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On the Admissibility and Stability of Multi-Agent
Nonlinear Interconnected Positive Systems with

Heterogeneous Delays
Abdelhafid Zenati, Nabil Aouf, Mohamed Tadjine, and Taous-Meriem Laleg-Kirati.

Abstract—Many multi-agent interconnected systems include
typical nonlinearities which are highly sensitive to inevitable
communication delays. This makes their analysis challenging and
the generalization of results from linear interconnected systems
theory to those nonlinear interconnected systems very limited.
This paper deals with the analysis of Multi-Agent Nonlinear In-
terconnected Positive Systems (MANIPS). The main contributions
of this work are two fold. Based on Perron-Frobenius theorem,
we first study the ”admissibility” property for MANIPS, and
show that it is a fundamental requirement for this category
of systems. Then, using admissibility/positivity properties and
sequences of functions theory, we propose a suitable Lyapunov
function candidate to conduct the analysis of the dynamical
behavior of such systems. We show that the stability of MANIPS
is reduced to the positiveness property (i.e. negative or positive
definiteness) of a new specific matrix-valued function (Z) that we
derive in this paper. Furthermore, the obtained results generalize
the existing theory. The quality of the results achieved are
demonstrated through the applications of the developed theory
on cells with multi-stage maturation process dynamical models.

Index Terms—Admissibility, Delays, Interconnected System,
Nonlinear Systems, Lyapunov Function, Positive Systems, Sta-
bility.

I. INTRODUCTION

In this work, we first characterize the admissibility property
required for the stability of interconnected systems using
Perron-Frobenius theorem. Then, we prove that the admissi-
bility defined in [1] for the linear case remains valid for the
nonlinear case. We also show that admissibility is a sufficient
condition for the system to be positive and well-posed. No
systematic method to analyze the stability of this class of
systems is available. The Lyapunov method, for example,
presents a real challenge to find suitable Lyapunov function
candidates. Therefore, by combining positiveness/admissibility
criteria and time functions sequence theory, we construct a
suitable non-quadratic Lyapunov functional. We prove the
uniform convergence property of this functional to guarantee
that converges to a time function and the time derivative of this
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later (i.e. of the time function) is the limit of the time derivative
of the suitable non-quadratic Lyapunov functional. Then, we
exploit the time function and its time derivative to develop
the global asymptotic stability and instability conditions for
the multi-agent nonlinear positive interconnected systems with
constant and distributed delays. We illustrate the results of the
proposed method on a biological problem proposed recently in
[2] and which describes stem cells dynamics in hematopoiesis
with multi-stage of maturation.

The paper is organized as follows. In Section II, we
formulate what we call a multi-agent nonlinear positive in-
terconnected system with heterogeneous delays and discuss
the importance of stability analysis for this class of systems.
We present its admissibility and stability conditions through
constructing an appropriate Lyapunov functional in Section III.
The effectiveness of our findings is shown through the results
obtained on an application problem as presented in Section
IV. We conclude with some remarks in Section V.

Notations and Definitions: We use the following no-
tations: R+ denotes the positive real, N denotes the
set of all non-negative integers. We define RN

≥0 ={
∀x ∈ RN | x ≥ 0

}
, Matrix MN ∈ RN×N is said to be Met-

zler or cooperative provided that all of its off-diagonal entries
are non-negative, i.e. Mi,j ≥ 0 for i ̸= j. A matrix M is said
to be non-negative provided every entry Mi,j of M satisfies
Mi,j ≥ 0 and we write M ∈ RN×N

≥0 . For M ∈ RN×N , the
spectral radius of matrix M is denoted by ρ (M ) where for
all 1 ≤ i ≤ s, λi be the eigenvalues of the matrix M . The
spectral radius ρ (M ) is defined as: max

1≤i≤N
{∥ λi ∥}. We denote

φx ∈ D
(
[−τ, 0] , RN

≥0

)
the set of all continuous RN

≥0-valued
functions defined on [−τ, 0]. The absolute value is denoted
by || . ||. For all t ∈ [0, +∞), {Vq,n,m(t), q = 1, 2, · · · } is
a positive sequence of time function.

II. MULTI-AGENT NONLINEAR INTERCONNECTED
POSITIVE SYSTEM

Let consider dynamic of an agent i represented by a positive
sub-systems Σi(i = 1, · · · , N) as follow:

Σi :=

{
ẋi(t) = Ψi(xi, t)xi(t) + Hiwi(t),
zi(t) = ξi(xi, t)xi(t) + Kiwi(t),

(1)

where xi(t) is the state vector, wi(t) is the interconnection
signal with the other agents and the measured signal zi(t)
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and its delayed versions due to heterogeneous communication
delays, and

Ψi(., .) ∈ RNxi
×Nxi , Hi ∈ RNxi

×Nwi ,

Ki ∈ RNzi
×Nwi , ξi(., .) ∈ RNzi

×Nxi .

In the subsection III-A, we will prove that the sub-system
(1) is positive when it is associated with appropriate positive
initial conditions if and only if:

Ψi(., .) ∈ MNxi , Hi ∈ RNxi
×Nwi

≥0 ,

ξi(., .) ∈ RNzi
×Nxi

≥0 , Ki ∈ RNzi
×Nwi

≥0 .

(2)

With these positive sub-systems, let us define an augmented
positive system Σ of N agents by

Σ := diag(Σ1
System, · · · ,ΣN

System). (3)

The state space realization of Σ is given by

Σ :=

{
ẋ(t) = Ψ(x, t)x(t) + Hw(t),
z(t) = ξ(x, t)x(t) + Kw(t),

(4)

where

Ψ := diag(Ψ1, · · · ,ΨN ), ξ := diag(ξ1, · · · , ξN ),

x :=

x1...
xN

 ∈ R
N∑

i=1
Nxi

, z :=

 z1...
zN

 ∈ R
N∑

i=1
Nzi

,

w :=

w1

...
wN

 ∈ R
N∑

i=1
Nwi

.

(5)

Also, the interconnection among the fleet of the agents is
established via the matrices K and H where :

Kii := Ki, Kij ∈ R
Nzj

×Nwi

≥0 , Hii := Hi, Hij ∈ R
Nxj

×Nwi

≥0 .
(6)

In [1], [3]–[8], the authors considered only the linear case of
positive systems which limits the application of their results
for real challenging problems. Authors of [1] considered
interconnected systems, without delays, built from positive
subsystems. However, ignoring communication delays for the
interconnected system often cause instability [9], [10]. Thus,
these delays should be taken into consideration. Regarding the
nonlinear interconnected systems, it is true that their stability
issue was investigated in [11] through a comparison principle.
Some interesting results have been developed towards control
design in [12]. The comparison principle is based on finding
a suitable compared system whose stability can be analyzed.
Unfortunately, building such a system is still a real challenge
and difficult. In this paper, we will develop and generalize
stability conditions that can be tested on any nonlinear positive
interconnected class of systems. Moreover, in this work, we
take into consideration heterogeneous communications delays
(constant and distributed). The distributed delay is an inherent
characteristic of various physical and biological processes
because. In real world, several events related to the delay have
a distributed density that is not a delta function. Via an integral

action, the delay operator has accumulative effect over the
past values of the dynamics. For this reason, distributed delay
systems exist in a wide range of applications [2]. Thus, if the
interconnected system is modelled including heterogeneous
communication delays ( n ∈ N constant delays and m ∈ N
distributed delays) as follow:

w(t) =

m∑
k=0

t∫
t−τk

Lk(t− a)z(a) da+

n∑
i=0

Diz(t− hi), (7)

where

Lk(t) ∈ R

(
N∑

i=1
Nwi

)
×
(

N∑
i=1

Nzi

)
≥0 , Di ∈ R

(
N∑

i=1
Nwi

)
×
(

N∑
i=1

Nzi

)
≥0 .

(8)
This makes (4) as

ΣSystem :=



ẋ(t) = Ψ (x, t)x(t) +
n∑

i=0

Biz(t− hi)

+
m∑

k=0

t∫
t−τk

gk(t− a)z(a) da,

z(t) = ξ (x, t)x(t) +
n∑

i=0

Ciz(t− hi)

+
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da,

(9)
where

fk(t) = KLk(t), gk(t) = HLk(t), Bi = HDi, Ci = KDi.

We will prove in the next section that system (9) is positive

(i.e. x ∈ R

N∑
i=1

Nxi

≥0 and z ∈ R

N∑
i=1

Nzi

≥0 ) when it is associated
with appropriate initial conditions φx and φz such that

φx ∈ C

[
− max

0≤i≤n, 0≤k≤m
{hi, τk} , 0

]
, R

N∑
i=1

Nxi

≥0

 ,

(10)

φz ∈ C

[
− max

0≤i≤n, 0≤k≤m
{hi, τk} , 0

]
, R

N∑
i=1

Nzi

≥0

 .

The mathematical form of (9) is called positive coupled
differential-difference equation and is used in different control
applications [8], [13]–[15]. Also, it covers many important
classes of dynamical systems, such as neutral systems, systems
with multiple commensurate delays and some singular systems
[16]–[19].

III. ADMISSIBILITY AND GLOBAL ASYMPTOTIC
STABILITY ANALYSIS

Consider the interconnected system (9). One must fulfill two
fundamental requirements in order to get well defined states :

1) Well posedness : that is the interconnection does not
bring singularity of solutions.

2) Positivity : that is the interconnection maintains the
positivity property of the signals under suitable initial
conditions.
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Fig. 1. Multi-agent nonlinear interconnected system with heterogeneous n
constant and m distributed communication delays, where L̂k(s) and e−his

are Laplace transform of Lk(t) the distributed density in [t− τk, t] and the
delta function ∆t(t− hi), respectively.

In [1], authors combine these two facts into a new notion
called admissibility for a certain class of linear interconnected
positive systems. Furthermore, they characterize the admissi-
bility notion by simple algebraic test involving a particular
Metzler matrix. In the sequel, we generalize the admissibility
notion for the nonlinear case.

A. Positivity Property

Definition 1 (Positiveness): System (9) is said to be positive
if it has a piece-wise continuous positive solutions x(t) and
z(t) for all t > 0, when the initial conditions φx and φz are
positive and satisfy (10).

Proposition 1 (Positiveness): Let φx and φz be the initial
conditions satisfying (10), the solutions of system (9) are
positive for all t > 0.

Proof: For the proof, please see the reference [21].

B. Admissibility Analysis

Definition 2 (Admissible System [1]): The interconnected
positive system (9) is said to be admissible if the Metzler
matrix Ω− I is Hurwitz, where

Ω =

n∑
i=0

Ci +

m∑
k=0

Fk, Fk =

t∫
t−τk

fk(t− a) da. (11)

The admissibility as a sufficient condition for the positivity
and well-posedness presents an issue to build interconnected
systems. These systems when not inadmissible are unstable in
the presence of arbitrarily small communication delays. From
a control theory point of view, the admissibility of nonlinear
interconnected positive systems is an essential requirement to
build the appropriate Lyapunov function. As we can see later
during the design of the appropriate Lyapunov Functional, we
utilize the property of the admissibility to built the proposed
functional and also to verify its uniform convergence as we
see in the lemma 2.

We use the Perron-Frobnius theorem [20] to characterize
the admissibility condition for the system in (9). We start by
the following theorem:

Theorem 1 (Admissibility): Let ρ (Ω) be the Perron-
Frobenius eigenvalue of the non-negative matrix Ω, the system
(9) is admissible if and only if

ρ (Ω) < 1. (12)

Moreover, if (9) is not admissible then it has an unbounded
solution.

Proof:
According to the definition of the admissibility, the system

(9) is admissible if and only if the Metzler matrix Ω − I is
Hurwitz. Then, the eigenvalues of the Metzler matrix Ω − I
is the solution of

det [λI − (Ω− I)] = det [(λ+ 1)I − Ω]

= det
[
λ̃I − Ω

]
= 0, (13)

where λ̃ = λ+ 1, knowing that Ω is non-negative matrix, so,
according to Perron-Frobenius theorem

ρ (Ω) = max
1≤i≤N

∣∣∣λ̃i∣∣∣ . (14)

Since that λ̃ = λ+1 then the Metzler matrix Ω−I is Hurwitz
or the system (9) is admissible if and only if

ρ (Ω) < 1. (15)

On the other hand, assuming that system (9) is not admissible,
we have z(t) from the second equation of (9) is given by

z(t) = ξ (x, t)x(t)+

m∑
k=0

t∫
t−τk

fk(t−a)z(a) da+

n∑
i=0

Ciz(t−hi).

(16)
Subtracting the positive vector Ωz(t) from then multiplying
each side of the equation and multiplying it by positive left
eigenvector ν of Ω [20], we get

νt (I − Ω) z(t) = νt
[
ξ (x, t)x(t) +

n∑
i=0

Ci∆t(t− hi)

]
+νt

[
m∑

k=0

t∫
t−τk

fk(t− a)∆t(a) da

]
, (17)

where ∆t(ϕ) = z(ϕ)− z(t).
According to [20], we have νtΩ = ρ (Ω) νt, this gives

(1− ρ (Ω)) νtz(t) = νt
[
ξ (x, t)x(t) +

n∑
i=0

Ci∆t(t− hi)

]
+νt

[
m∑

k=0

t∫
t−τk

fk(t− a)∆t(a) da

]
,

Knowing that ξ (x, t)x(t) ≥ 0 and νi > 0, i = 1, ..., Nzi , it
is clear that if the system (9) is not admissible (i.e. ρ (Ω) ≥ 1)
then ∀ t > 0

νt

 m∑
k=0

t∫
t−τk

fk(t− a)∆t(a) da+

n∑
i=0

Ci∆t(t− hi)

 < 0.

This implies that the magnitude |z(t)| is an increasing function
with time, which means that(For more details see [21]):

lim
t→+∞

|z(t)| = +∞ =⇒ lim
t→+∞

|x(t)| = +∞. (18)
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C. Boundedness

In this subsection, the sufficient conditions for boundedness
of solutions of system (9) are derived.

Proposition 2 (Boundedness): Let φx and φz be the initial
conditions satisfying (10), if system (9) is admissible and
ξ(x, t)x(t) is bounded, then, the difference operator z(t) has
a bounded solution.

Proof: Consider system (9) is admissible (i.e. ρ(Ω) < 1),
from (9), we have

z(t) = ξ (x, t)x(t)+

n∑
i=0

Ciz(t−hi)+
m∑

k=0

t∫
t−τk

fk(t−a)z(a) da.

(19)
Knowing that ξ(x, t)x(t) is bounded, there exists Υ ∈

R

N∑
i=1

Nzi

≥0 such as

ξ(x, t)x(t) ≤ Υ < +∞, ∀(x, t) ∈ R

N∑
i=1

Nzi

≥0 × [−τ, +∞[ .
(20)

Thus,

z(t) ≤ Υ+

n∑
i=0

Ciz(t−hi)+
m∑

k=0

t∫
t−τk

fk(t−a)z(a) da. (21)

Let’s Z(s) be the Laplace transform for z(t), (21) implies 1

Z(s) ≤ 1

s
Υ+

n∑
i=0

Cie
−hisZ(s) +

m∑
k=0

F̂k(s)Z(s). (22)

Therefore,[
I −

n∑
i=0

Cie
−his +

m∑
k=0

F̂k(s)

]
Z(s) ≤ 1

s
Υ. (23)

According to the final values theorem, we have

lim
t→+∞

z(t) = lim
s→0

sZ(s). (24)

Therefore, the equations (22) and (24) follow that

Υ ≥ lim
s→0

[
I −

n∑
i=0

Cie
−his +

m∑
k=0

F̂k(s)

]
sZ(s)

= lim
s→0

[
I −

n∑
i=0

Cie
−his +

m∑
k=0

F̂k(s)

]
× lim

s→0
sZ̃(s)

= lim
s→0

[
I −

n∑
i=0

Cie
−his +

m∑
k=0

F̂k(s)

]
× lim

t→∞
z(t)

(25)

Then,

lim
s→0

[
I −

n∑
i=0

Cie
−his +

m∑
k=0

F̂k(s)

]
× lim

t→∞
z(t) ≤ Υ (26)

Also, having lim
s→0

e−his = 1, lim
s→0

e−ts = 1 and

lim
s→0

F̂k(s) = lim
s→0

0∫
−τk

fk(t)e
−ts dt =

0∫
−τk

fk(t) dt (27)

1The inequality is still valid for the complex numbers as well.

Therefore, lim
s→0

F̂k(s) = Fk where Fk is given in (11), this
yields

lim
s→0

[
I −

n∑
i=0

Cie
−his +

m∑
k=0

F̂k(s)

]
=

[
I −

n∑
i=0

Ci +
m∑

k=0

Fk

]
= [I − Ω] .

(28)

where Ω is given in (11). Knowing that the system is admis-
sible, the matrix [I − Ω] is invertible, then, the equation (26)
implies

lim
t→+∞

z(t) = Υ [I − Ω]
−1

< +∞, (29)

this allows us conclude that z(t) < +∞. Hence z(t) is
bounded if system (9) is admissible and ξ(x, t)x(t) is
bounded.

We take into consideration the result presented above to
build the Lyapunov function candidate in the following sub-
section by assuming that ρ (Ω) < 1.

D. Design a Lyapunov Functional

An appropriate Lyapunov functional candidate is required
to solve the stability of the system described in (9). We are
aiming at providing sufficient and necessary conditions for
global asymptotic stability. Lemma 1 and lemma 2 are related
to the construction and time derivation of a positive function,
which permits to characterize the dynamics of (9). Introducing
for later use the following:

ϑn(t) =
n∑

i=0

Bi

t∫
t−hi

z(a) da,

ωn(t) =
n∑

i=0

Ci

t∫
t−hi

z(a) da,

ϱm(t) =
m∑

k=0

t∫
t−τk

t∫
σ

gk(σ − a+ τk)z(a) da dσ,

ηm(t) =
m∑

k=0

t∫
t−τk

t∫
σ

fk(σ − a+ τk)z(a) da dσ.

(30)

Lemma 1 (Appropriate Lyapunov Functional): Let Vq,n,m(t)
be a differentiable positive sequence of time function given by:

Vq,n,m(t) = x(t) + ϑn(t) + ϱm(t) + Φ

q−1∑
j=0

(Ω)jψ(t).

(31)

Then, its time derivative along (9) satisfies V̇q,n,m(t) =[
Ψ(x, t) + Φ

q∑
j=0

(Ω)jξ (x, t)

]
x(t) + Φ(Ω)q

×

[
n∑

i=0

Ciz(t− hi) +
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da

]
,

(32)

where ψ(t) = ωn(t) + ηm(t) and Φ =
m∑

k=0

(Fk +Gk), such

that

Fk =

t∫
t−τk

fk(t− a) da, Gk =

t∫
t−τk

gk(t− a) da. (33)
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Proof: We start by computing the time derivative of
ϑn(t), ωn(t), ηm(t) and ϱm(t).

Using Leibniz’s rule for differentiation under the integral
sign [22], we get

ϑ̇n(t) =
n∑

i=0

Biz(t)−
n∑

i=0

Biz(t− hi),

ω̇n(t) =
n∑

i=0

Ciz(t)−
n∑

i=0

Ciz(t− hi),

ϱ̇m(t) =
m∑

k=0

Gkz(t)−
m∑

k=0

t∫
t−τk

gk(t− a)z(a) da,

η̇m(t) =
m∑

k=0

Fkz(t)−
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da.

(34)
Using (34) and applying mathematical induction, we prove
lemma 1.

1. Based case: For q = 1 and from (31), we have

V1,n,m(t) = x(t) + ϑn(t) + ϱm(t) + Φ
0∑

j=0

(Ω)jψ(t). (35)

Which is equivalent to

V1,n,m(t) = x(t)+ϑn(t)+ϱm(t)+Φ [ωn(t) + ηm(t)] . (36)

Its time derivative is given by

V̇1,n,m(t) = ẋ(t)+ ϑ̇n(t)+ ρ̇m(t)+Φ [ω̇n(t) + η̇m(t)] . (37)

By replacing ẋ(t), ϑ̇n(t), ρ̇m(t), ω̇n(t) and η̇m(t) with their
expressions from (9), (34), respectively, we obtain

V̇1,n,m(t) = Ψ (x, t)x(t) + Φ [I +Ω] z(t)− Φ

×

[
n∑

i=0

Ciz(t− hi) +
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da

]
.

(38)

Now, we replace z(t) with its expression from equation two
of (9), we then have

V̇1,n,m(t) = Ψ (x, t) (t) + Φ [I +Ω] ξ(x(t))x(t)− ΦΩ

×

[
n∑

i=0

Ciz(t− hi) +
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da

]
.

(39)

Which is

V̇1,n,m(t) =

[
Ψ(x, t) + Φ

1∑
j=0

(Ω)jξ (x, t)

]
x(t) + ΦΩ

×

[
n∑

i=0

Cix(t− hi) +
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da

]
.

(40)

Therefore, we deduce that (32) is time derivative of (31) for
q = 1.

2. Induction Step: Now, we assume that (31) and (32) hold
and lemma 1 is true for q (Induction hypothesis), and we show
that it is also true for q+1. For q+1, the sequence Vq+1,n,m(t)
of time function is

Vq+1,n,m(t) = x(t) + ϑn(t) + ϱm(t) + Φ
q∑

j=0

(Ω)jψ(t)

= x(t) + ϑn(t) + ϱm(t) + Φ
q−1∑
j=0

(Ω)jψ(t) + ΦΩqψ(t)

= Vq,n,m(t) + Φ(Ω)qψ(t).

(41)

Then, its time derivative along (9) is given by

V̇q+1,n,m(t) = V̇q,n,m(t) + Φ(Ω)q [ω̇n(t) + η̇m(t)] . (42)

Replacing V̇q,n,m(t) which is given in (32) (Induction hypoth-
esis) and ω̇n(t) and η̇n(t) which are given in (34), we then
get

V̇q+1,n,m(t) =[
Ψ(x, t) + Φ

q∑
j=0

(Ω)jξ (x, t)

]
x(t) + Φ(Ω)q+1z(t)

+Φ(Ω)q

[
n∑

i=0

Cix(t− hi) +
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da

]

−Φ(Ω)q

[
n∑

i=0

Cix(t− hi) +
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da

]

= Φ(Ω)q+1z(t) +

[
Ψ(x, t) + Φ

q∑
j=0

(Ω)jξ (x, t)

]
x(t).

Now, we replace z(t) with its expression which is given in
equation two of (9), we get

V̇q+1,n,m(t) =

[
Ψ(x, t) + Φ

q+1∑
j=0

(Ω)jξ (x, t)

]
x(t) + Φ

×Ωq+1

[
n∑

i=0

Cix(t− hi) +
m∑

k=0

t∫
t−τk

fk(t− a)z(a) da

]
.

This allow us to conclude that for all q ∈ N we have (32) is
time derivative of (31).
In the next lemma, we will check the uniform convergence to
ensure that

d

dt

[
lim

q→+∞
Vq,n,m(t)

]
= lim

q→+∞
V̇q,n,m(t). (43)

Lemma 2 (Uniform Convergence): Let the non-negative
matrix Ω stratifying ρ(Ω) < 1, the sequences Vq,n,m(t)
and V̇q,n,m(t) converge uniformly to Vn,m(t) and V̇n,m(t),
respectively. Such that

lim
q→+∞

Vq,n,m(t) = x(t) + ϑn(t) + ϱm(t) + ΦΩ̄−1ψ(t),

(44)
and

lim
q→+∞

V̇q,n,m(t) =
[
Ψ(x, t) + ΦΩ̄−1ξ (x, t)

]
x(t). (45)

where ψ(t) = ωn(t) + ηm(t) and Ω̄ = I − Ω.
Proof: To prove this lemma, we replace in (31) and

(32) the sum of the geometric matrix sequence
∞∑
j=0

(Ω)
j and

lim
q→+∞

Ωq . Then, we verify the uniform convergence i.e.

lim
q→+∞

∥∥∥∥∥∥
Vq,n,m(t)− Vn,m(t)

V̇n,m(t)− V̇q,n,m(t)

∥∥∥∥∥∥ = 0. (46)

Having ρ(Ω) < 1, we demonstrate in the next that

lim
q→+∞

Ωq = 0, and

∞∑
k=0

(Ω)
k
= (I − Ω)

−1
= Ω̄−1. (47)
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We start by calculations of Ωq . Using eigendecomposition,
Ω can therefore be decomposed into a matrix composed of its
eigenvectors P , a diagonal matrix Ξ with its eigenvalues along
the diagonal, and the inverse of the matrix of eigenvectors
P−1, such as

Ω = [v1, ..., vN ]︸ ︷︷ ︸
P

×

λ1 . . .
λN


︸ ︷︷ ︸

Ξ

× [v1, ..., vN ]
−1︸ ︷︷ ︸

P−1

. (48)

This implies that

Ωj =
[
PΞP−1

]j
=

j times︷ ︸︸ ︷
PΞP−1 × P︸ ︷︷ ︸

=I

ΞP−1 × ... × PΞP−1

= P Ξ× ... × Ξ︸ ︷︷ ︸
j times

P−1 = PΞjP−1. (49)

Therefore

Ωj = [v1, ..., vN ]×

λ
j
1

. . .
λjN

× [v1, ..., vN ]
−1
. (50)

Knowing that |λκ| < ρ (Ω) < 1 for all κ = {1, 2, · · · , N},
it follows that lim

q→+∞
λqκ = 0. Thus

lim
q→+∞

Ωq = 0. (51)

Then, we can write
Vn,m(t) = x(t) + ϑn(t) + ϱm(t) + Φ

∞∑
j=0

(Ω)jωn(t),

V̇n,m(t) =

[
Ψ(x, t) + Φ

∞∑
j=0

(Ω)jξ (x, t)

]
x(t).

(52)

Now, we calculate the geometric sum of matrix
∞∑
j=0

(Ω)j .

According (49), we have
∞∑
j=0

(Ω)j =

∞∑
j=0

(PΞP−1)j =

∞∑
j=0

PΞjP−1 = P

∞∑
j=0

ΞjP−1,

and it follows

∞∑
j=0

(Ω)j = P ×


∞∑
j=0

λj1

. . .
∞∑
j=0

λjN

× P−1

= P ×


1

1−λ1

. . .
1

1−λr

× P−1.

(53)

Knowing that inverse of matrix product (AB)−1 = B−1A−1,
therefore

∞∑
j=0

(Ω)j = P ×


1

1−λ1

. . .
1

1−λr

× P−1

=

P ×

1− λ1
. . .

1− λN


︸ ︷︷ ︸

I−Ξ

×P−1



−1

.(54)

This implies that
∞∑
j=0

(Ω)j =
[
P (I − Ξ)P−1

]−1
= (I − Ω)

−1
= Ω̄−1. (55)

By replacing this result in (52), we get{
Vn,m(t) = x(t) + ϑn(t) + ϱm(t) + ΦΩ̄−1ψ(t),

V̇n,m(t) =
[
Ψ(x, t) + ΦΩ̄−1ξ (x, t)

]
x(t).

(56)

.
Remarks: In the case where the matrix Ω is not diagonaliz-
able, the above results remain correct because there exists an
invertible matrix P such that Ω = MJM−1. J is called the
Jordan normal form of Ω.

E. Stability Analysis

Theorem 2 (Stability): Let ϱ (Ω) < 1 and the matrix Z given
by:

Z(x, t) =
[
Ψ(x, t) + Φ[I − Ω]−1ξ (x, t)

]
, (57)

(i) if Z(x, t) is negative semi-definite, negative definite on
G× [− max

0≤i≤n, 0≤k≤m
{hi, τk} ,+∞[, respectively, then,

the origin of the system (9) is (globally if G = RN )
uniformly stable, uniformly asymptotically stable,
respectively.

(ii) if there exists a region D around the origin where
Z(x, t) ≻ 0 for all x(t) ∈ D then (9) is unstable. where

D =
{
∃ε > 0, x ∈ Rn

+ | x ≤ ε, Z(x, t) ≻ 0
}
.
(58)

Proof: We start by proving the stability of case (i) where
the system (9) is claimed globally asymptotically stable.

a) First case (i): Let assume that we have the following
positive quadratic functional:

V (t) =
1

2
V T
n,m(t).Vn,m(t) =

1

2
[V 1

n,m, · · · , V N
n,m]

V
1
n,m
...

V N
n,m

 .
(59)

This follows:
V̇ (t) = V T

n,m(t).V̇n,m(t). (60)

From (44), we have

Vn,m(t) = x(t) + ϑn(t) + ϱm(t) + ΦΩ̄−1ψ(t)︸ ︷︷ ︸
≥0

≥ x(t), (61)
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Also, we get from (45) the time derivative of the positive linear
vector functional V̇n,m(t) satisfies:

V̇n,m(t) =
[
V̇ 1
n,m · · · V̇ N

n,m

]T
= Z(x, t)x(t). (62)

This implies

V̇ (t) = V T
n,m(t)Z(x, t)x(t)

=
[
V T
n,m(t)− x(t) + x(t)

]T Z(x, t)x(t)

=
[
V T
n,m(t)− x(t)

]T Z(x, t)x(t) + xT (t)Z(x, t)x(t).

(63)

It is clear that as x ≥ 0 (i.e. ||x|| = x) and Vn,m − x(t) ≥ 0,
thus, if Z(x, t) is negative semi-definite or negative definite,
respectively, on G× [− max

0≤i≤n, 0≤k≤m
{hi, τk} ,+∞[ we get

V̇ (t) ≤ xT (t)Z(x, t)x(t) = ψT (t)Z(x, t)ψ(t), (64)

where ψ = [x1, · · · , xN ].
According to [23], the origin of the system (9) is uni-

formly stable or uniformly asymptotically stable. Obviously,
the origin of the system (9) is globally uniformly stable
or globally uniformly asymptotically stable if Z(x, t) is
negative semi-definite or negative definite, respectively, on
RN × [− max

0≤i≤n, 0≤k≤m
{hi, τk} , +∞[. Regarding z(t), we

have:

(I − Ω) z(t) = ξ (x, t)x(t) +
n∑

i=0

Ci∆t(t− hi)

+
m∑

k=0

t∫
t−τk

fk(t− a)∆t(a) da
(65)

Knowing that lim
t→+∞

x(t) = 0 and (I − Ω) > 0, it follows
that:

m∑
k=0

t∫
t−τk

fk(t− a)∆t(a) da+

n∑
i=0

Ci∆t(t− hi) > 0. (66)

This implies that z(t) > 0 is decreasing with time then

lim
t→+∞

z(t) = 0. (67)

b) Second case (ii): We demonstrate this result of (ii) by
contradiction. Let us assume that there exists D ∈ RN

+ where
0 ∈ D and ∀x(t) ∈ D we have Z(x, t) is positive definite
and the system (9) is stable. From (63), we have:

V̇ (t) = V T
n,m(t)Z(x, t)x(t)

=
[
V T
n,m(t)− x(t) + x(t)

]T Z(x, t)x(t)

=
[
V T
n,m(t)− x(t)

]T Z(x, t)x(t) + xT (t)Z(x, t)x(t).

(68)

As V T
n,m(t)− x(t) ≥ 0 and Z(x, t) is positive definite, thus,[

V T
n,m(t)− x(t)

]T Z(x, t)x(t) ≥ 0. Therefore

V̇ (t) ≥ xT (t)Z(x, t)x(t) > 0. (69)

When x(ts) ∈ D, V̇ (t) > 0. It follows that for t > ts,
V (t) > V (t = ts). Therefore, V (t) does not converge to zero.
However and as we considered a solution x(t) that converges
to the origin implying that x(t) converges to zero, this yields
the contradiction.

F. Discussion on the Obtained Results

1) Of particular interest, we showed that the stability of
Multi-Agent Nonlinear Interconnected Positive System
is reduced to the sign (i.e. negative or positive definite)
of the novel specific matrix Z .

2) The results achieved are more general and concise with
respect to the previously published results. For example:
the linear interconnected positive system which is a
particular case when Ψ(x, t) = A and ξ(x, t) = C
are a constant matrix, the matrix Z becomes:

Z(x, t) =
[
A+Φ(I − Ω)

−1
C
]
. (70)

This linear interconnected system is admissible and
stable if and only if Z(x, t) is Hurwitz and (I − Ω) < 0.
These results are similar to those given in ( [1], [3]).

3) The results proved that the communication topology or
the interconnection structure represented by the matrix Ω
is the most important part in admissibility. It has a signif-
icant and direct impact on the admissibility and therefore
on the stability. Moreover, delayed communication can
be a source of non-admissibility and instability.

IV. SIMULATION VALIDATION

Let consider cells dynamics with multi-stage maturation
process [2], the process dynamics are given by the following
distributed delay system:

For all i ∈ 1 · · ·N and t > 0

ẋi(t) = − [δi + βi (xi(t))]xi(t) + Li

τi∫
0

ωi(a)ui(t− a) da

+2Ki−1

τi−1∫
0

ωi−1(a)ui−1(t− a) da

ui(t) = βi (xi(t))xi(t) + L̃i

τi∫
0

ωi(a)ui(t− a) da

(71)
We invite the reader to refer [2] to get a detailed presentation
of the biological system model in (71). The parameters and
functions of this model are given in [24]–[27]). Therefore, we
can write the system (71) under the form (9) as follow

Ψ(x, t) = diag (−δ1 − β1 (x1(t)) , · · · ,−δN − βN (xN (t))) ,
ξ(x, t) = diag (β1 (x1(t)) , · · · , βN (xN (t))) ,

f(a) = diag
(
L̃1ω1(a), · · · , L̃NωN (a)

)
,

g(a) =


a1(a) 0 0 0
b1(a) a2(a) 0 0

0
. . . . . . 0

0 0 bN−1(a) aN (a)

 ,

where ai(a) = Liωi(a), i = 1, · · · , N and bj(a) =
2Kjωj(a), j = 1, · · · , N − 1. Therefore, the admissibility
matrix Ω

Ω = diag

L̃1

τ1∫
0

ω1(a) da, · · · , L̃N

τN∫
0

ωN (a) da

 , (72)
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Then, the system (71) is admissible if and only if:

1− L̃i

τi∫
0

ωi(a) da > 0, ∀i = 1, · · · , N. (73)

Moreover, we have the stability matrix Z(x, t)

Z(x, t) =


A1 0 0 0
B1 A2 0 0

0
. . . . . . 0

0 0 BN − 1 AN

 , (74)

where

Ai = −δi −
1− (L̃i + Li)

τi∫
0

ωi(a) da

1− L̃i

τi∫
0

ωi(a) da
βi (xi(t)) ,

Bj =

2Kj

τj∫
0

ωj(a) da

1− L̃j

τj∫
0

ωj(a) da
βj (xj(t)) ,

(75)

where i = 1, · · · , N and j = 1, · · · , N −1. It is clear that the
eigenvalues of Z(x, t) are λi = Ai. This allow us to conclude
that Z(x, t) is semi-negative define ( i.e. (71) is stable ) if
and only Ai ≤ 0. This result is exactly the same one given
[2].

V. CONCLUSION

In this paper, the admissibility and stability were investi-
gated for nonlinear interconnected positive system. We showed
that the obtained results are more general and con-size with
respect the previously published results. As an interesting
outcome, we reduced the complexity analysis of MANIPS
to the sign (i.e. negative or positive definite) of the novel
specific matrix Z . The results clearly illustrated that the
communication topology or the interconnection structure has
a significant influence on the admissibility and therefore on
the stability. The study of recent model in biology and its
simulations were performed to illustrate the effectiveness of
the proposed approach.

The future work is to use the matrix Z in the control
design for MANIPS and also in the analysis of its persistence
property. This later is characterized the system state converges
to a unique strictly positive vector for any strict positive initial
state.
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