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Abstract

Large Language Models (LLMs) have so far impressed
the world, with unprecedented capabilities that emerge in
models at large scales. On the vision side, transformer mod-
els (i.e., ViT) are following the same trend, achieving the
best performance on challenging benchmarks. With the abun-
dance of such unimodal models, a natural question arises;
do we need also to follow this trend to tackle multimodal
tasks? In this work, we propose to rather direct effort to effi-
cient adaptations of existing models, and propose to augment
Language Models with perception. Existing approaches for
adapting pretrained models for vision-language tasks still
rely on several key components that hinder their efficiency. In
particular, they still train a large number of parameters, rely
on large multimodal pretraining, use encoders (e.g., CLIP)
trained on huge image-text datasets, and add significant
inference overhead. In addition, most of these approaches
have focused on Zero-Shot and In Context Learning, with
little to no effort on direct finetuning. We investigate the min-
imal computational effort needed to adapt unimodal models
for multimodal tasks and propose a new challenging setup,
alongside different approaches, that efficiently adapts uni-
modal pretrained models. We show that by freezing more
than 99% of total parameters, training only one linear pro-
jection layer, and prepending only one trainable token, our
approach (dubbed eP-ALM) significantly outperforms other
baselines on VQA and Captioning across Image, Video, and
Audio modalities, following the proposed setup. The code
will be available here: https://github.com/mshukor/eP-ALM.

1. Introduction

Going large scale has led to outstanding performances
that consistently improve across tasks, modalities, and do-
mains on current benchmarks. Most of the progress so far
has been in the vision and language domains. For Com-
puter Vision, the ViT family [21] starts from the tiny model
with 5M parameters to the enormous ViT-e [15] with 4B pa-
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Figure 1. Illustration of eP-ALM to adapt unimodal models for
multimodal tasks. The Language Model (Decoder) is augmented
with perceptual context to steer its text generation. To condition
the decoder on a given modality, the [CLS] tokens are extracted
from several layers of a modality-specific encoder and then linearly
projected before concatenation at different levels of the language
decoder. Only unimodal models are used, and all pretrained mod-
ules are kept frozen.

rameters and the largest ViT-22B with 22B parameters [20].
More captivating, are the scales of Large Language Models
(LLMs), such as the BLOOM [76] and OPT [107] families,
ranging from hundreds of millions of parameters to 175B, in
addition to other models that go beyond 100B [7, 19, 83] up
to 1T parameters [27]. These huge scales come with a need
for very large pretraining datasets and long training times.

The current prevalent paradigm to solve multimodal tasks,
in particular, Vision-Language tasks is to leverage pretrained
models, and then further train end-to-end [15, 56, 79, 81, 94]
on large image-text datasets. However, the training cost is
huge and unaffordable for a large portion of the community,
as these approaches still train all model parameters, even
after initialization, on a huge amount of data.

With the abundance of unimodal models, a natural ques-
tion arises;

Do we need also to follow this trend to tackle multimodal
tasks? or rather direct effort to efficient adaptations of exist-
ing models?
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Drawing inspiration from the recent work in Augmented
Language Models (ALMs) [70], in this paper, we advo-
cate for adapting pretrained LMs to solve multimodal tasks.
Specifically, by augmenting LMs with perceptual encoders.

Several approaches have deviated from the end-to-end-
training paradigm by freezing some pretrained modules and
training only the adaptation parameters, such as, additional
cross-attention [3], vision encoder [90] and Adapters [23].

Even though these approaches have taken a big step to-
wards more parameter-efficient models, there are still many
costly components that hinder their adoption by the large
community, such as the training and inference memory and
time cost.

In this work we argue that current approaches are far
from optimal and it is possible to find more efficient ap-
proaches, in terms of the number of trainable parameters,
training data, and compute, to adapt pretrained unimodal
models for multimodal tasks. A better alignment of visual
and language representations might help to devise extremely
efficient adaptation approaches.

To investigate this hypothesis, we go a step further to
efficiently leverage LLMs, and propose (1) a new technique
to adapt unimodal models by freezing more than 99 % (up
to 99.94%) of their parameters, alongside (2) a minimal
and challenging setup to adapt pretrained unimodal models
for Image/Video/Audio-Language tasks (e.g., VQA [33, 97],
Image and Audio Captioning [14,48]). In this setup, we favor
unimodal-only models, avoiding multimodal pretraining or
massively trained multimodal encoders, and considering the
typical LLMs architecture as the backbone. All that while
freezing as much as possible of model parameters. The
approach is illustrated in Fig.1.

Specifically, we adopt the publicly released OPT model
[107] and unimodal encoders (e.g., ViT, TimeSformer [6],
AST [31]), which are kept frozen. We finetune directly the
adaptation parameters on publicly available benchmarks of
downstream tasks such as for VQA, GQA, Image Captioning,
Video QA, Video Captioning, and Audio Captioning.

Based on this setup we investigate different design
choices and propose very efficient approaches backed by
the following interesting findings:

• Training a single linear layer directly on downstream
multimodal datasets, and following the same setup, out-
performs other work on Image/Video/Audio-Language
tasks. With a few additional trainable parameters and
a single learned prepended token, we can significantly
improve the performance, while respecting a budget
of 1% of trainable parameters, and keeping almost the
same inference cost.

• Our approach enjoys better generalization (OOD, Zero-
Shot) and is data-efficient (training on 1% of the data
achieves 80% of performances) with better few-shot

results than other approaches.

• While reaching good performance with small to mid-
scale language models (i.e, 350M-2.7B) the improve-
ment still increases by jointly scaling both vision and
language models. When scaling both models, we can
still outperform other approaches with only 0.06% of
trainable parameters.

• Existing approaches do not behave well on the proposed
challenging setup, without large multi-modal pretrain-
ing.

2. Related Work
Vision-Language Models (VLMs). Previously, vision-
language tasks have been solved with models heavily cus-
tomized for the particular task at hand [8,26,41,44,47]. The
success in Self Supervised Learning [9,34,36,87,96] and the
importance of good initialization have pushed researchers to
transfer these ideas to VLMs and started Vision-Language
Pretraining (VLP) on large scale video-text [28, 57, 92],
image-text datasets in general domains [16,51,55,56,65,79],
as well as specific domains, such as Cooking [80], Medical
Images [71] and Event Extraction [58]. VLP is a step to
move away from the burden of customization by having one
pretrained model, exploited for several downstream tasks.
Recently, we have witnessed impressive work that go a step
further towards more unification, by unifying the model, the
training objective, and input-output format [15, 66, 93, 94].
All these models train most of the model parameters, even
after initialization, which becomes more and more costly
with the current trend in scaling data, model size, and com-
pute [15, 103]. Another approach for VLM is to exploit
existing pretrained models by keeping them frozen and train-
ing only the adaptation parameters [3, 23, 60]. This work
advocates for the latter favoring training efficiency in terms
of memory and time.

Adapting Language Models. Large Language Models
(LLMs) [7, 19, 38, 76, 83, 107] have impressed the world
in this last few years, showing unprecedented performance
on a myriad of NLP tasks. Scaling LLMs to hundreds of
billions of parameters has been motivated by the capabili-
ties that surprisingly emerge [95] at this scale and lead to
sudden jumps of relevant metrics on hard downstream tasks
[37, 74, 84]. This generalization ability pushed researchers
to start adapting these models for other modalities [3, 90],
tasks [35, 88, 102, 106] and domains [82]. Currently, most
of the focus is concentrated on exploiting LLMs for vision-
language tasks, such as Flamingo [3] which trains 10B pa-
rameters to adapt a frozen 70B parameter language model,
and other successful efficient techniques that are based on
vision-conditioned prompt tuning (Frozen [90], Prompt-
Fuse [60], LiMBeR [69]) and adapters (MAGMA [23]). This
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work has demonstrated good performance, showing that it is
possible to devise very efficient approaches to adapt existing
language models [38, 91]. On the video side, little work has
been proposed, mostly based on Adapters [78, 101]. The
closest to our approach is PromptFuse [60] which finetunes
directly for VQA, however, they use encoder-decoder lan-
guage models and train a soft prompt that is prepended to
the input.

Efficient Learning. Parameter-Efficient learning is an in-
teresting line of research that consists of adapting pretrained
models using very few trainable parameters. Prompt Tun-
ing [54] is one such approach that appends a few learnable to-
kens, or Soft Prompts to contextualize the input and steer the
output of the frozen model toward the desired task. Other ap-
proaches use Adapters [4,39], which are trainable MLP, con-
sisting of 2 linear projection layers with activation in between
and inserted inside the model to adapt the self-attention and
feedforward layers. Many other approaches have been pro-
posed in the context of NLP such as LoRa [40], Bitfit [104],
Hyperformer [67], Compacters [46] and (IA)3 [62]. These
approaches have been successfully adapted to other modal-
ities such as image [13, 43], image-text [85, 86, 108], with
very little work on video [72] and Audio [50].

Another line of research is Data-Efficient techniques,
where the objective is to attain similar performance by signif-
icantly reducing the training datasets. Recently, some efforts
have been proposed for vision [89], language [22] and vision-
language [12,17,79], which mostly focus on designing better
training objectives [79]. However, little work has been done
to investigate the connection between parameter efficiency
and data efficiency, which is considered in this work.

3. Framework
To solve multimodal tasks, we propose to augment pre-

trained LLMs with perception through unimodal perceptual
encoders (Fig.1). We detail our approach in the following.

3.1. eP-ALM

We augment a pretrained LM with perception through
several modality-specific encoders. The encoders interact
with LM through linearly projected, modality-specific [CLS]
tokens. To ease the adaptation, we leverage some parameter-
efficient techniques, such as Prompt Tuning. In this section,
we detail the design principles of our approach, which is
illustrated in Fig.2.

Language Model (LM) We adopt OPT models [107],
which are autoregressive language decoders consisting of
Self-Attention and Feed Forward layers. They are trained
with next token prediction objective on 180B tokens mostly
in English and gathered from different datasets [5, 29]. The
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Figure 2. Illustration of the adaptation mechanism in eP-ALM.
The perceptual input (image/video/audio) is fed to the perceptual
encoder E (e.g., ViT) and the corresponding text to the LM (e.g.,
OPT), which then generates a text conditioned on the perceptual
input. The multimodal interaction is done via the [CLS] tokens
acting as Perceptual Prompt, and are extracted from the last layers
of the encoder, then injected in the last layers of LM, after passing
by the Linear Connection C. The previous [CLS] token is replaced
by the new one coming from a deeper layer, keeping the number of
tokens fixed. The first layers (grayed) of each model are kept intact
without any modality interaction. We ease the adaptation with a
Soft Prompt that is prepended to the input of LM.

authors released a family of models with different scales,
starting from 125M up to 175B model size. Besides being
open source and trained on English data, the different model
sizes allow us to readily investigate the effect of scale, and
help to devise new approaches with affordable model sizes.

Perceptual Encoders We favor only unimodal models.
For images, we use the vanilla ViT model [21] which consists
of Self Attention and FeedForward layers and is pretrained
for image classification on ImageNet [75]. For Video, we use
TimeSformer [6] that consists of a ViT-like model augmented
with temporal attention and pretrained on kinetics [10]. For
Audio, we adopt AST [31], a vanilla adaptation of ViT to di-
gest spectrograms, that is pretrained on AudioSet [30]. Even
though we consider only these 3 encoders, the extension of
the approach to other types of encoders and modalities is
straightforward.

Perceptual Prompt Injection. LMs are usually controlled
via different textual prompts, such as questions and instruc-
tions. Here, the LM is controlled by both the text and the
perceptual encoders. Specifically, the projected perceptual
tokens are prepended to the textual tokens. Naively using
all visual tokens, adds significant computation costs during
training and inference, due to the quadratic complexity of
attention layers with the number of tokens. This becomes
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more apparent with LLMs. To mitigate this, we consider
only the [CLS] token of the perceptual encoders and prepend
it to the text tokens. This increases the total number of tokens
by 1 which maintains almost the same inference speed.

Connecting Models with Cross-Modal Hierarchical Lin-
ear layers. When freezing the perceptual encoders and
language models, the minimal number of trainable parame-
ters are those that amount to connecting these two models
while adjusting the embedding dimensions in case of a mis-
match. Therefore, we base our approach on this constraint
and train only one linear projection layer (single connection,
Fig.2) to connect both models. To exploit the hierarchical
representation encoded in pretrained models, instead of tak-
ing only the [CLS] token of the last output layer, we take the
[CLS] tokens from several layers of the perceptual model,
and we inject these tokens into several layers of the LM
(shared connection). The tokens coming from early layers
are injected earlier and are then replaced by those coming
from deeper layers. We favor only the deeper layers (e.g.,
the last 6 layers of the ViT-B/16, and the last 12 layers of
OPT-350M) where the representations are more abstract and
less modality-specific. Moreover, using the same linear pro-
jection at different representation levels might not help to
capture the particularity of such a hierarchy, to this end, we
also experiment with different linear layers for each level
(multiple connections).

Multimodal Adaptation with Parameter-Efficient Tech-
niques. We explore several parameter-efficient techniques
to ease the adaptation to multimodal tasks. The main tech-
nique we use is Prompt Tuning [54]: it consists of prepend-
ing trainable tokens or Soft Prompts to the textual tokens
input of the LM. This gives useful context to steer the model
output. Contrary to hard prompts that are manually engi-
neered, this provides a more flexible and easier approach for
task-dependant contextualization. For the sake of efficiency,
we prepend only 10 learnable tokens. We also experiment
Adapters [39] as detailed later. The approach can be formal-
ized as follows (better read with Fig.2):

[CLS]i = C(Ei(X)), i = NE/2, ..., NE ,

tj = LMj([CLS]i, pj−1, tj−1), j = NL/2, ..., NL,
(1)

where [CLS]i is the perceptual token of the input X ex-
tracted from the layer i of the perceptual encoder (Ei) with
NE layers. [CLS]i is projected using the linear connection
C and prepended, alongside the Soft Prompt p to the em-
beddings of the textual tokens tj−1 coming from previous
layer in the LM (LMj−1). This operation is repeated each 2
layers in the LM (with NL layers).

3.2. Efficiency-driven Training Framework Setup

Current approaches still rely on many costly components
that hinder their adoption by the large community. Specifi-
cally; they (1) still train a lot of parameters (e.g. vision en-
coders [90] and adapters [23] with ∼325M params/5.11%),
(2) still maintain the multimodal pretraining with image-text
pair datasets on top of the unimodal pretraining [23, 69, 90],
(3) leverage multimodal encoders such as CLIP, pretrained
on 400M image-text pairs [23, 69], (4) add significant com-
putation overhead during inference, due to the long visual
prompt, especially when evaluating with In Context Learn-
ing (ICL), that becomes common with LLMs [23,69]. In this
work, we propose a new setup to adapt unimodal models for
multimodal downstream tasks. The setup is more challeng-
ing and is motivated by the quest for the least effort needed
to exploit pretrained models. The setup is the following:

• Training only adaptation parameters (e.g., Soft Prompt,
linear connection), while keeping as much as possible
of pretrained parameters frozen (parameter efficient).

• Avoiding multimodal pretraining and finetuning directly
on downstream multimodal datasets (data/compute effi-
cient).

• Using only pretrained unimodal models, and avoid us-
ing multimodal encoders pretrained on huge datasets
(data efficient).

• Keeping fast inference (e.g., 1 additional token), by
avoiding long prompts, and using additional heavy mod-
ules (compute efficient).

• Using decoder-only language models (e.g., OPT), the
current architecture adopted by LLMs (due to its pre-
training efficiency and open-ended generation capac-
ity).

Specifically, we train only the linear connection and the
soft prompt directly on the downstream multimodal tasks.
This amounts to less than 1% of trainable parameters that
we can push further to 0.06% with big models.

The Pretrain Zero-shot Setup. The focus of this work is
direct finetuning on target datasets. However, the proposed
mechanism (Sec.3.1) can be adapted straightforwardly to
the pretrain-zeroshot setup. In the appendix, we show that
eP-ALM outperforms previous work and it is competitive
with recent SoTA following the zero-shot evaluation.

4. Experiments
Implementation details. We use OPT-2.7B in our main
model, eP-ALM, and we experiment in Section 4.2 with OPT
models of various sizes. We extract the [CLS] tokens of the
last 6 layers of perceptual encoders and prepend them, after
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a linear projection, to the text tokens of the last 12 layers of
the OPT. Note that we replace the previous [CLS] with the
new one to keep the same number of tokens.

For VQA and VideoQA, we cast the problem as open-
ended generation and compute the accuracy after a strict
comparison between the output text (without truncation) and
the ground truth one. Note that this setting is more chal-
lenging compared to classification-based VQA and not in
favor of our approach as the model might generate seman-
tically correct answers but using different words. We use
a special token (‘</a>’) to separate the question from the
answer. For captioning, we report the widely adopted CIDEr
and BLUE@4 scores. We finetune with the classical cross-
entropy loss used to train the original OPT for VQA and
Captioning tasks. We use the AdamW optimizer with a
learning rate (lr) of 1e-5 warmed up to 2e-5 then decreased
to 1e-6 using a cosine scheduler. We train for 8 epochs with
a batch size of 64 (128 for GQA) and an image resolution of
224. Training our approach with OPT-2.7B for VQA v2 can
be done on a single V100 GPU 32GB for few hours. More
details are given in the appendix. We find the method sensi-
tive to the text decoding approach (Tab. 8). Following other
work, we use greedy decoding with beam search for the main
results (Sec. 4.1), and multinomial/random sampling for the
ablation study (Sec. 4.2).

eP-ALM Variants. Our main model, eP-ALM (illustrated
in Figure 2), has multiple linear connections; specific learned
linear layers for each [CLS] token injected in the model. In
addition to Prompt Tuning. We also test variants of this
model: eP-ALMada (eP-ALM with Adapters instead of Soft
Prompts), eP-ALMlin (trains a shared linear connection with
all [CLS] tokens, and no prompt tuning) and eP-ALMpt (lin
+ Soft Prompt). For Adapters, we follow other work [23] and
add sequentially one adapter module after self-attention and
feedforward layers in all the blocks of OPT. While this might
give better results, it adds a significant number of trainable
parameters.

4.1. Main Results

In this section, we present the main comparison with other
approaches. We present the results for the image modality
in Section 4.1.1, the video modality in Section 4.1.2, and the
audio modality in Section 4.1.3.

4.1.1 Image-Text Results

We use a frozen ViT-B/16 pretrained on ImageNet1K as
the image encoder. We consider the following image-text
benchmarks; VQA v2 [33], GQA [42] and COCO Caption
[14]. We use Karpathy splits for VQA v2 and COCO, unless
specified otherwise.

Baselines. As we are the first to propose this setup, to have
a fair comparison, we reimplemented some of the existing
approaches and use the same vision (ViT-ImageNet) and
language (OPT) models for all:
1) BPromptFuse; which is equivalent to PromptFuse [60]
and uses Prompt Tuning (N=10). We add a linear projection
for the last [CLS] token. The [CLS] token is prepended to
the input of the LM. Note that we could not avoid adding a
trained linear projection as there is a mismatch between the
dimensions of the vision and language model.
2) BMAGMA; which is equivalent to MAGMA [23] and
uses Adapters. We prepend the [CLS] token to the input of
LM after linear projection. Note that, we consider only the
[CLS] token as we find it better than prepending all image
tokens (eP-ALM∗

MAGMA). We also find that training the
ViT degrades the performance, thus we keep it frozen in
favor of their approach.
3) BLimBEr; which is equivalent to LimBEr [69] and only
trains the linear projection to project visual tokens and
prepend them to the input text. Similarly, we only consider
the [CLS] token as it gives better accuracy.

Comparison to Other Work. Based on our study (Sec.
4.2), we use ViT-B/16 and OPT-2.7B in our main model
and in our replication of other approaches. In Table 1 we
compare with other work on VQA v2, GQA, and COCO
Caption. We significantly outperform other approaches with
at least +10 points on VQA v2, +9 points on GQA and we
double the scores on COCO Caption. eP-ALMpt-L with
OPT-6.7B and ViT-L gives the best scores while training
only 0.06% of model parameters.

Note that for COCO Caption, other works give very low
scores (thus we did not report them).

Method
VQA v2 GQA COCO

Val Test Val Test B@4 CIDEr

PromptFuse† [60] 34.1† – – – – –

BLimBEr 34.1 33.5 30.81 29.4 – –
BPromptFuse 40.4 39.5 33.74 31.51 15.05 48.26
BMAGMA 32.2 31.8 30.98 28.93 – –

eP-ALMpt 48.8 47.8 43.8 40.3 27.52 91.92
eP-ALM 50.7/53.3† 50.2 45.0 40.4 29.47 97.22

eP-ALMpt-L∗ 54.58/54.47† 54.47 46.86 42.7 31.24 107.0

Table 1. Comparison with other work after direct finetuning on VQA
v2, GQA, and COCO Caption. eP-ALM significantly outperforms other
approaches. eP-ALM uses ViT-B/16 and OPT-2.7B. eP-ALM-L uses OPT-
6.7B and ViT-L/16. †: use standard split.∗: trained more than 8 epochs.

Few-shot Results: Are Parameter-Efficient Models also
Data-Efficient? In this section, we investigate how data-
efficient our model can be. To this end, we train on a very
small portion (randomly sampled) from the VQA training set
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and evaluate on the validation set. Table 2, shows the superi-
ority of our approach over other baselines. Interestingly, we
can achieve 80% (41.9 vs 52.77) of the performance when
training on 1% of the data. This validates the approach on
low resources scenarios and shows that, in addition to being
parameter-efficient, our model is also data-efficient.

Method Train. data % (# of shots) VQA v2

PromptFuse∗ [60] 0.12% (512) 29.40

BLimBEr 1% (4.4K) 28.9
BPromptFuse 1% (4.4K) 31.9
BMAGMA 1% (4.4K) 34.5

eP-ALMlin
∗ 0.12% (512) 31.3

eP-ALMpt 0.12% (512) 30.36
eP-ALM 0.12% (512) 35.54
eP-ALM 1% (4.4K) 41.9
eP-ALM 10% (44K) 47.4
eP-ALM 100% (443K) 52.77

Table 2. Few-shot Results on VQA v2 validation set (standard split). ∗:
longer training.

Out of Distribution (OOD) Generalization: Do
Parameter-Efficient Models Generalize Better? Here
we investigate whether our parameter-efficient approach can
perform well in OOD scenarios. To this end, we follow other
approaches [1] and train our model on the training set of
a given benchmark, and evaluate it on the validation set of
another benchmark, without multimodal pretraining. We
measure the performance gap, i.e. the accuracy difference
between a model trained on a different benchmark and the
same model trained on the target benchmark. Tab.3 shows
that eP-ALM, that trains 0.06% of total parameters, is very
competitive in terms of OOD accuracy with other baselines,
that train all model parameters and pretrain on large amount
of data. Specifically, we outperform VILBERT on VQAv2
by more than 2 points. Interestingly, the OOD-IID gap for
eP-ALM, is at least 2 times lower compared to ALBEF [56]
and VilBERT [65]. This reveals that our parameter-efficient
approach generalizes relatively well in OOD scenarios.

Method
Multimodal Trained

Train data
Test data Gap

PT data param. (%) VQA v2 GQA

ALBEF [1] 14M 100%
VQA v2 – 50.1 -21.8

GQA 50.3 – -14.1

VILBERT [1] 3M 100%
VQA v2 – 42.6 -20.4

GQA 41.8 – -22.7

eP-ALMpt-L 0 0.06%
VQA v2 – 41.39 -9.59

GQA 45.19 – -5.8

Table 3. Out-Of-Distribution Generalization on GQA and VQA v2 (stan-
dard split). The Gap shows the performance degradation when the model is
trained on a different dataset.

4.1.2 Video-Text Results

We investigate how much our approach generalizes to other
modalities. To this end, we evaluate eP-ALM for Video QA
on MSRVTT-QA [97] and MSVD-QA [97] and for Video
Captioning on MSR-VTT [98]. For the video encoding, we
use the TimeSformer-base [6] model pretrained on Kinetics-
600 [11]. We use 8 and 16 224x224 frames for VQA and
captioning respectively.

Comparison to other work to the best of our knowl-
edge, FrozenBiLM [101] is the only parameter-efficient work
proposing to adapt LMs for video-language tasks. It uses
Adapters to adapt the frozen CLIP-ViT and Bidirectional
LM for Video QA. We compare our approach to our re-
implementation of this baseline; where we train only the
Adapters and the linear projection layer to project the last
[CLS] token and prepend it to the input text ones. The results
in Tab. 4 show that eP-ALM outperforms this baseline by a
significant margin. The reason why the latter does not give
good results might be due to prepending the visual tokens
to the input of OPT. We can reduce the number of parame-
ters and slightly degrade the performance by using a shared
linear connection (eP-ALM vs eP-ALMpt).

Method
Trained MSVD-QA MSRVTT-QA MSRVTT

param (%) Test Test CIDEr B@4

BFrozenBiLM (from [101]) 3.72 % 14.58 6.33 - -

eP-ALM 0.89 % 38.64 36.16 47.31 38.51
eP-ALMpt 0.54 % 38.79 35.62 45.30 39.34

Table 4. Comparison with different approaches after direct finetuning on
MSVD-QA, MSRVTT-QA, and MSRVTT Caption.

Zero-Shot Results To explore the generalization of our
approach, we evaluate on Zero-Shot for VideoQA, where
the model is trained on a dataset different from the target
one. Table 5 shows a comparison with other approaches. eP-
ALM, trained on VQA v2 (standard split), outperforms other
approaches trained on significantly more data. Specifically,
eP-ALM outperforms Flamingo-3B [3] on MSRVTT-QA
by more than 2 points, and attains double the scores of
FrozenBiLM [101]. Contrary to some of other approaches
that cast the task as classification (similarity-based) [100] or
constrained generation through masking, considering only a
subset of answers (1k or 2k) [57, 101, 105], our approach is
evaluated (with a character-wise comparison with the ground-
truth) with unconstrained Open-ended Generation (OE Gen)
and can generate answers with arbitrary lengths. This is
more challenging and not in favor of our approach.
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Method Training data Train. Param. (%) OE Gen MSRVTT-QA MSVD-QA

JustAsk [100] ActivityNet-QA 89.6% ✗ 2.7 -
JustAsk [100] HowToVQA69M 89.6% ✗ 2.9 7.5
LAVENDER [57] WebVid2.5M+CC3M 100% ✗ 4.5 11.6
MERLOT Reserve [105] YT-Temporal-1B 100% ✗ 5.8 -
FrozenBiLM † [101] 400M-CLIP + VQA v2 2.9% ✗ 6.9 12.6
Flamingo 3B [3] M3W+ALIGN+VTP 40% ✓ 11.0 27.5

eP-ALM VQA v2 0.9% ✓ 13.17 24.82
eP-ALM † VQA v2 0.9% ✓ 14.54 27.09

Table 5. Zero-Shot results on Video QA. OE Gen: unconstrained Open-
Ended Generation. † evaluated on questions with top 1k answers.

4.1.3 Audio-Text Results

We investigate the generalization of our approach to the
audio domain. The encoder is AST-base model [31] pre-
trained for classification on AudioSet [30]. We evaluate on
AudioCaps dataset [48], the largest benchmark for Audio
Captioning. We train with mel spectrograms of 128 bins and
frequency and time masking with a batch size of 8.

To the best of our knowledge, no prior work has been
proposed to efficiently adapt LM for audio-text tasks, thus we
compare with other end-to-end trained SoTA that takes only
the audio signal as input. Tab. 6 shows that our approach is
very competitive with previous work, showing the potential
of efficient adaptation of LM for the audio modality.

Method
Trained AudioCaps

param (%) B@1 B@2 METEOR CIDEr SPICE SPIDEr

Kim et al. [49] 100% 0.614 0.446 0.203 0.593 0.144 0.369
Koizumi et al. [53] 100% 0.638 0.458 0.199 0.603 0.139 0.371
Eren et al. [24] 100% 0.710 0.490 0.290 0.750 - -
Xu et al. [99] 100% 0.655 0.476 0.229 0.660 0.168 0.414
Mei et al. [68] 100% 0.647 0.488 0.222 0.679 0.160 0.420
Gontier et al. [32] 100% 0.699 0.523 0.241 0.753 0.176 0.465
Liu et al. [63] 100% 0.671 0.498 0.232 0.667 0.172 0.420

eP-ALM 0.90 % 66.08 47.57 22.69 63.61 16.29 -

Table 6. Comparison with other work for Audio Captioning on AudioCaps
Test set.

4.1.4 Comparison with SoTA

To contextualize the work, we compare eP-ALM to other
SoTA that trains large number of parameters and most often
with large-scale pretraining. Tab. 7 shows a comparison
with both zero-shot (ZS) and Finetuning (FT) setups. The
performance of eP-ALM is generally higher than ZS scores
and still below FT ones. However, the performance gap with
FT models, is smaller with the audio and video modalities.

4.2. Ablation Study

In this section, we ablate different component of our
work.

Comparison between different text generation methods.
We find the approach sensitive to the text decoding strategy.
In Tab. 8, we compare with different text decoding methods;
multinomial/random sampling [25] and greedy decoding

Dataset (Metric) SoTA (ZS) eP-ALM (FT) SoTA (FT)

AudioCaps (CIDEr) – 63.6 66.7 (Liu et al. [63])
MSRVTT-QA (Acc) 17.4 (Flamingo80B [3]) 36.7 44.1 (OmniVL [92])
MSR-VTT (CIDEr) – 50.7 60 (MV-GPT [77])
COCO (CIDEr) 84.3 (Flamingo80B [3]) 107.0 145.3 (OFA [93])
VQAv2 (Acc) 56.3 (Flamingo80B [3]) 53.3 84.3 (PaLI [15])
GQA (Acc) 29.3 (FewVLM [45]) 42.7 60.8 (VL-T5 [18])

Table 7. Comparison of eP-ALM with text generation-based SoTA
that train significant number of parameters, including methods with
large-scale pretraining. Best and next best scores are bolded and
underlined respectively. FT: Finetuning. ZS: Zero-shot.

with beam-search (1 to 5 beams). Greedy decoding signifi-
cantly outperform multinomial sampling, and increasing the
number of beams leads to additional improvements, to the
detriment of increasing inference cost.

Decoding Method # of beams
VQA v2 GQA COCO MSVD-QA MSRVTT-QA MSRVTT

Test Test B@4 CIDEr Test Test B@4 CIDEr

Multinomial 1 43.86 37.02 13.37 58.60 31.18 26.96 20.77 14.13
Greedy 1 54.47 42.70 31.24 107.0 38.64 36.16 47.31 38.51
Greedy 3 54.90 42.99 33.35 113.0 38.93 36.66 50.66 39.02
Greedy 5 54.92 42.95 33.86 115.54 – – – –

Table 8. Comparison with different text generation mechanisms using
eP-ALM-L.

In the following, we run some ablations for Image-Text
tasks, mostly on VQA v2.

Comparison with different variants and baselines. We
start by comparing the different variants to other work in
Fig. 3. All models use OPT-350M and ViT-B/16. Other
approaches lag significantly behind our model. BMAGMA

gives the best results (23.3% acc.) among them, followed
by BPromptFuse (18.82% acc.) and finally BLimBEr (10.75
% acc.). We also compare with another MAGMA baseline
(BMAGMA

∗) that prepends all visual tokens to the input,
and we find a significant degradation compared to passing
only the [CLS] token. This reveals that prepending all visual
tokens directly to the input hinders the adaptation.

We can notice a consistent improvement of eP-ALM
when adding more trainable parameters. The most parameter-
efficient model is eP-ALMlin which has 30.72%, while the
best has 34.34% (with Adapters eP-ALMada). Interestingly,
eP-ALMlin with only one linear layer succeeds to get good
performance on this challenging setup, revealing that the
language and visual representation spaces are not very far.
Other parameter-efficient techniques such as Prompt Tuning
can help to get additional points (30.72 with eP-ALMlin vs
31.27 with eP-ALMpt). Moreover, using different layers for
each injected [CLS] token seems to give significant improve-
ment (31.27 with eP-ALMpt vs 33.08 with eP-ALM).

Finally, we show that eP-ALM surpasses the “full fine-
tuning” baseline (grayed line) that finetune all parameters by
1.27 points (31.79 vs 33.08). This reveals that training all
weights of pretrained models on small datasets can reduce
their generalization capability and degrades performance.
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Figure 3. Comparison with other baselines on VQA v2. eP-ALM
uses ViT-B/16 and OPT-350M. Our approach significantly outper-
forms other approaches. eP-ALM already surpasses the dashed
”upper” baseline that trains all model parameters. Allocating more
adaptation parameters help to increase the scores. Marker size
indicates model size.

[CLS] tokens VQA v2

From ViT layers To OPT layers Test Acc.

12 12 to 23 30.53
6 to 12 12 to 23 33.08
1 to 12 12 to 23 31.17

6 to 12 1 to 23 32.15
12 1 18.82

Table 9. Ablation study. Extracting the [CLS] tokens from the last layers
of ViT (layers 6 to 12) is better than taking only the last token (layer 12).
Injecting the [CLS] tokens lately (layers 12-24) in the OPT is better than
injecting them in all layers or only in the input.

As a trade-off between performance and efficiency, we
favor eP-ALM which we carry on for the following study.

Extraction and Injection Level of [CLS] Tokens. Here
we investigate which [CLS] tokens to extract from the ViT
and where is the best position to inject them inside the OPT
model. Table 9 shows that extracting the last [CLS] tokens
(from the last 6 layers) is better than using only the last
one, as done in other approaches (Acc 30.53 vs 33.08). In
addition, using all [CLS] tokens seems to degrade the per-
formance. Moreover, prepending [CLS] tokens to all OPT
layers degrades slightly (33.08 vs 32.15), and prepending to
the input of OPT gives the worst results. This might indicate
that it is easier to merge visual and textual tokens deeper
in the model, where the representations are more abstract,
compared to the first layers where we have more modality-
specific features and higher representation mismatch.

Figure 4. Scaling LM; we scale the OPT from 125M to 6.7B pa-
rameter. eP-ALM becomes more effective with scale. The biggest
performance jump is when scaling beyond 1B parameters (1.3B).

Figure 5. Scaling Vision Model; the score increases with the size
of the ViT. Increasing the patch resolution beyond 16 does not help.

Scaling LM. An interesting question that we investigate
is the impact of scaling the language model’s parameters on
our approach. Ideally, we would like to have an approach
that efficiently exploits LLMs for other tasks and modalities,
without having access to enormous computational resources.
In Table 4, we show that the scores increase with the model
size with the biggest jump being between OPT-350M (33.08
vs 37.29) and OPT-1.3B (∼ ×4 the model size). The consis-
tent improvement with scale shows the effectiveness of the
approach when considering very big models.

As a trade-off between performance and model size, we
favor OPT-2.7B and use it for all other experiments.

Scaling Visual Model. We also study how the model be-
haves when scaling the visual encoder. In Figure 5, we can
notice that the scores increase with the size of the ViT. The
best is ViT-L/16 (41.36) and the worst is ViT-S/16 (Acc
38.73). However, the ViT resolution or the number of image
patches/tokens does not seem to have a significant effect on
the final performance after a resolution of 16.
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Scaling Compute. Table 10 shows that our approach
scales with compute, as training for more epochs leads to 4
points gain in VQA accuracy. Interestingly with OPT-6.7B
and ViT-L (eP-ALMpt-L), we achieve a score of 43.6 by
training only 0.06% of model parameters (∼4M params).

Method
number of VQA v2

epochs Val

eP-ALM 8 38.9
eP-ALM 32 42.9

eP-ALMpt-L 8 42.5
eP-ALMpt-L 32 43.6

Table 10. Scaling Compute. Evaluation on VQA v2 standard split.

Qualitative Results. We show some qualitative results of
our eP-ALM model with OPT-2.7B in Fig. 6. For VQA,
we can notice that our model is able to correctly answer the
questions. Moreover, some of the answers are richer and
more accurate than the manually labeled ground truth in the
dataset. This also reveals that the exact matching evaluation
protocol is not in favor of the open-ended generation pro-
duced by our model. Interestingly, it seems that the model
learned the answering style in the training set (i.e, short and
concise answers). For Captioning, the model can generate
coherent sentences describing the image globally. However,
it still misses some details in the image.

Caption: a very nice clean 
simple bathroom with modern 
white finishes

Caption: there is a baseball 
game going on in this 
picture

Q: what color is the bear?
A: black and blue (blue)

Q: what kind of room is this?
A: restaurant (restaurant)

Figure 6. Qualitative results of eP-ALM: the model is able to
generate accurate answers and coherent descriptions of the image.

5. Conclusion
In this work, we propose a new challenging setup to effi-

ciently adapt unimodal models for multimodal tasks, which
is centered around augmenting existing LMs with percep-
tion. Without multimodal pretraining, and with almost 4M
trainable parameters consisting of a linear connection and
a Soft Prompt, we can adapt a frozen 7B model and reach
an accuracy of 54.5% on VQA v2, with unconstrained open-
ended generation. We validate the effectiveness of the ap-
proach with Images, Video, and Audio modalities. This
direct finetuning setup has several advantages; (a) training
data/compute efficiency, (b) attains generally higher perfor-
mance than pretrain-zeroshot setup, (c) easy to adapt to new
tasks, modalities or other LLMs, where no costly pretraining
is needed. However, the mechanism proposed in eP-ALM
can be adapted in a straightforward manner to this setup.

Even though the results are still far from the state-of-the-
art approaches that train most of the model parameters on
much more data, the extremely small percentage of trainable
parameters (0.06%) and the increasing scores with model
size and compute make the work promising towards finding
an intermediate point, between extremely efficient and ex-
tremely inefficient approaches, which is hopefully closer to
the former.

The method has some limitations, which we illustrate in
the appendix. In general, the model struggles to capture
fine-grained details in the images, favors coherent genera-
tion over factual one, might hallucinate some objects not
present in the image, and lacks common sense reasoning.
Our approach inherits most of the limitations and biases of
pretrained models, especially the LM, and training only a
few adaptation parameters does not seem to avoid the trans-
fer of these biases. Finally, the model is trained with next
token prediction and is able to produce coherent text, how-
ever, it is still not clear how this paradigm can lead to real
reasoning capabilities.
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et al. Beyond the imitation game: Quantifying and extrap-
olating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022. 2

[85] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Lad-
der side-tuning for parameter and memory efficient transfer
learning. In Advances in Neural Information Processing
Systems. 3

[86] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter:
Parameter-efficient transfer learning for vision-and-language
tasks. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5227–5237,
2022. 3, 14

[87] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning? Advances in Neural Infor-
mation Processing Systems, 33:6827–6839, 2020. 2

[88] Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio
Savarese, and Steven CH Hoi. Plug-and-play vqa: Zero-shot
vqa by conjoining large pretrained models with zero training.
arXiv preprint arXiv:2210.08773, 2022. 2

[89] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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Appendix
The appendix is organized as follows; in Sec. A, we

give more implementation details about the experiments

that we conduct. We illustrate and explain the different
variants of eP-ALM in Sec. B. We compare eP-ALM to other
approaches following the pretrain-zeroshot setup (Sec.C).
We then present more ablation studies on image-text and
video-text tasks in Sec. D. Finally in Sec. E we show some
qualitative results and discuss the limitation of the proposed
approach.

A. Implementation Details
We use OPT-2.7B in our final model. We extract the

[CLS] tokens of the last 6 layers of perceptual encoders and
prepend them, after linear projection, to the text tokens of the
last 12 layers of the OPT. Note that we replace the previous
[CLS] with the new one to keep the same number of tokens.
We finetune with the classical cross-entropy loss used to
train the original OPT for VQA and Captioning. We use the
AdamW optimizer with a learning rate of 1e-5 warmed up
to 2e-5 then decreased to 1e-6 using a cosine scheduler. For
Adapters, we use sequential Adapters after self-attentions
and feedforward layers with a downsampling factor of 8
and ReLU activation. For Soft Prompt, we implement it
as a linear embedding layer that takes numbers from 0 to
the length of the prompt (here 10). We experiment also
with adding an MLP after the prompts as done with other
approaches [86]. We use the prompt with MLP for most of
the experiments as we find that it gives slightly better results.
The soft prompt and adapters are trained with a fixed lr of
1e-5. eP-ALMpt-L is trained with a light-weight prompt
(only trainable tokens without MLP), starting learning rate
of 2e-4 and a fixed learning rate of 1e-3 for the prompt with
a total batch size of 16.

VQA/GQA: we use a special token for VQA (′ < /a >′)
to separate the question from the answer. We train for 8
epochs with a batch size of 64 (128 for GQA) and an image
resolution of 224. Training our approach with OPT-2.7B
for VQA v2 can be done on a single V100 GPU 32GB
for 1.8 days (as the perceptual encoder is frozen, saving its
output tokens can save a lot of training time). For Few-shot
experiments, we train longer (for 64 epochs) with a higher
starting learning rate (1e-4 warmed up to 2e-4 and decreased
to 1e-5). Those marked by a ∗ are trained for 100 epochs as
in PromptFuse [60].

Image Captioning we train for 8 epochs with a batch size
of 64 and an image resolution of 224.

Video QA: we sample randomly 8 frames of resolution
224x224 for each video and train for 25 epochs with a batch
size of 32. For Zero-Shot experiments, we train only for 4
epochs with starting learning rate of 1e-4. We use only the
spatial self-attention of TimeSformer to train on VQA v2.
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Figure 7. Illustration of the different variants of eP-ALM; eP-ALMlin is the most efficient variant that only trains the linear projection
layer, eP-ALMpt adds trainable Soft Prompts (i.e Prompt Tuning), and eP-ALMada replaces the Soft Prompt in eP-ALM (last figure) with
trainable Adapters. All models extract the [CLS] tokens from the last layers of ViT and prepend/replace them in the last layers of OPT.

Video Captioning: we sample randomly 16 frames of
resolution 224x224 for each video and train for 25 epochs
with a batch size of 64.

Audio Captioning we train for 30 epochs with frequency
and time masking of 24 and 96 respectively. The mel bins is
128 and the audio length is 1024. Batch size 32. For Deep
Prompt, we inject new soft prompts in all 32 blocks of OPT
(each with length 10).

B. eP-ALM Variants
We detail the different variants proposed in this paper

(here we consider ViT-B/16 and OPT-350M for simplicity).
These variants are illustrated in Fig.7:

eP-ALMlin: we extract the [CLS] tokens from the last 6
layers of the frozen ViT and inject them in the last 12 layers
of the frozen OPT. To reduce inference cost, for each couple
of layers (here 2), we replace the previous [CLS] with the
new one (thus only increasing the number of tokens by 1
the whole process). All visual [CLS] tokens are projected
by one trainable linear projection layer (shared) to fit their
dimension to that of the OPT.

eP-ALMpt: we augment eP-ALMlin with Prompt Tun-
ing, which consists of prepending trainable tokens (i.e, soft
prompt) to the input of the LM. This might help the model
to adapt well to the new task by providing context to the
text input. For the sake of efficiency, we prepend only 10
learnable tokens.

eP-ALM: while one linear projection is appealing, it might
not be able to capture all the particularity of different [CLS]
tokens. To overcome this, we use different projections for
each [CLS], while keeping the soft prompt.

eP-ALMada: another alternative to Prompt Tuning are
Adapters. We follow other approaches [23] and add se-
quentially one adapter module (downsample, activation then
upsample) after self-attention and feedforward layers in all
the blocks of OPT. While this might give better results, it
adds a significant number of trainable parameters.

C. Pretrain-Zeroshot Setup
The focus of this work is on direct finetuning, where we

propose an efficient cross-modal interaction mechanism with
low data regime. However, the proposed mechanism can be
adapted in a straightforward manner to the pretrain-zeroshot
evalution setup. In this section, we show the effecitveness
of eP-ALM with zero-shot evaluation after pretraining on
CC3M. Specifically, we pretrain eP-ALMpt − L on CC3M
for 4 epochs (which takes 35hours on 2 gpus V10032GB),
and evalute on COCO [61] and NoCaps (all) [2] datasets.
We experiment with ViT-L, initialized from ImageNet and
CLIP.

Tab. 11 show a comparison with other approaches. With-
out using CLIP encoder, eP-ALM significantly outperforms
other work on both datasets. Using CLIP (which is trained to
produce visual features aligned to text) reduces the improve-
ment gap, where eP-ALM still outperforms all baselines on
B@4 and METEOR metrics. This validates that in case of
unaligned visual encoder (e.g., pretrained on ImageNet) our
cross-modal interaction mechanism is efficient to align both
modalities.

Note that, eP-ALM is significantly more efficient than
LimBEr and MAGMA, as they train more parameters for
very long time (∼> 670 GPUhs). As MAGMA is trained
on a lot more data, we compare with MAGMA trained on
CC3M obtained from [69].

D. Ablation Study
Here we present an additional ablation study.
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Method
Trainable params. CLIP Enc. COCO NoCaps

B@4 CIDEr METEOR B@4 CIDEr METEOR

MAGMA (NFRN) [23] 243M ✗ 8.2 22.4 - 4.5 20.9 -
LimBEr (NFRN) [69] 8.4M ✗ - 36.2 - - 28.5 -
eP-ALMpt-L 4.2M ✗ 11.50 42.47 15.44 12.53 36.79 15.50

MAGMA (on CC3M from [69]) 243M ✓ 9.7 47.5 14.6 - 38.7 -
LimBEr [69] 12.5M ✓ 12.6 54.9 16.1 - 43.9 -
FROMAGe [52] 4.2M ✓ 9.65 - 11.53 - - -
eP-ALMpt-L 4.2M ✓ 12.97 51.29 16.23 13.30 39.5 15.55

Table 11. Zero-shot comparison on COCO and NoCaps, after pretraining on CC3M (2.84M examples).

Trainable Models LM VQA v2
VM LM size test Acc.

✗ ✗ 350M 33.08
✗ ✓ 350M 35.44
✓ ✓ 350M 35.47

Table 12. Ablation study: we study how much gain we can obtain by
also training the pretrained vision and language models. We see slight
improvement by training the pretrained models.

D.1. Image-Text

Training All Parameters Here we investigate how much
gain we can obtain by unfreezing the pretrained models. We
experiment on VQA v2 with eP-ALM. Table 12 shows that
finetuning the pretrained models in our eP-ALM gives slight
improvement, despite a large number of trainable parameters.
Note that, we find that using a very small learning rate (lr=1e-
7) is the only option (while keeping an lr of 1e-5 for the
connectors) to unfreeze these models without significant
degradation.

D.2. Video-Text

Video Encoder: here we compare different encoders to
process the videos. We compare the TimeSformer [6] that
has both spatial and temporal attention and trained for video
classification with a simple baseline, ViT trained on Ima-
geNet, that ignores the temporal dynamics. For ViT, we take
the average of [CLS] tokens of the processed frames while
for TimeSformer we consider the single [CLS] token. Table
13 shows that using video-specific encoders gives signifi-
cantly better results for video captioning. In addition, we
find that using 16 frames instead of 8 gives slight improve-
ment.

Injection and Extraction level of [CLS] tokens: here we
show the importance of leveraging the hierarchical represen-
tation in both the video encoder and language model. Table
14 shows the results on MSVD-QA. We show that keeping
the interaction between cross-modal tokens to the last layers

Method
MSRVTT

CIDEr B@4

ViT-B Avg. 17.96 12.77
ViT-B Avg. (16 f) 17.82 12.85

TimeSformer 20.11 13.53
TimeSformer (16 f) 20.58 14.12

Table 13. Ablation (Caption) MSRVTT Caption.

(layers 19 to 31) of the OPT leads to significantly better
results. Extracting several tokens from different tokens of
the TimeSformer gives slight improvement. However, using
hierarchical video transformers [59, 64] might lead to better
results. We noticed also that Adapters generally give better
results than Prompt Tuning, this might be because when
training on videos we sample randomly some frames, which
prevents the model to overfit in the case of small datasets.

Adaptation [CLS] tokens MSVD-QA
approach from encoder layers to OPT layers test Acc.

Soft Prompt

12 1 13.49
12 1 to 31 27.16
12 19 to 31 30.86

6 to 12 19 to 31 31.18

Adapters
12 1 12.40
12 1 to 31 34.86
12 19 to 31 35.94

Table 14. Ablation study: we investigate the extraction and injection
position of [CLS] tokens for Video QA.

D.3. Audio-Text

Comparison with different variants. Here we compare
different variants of our approach to different baselines for
audio captioning. We evaluate on AudioCaps dataset [48],
the largest benchmark for Audio Captioning. We train with
mel spectrograms of 128 bins and frequency and time mask-
ing with a batch size of 8.

To the best of our knowledge, no prior work has been
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proposed to adapt LM for audio-text tasks. However, there
is some recent work adapting audio models using parameter-
efficient techniques, such as Deep Prompts and Adapters
[50]. Tab. 15 shows a comparison with different approaches.
We find that prepending the audio tokens to the input of
OPT does not give reasonable performance. To investi-
gate this more, we train another baseline where the audio
tokens are concatenated in the last 12 layers of OPT (eP-
ALMl19−31+Adapter and eP-ALMl19−31+DeepPT ). This
leads to significant improvement.

Method
Trained AudioCaps

param (%) CIDEr B@4

BAdapter 3.76 % 2.96 -

eP-ALMl19−31+Adapter 3.76 % 31.17 8.09
eP-ALMl19−31+DeepPT 0.93 % 32.57 10.66
eP-ALMpt 0.55 % 35.17 10.73
eP-ALM 0.90 % 37.14 11.37

Table 15. Comparison with other work for Audio Captioning on Audio-
Caps Test set.

Time and Frequency Masking: following other ap-
proaches [31, 73] we train eP-ALM with time and frequency
masking on AudioCaps. Table 16 shows that masking sig-
nificantly helps, however, using too much masking hurt the
performance.

Masking Window AudioCaps

Time Frequency CIDEr B@4

256 64 33.94 10.21
192 48 35.67 10.40
96 24 37.14 11.37
0 0 36.01 10.23

Table 16. Ablation Study: time and frequency masking help for Audio
Captioning.

E. Limitations
Even though we show appealing results for very efficient

training, the method has several limitations, which we il-
lustrate in Fig. 8. For VQA, we can notice that the model
is unable to capture fine-grained details in the images (e.g.,
number of colors and the zebra in the first 2 examples),
which might be due to constraining the interaction with the
vision model through the [CLS] tokens, that generally cap-
ture global information about the image. In the case of hard
questions, the model favors a coherent generation of a rel-
evant question followed by its correct answer, instead of

answering the main question (”A: what color is the phone??
black” in example 3).

For Captioning, the model seems to favor outputting a
coherent sentence, even though it is not entirely correct
(”many” cows in a ”crowded” city). Secondly, the model
might hallucinate some objects that do not appear in the
image (”apples” in example 2). Finally, the model lacks
common sense reasoning, making him unable to understand
that elephants are not small, and being far from the camera
does not change this fact (example 3).

Our approach inherits most of the limitations and biases
of pretrained models, especially the LM, and training only a
few adaptation parameters does not seem to avoid the transfer
of these biases. Finally, the model is trained with next token
prediction and is able to produce coherent text, however, it
is still not clear how this paradigm can lead to real reasoning
capabilities.
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Caption: There are many cows 
on the street in a crowded city

Caption:  A small, green fire 
hydrant in the middle of a street

Caption: a small elephant 
walking through a field in front of 
trees

Caption: a basket filled with 
apples and oranges

Q: how many colors are in the 
elephants covering?
A: 1 (2)

Q: is there a zebra in the 
picture?
A: no (yes)

Q: what is on the sign?
A: parking lot (street name)

Q: why would someone want to 
carry these two devices? A: what 
color is the phone?? black(calling)

Figure 8. Illustration of some limitations of eP-ALM: the model struggles to capture fine-grained details, favors coherence over factual
responses, hallucinates some objects, and lacks common sense reasoning. Ground truth answers are highlighted in green. Results obtained
using multinomial sampling.

Caption: a very nice clean 
simple bathroom with modern 
white finishes

Caption:  the zebra in the 
snow stands still and looks 
sad

Caption: a boy riding 
skateboards in a sidewalk in 
front of a building

Caption: there is a baseball 
game going on in this 
picture

Q: what color is the bear?
A: black and blue (blue)

Q: what kind of room is this?
A: restaurant (restaurant)

Q: is this a tourist attraction?
A: yes (yes)

Q: Which game is this?
A: tennis (tennis)

Figure 9. Qualitative results of eP-ALM: the model is able to generate accurate answers and coherent descriptions of the image. Ground
truth answers are highlighted in green. Results obtained using multinomial sampling.
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