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Abstract: Favipiravir (FP) and Ebselen (EB) belong to a broad range of antiviral drugs that have shown
active potential as medications against many viruses. Employing molecular dynamics simulations and
machine learning (ML) combined with van der Waals density functional theory, we have uncovered
the binding characteristics of these two antiviral drugs on a phosphorene nanocarrier. Herein,
by using four different machine learning models (i.e., Bagged Trees, Gaussian Process Regression
(GPR), Support Vector Regression (SVR), and Regression Trees (RT)), the Hamiltonian and the
interaction energy of antiviral molecules in a phosphorene monolayer are trained in an appropriate
way. However, training efficient and accurate models for approximating the density functional theory
(DFT) is the final step in using ML to aid in the design of new drugs. To improve the prediction
accuracy, the Bayesian optimization approach has been employed to optimize the GPR, SVR, RT,
and BT models. Results revealed that the GPR model obtained superior prediction performance
with an R2 of 0.9649, indicating that it can explain 96.49% of the data’s variability. Then, by means
of DFT calculations, we examine the interaction characteristics and thermodynamic properties in
a vacuum and a continuum solvent interface. These results illustrate that the hybrid drug is an
enabled, functionalized 2D complex with vigorous thermostability. The change in Gibbs free energy
at different surface charges and temperatures implies that the FP and EB molecules are allowed to
adsorb from the gas phase onto the 2D monolayer at different pH conditions and high temperatures.
The results reveal a valuable antiviral drug therapy loaded by 2D biomaterials that may possibly
open a new way of auto-treating different diseases, such as SARS-CoV, in primary terms.

Keywords: MD; machine learning; DFT; inhibitor; black phosphorus; thermodynamic; molecular states;
drug vehicles

1. Introduction

The fast development of clinical biomedicine and nanobiotechnology has inspired the
current generation of diverse inorganic nanoparticles that provide various pattern modalities
as possible substitutions in addressing diseases by synergistic therapy, and principally to treat
metastatic pathology [1–3]. Two-dimensional (2D) materials have fascinated extensive con-
sideration due to their exceptional and distinctive properties [4–6]. Encouraged by the great
success of graphene, a variety of 2D materials have been deployed for various property-related
applications such as energy, environmental science, catalysis, physics, and biomedicine [7–14].
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For example, transition metal dichalcogenides (TMDs), nitrides and carbonitrides (MXenes),
and hexagonal boron nitride (h-BN), and their derivatives are realized with a monolayer and a
few layers, which exhibit weak van der Waals interlayer bonding and strong in-plane covalent
bonding [15–17]. Thereby, the biological behavior of Xenes 2D materials is under outstretched
investigation to check their biosafety and biocompatibility, such as biodegradability, cytotoxic-
ity, and toxic derivatives [18]. The broad spectra of potential uses and clinical implementation
of the Xenes 2D systems in biomedical drug therapy still require proper control of biodegrad-
ability [19] and toxicity, as well as an explicit understanding of the biochemical procedures
occurring in the drug molecules on 2D nanomaterials and their interfaces. The first aspect
is particularly valuable since the understanding of the orientations of molecules with the
multi-layered materials can characterize the process of raising biologically friendly materials
for gene silencing, scattering complexes, hybrid pharmaceutic ingredients, and biomedicine
sensing. In the present study, motivated by the latest developments in 2D nanomaterial
synthesis and their encouraging solicitation in anti-tumor drugs [20–22], we conducted a
comprehensive investigation in order to use 2D materials as nanocarriers for drug delivery.
One such potential pharmacological option for treating various desists is ebselen (EB), while
another is favipiravir (FP) [23,24]. Favipiravir has recently been used to treat infections caused
by the Ebola virus, and it was found to be safe during clinical studies [25,26]. During the
outbreaks of the SARS-CoV-1 and MERS-CoV infections, favipiravir was once more reviewed,
and it was shown to be effective against these viruses in animal model systems [27–31]. Ebse-
len is an organoselenium compound with cytoprotective, anti-inflammatory, and anti-oxidant
properties. This compound has previously been investigated to treat multiple diseases, in-
cluding hearing loss [32] and bipolar syndrome [33]. Ebselen has minimal cytotoxicity [34],
and its safety in humans has been estimated in a number of clinical trials [35–38]. Ebselen has
the predominates inhibitor targeting the main protease (Mpro) of SARS-CoV-2 (e.g., Mopar is
a crucial enzyme of coronaviruses) [24]. Recently, in vitro human cell studies reported that
both favipiravir and ebselen could effectively stop the replication of SARS-CoV-2 at an earlier
stage [24].

In recent years, the application of machine learning techniques in nanomaterials and
pharmaceutical technologies has gained significant attention from researchers. Several
studies have used backpropagated neural networks to model various systems [39,40],
including Darcy–Forchheimer slip flow models for nanomaterials and ferrofluids [41],
non-Fourier heat flux models for transient heat exchange [42], and ternary nanofluid
flow between parallel plates [43]. The accuracy of these models was evaluated using
reference datasets obtained via the Homotopy Analysis Method and numerical methods.
The effects of non-dimensional parameters on the systems were also analyzed. In this paper,
by utilizing accelerated molecular dynamics, machine learning, and quantum chemicals
based on first-principles density functional theory (DFT), we briefly report the structural
stability and thermochemical properties of FP and EB functionalized within a typical
phosphorene 2D monolayer. The chemical bonding of FP and EB in 2D black-phosphorus
materials is revealed by considering the vacuum and continuum solvent model. However,
by calculating the Gibbs free energy changes of each step, we demonstrated that the
temperature and pH values would be used to tune the releasing ratio of the antiviral
molecules onto the phosphorene sheet. Our results provide new fundamental insights
into exploring innovative 2D materials as new nanocarriers for antiviral drug therapy.
These atomistic findings open the door to the parametrization of multiscale methodologies,
such as contemporary machine learning based on electronic theories, continuum models,
Monte Carlo simulations, and coarse-grained methods, to address the interplay between
the interaction of drugs/2D monolayers with the cell membrane as a function of their
morphology. In addition, we rigorously explored the efficiency of four machine learning
models to accelerate the prediction of Hamiltonian and non-bond energy from EB, FP,
and FP-EB, namely Bagged Trees, Gaussian Process Regression (GPR), Support Vector
Regression (SVR), and Regression Trees (RT). The reason for considering multiple models
is to compare and evaluate their performance in accurately predicting the behavior of
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the antiviral molecules in the 2D monolayer. We calibrated the machine learning models
using Bayesian optimization based on the training data. Results revealed the superior
performance of the GPR model by reaching an averaged R2 of 0.9649. Training efficient
and accurate models for approximating DFT is the final step in using machine learning to
gain more insight into the design of new drugs.

The remainder of this paper is organized as follows. Section 2 presents the used
data and the obtained results. In Section 3, we discuss the pharmachemical implications.
Section 4 briefly describes the preliminary materials, including the Mean Squared Error
(MSE), the investigated machine learning models, and ab initio calculations. Finally, we
offer conclusions in Section 5.

2. Outcomes and Discussion
2.1. Data Description

Molecular dynamics is a powerful approach that enables atoms in the systems to
interact with each other based on given parameters, such as temperature, time, pressure,
and other conditions. The evolution of molecular simulations can be presented by various
terms in the Hamiltonian (kinetic energy, potential energy, interaction energy, free energy).
Thereby, the consistency of MD methods combined with ML and other quantum techniques
can be considered. The main key in this work is to improve the Hamiltonian and non-
bond energy terms from MD simulations as a starting point. The datasets are generated
based on the COMPASS III [44] force field of molecular dynamics simulations for small
antiviral molecules on BP single layer. By using the ML algorithms mentioned above, the
Hamiltonian and the interaction energy are also trained at periodic boundary conditions
(PBC) of polycyclic molecules on top of a phosphorene monolayer. Training efficient and
accurate models for approximating DFT is the final step in using ML to aid in the design of
new drugs.

2.2. Data Analysis

This part is dedicated to assessing the capability of the investigated machine learning
models in predicting Hamiltonian and non-bond energy from three different datasets,
MLFF-EB, MLFF-FP, and MLFF-FP_EB.

Figure 1 displays the distribution of the Hamiltonian energy from three different
datasets. Plotting the probability density can be a useful tool for exploratory data analysis.
Generally speaking, it can help visualize a data distribution and gain insights into its prop-
erties. It shows the relative frequency of different values and the shape of the distribution,
which can identify patterns or anomalies. It can also be used to calculate statistical measures
such as mean, variance, and skewness, providing further insight into the properties of
the data. From Figure 1, we observe that these datasets are non-Gaussian-distributed. It
would challenge traditional prediction methods, such as principal component regression,
designed based on the Gaussian assumption of data. Thus, machine learning models
designed without assumptions about the data distribution could be promising.

Figure 2a–c depicts the pairwise correlation coefficients between the multivariate data
of antiviral drugs on the BP monolayer, MLFF-EB, MLFF-FP, and MLFF-FP_EB, respectively.
As the calculation proceeds, there is no change in the temperature profile. This suggests that
the model is dynamically stable. We observe that the temperature is absolutely correlated
with kinetic energy. Once more, the temperature is uncorrelated with the other variables
since it is related to the variations of the potential energy, non-bond energy, and total energy,
respectively. Furthermore, it is also observed that in the Hamiltonian, potential energy,
kinetic energy, non-bond energy, and total energy are constant throughout the simulation
processes. We found a lowering in the kinetic energy that leads to general stability. However,
this indicates that the model used in this study shows additional thermal stability of the
system. The relaxed geometries are further used for creating a black phosphorus sheet for
loading antiviral molecules that characterize the drug-BP based nanocarrier. Accordingly,
the optimized ML structures (MLFF-EB, MLFF-FP, and MLFF-FP_EB, at T = 0 K) are in
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good agreement with the interaction energies and van der Waals energies found by means
of DFT calculations [45]. For more information, please see Tables S1 and S2, respectively.
Finally, during the calculations, the entire cell with its external pressure was fixed, and
it had a moderate correlation with respect to bonding energy, angle energy, and TPE, as
depicted in Figure 2.

Figure 1. Distribution of Hamiltonian energy: (a) MLFF-EB, (b) MLFF-FP, and (c) MLFF-FP_EB.

Figure 2. Cont.
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Figure 2. Heatmap of the correlation matrix: (a) MLFF-EB, (b) MLFF-FP, and (c) MLFF-FP_EB.

2.3. Prediction Results
2.3.1. Hamiltonian Energy Prediction

Three datasets were used to assess the performance of the machine learning models.
Each sub-set of data consists of eight input variables (i.e., total kinetic energy, angle energy,
torsion energy, inversion energy, van der Waals energy, non-bond energy, pressure, and
temperature) and one out-variable (i.e., Hamiltonian energy). Each data set comprises
around 2000 samples. In the first experiment, the dataset was divided into two subsets:
training composed of 80% and testing with 20%. The k-fold cross-validation technique was
considered in constructing these models based on the training data. Specifically, a 5-fold
cross-validation procedure was employed in training the investigated models. The Bayesian
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optimization approach was employed to optimize the GPR, SVR, RT, and BT models to
determine the optimal parameters that minimize the Mean Absolute Error between the
actual and predicted Hamiltonian energy using the training data.

Table 1 summarizes the evaluation metrics, RMSE, MAE, R2, and MAPE, computed
from the testing datasets for MLFF-EB, MLFF-FP, and MLFF-FP_EB. Results revealed
that the investigated machine learning models exhibited good capability in predicting
Hamiltonian energy. We also notice from Table 1 that no single approach uniformly
dominates the other models for the three considered datasets. For the MLFF-EB dataset, the
SVR model attained the best prediction accuracy with an R2 of 0.9767. In this case study, the
GPR model obtained an accurate prediction with an R2 of 0.9614 for the MLFF-EB dataset,
and the best prediction quality was obtained by the GPR model with an R2 of 0.9669 when
applied to the MLFF-FP_EB dataset.

Table 2 lists the average evaluation metrics per model for Hamiltonian energy predic-
tion. The closest R2 value to 1 and the lowest RMSE, MAE, and MAPE values characterize
the best prediction performance. Results in Table 2 show that all four models performed
well in predicting the Hamiltonian energy, with R2 values ranging from 0.9478 to 0.9649,
indicating a good fit between the predicted and actual values. The GPR model had the
highest R2 value (0.9649) and the lowest values for RMSE, MAE, and MAPE, indicating
that it performed slightly better than the other models in terms of accuracy. An R2 value of
0.9649 means that the GPR model can capture 96.49% of the variation in the Hamiltonian
energy of the antiviral molecules in the phosphorene monolayer. In addition, the GPR
model achieved the lowest RMSE (0.0789) and MAE (0.0521) values among all models,
indicating that the model had the smallest average deviation between predicted and actual
values. Additionally, the GPR model had the lowest MAPE value (0.0095), indicating that
the average percentage error between predicted and actual values was the lowest among
all models. Therefore, the GPR model performed the best in terms of all evaluation metrics.
This indicates that the model is highly accurate in predicting the Hamiltonian energy and
can be used as a reliable tool for designing new antiviral molecules.

Table 1. Prediction quality of the Hamiltonian energy using the four optimized models.

MLFF-FP

Methods R2 RMSE MAE MAPE

BT 0.9743 0.0266 0.0217 0.0049
GPR 0.9663 0.0304 0.0238 0.0053
SVR 0.9767 0.0253 0.0208 0.0047
RT 0.9674 0.0299 0.0238 0.0053

MLFF-EB

Methods R2 RMSE MAE MAPE

BT 0.9513 0.1001 0.0655 0.0115
GPR 0.9614 0.0891 0.0606 0.0106
SVR 0.9447 0.1067 0.0809 0.0142
RT 0.9501 0.1014 0.0654 0.0114

MLFF-FP_EB

Methods R2 RMSE MAE MAPE

BT 0.9489 0.1459 0.1011 0.0179
GPR 0.9669 0.1173 0.0718 0.0127
SVR 0.9665 0.1182 0.0710 0.0125
RT 0.9259 0.1756 0.1109 0.0196
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Table 2. Averaged evaluation metrics per model for Hamiltonian energy prediction.

R2 RMSE MAE MAPE

BT 0.9582 0.0909 0.0628 0.0114
GPR 0.9649 0.0789 0.0521 0.0095
SVR 0.9626 0.0834 0.0576 0.0105
RT 0.9478 0.1023 0.0667 0.0121

It is worth examining the prediction errors from the four investigated models (i.e.,
BT, GPR, SVR, and RT). The prediction error refers to the deviation between the true
Hamiltonian energy measurements and their predicted values. Figure 3a–c displays the
boxplots of the prediction errors for each model based on testing datasets from the MLFF-
EB, MLFF-FP, and MLFF-FP_EB datasets, respectively. Visually, we observed that the
prediction errors of the GPR and SVR models are concentrated around zero, indicating
better prediction accuracy than the BT and RT models. Furthermore, it can also be seen that
the GPR model with narrower boxes and whiskers reaches superior performance compared
to the SVR for the MLFF-FP and MLFF-FP_EB datasets (Figure 3). Moreover, SVR and GPR
models show relatively comparable performance under the MLFF-EB dataset (Figure 3).

As a visual illustration, the scatter graphs and plots of actual and predicted Hamil-
tonian energy of MLFF-EB, MLFF-FP, and MLFF-FP_EB, when applying the trained GPR
model to testing data are depicted in Figure 4. To simplify visual readability, we presented
only the results from the best model, and the results from the other models were omitted.
We observe that the predicted values of Hamiltonian energy obtained by the GPR models
are fairly close to the actual data of MLFF-EB, MLFF-FP, and MLFF-FP_EB, which indicates
the promising performance of the GPR model.

Figure 3. Prediction Distribution of prediction errors of the four models based on testing datasets: (a)
MLFF-EB, (b) MLFF-FP, and (c) MLFF-FP_EB.
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Figure 4. Predicted Hamiltonian energy from the GPR model based on test data: (Top) MLFF-EB,
(Middle) MLFF-FP, and (Bottom) MLFF-FP_EB.

2.3.2. Non-Bond Energy Prediction

In the second experiment, the main key objective was to predict and improve the
non-bond energy for MLFF-EB, MLFF-FP, and MLFF-FP_EB based on seven input variables
(i.e., total kinetic energy, angle energy, torsion energy, inversion energy, van der Waals
energy, pressure, and temperature) related to ab initio results [45]. Towards this end, we
constructed four machine learning models (BT, SVR, GPR, and RT) based on a 5-fold cross-
validation with the training dataset. The parameters of each model have been optimized
using the Bayesian optimization approach in training. The trained models have been
employed for non-bond energy based on testing datasets. Then, the statistical metrics (R2,
RMSE, MAE, and MAPE) are computed to compare the prediction performance of the
investigated machine learning models (Table 3). For the three datasets, the GPR approach
dominates the other approaches (i.e., BT, SVR, and RT) in terms of the four performance
evaluation metrics (Table 3). Regarding the MLFF-FP, the four models provide relatively
comparable performance with an R2 around 0.97; the GPR model slightly outperformed
the other models with an R2 of 0.9792. Considering the MLFF-EB data, the GPR model
obtained the best prediction performance for MLFF-EB and MLFF-FP_EB with an R2 of
0.9735 and 0.9725, respectively. Table 4 lists the averaged evaluation metrics per model for
non-bond energy prediction. The GPR model performed the best among all the models
with an R2 value of 0.9751, indicating a very good fit between the predicted and actual
non-bond energies. The GPR model also had the lowest RMSE and MAE values, indicating
that the predicted values were very close to the actual values. The MAPE value for the
GPR model was 0.9579%, the lowest among all models, indicating that the model had the
lowest percentage error in prediction. Therefore, based on these evaluation metrics, the
GPR model was the best performer among all the models for non-bond energy prediction.
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Table 3. Prediction quality of the non-bond energy.

MLFF-FP

R2 RMSE MAE MAPE

BT 0.9772 0.0279 0.0218 0.2466
GPR 0.9792 0.0266 0.0208 0.2348
SVR 0.9772 0.0279 0.0211 0.2382
RT 0.9775 0.0277 0.0221 0.2502

MLFF-EB

R2 RMSE MAE MAPE

BT 0.9685 0.0758 0.0493 0.4496
GPR 0.9735 0.0695 0.0468 0.4277
SVR 0.9705 0.0734 0.0492 0.4503
RT 0.9729 0.0703 0.0486 0.4448

MLFF-FP_EB

R2 RMSE MAE MAPE

BT 0.9648 0.1253 0.0843 2.5297
GPR 0.9725 0.1107 0.0732 2.2111
SVR 0.9710 0.1138 0.0771 2.3273
RT 0.9689 0.1178 0.0795 2.3512

Figure 5a–c shows the boxplots of the prediction errors for the four models based
on testing datasets (MLFF-EB, MLFF-FP, and MLFF-FP_EB). Visually, we observe that
the boxplots are around zero, which means that the prediction quality is good and the
prediction errors are small. Additionally, it can be seen that the GPR model provides
relatively slightly less prediction errors than the other models for the three considered
datasets.

Figure 5. Prediction errors of the prediction models from the testing datasets: (a) MLFF-EB, (b) MLFF-
FP, and (c) MLFF-FP_EB.
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Table 4. Averaged evaluation metrics per model for non-bond energy prediction.

R2 RMSE MAE MAPE

BT 0.9701 0.0763 0.0518 1.0753
GPR 0.9751 0.0689 0.0469 0.9579
SVR 0.9729 0.0717 0.0491 1.0053
RT 0.9731 0.0719 0.0501 1.0154

The actual MD results and the predicted non-bond energy from the four models based
on testing datasets are depicted in Figure 6a–c. We found that the predicted values of
non-bond energy from the GPR model closely followed the measured data. Figure 6d–f
shows the scatter plot of the measured and predicted values of non-bond energy from the
GPR model. A scatter plot is a useful tool to visually compare a dataset’s predicted and
measured data. In Figure 6d–f, the colored dots represent the data points, where the x-axis
represents the predicted values and the y-axis represents the measured non-bond energy
values. If the dots are closely clustered around the diagonal line, the model performs well
and makes accurate predictions. Thus, from Figure 6d–f, we observe that the predictions
are close to the measured values.

Figure 6. Predicted non-bond energy from the GPR model based on test data.

3. Pharmachemical Implications
3.1. Drug Release
3.1.1. The pH Sensitivity

The 2D biomaterials are extensively applied in thermotherapy by tuning the drug–
virus interactions. It is important to assign an effective nanocarrier for drug therapy;
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similarly, it is well-noted that the close link concerning virus and plasma antigen levels of
tissue type (plasminogen) has a substantial clinical impact [46]. Accordingly, as a result
of defection tissue, the normal and infected tissue should have different pH numbers. As
a result, the stability of different respiratory diseases is the maximum at a pH close to 6,
so the application of the voltages also affects the pH of the plasma tissue. The voltage
induced is widely used in physical therapy to treat a variety of diseases. However, the pH
measurement is simulated in the solvent environment by placing altered charged ions. On
the other hand, the solid–solvent interface provides an alternative challenge for biomaterial
simulation due to the large number of degrees of freedom hosted by the liquid states.
For this purpose, we used an implicit solvation model, where the inhibitor molecule/2D
biomaterial is treated at the level of a quantum mechanic state, and the solvent is treated as
a continuum model described by the relative permittivity. This implicit solvation model is
found to mimic the correct experimental solvation energy in various solvents [47].

To predict the pH sensitivity of the binding characteristics, we follow the method
in Ref. [47] by adding or removing electrons number of valence states, expressed by the
modification of the work function and the applied voltage, which has been demonstrated
to provide consistent results with the experiments [48]. The adsorption energy of neutral
FP, EB, and FP + EB on the BP single layer is−2.61,−5.41, and−8.86 meV/Å2, respectively;
inclusion of 0.1 extra electrons will promote the energy of the system and cause a lowering of
the binding energy. For example, adding half electrons in FP, EB, and FP + EB on BP surface
changes the energy to 4.02, −1.95, and 2.82 meV/Å2, respectively, and the desorption of
the hybrid FP + EB drugs becomes spontaneous. This scheme allows us to frequently
control the chemical desorption by introducing fractional charge at the interface under the
Poisson–Boltzmann approximation. In particular, pH-dependent adsorption depicted in
Figure 7 suggests that larger adsorption energy is obtained in a polar environment with
a higher pH value. Thus, when they are expected to release pharmaceutical drugs in a
pointing position, an application of a low pH value with a smaller positive voltage would
be appropriate.

Figure 7. The calculated adsorption energy process as a function of net charge at the solvent phase of
the BP sheet with favipiravir, ebselen, and favipiravir + ebselen hybrid drugs. The minus red and
plus blue sign colors represent the difference between pH < 0 and pH > 0 values, respectively.

3.1.2. Thermotherapy Properties

The electronic and pH-influencing properties of antiviral drugs were described above.
The key character of chemical adsorption nature related to temperature dependence is the
next step in this investigation. Correspondingly, as represented in Figure 8, the temperature
indeed alters the adsorption energy of the molecules at the BP monolayer, either at vacuum
or solvent level. It can be well-noticed that by considering the vibrational correction, despite
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the fact that the entropy change is probably dominated by translational entropy rather than
vibration, it shifts the adsorption to more positive or less negative numbers at a higher
temperature. The zero-point energy at lower temperature values (0–100 K) has a minor
effect on the energy (between 1–2 meV/Å2 for FP, EB, and FP + EB, respectively). On the
other hand, increasing temperature from 150 to 420 K causes shifts of up to 4.1 meV/Å2 for
FP, EB, and FP + EB on the BP-vacuum interface with the incorporation of the corrected
vibrational free energy. Equivalent trends have been found by adding the continuum
solvent level to these antiviral-molecules/BP 2D-system. Surprisingly, the adsorption
remains stable up to 450 K, at the vacuum phase for hybrid FP + EB on the BP sheet. The
thermotherapy is vigorous, and the releasing rate of the antiviral molecules will be highly
enhanced due to the large drop in the adsorption energy at higher temperatures.

In general, the drug will have a larger release rate beyond 350 K, and it might be
due to the height’s thermal deviation at a larger temperature. In the ex vivo evaluation
process, the phosphorene-loaded drugs can be used as an anti-defected cell drug that has
a pertinent act in the thermal therapeutic [45]. The temperature could upturn to around
450 K within a few minutes. The excellent therapeutic efficiency of these drugs in the
black phosphorus nanocarrier is firmly associated to the large ability to target drug-release
and the hyperthermia of the infected cell. Further, these findings suggest that the hybrid
FP + EB therapy of low nanocarrier-based delivery systems can be activated effectively [48].
This comprehensive investigation will contribute to optimizing virus growth and storage
conditions, facilitating the molecular characterization of this important pathogen. The
interest of accommodating those inhibitors in close contact with the phosphorene sheet as
a new delivery scheme is that it could continuously control the desorption free energy of the
aromatic molecules by applying an electric field, together with the presence of external
stimuli to tune their pH environment, and changing their temperature.

Figure 8. The free Gibbs adsorption energy process as a function of temperature at the vacuum and
solvent phases of the BP sheet with favipiravir, ebselen, and favipiravir+ebselen hybrid drugs.

4. Materials and Methods

This section is dedicated to molecular dynamics simulations and machine learning
models deployed for this study, which is related to describing nanocarrier loaded drugs
prediction. ML approaches are effective methods for accelerating DFT relaxations and
require significantly fewer iterations (DFT calculations) for convergence. It has shown
excellent transferability along FP, EB, and hybrid FP and EB molecules physisorbed on a BP
single layer, and closely describes the ab initio interaction energy of the entire system. This
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is an encouraging initiative toward a common class of force-field and ab initio approaches
combined with ML for drug molecules on ultra-thin film crystalline 2D material.

4.1. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations based on atomic force fields can accurately
simulate the non-covalent geometry of a large number of molecular systems from non-
equilibrium systems to thermodynamic states at the atomic level. In the present study, the
current data were obtained by means of molecular dynamics simulations, as implemented
in Forcite software [44]. To properly adsorb FP and EB drugs on a BP single layer, we
used a (5 × 4) supercell model of black phosphorus containing 80 phosphorus atoms for
the nanocarrier. A vacuum region of 20 Å is introduced perpendicular to the BP film to
prevent unphysical periodic effects. A Hamiltonian including kinetic energy, potential
energy, interaction energy, and free energy as a function of the change of temperature and
pressure was simulated at 350 K and atmospheric pressure, respectively. We used an NVT
canonical ensemble based on the Nosé thermostat. During the MD simulations, we adopted
a time step of 0.3 fs for an ensemble of 100 ps of calculations to reach the thermodynamic
states and accurate MD calculations.

4.2. Gaussian Process Regressor

GPR models, which are within nonparametric kernel-driven learning models, showed
extended modeling ability for handling nonlinear prediction problems because of their
nonlinear approximation capabilities [49–51]. They are well-known for their ability and flex-
ibility in modeling small-sized data with a Gaussian or non-Gaussian distribution, as well
as providing uncertainty measures on predictions [52,53]. Moreover, the GPR model’s ben-
efit is its capacity to provide a confidence interval to evaluate the reliability of the predicted
values, making it widely used in numerous applications [54]. The GPR models have been
utilized in various applications, including renewable energy systems monitoring [50,55],
COVID-19 spread prediction [56], and spatio-temporal PM2.5 prediction [57].

To introduce GPR, we have to consider the response y of a function f at the input x,
which is expressed as [58],

yi = f (xi) + εi. (1)

Here, ε ∼ N (0, σ2
ε ) is an additive noise, and f (x) is considered as a random variable. It is

worth pointing out that the uncertainty on f could decrease significantly by the observation
of the function’s output at different input points.

The function f (x) is considered following a Gaussian process. Accordingly, yi follows
a joint Gaussian distribution [58]:

y = [y1, y2, . . . yn]
> ∼ N (m(x), K + σ2I), (2)

where m(x) = [m(x1), m(x2), . . . m(xn)]> refers to the vector of mean values m(·), I de-
notes the identity matrix, and K refers to the n× n covariance matrix with (i, j)th element
Kij = k(xi, xj). Within the GPR framework, Kij = k(xi, xj) is termed the kernel func-
tion [52,58]. Numerous kernels have been used in the literature, including the Linear
kernel, Rational Quadratic (RQ) kernel, Squared Exponential (SE) kernel, Matern 5/2 (M52)
kernel, and Exponential (Exp) kernel. The two commonly used kernels (i.e., linear and
squared exponential) are expressed respectively as [52]:

kLin(xi, xj) = θ2
1 + θ2

2(xi − θ3)(xj − θ3). (3)

kSE(xi, xj) = θ1 exp

((
xi − xj

)2

θ2

)
. (4)
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To optimize the GPR model in the training stage, we need to determine the kernel
parameters that enable maximizing the following likelihood [58,59].

θopt = arg max
θ

L(θ), (5)

where θ = [θ1, θ2, . . .] are the parameters of the kernel (also called hyperparameters), the
mean values m(.) are taken to be zero, and

L(θ) =
1√

(2π)n|K + σ2I|
exp
(
−1

2
(y>(K + σ2I)y)

)
. (6)

Many efforts have been reported in the literature to calibrate the hyper-parameters
by using grid search or random search. Here, Bayesian optimization will be adopted to
fine-tune the GPR hyperparameters by maximizing the marginal likelihood in (5) with
respect to θ [60].

We assume x∗ is a new test input, then the estimated mean and variance associated
with ŷ∗ = f (x∗) = f∗ are [58,59]:

ŷ∗ = k>∗ (K + σ2I)−1y, (7)

and
Σ∗ = k∗∗ − k>∗ (K + σ2I)−1k∗. (8)

respectively. Then, y∗ follows a conditional distribution which has the form:

y∗|y ∼ N (ŷ∗, Σ∗), (9)

where K = k(X, X), K∗∗ = k(X∗, X∗), and K∗ = k(X, X∗) are the covariance matrices
computed based on the training data, the testing set, and both training and test sets,
respectively.

Overall, GPR-based prediction involves two main steps. The first step is to estimate
the hyperparameters, which include the kernel and noise variance, in the GPR model
by maximizing the negative log marginalized likelihood based on the training data. The
second step is to compute the predictive posterior distribution of GPR for new inputs, X∗,
by using the mean of the predictive distribution in Equation (8) as the predicted value. For
more details about the GPR model, see Refs. [49,50,58,61].

4.3. Bayesian Optimization Procedure

As discussed before, we need to calibrate hyperparameters during training to obtain
good prediction performance when constructing a GPR model. Fine-tuning a machine learn-
ing model entails modifying its hyperparameters to optimize performance on a particular
task. Optimal hyperparameter configuration has a direct impact on the model’s perfor-
mance. Grid Search, Random Search, and Bayesian Optimization are popular methods for
hyperparameter tuning in machine learning. Grid Search is a simple but computationally
expensive method that exhaustively searches all possible combinations of hyperparameters
within a predefined range. While Grid Search can guarantee to find the optimal combina-
tion of hyperparameters, it can be very time-consuming and computationally expensive,
especially when the number of hyperparameters and their possible values are high [62].
Random Search is another method for hyperparameter tuning that randomly samples a
set of hyperparameters from a predefined range. Unlike Grid Search, Random Search
does not guarantee finding the optimal combination of hyperparameters, but it is gener-
ally faster and more computationally efficient than Grid Search [62]. On the other hand,
Bayesian Optimization (BO) is a more advanced method that uses probabilistic models and
previous evaluations to guide the Search [63]. It can quickly find good combinations of
hyperparameters with fewer evaluations than Grid Search and Random Search.
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This study adopts Bayesian optimization to find the optimal values of GPR’s hyper-
parameters [63]. Recently, the BO approach has been frequently employed to fine-tune
hyperparameters in machine learning methods. This could be attributed to its design using
Gaussian processes and Bayesian inference to reach global optimization [60]. Importantly,
the BO procedure considers the previous evaluations to determine the hyperparameter set
and then evaluates the next step, which enables reducing the time of the optimization pro-
cedure [64]. Moreover, the BO procedure can optimize functions without closed form [65].
The optimization process based on the BO procedure needs fewer iterations compared to a
grid search optimization.

The main idea of the BO procedure consists of building a probabilistic proxy model
for the objective function, employing prior experiments’ results as training data [66,67].
Essentially, the proxy model (e.g., the Gaussian process) is not expensive to calculate
and enables getting pertinent information on where we should evaluate the true loss
function to reach suitable results. Eventually, we consider now the problem of adjusting m
hyperparameters P = p1, . . . , pm. To this end, the aim is to determine

P∗ = arg min
P

g(P|{(xi, yi)}n
i=1), (10)

where g denotes the the objective function [56]. The optimization procedure is controlled
by an appropriate acquisition function that decides the next set of hyperparameters to be
evaluated [68].

Figure 9 depicts the basic idea of the BO procedure to optimize the GPR model during
the training phase. Specifically, the mean squared error (MSE) between the actual molecular
dynamics data and the GPR predictions is computed at each iteration. The optimized
model is obtained once the MSE converges to a small value, close to zero.

Figure 9. Schematic drawing of the main idea of the BO-based optimized GPR strategy.

4.4. SVR Models

Here, we briefly introduce another widely used approach, the SVR model, a flexible
data-based approach with good learning capacity via kernel tricks. The key idea underlying
the SVR consists in mapping the train data to a higher dimensional space and conducting
linear regression in that space. This SVR model is known to be efficient in dealing with
nonlinear regression by using the kernel trick, which enables mapping the input features
into high-dimensional feature spaces [69,70]. Moreover, the relevant concept used in
designing the SVR model lies in structural risk minimization. It is demonstrated that SVR
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provides satisfactory performance with limited samples [71]. Thus, VVR models have been
broadly exploited in numerous applications, such as solar irradiance prediction [72], wind
power prediction [51], and anomaly detection [50]. This study will use optimized SVR via
Bayesian optimization for comparison.

4.5. Bagged Tree Model

Likewise, we discuss another important machine learning model called the bagged
tree (BT), also known as bootstrap aggregating [73]. The essence of this model is based
on merging the benefit of the bagging technique and decision trees to enhance prediction
quality. Importantly, in the BT model, bootstrap sampling is employed to generate numer-
ous samples from the original dataset. Next, multiple distinct decision trees are built, and
their outputs are aggregated to obtain the final output [74]. Hence, the prediction quality
of the decision trees will be improved, the error will be reduced, and the overfitting issue
in individual trees will be bypassed significantly [75,76].

4.6. Evaluation Metrics

In this study, we assess the accuracy of the predicting models using three metrics: root
mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and R2.

• RMSE: Root Mean Squared Error measures the differences between predicted and
actual values. It is calculated by taking the square root of the average of the squared
differences between the predicted and actual values.

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2, (11)

• MAPE: Mean Absolute Percentage Error is a measure of the accuracy of a model in
predicting values. It is calculated as the average of the absolute percentage difference
between predicted and actual values.

MAPE =
100
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣%, (12)

• MAE: Mean Absolute Error is a measure of the average magnitude of the errors in a
set of predictions, without considering their direction. It is calculated as the average
of the absolute differences between predicted and actual values.

MAE =
∑n

t=1|yt − ŷt|
n

, (13)

• R-squared: R2 is a statistical measure that represents the proportion of the variance
for a dependent variable that is explained by an independent variable or variables in a
regression model. It is also known as the coefficient of determination, and its value
ranges between 0 and 1.

R2 =
∑n

t=1[(yt − ȳ) · (ŷt − ȳ)]2√
∑n

t=1(yt − ȳ)2 ·
√

∑n
t=1(ŷt − ȳ)2

, (14)

where yt is the number of Hamiltonian data, ŷt is its corresponding forecasted Hamiltonian
and non-bond energy, and n is the number of records. Importantly, a higher R2 value
indicates a better fit of the model to the data. For example, if the R2 value is between 0.7
and 0.9, it is generally considered to indicate a good fit. An R2 higher than 0.9 indicates a
very good fit of the model to the data. It means that the model can explain a large proportion
of the variability in the data. on the other hand, a lower MAPE value indicates better model
prediction accuracy. Lower RMSE, MAE, and MAPE values would imply better precision
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and prediction quality. Generally, a MAPE value of less than 10% is considered good, while
a value greater than 10% is considered poor. However, the threshold for an acceptable
MAPE value can vary depending on the application and the specific domain. Therefore,
it is important to consider the context and specific requirements when interpreting the
MAPE value.

4.7. Prediction Framework

This work investigates the feasibility of machine learning methods to predict the Hamil-
tonian and non-bond energy terms from MD simulations. The prediction methodology
employed in this study is depicted in Figure 10. We compared four machine learning methods,
including BT, SVR, GPR, and RT. The prediction framework consists of two key steps: model
construction and model prediction. The data were first preprocessed to a zero mean and unit
variance by subtracting the mean, µ, and dividing by the standard deviation, σ.

ys = (y− µ)/σ. (15)

After obtaining the predicted values, we reversed this step. The normalized data
were then split into training and testing sets. The training set was used to construct the
machine-learning models. Here, we employ Bayesian optimization to determine the opti-
mal parameters of the machine learning methods. We applied a five-fold cross-validation
technique in training the investigated models. After that, the previously constructed mod-
els were then utilized to predict the Hamiltonian (or non-bond energy) in the testing step.
The model’s accuracy was checked by comparing measured data to predicted data via the
score indicators: R2, RMSE, MAE, and MAPE. An R2 closer to 1 and lower RMSE, MAE,
and MAPE values reflect an accurate prediction.

Figure 10. Illustration of the used prediction framework and general steps in antiviral drug discovery
for small molecules on black phosphorus, developing quantitative structure–activity relationship
models to optimize lead structures for pharmaceutical implication.
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4.8. Ab Initio Calculations

One of the most popular approaches in quantum chemistry is density functional theory
(DFT) that computes a wide variety of properties of almost any kind of atomistic system,
such as molecules, crystals, surfaces, interfaces, and even biomaterial carriers when com-
bined with machine learning. Thus, as the next step of this study, all DFT calculations were
carried out using the Vienna Ab Initio Simulation Package (VASP 5.4) [77,78]. All electrons
with a projected augmented wave (PAW) formalism were used to model the electron–ion
interactions [79]. The exchange–correlation functional contribution to the total energy was
modeled using the generalized gradient approximation (GGA). In addition to the modified
Perdew–Burke–Ernzerhof (PBE) [79], for treating the van der Waals (vdW), interaction
corrections through the D3–BJ approach were incorporated in all calculations [80,81], as
established by Grimme et al. [82,83]. We used a (5 × 4) supercell model of a black phospho-
rus monolayer containing 80 phosphorus atoms for the nanocarrier to adsorb FP and EB
drugs. A vacuum region of 20 Å was introduced perpendicular to the BP film to prevent
unphysical periodic effects. Given the large size of the supercell, numerical integration
was employed over the Brillouin zone using a 3 × 3 × 1 Γ-centered k-point grid [84]. A
denser 5 × 5 × 1 mesh was applied during the self-consistent field (SCF) for electronic
and frequency calculations. The pseudo-wave functions were expanded in a plane-wave
basis set with an energy cut-off of 450 eV. The accuracy was ensured by adopting energy
convergence criteria of 1 × 10−5 eV. Therefore, structural relaxation was performed using
the conjugate gradient technique until the force on each atom was below 0.01 eV/Å. This
approach has been successfully employed in the past to describe fullerene adsorption on
single-layer graphene [6].

5. Conclusions

We have systematically unveiled the interaction characteristics of inhibitor drugs on
the surface of a phosphorene sheet by using accelerated molecular dynamics simulations,
machine learning, and density functional theory calculations. Importantly, four machine
learning models (i.e., BT, GPR, SVR, and RT) were employed to predict Hamiltonian and
non-bond energy in EB, FP, and FP + EB. Results indicate the promising prediction perfor-
mance of machine learning models. Specifically, the optimized GPR model obtained the
best performance in this case study compared to the other investigated models. Specifi-
cally, the GPR model consistently outperformed the other three models (BT, SVR, and RT)
for both Hamiltonian and Non-Bond energy predictions. In particular, the GPR model
achieved the highest R2 value of 0.9649 for Hamiltonian energy prediction and 0.9751
for Non-Bond energy prediction. Additionally, the GPR model had the lowest RMSE,
MAE, and MAPE values for both energy predictions, indicating its high accuracy and
precision in predicting the energy values. Therefore, the GPR model can be considered
the best-performing model among the tested machine-learning models in this study. Fur-
ther, regarding DFT calculations, we carried these out in a vacuum and an aqueous phase
to evaluate the binding ability and thermochemical properties for active drug delivery.
We found that the hybrid drugs are physisorbed and enable functionalization of the 2D
phosphorene, and they show robust thermostability. All the drug molecules displayed
strong van der Waals interactions when combined with the phosphorene sheet. Moreover,
the calculated pH values and Gibbs free energy changes at different temperatures sug-
gest that the FP and EB enabled the release of the drug from the 2D monolayer at high
temperatures and different pH conditions. These findings would point to drug/2D biosys-
tems as a new and potentially effective way to steer drug vehicle delivery in thermotherapy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28083521/s1, Figure S1: Molecular dynamics simulations
potential energy prediction: (a) snapshot of FP-EB adsorption molecule on Black-Phosphorus, and (b)
potential energy change of FP-EB on BP surface. Table S1: ML, and PBE–D3(BJ) non–bond energy
prediction of MLFF– EB, MLFF–FP, and MLFF–FP_EB adsorption states in (eV) and (kcal/mol) at
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T = 0 K. Table S2: ML, and PBE–D3(BJ) van der Waals energy prediction of MLFF– EB, MLFF–FP, and
MLFF–FP_EB adsorption states in (eV) and (kcal/mol) at T = 0 K.
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