participants Twenty-two participants were recruited 

for Experiment 2. None of them had participated in Experiment 1. Three participants did not 

return to complete the second TMS session and were then replaced with other three 

participants. One participant was rejected because data from one session got lost. The final 

sample included 21 participants (13 females, mean age = 25.05 years, age range: 19–36 

years, all right-handed according to self-report). As in Experiment 1, all participants 

completed security protocols for both MRI and TMS, signed an informed consent prior to the 

study, and received monetary compensation for their participation (10 Euros/hour). 7.2. 

Apparatus, stimuli and procedure The apparatus, stimuli, and procedure were the same as in 

Experiment 1 with the exception that rTMS over left IPS and vertex were applied offline in 

two separate sessions on two different days (Fig. 1B). In each session, participants performed 

the same temporal orienting task as in Experiment 1. The task was divided into 4 blocks of 40 

trials each, with two of the blocks comprising the temporal condition and two blocks the 

neutral condition. Participants performed this task twice in each session, once before (pre-

rTMS) and once after (post-rTMS) TMS stimulation. 7.3. MRI data acquisition and DWI 

analysis MRI data acquisition was the same as in Experiment 1 with the exception of the 

DWI sequence, which was optimized according to recent work (Guo et al., 2020; Jeurissen et 

al., 2014). We used a DWI multiband and multi-shell acquisition protocol (TR = 3500 ms, 

TE = 75 ms, voxel size = 1.8 mm3 isotropic, FOV = 208 mm, multi-band acceleration factor 

= 3). We acquired, in consecutive sequences, 8 vol at b = 300 s/mm2 (2 b value = 0 vol), 32 

vol at b = 1000 s/mm2 (6 b value = 0 vol), and 60 vol at b = 2000s/mm2 (6 b value = 0 vol). 

For each volume, 81 near axial slices were collected with a posterior–anterior phase of 

acquisition. Additionally, the b-value 300 sequence was acquired with an anterior-posterior 

phase of acquisition to correct for phase-encoding direction-induced distortions (Andersson 

et al., 2003). DWI data pre-processing was similar to that used in Experiment 1 using the 

eddy current correction tool from the FMRIB Software Library (FSL, Andersson and 

Sotiropoulos, 2016). Additionally, distortions induced by phase encoding were corrected 

using the topup toolbox from FSL (Andersson et al., 2003). Multishell spherical 

deconvolution (Guo Fig. 2. Reaction time (RTs) results from Experiment 1. Mean RTs in 

milliseconds (ms) as a function of Region (LIPS, RIPS, and Vertex), Condition (temporal, 

neutral) and Foreperiod (short, long). Error bars represent standard error of the mean. M. 

Capizzi et al. Neuropsychologia 184 (2023) 108561 6 et al., 2020) was then performed with 

the algorithm parameters α = 2, algorithm iteration = 400, and η = 0.001 and ν = 8 as 

regularization terms. Whole-brain deterministic tractography was performed using a modified 

Euler tractography algorithm (angle threshold = 45◦ and HMOA threshold = 0.0036). 

Dissections of the right and left SLF I, SLF II, and SLF III were performed as in Experiment 

1. Likewise, Pearson correlations between temporal orienting effects and the mean HMOA of 

the left and right SLF branches were computed separately. Temporal orienting effects (i.e., 

RT difference between temporal and neutral trials at the short foreperiod) were calculated 

using data from the pre-TMS blocks only, collapsing across pre-left IPS and pre-vertex 

sessions. All the measures were normally distributed (all ps >. 20). Data from 18 participants 

contributed to the correlational analyses. 7.4. rTMS procedure The first TMS session began 



by determining the participants’ rMT. EMG and MEPs were recorded from the right FDI. 

During the experimental task, TMS was administered at 100% of each participant’s rMT, 

decreasing the intensity of stimulation in the presence of blinks, yawn movements or any 

other signs of discomfort. Each participant underwent 2 TMS sessions, separated by at least 

five days (mean inter-session interval = 8 days, SD = 3.13). One participant returned for the 

second session after two months for medical reasons. Results did not change when excluding 

this participant. Half of the participants started with the left IPS stimulation (mean 

stimulation intensity = 63.95 of MSO, SD = 7.19), whereas the other half started with the 

vertex stimulation (mean stimulation intensity = 64.57, SD = 7.51). The rTMS sequence 

consisted of 1200 pulses applied at 1 Hz with an inter-pulse interval of 1 s (for a total 

duration of 20 min). Previous studies have shown that this protocol transiently reduces 

cortical excitability within the stimulated sites and lasts for approximately 50–75% of the 

stimulation duration (Chen et al., 1997; Maeda et al., 2000; Muellbacher et al., 2000; 

Hilgetag et al., 2001; Wagner et al., 2007), which should cover most of our post-rTMS task 

(15 min). 7.5. Behavioral data analysis The same trimming procedure (1.84% rejected trials 

of all the trials) and RT outlier removal (6.3% of the remaining trials) as in Experiment 1 

were applied. A repeated-measure ANOVA was used on mean RTs, with Region (LIPS, 

vertex), Session (pre-TMS, post-TMS), Condition (temporal, neutral), and Foreperiod (short, 

long) as within-participant factors. 8. Results The ANOVA yielded significant effects of 

Condition (F(1, 20) = 32.3, p < .001, η2 p = .62), Foreperiod (F(1, 20) = 18.3, p < .001, η2 p 

= .48), and their interaction (F(1, 20) = 40.3, p < .001, η2 p = .67). Replicating Experiment 

1,3 post-hoc pairwise comparisons at each foreperiod showed significant temporal orienting 

effects (i.e., shorter RTs for temporal compared to neutral trials) at the short foreperiod (t(20) 

= 7.06, p < .001, d = 1.54), but not at the long foreperiod (t(20) = 1.13, p = .27, d = 0.24). The 

main effect of Session was also significant (F(1, 20) = 27.4, p < .001, η2 p = .58), indicating 

that participants responded faster in the post-TMS session as compared to the pre-TMS 

session. The main effect of Region and all the interactions involving the Region factor failed 

to reach significance (minimum p = .14; Fig. 3), except for the Region x Session × 

Foreperiod interaction (F(1, 20) = 4.38, p = .049, η2 p = .18). In order to unpack this three-

way interaction, we analyzed the Session × Foreperiod interaction separately for the left IPS 

and vertex. These follow-up analyses showed that the Session by Foreperiod interaction was 

not significant for the left IPS (F < 1), whereas it was marginally significant for the vertex 

region (F(1, 20) = 4.15 p = .054, η2 p = .17). Further unpacking this interaction for the 

vertex, the foreperiod effect was significant in the pre-TMS session (t(20) = 3.57, p = .002, d 

= 0.78), but not in the post-TMS session (t(20) = 1.92, p = .068, d = 0.42). Note, however, 

that the Region x Session × Foreperiod interaction was only supported by frequentist but not 

by Bayesian statistics (inclusion BF = 0.014), as detailed below. As in Experiment 1, 

Bayesian statistics showed that there was extreme evidence for including the main effects of 

Condition (inclusion BF = 2.0229e+13), Foreperiod (inclusion BF = 1.824e+12), and their 

interaction (inclusion BF = 2.650e+7). Moreover, there was extreme evidence for including 

the main effect of Session (inclusion BF = 5.820e+6). By contrast, there was weak evidence 

for including the main effect of Region (inclusion BF = 2.065), and no evidence for including 

all the interactions involving the Region factor (inclusion BFs< 1). Replicating Experiment 1, 

temporal orienting effects were not correlated with any of the HMOA indexes of the left or 

right SLF branches (minimum puncorr = .53). 8.1. Post-hoc DWI tractography analysis 

Recent studies suggest that TMS modulation of behavioral performance on attentional tasks 

may, in part, depend on the microstructural properties of white matter branches such as the 

SLF. In particular, larger TMS effects have been observed for participants with lower HMOA 

values as compared to participants with higher HMOA values in certain SLF fascicules 

(Martín-Signes et al., 2019, 2021). This suggests that high HMOA values in the SLF tract 



could counteract the disruptive consequences of TMS application. Building on this line of 

research, we explored whether white matter microstructural properties of the SLF might also 

have had a role in our null neuromodulation results. To this aim, we performed post-hoc 

correlational analyses between HMOA indexes of the left SLF branches and RT indices of 

the hypothesized interaction between region and temporal orienting effects, as in previous 

work from our group (see Martín-Signes et al., 2021). For Experiment 1, the interaction index 

was calculated by subtracting the temporal orienting effects (i.e., RT difference between 

temporal and neutral trials at the short foreperiod) for the left IPS TMS from the temporal 

orienting effects for the vertex TMS (i.e., the control region common to both experiments). 

For Experiment 2, since in addition to the comparison between regions (left IPS, vertex), 

there was also the comparison between sessions (pre, post), we simplified the analyses by 

calculating two separate indexes: one for the left IPS (i.e., pre(temporal-neutral) minus 

post(temporal-neutral) and one for the vertex (i.e., pre (temporal-neutral) minus 

post(temporal-neutral). Then, we correlated the obtained interaction indexes4 with the left 

SLF branches. Neither of these correlations was significant (minimum puncorr = .12). 9. 

Discussion Experiment 2 again provided no evidence for a modulation of temporal orienting 

effects by TMS over the left IPS. This result showed that interfering with left IPS activity 

even with an offline TMS protocol was insufficient to disrupt the ability to voluntarily orient 

attention in time. 10. General discussion This study investigated for the first time the causal 

role of the left IPS in temporal orienting of attention. Participants performed a classic 3 As 

for Experiment 1, the analysis on SEs is reported in the Supplementary material. 4 Note that 

it was not possible to derive a single index collapsing the data from both experiments because 

DWI sequences differed between the two acquisition protocols. M. Capizzi et al. 
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randomized on a trial-bytrial basis. Valid temporal blocks, affording anticipatory preparation, 

were alternated with neutral blocks in which the cue did not convey any predictive 

information about the timing of target onset. Experiment 1 tested the hypothesis that 

selectively interfering with left IPS activity during the cue period should lead to reduced 

temporal orienting effects as compared to TMS over either the right IPS or the vertex region. 

Experiment 2 employed an identical temporal orienting task as in Experiment 1, but with an 

offline stimulation protocol aimed to increase TMS-induced interference effects by covering 

the entire trial. Findings from both experiments replicated the typical pattern of temporal 

orienting effects, with shorter RTs for temporal than neutral trials at the short foreperiod. 

Moreover, we also corroborated the wellknown advantage afforded by the passage of time 

(i.e., foreperiod effect) and the duration of the preceding foreperiod (i.e., sequential effects; 

see the Supplementary Material). Overall, these results confirm the reliability of our task 

manipulation, discounting the possibility that null TMS effects reflected a problem in the 

experimental design. The null results might instead reflect a problem with the TMS protocol. 

However, several arguments help dispute this possibility, thereby strengthening the 

meaningfulness and interpretability of our negative TMS findings. As outlined in de Graaf 

and Sack (2011), these arguments are: the “localization” argument, the “neural efficacy” 

argument, and the “power” argument. The localization argument concerns the extent to which 

the targeted cortical region was actually stimulated with TMS. Regarding our study, the co-

registration of coil placement with individual MRI images and the use of a real-time neuro-

navigation system ensured precise anatomical targeting. It is, thus, very likely that the desired 

left IPS coordinates were successfully stimulated in our experiments. Nevertheless, IPS 

morphology is highly variable across individuals (Zlatkina and Petrides, 2014). The 

anatomical location of an x,y,z coordinate in one participant may not be exactly the same as 

that in another participant, and such individual differences may be even greater for points 

deep (~2 cm) within the sulcus (such as that targeted in the current study). One might indeed 



wonder whether this point laid outside the stimulation range of our coil, although previous 

studies from our lab have successfully targeted regions that are equally deep (Bourgeois et., 

2013; Chica et al., 2011; Ortiz-Tudela et al., 2018). Finally, the stereotaxic coordinates 

associated with temporal orienting varies quite widely from one fMRI study to the next, 

covering an area from a relatively medial point deep within the IPS out towards more lateral 

regions of the cortical surface (Coull, 2015). Therefore, before concluding that TMS of the 

parietal lobe has no effect on temporal orienting, it would be wise to repeat this experiment 

with stimulation of another, more lateralized, region of inferior parietal cortex and/or one that 

is closer to the surface. The neural efficacy argument posits that, even if the intended brain 

region was properly targeted, perhaps the selected TMS protocol was inadequate to interfere 

with its activity. This argument can be countered as we employed two established TMS 

protocols associated with robust behavioral effects, and neither of the two protocols 

modulated temporal orienting. Moreover, even if it could be argued that online TMS failed to 

interfere with left IPS-dependent processes manifest at the target, rather than cue, stage of the 

task, this explanation does not hold for the offline stimulation of Experiment 2, which 

covered the entire trial. Finally, even though we admit that significant TMS effects on a 

control task would have reinforced the neural efficacy of our TMS protocols (de Graaf and 

Sack, 2018), it is worth mentioning that protocols similar to those used here have 

successfully modulated spatial orienting processes in prior work from our group (e.g., 

Bourgeois et al., 2013; Chica et al., 2014). This constitutes indirect evidence that our TMS 

protocols can modulate attentional orienting in Posner-like paradigms, thus mitigating a 

criticism related to the neural efficacy argument. A further control in future research would 

be to measure brain activity with fMRI before and after TMS to check for stimulation-

dependent effects on the activation or coactivation of the targeted brain region with other 

regions of the attentional network (e.g., Orpella et al., 2020). Moreover, considering that coil 

orientation may also affect current flow direction (e.g., Gomez-Tames et al., 2018; Laakso et 

al., 2014), it would be also interesting to explore whether a coil orientation different than the 

45◦ used here (e.g. 10◦ inducing a posterior-anterior flow; Koch et al., 2008) might have a 

role in the efficiency of TMS. As last point, with respect to the power argument, it is unlikely 

that this was an issue in our study as both frequentist and Bayesian statistics converged on the 

conclusion that there was no significant TMS modulation. In any case, bigger sample sizes 

are warranted in future studies to further analyze the impact of TMS on temporal orienting of 

attention. Based on the above, our null TMS findings provide initial evidence that disruption 

of the left IPS is insufficient to perturb the ability to orient attention in time. Provided 

however that there are no similar TMS studies targeting left IPS activity in temporal 

orienting, caution is warranted when speculating on the absence of TMS effects over left IPS. 

The most likely explanation is that the left IPS is, in fact, engaged during the temporal 

orienting task, as shown in fMRI studies, but that this is not the only region necessary for the 

successful deployment of temporal attention, which would instead rely on the functioning of 

a distributed neural network (Coull et al., 2013). This explanation is consistent with 

neuropsychological (Trivino ˜ et al., 2010, 2011, 2016) and neuroimaging (Coull and Nobre, 

1998; Coull et al., 2001, 2008, 2013) observations that regions anatomically connected to the 

parietal cortex, such as premotor and frontal regions, are also important for temporal 

orienting. Supporting this, Correa et al. (2014) provided evidence for an effect of TMS over 

right and left dorsolateral prefrontal cortex (vs. sham) on temporal orienting effects (i.e., 

increased benefits due to reduced RTs on Fig. 3. Reaction time (RTs) results from 

Experiment 2. Mean RTs in milliseconds (ms) as a function of Region (LIPS, Vertex), 

Session (pre, post), Condition (temporal, neutral) and Foreperiod (short, long). Error bars 

represent standard error of the mean. M. Capizzi et al. Neuropsychologia 184 (2023) 108561 

8 valid trials). More recently, a set of neuropsychological studies has also highlighted the 



contribution of the cerebellum to temporal orienting (Breska and Ivry, 2018, 2020, 2021), 

confirming previous neuroimaging results (Coull and Nobre, 1998; Coull et al., 2013), and 

bringing to the forefront the, yet underestimated, role of subcortical regions in the ability to 

orient attention in time. Under the scenario of a widespread network encompassing both 

cortical and subcortical areas in temporal orienting of attention, it is possible that disruption 

of a single node of this network, like the left IPS, could have been compensated for by 

activity in other brain regions. Of course, this hypothesis requires further non-invasive brain 

stimulation investigation as, for the moment, it remains speculative. The following findings 

deserve some final consideration. As introduced earlier, our study also tested for white matter 

contributions to temporal orienting by analyzing DWI data. Specifically, we focused on the 

superior longitudinal fasciculus (SLF), on the premise that this white matter tract has already 

been associated with spatial attentional processes (Carretie et al., 2012; Thiebaut de Schotten 

et al., 2011). With the proper caution, considering the explorative nature of these 

correlational analyses and the small sample size of our study, results showed no significant 

association between the SLF and temporal orienting ability. Moreover, unlike previous 

studies from our group (Martín-Signes et al., 2019, 2021), we did not find evidence that 

individual variability in neuromodulation effects could be explained by white matter 

properties. Future studies are needed to corroborate these preliminary findings, which 

indirectly hint at differences in the white matter properties related to spatial and temporal 

orienting of attention. To conclude, the present study challenges the causal role of the left IPS 

in temporal orienting of attention, suggesting that such a fundamental cognitive ability is 

likely mediated by a widespread network, not limited to the activity of the left IPS. Author 
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