
HAL Id: hal-04232578
https://hal.science/hal-04232578

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained dynamic virtual network embedding
Junkai He, Makhlouf Hadji, Djamal Zeghlache

To cite this version:
Junkai He, Makhlouf Hadji, Djamal Zeghlache. Constrained dynamic virtual network embedding.
The 48th IEEE Conference on Local Computer Networks (LCN), IEE, Oct 2023, Daytona Beach,
United States. pp.1-6, �10.1109/LCN58197.2023.10223368�. �hal-04232578�

https://hal.science/hal-04232578
https://hal.archives-ouvertes.fr


Constrained Dynamic Virtual Network Embedding
1st Junkai He

Télécom SudParis
Institut Mines-Télécom

Évry, France
junkai.he@telecom-sudparis.eu

2nd Makhlouf Hadji

Technological Research Institute SystemX
Palaiseau, France

makhlouf.hadji@irt-systemx.fr

3rd Djamal Zeghlache
Télécom SudParis

Institut Mines-Télécom
Évry, France

djamal.zeghlache@telecom-sudparis.eu

Abstract—This paper focuses on a dynamic embedding of
client-constrained heterogeneous Virtual Network (VN) requests
with multiple nodes and links affinity and anti-affinity require-
ments. For this Virtual Network Embedding (VNE) problem,
we formulate an Integer-Linear Programming (ILP)-based model
that achieves joint mapping of virtual nodes and links of each
VN onto the dynamically updated Substrate Network (SN). This
model not only meets the clients expressed isolation constraints
but also includes VN request arrivals and departures to update
SN information. Numerical experiments illustrate the efficiency of
the proposed methods and their ability to find optimal solutions.
Performance reports provide cloud service providers with insights
into additional investments in nodes and links they should make
to serve clients with anti-affinity requirements.

Index Terms—virtual network embedding, customized request,
isolation, anti-affinity, integer-linear programming

I. INTRODUCTION AND RELATED WORKS

Next-generation networks and digital infrastructures evolv-
ing to programmable and dynamically established systems
rely on virtualization technologies [1] but face allocation,
provisioning, and mapping challenges in nodes and links
between the virtual and physical worlds. Mapping virtual
nodes and links of Virtual Networks (VN) according to diverse
clients requirements and constraints onto physical networks
(also known as Substrate Networks, SN) is the well-known
Virtual Network Embedding (VNE) problem [2]. So far, VNE
solutions have partially addressed heterogeneity and differ-
ences in clients embedding requests [3]. Clients have major
and significant differences in requirements, affinity, and anti-
affinity constraints in nodes and links in their own VNs as
well as with other clients VNs. How to provide differentiated
embedding decisions to customer-specific VNs and associated
services and applications remains a concern. The heterogeneity
and specific preferences in modern customized VNs have to
be further investigated when sharing physical infrastructures
to serve multiple users.

A. VNE with Node/Link Anti-affinity

This paper addresses multiple and heterogeneous VN re-
quests from clients that have very diverse requirements in
terms of affinity and anti-affinity between VNs of their own
request and tolerance or very stringent requirements with
respect to other clients. Such a generalized VNE problem
taking into account these types of constraints within a client
VN and across multiple clients VNs has received little if

no attention. Some clients are likely to require isolation and
separation of their virtual nodes and links for security, trust,
resilience, and performance reasons imposing constraints on
co-localization on hosting nodes and separation of hosting
links or end-to-end paths across clients. Clients are in general
end users, consumers and tenants. Most existing papers focus
on node (anti-)affinity asking for separation or co-localization
of their VNs in hosting nodes. Previous works with node
anti-affinity include [4]- [10] but link anti-affinity is rarely
studied in the literature. Even if dedicated resources can
be requested in nodes and links (or dedicated paths) from
providers, there is no generalized VNE modeling framework
including all these aspects by design. VNE with joint node
anti-affinity and link anti-affinity are seldom addressed except
for [11] and [12] that focus on SFC (Service Function Chain)
embedding, which can be seen as a special case of VNE. Work
of [11] proposes a set of affinity and anti-affinity constraints
in a SFC concerning virtual nodes and links. Once a SFC
is embedded, its corresponding physical configuration cannot
be easily changed and thus becomes static and no adjustment
or dynamic changes are envisaged [12]. A SFC contains the
source node and (multiple) sink nodes [13] and its embedding
should respect flow conservation constraints in the chain. Ref.
[12] extends the work [11] by proposing a non-linear integer
programming formulation and a heuristic algorithm accom-
plishing joint node and link mappings. Further, [11] and [12],
relying on simulations rather than formal optimization, do not
consider dynamic arrivals and departures of VNs and represent
in non-linear form anti-affinity. By contrast, we include in our
model from the start node and link anti-affinities among VN
requests, map virtual nodes and virtual links dynamically, and
comply with all anti-affinity constraints. Our goal is to propose
a generic solution for multiple heterogeneous VN requests that
can be fine-tuned to meet a simple graph embedding need as
well as much more complex requests such as multiple SFC
and slicing demands.

B. VNE Strategies and Solution Methods

Current state-of-the-art addresses VNE, known to be NP-
hard [2], typically in a two-stage approach, embedding nodes
first and then links. Some authors proposed joint nodes and
links mapping using either ILP-based models that do not scale
with problem size [4], [6], [14], [15] or heuristic algorithms
(such as [1]) to complete in some cases the mapping in



polynomial time. Work of [16] proposes an improved VNE
algorithm to embed nodes and links in a single stage with
significantly reduced computational compared to ILP models.
Authors of [17] rely on node degree to map nodes and links
simultaneously while [18] uses compatibility graph theory to
accomplish the joint embedding. In these efforts to realize
simultaneous joint mapping of nodes and links, VN affinity
and anti-affinity requirements expressed by end users have
seldom been investigated thoroughly. To the best of our
knowledge, no generalized and generic modeling frameworks
that take into account intra and inter VN constraints from
multiple user requests have been proposed in the literature.
This paper aims at filling this gap by addressing heterogeneous
VN requests from multiple independent users with diverse co-
localization, separation and isolation requirements.

C. Motivations and Contributions

The motivations and contributions of this study include: i)
taking into account heterogeneous VN requests from clients
expressing various affinity and anti-affinity constraints in their
own requests and requirements with respect to other clients
and hosting infrastructures (an aspect seldom addressed in the
current literature) and ii) propose a solution method to achieve
joint embedding of nodes and links while respecting diverse
and multiple clients constraints and requirements. Our work
consequently:

1) derives a generic dynamic VNE optimization model
that takes into account both affinity and anti-affinity
requirements on nodes and links. These requirements
apply not only within a client’s VN request, but also
among VN requests from other clients.

2) formulates an ILP model making optimal embedding
decisions for each VN request and including node
co-localization/separation constraints, node anti-affinity
constraints and link anti-affinity constraints.

3) considers the arrivals and departures of all received VNs
in the ILP-based model with dynamic updates of the
hosting SN topology during the performance assessment.

This paper first describes the constrained dynamic VNE
problem in Section II. Section III presents the proposed ILP-
based model for the addreseed problem. Section IV reports
the results of numerical tests and analyzes the outcomes to
measure algorithm effectiveness. Section V draws conclusions
based on our entire study and suggests possible directions for
future research.

II. PROBLEM DESCRIPTION

We first introduce the SN topology and client-constrained
VN requests representation and then present our constrained
dynamic VNE problem and model.

A. Network Topology and Attributes

The generic SN is modeled as an undirected graph GS =
(NS , LS , CPUS , BWS) where NS and LS represent respec-
tively the sets of physical nodes and physical links. Parameters
CPUS and BWS denote the available computing power

(CPU) of nodes and bandwidth of links, seen as attributes
and resources. Note that some nodes may be connected via
direct links but for sure nodes are always interconnected
at least through an end-to-end path [4]. Heterogeneous VN
requests can be represented as an undirected graph GV =
(NV , LV , CPUV , BWV , α, β), where NV and LV represent
respectively the sets of virtual nodes and virtual links. The
required CPU on nodes and bandwidth on links are represented
by CPUV and BWV . As VN requests may have different
structures, attributes and requirements, we use α to represent
node co-localization or node separation requirements within
a VN. Node co-localization ensures that two nodes within
a VN request are mapped to the same physical node, while
node separation guarantees their hosting on different physical
nodes. The notation β indicates node anti-affinity (βn) and
link anti-affinity (βl) with other clients’ VN requests. If nodes
and links within a VN request have anti-affinity requirements,
they must be isolated from other clients’ VN requests, without
sharing physical nodes or links within the underlying SN.
Fig. 1 depicts an example of two established heterogeneous
VN requests and indicates that in VN request n-1, the nodes
with 4 and 8 CPUs should be co-located on a physical node,
whereas in VN request n, the nodes with 5 and 2 CPUs must
be separated during the mapping process. In addition, the node
with 3 CPUs and link with 5 bandwidth units in request n-
1 contain anti-affinity constraints and must be isolated upon
mapping to the SN. Similarly, the node with 6 CPUs and link
with 7 bandwidth unit requirements in request n must also be
isolated due to anti-affinity.

Fig. 1. Illustration of heterogeneous VN requests.

We use the arrival time and departure time to describe
dynamically incoming VN requests. The arrival time refers to
the time when the VN request is received for processing while
the departure time corresponds to the departure of the VN and
the time of the release of the used physical resources hosting
the VN. Without any loss of generality, the VNs in our work
are treated sequentially even though they could be treated in
batch mode. Anyway, the VN requests can be single requests
or combined requests in a composite graph expressing multiple
mixed requests with appropriate internal affinity and anti-
affinity requirements or relationships. So treating random VN
with random structure and arrival times sequentially reflects
all these scenarios. Hence we treat VN requests sequentially
as they arrive and embed them one after the other and leave
lumping requests out of the scope of this work.

B. Constrained Dynamic VNE

To successfully embed a VN request onto the SN (called
an allocation step), a number of constraints must be met in



the modeling framework to obtain embedding solutions. Every
virtual node has to be hosted by exactly one physical node in
the SN. In addition, every virtual link has to be assigned to
a direct physical link when appropriate or a path because we
aim at mapping virtual nodes and links jointly onto the SN.
Consequently, for every virtual link (i, j) ∈ LV , there must
exist a path (m,n) ∈ PS such that the source virtual node i
and the destination virtual node j of link (i, j) are assigned to
the source physical node m and destination physical node n of
a selected path (m,n) ∈ PS , respectively. At any allocation
step, if there is more than one path available between physical
nodes m and n, the shortest available path is selected.

Another standard set of constraints to include in the mathe-
matical model is the number of available resources in the SN
at each allocation round and these resources must be sufficient
to host the VN requests. Further, the dynamic arrival and
departure times impact the SN resources and topology and this
must also be taken into account in the model. The update of the
SN depends on mainly three factors: i) the mapping results of
received VN requests that determine the SN physical resources
occupation and availability, ii) the departures of successfully
mapped VN requests as they release physical resources, and
iii) the affinity and anti-affinity requirements of VN requests.
All these conditions and states of the SN are monitored and
updated at each allocation step.

For each allocation step (each received VN request), the
objective is to minimize the total occupied bandwidth on the
SN. This ensures that the SN utilizes the least amount of
bandwidth possible for serving a VN request, which includes
the non-obvious requirement of using the shortest available
path between two physical nodes.

For all allocation steps (all received VN requests), we use
the following metrics to evaluate the global performance of
the proposed VNE algorithm:

1) VN acceptance ratio. This metric indicates the number
of successfully embedded VNs out of the total number
of received VN requests, providing a measure for the
effectiveness of a VNE approach.

2) Percentage of used servers and edges. This metric
presents the dynamic occupation of physical nodes and
links, monitoring real-time loads on service providers.

3) Average running time of each successful embed. This
metric records the average time for the proposed VNE
to successfully map a VN request, reflecting approach
efficiency and performance.

III. CONSTRAINED DYNAMIC VNE SOLUTION

We establish an ILP formulation to propose cost-efficient
solutions to map each received VN request. Subsequently, we
call this ILP model during each allocation step and update the
SN accordingly to achieve globally optimized decisions.

Before investigating the ILP mathematical formulation, we
summarize all optimization model parameters and variables.
Parameters of the SN:
• NS : Set of physical nodes in the SN graph.
• LS : Set of physical links in the SN graph.

• CPUS
m: Available CPU of physical node m, where m ∈

NS .
• BWS

(m,n): Available Bandwidth of physical link (m,n),
where (m,n) ∈ LS and m,n ∈ NS .

• PS : Set of shortest available paths in the SN graph.
• QS

(m,n): Number of physical links included in path
(m,n), where QS

(m,n) = 1 denotes a path with one link,
while QS

(m,n) ≥ 2 refers to a path with more than one
link.

Parameters of a VN:
• NV : Set of virtual nodes in a VN graph.
• LV : Set of virtual links in a VN graph.
• CPUV

i : Required CPU of virtual node i, where i ∈ NV .
• BWV

(i,j): Required Bandwidth by virtual link (i, j), where
(i, j) ∈ LV and i, j ∈ NV .

• αij : Boolean = 0 if nodes i and j of a VN have to be
separated; 1 if they should be co-located, where i, j ∈
NV .

• βni: Boolean = 0 if node i does not share physical nodes
with other VNs (node anti-affinity); 1 otherwise, where
i ∈ NV .

• βl(i,j): Boolean = 0 if link (i, j) does not share physical
links with other VNs (link anti-affinity); 1 otherwise,
where (i, j) ∈ LV .

Decision variables:
• xm

i : Boolean = 1 if virtual node i ∈ NV is mapped to
physical node m ∈ NS ; 0 otherwise.

• y
(m,n)
(i,j) : Boolean = 1 if virtual link (i, j) ∈ LV is mapped

to physical path (m,n) ∈ PS ; 0 otherwise.
The objective, in each allocation step, is to provide opti-

mal mappings minimizing the total used bandwidth. This is
formulated by (1).

min
∑
i∈NV

∑
j∈NV

∑
m∈NS

∑
n∈NS

BWV
(i,j) ·Q

S
(m,n) · y

(m,n)
(i,j) (1)

The optimization is subject to linear constraints given as:∑
m∈NS

xm
i = 1, ∀i ∈ NV (2)

∑
m∈NS

∑
n∈NS

y
(m,n)
(i,j) = 1, ∀(i, j) ∈ LV (3)

∑
n∈NS

y
(m,n)
(i,j) = xm

i , ∀(i, j) ∈ LV ,m ∈ NS (4)

∑
m∈NS

y
(m,n)
(i,j) = xn

j , ∀(i, j) ∈ LV , n ∈ NS (5)

∑
i∈NV

CPUV
i · xm

i ≤ CPUS
m, ∀m ∈ NS (6)

∑
i∈NV

∑
j∈NV

BWV
(i,j) · y

(m,n)
(i,j) ≤ BWS

(m,n),∀(m,n) ∈ PS (7)

xm
i + xm

j ≤ 1 + αi,j , ∀i, j ∈ NV , i ̸= j,m ∈ NS (8)

xm
i ≥ −1 + xm

j + αi,j , ∀i, j ∈ NV , i ̸= j,m ∈ NS (9)



xm
i ≤ βni, ∀i ∈ NV ,m ∈ NS (10)

y
(m,n)
(i,j) ≤ βl(i,j), ∀(i, j) ∈ LV , (m,n) ∈ PS (11)

xm
i , y

(m,n)
(i,j) ∈ {0, 1} (12)

Constraints of (2) require that a virtual node i is hosted
by exactly one physical node m. Constraints in (3) ensure
that a virtual link (i, j) is served by exactly one physical
link (or path) (m,n). A virtual link (i, j) ∈ LV is hosted
by a physical link/path (m,n) ∈ PS such that source virtual
node i and destination virtual node j of (i, j) are assigned to
physical nodes m and n, respectively. In joint node and link
mapping constraints expressed in (4) and (5), if virtual node
i is mapped to physical node m, then virtual link (i, j) needs
to be mapped to a physical path (m,n) with node m as the
source or endpoint, and n as the other endpoint. Constraints
(6) and (7) provide guarantees not to exceed the amount of
available resource (CPU and Bandwidth in our case) in the
physical substrate. Available resources are updated based on
the last mapping occupying physical resources and all the VNs
departures releasing resources. Constraints (8) and ((9) must
be considered together to meet the co-localization requirement
of two or more virtual nodes and ensure the separation
of different virtual nodes of the same virtual request/graph.
Constraints (10) ensure that if a virtual node i has an anti-
affinity requirement, then i cannot be hosted by a physical
node m that is still hosting other VNs’ nodes. Constraints (11)
respect link anti-affinity requirements. We use m and (m,n) in
constraints (10) and (11) to denote that a physical node (resp.
physical link) is still used to serve other demands. Constraint
(12) denotes the range of decision variables.

Fig. 2. The ILP-based model for the studied VNE problem.

This ILP model provides the optimal embedding decision
of each received VN in each allocation step. For operating all
VN requests, we investigate a global ILP-based framework in
Fig. 2: after accepting a received VN request, the framework
relies on the last update of the SN resources and topology,
and solicits the shortest available paths, using a modified Di-
jkstra algorithm, to optimally provide the embedding decision.
Sequentially, it updates the SN information (checking for VN
departures releasing resources, last VN placement occupying
resources, etc.) before considering the next VN request.

We update the SN resources and topology before each new
optimization round using three main steps:

1) Calculate the current available CPU and bandwidth on
the SN before the next VN request.

2) Update the SN graph based on the arrivals and depar-
tures of VNs. The departures of requests will release free
resources, and already hosted VNs occupy a part of the
physical resources. Note that releasing isolated physical
nodes and links due to anti-affinity constraints changes
the SN topology (disconnections in the exploitable part
of the SN for mapping occur from time to time).

3) Update the SN graph based on the node/link anti-affinity
constraints of the previous virtual request.

IV. SIMULATION RESULTS

We evaluate the performance of our proposed ILP-based
model using randomly generated instances. We solve the
exact model using the CPLEX22.1 solver. Our evaluations are
conducted on a commercial off-the-shelf PC with an Intel Core
CPU of 1.60 GHz and 8 GB RAM.

We use randomly generated instances with VN requests
composed of up to 10 nodes and 15 edges. The SN graph
is composed of up to 100 nodes and 300 edges. For each
node in a given VN request, we randomly generate its required
processing capacity in the [5, 20] CPU range. For each
physical node in SN, we randomly generate its processing
capacity in the [50, 100] CPU range. Similarly, each virtual
link has a bandwidth request generated randomly in the [5,
20] Mbps range, while each available physical link has its
bandwidth capacity generated in the [50, 100] Mbps range.
The simulation runs for up to 10,000 time units depending on
simulations, and during this horizon, VN requests may arrive
following a Poisson process with an average arrival rate λ of
1 arrival per 50-time units and an exponential service rate µ
of 1 departure every 750-time units.

To evaluate the impact of anti-affinity constraints on the
VN acceptance ratio, we randomly generate and select a
subset of the VN requests to include node/link anti-affinity
requirements. We use the generic form [rate of node anti-
affinity, rate of link anti-affinity] to indicate the level of node
anti-affinity and link anti-affinity, respectively. We consider
4 levels of affinity and anti-affinity scenarios as follows: i)
[high, high], ii) [high, low], iii) [low, high], and iv) [low,
low]. This notation can be explained with, for instance, the
[high, low] case that corresponds to VN request arrivals with
a high proportion of node anti-affinity constraints (80% in



the simulation) and a low proportion of link anti-affinity
constraints (20% in the simulation). Fig. 3 shows the obtained
average VN acceptance ratios in different simulations.

Fig. 3. Impact of node/link anti-affinity on VN acceptance ratios.

Fig. 3 depicts the impact of node and link anti-affinity
constraints on VN acceptance ratios. For VN requests with
a high proportion of anti-affinity constraints and requirements
(i.e., the [high, high] scenario), the achieved acceptance ratio
is only around 80% for 100 received VN requests. For much
less constrained VN requests corresponding to the [low, low]
scenario, the acceptance rate is as expected much higher and
around 93% for 100 VN arrivals. This shows the efficiency
of our proposed algorithm that manages in constrained con-
ditions, where nodes and links are not available for hosting
due to separation and isolation constraints in and across VNs,
to find hosting solutions and to continue consolidating the SN
resources and topology. The scenario [high, low] considering
a high number of nodes anti-affinity constraints, and a low
number of links anti-affinity constraints, confirms how difficult
it is to achieve a high acceptance ratio (close to 85%, in the
worst case) due to the disconnections of the SN graph or
topology leading to reject more requests. In the scenario [low,
high] (with a high number of link anti-affinity constraints),
however, the algorithm rejects fewer VN requests thanks
to the shortest path algorithm that manages to find other
solutions in the SN available graph resources. The results also
indicate that node anti-affinity constraints, in the scenarios
[high, X] (where X can be “high”, or “low”), have the highest
impact on decreasing VN acceptance ratios because of the
isolation requirements, some hosting nodes become unusable
and, depending on their node degrees, make associated links
unusable as well.

To further assess the impact of anti-affinity constraints
on service providers, we collect in another simulation the
percentage of additional servers and links that are needed to
host virtual requests when compared with a scenario without
any isolation requirements. The results reported in Fig. 4
correspond to a simulation scenario with [high, high] anti-
affinity conditions and a SN composed of 50 nodes and 94
links confronted to dynamically arriving and departing VN
requests. The maximum values of the ordinates in the two

sub graphs correspond to the hosting percentage of physical
servers and edges, respectively. The simulation duration is
5000 time units. The results depicted in Fig. 4 have to be
analyzed consequently by focusing on the maximum load
interval in the simulation, namely in the range [2500, 3500]
time units. In order to accommodate VN requests with harder
anti-affinity constraints and requirements, a cloud service
provider will have to invest or use more physical servers and
links. Without any loss of generality, even if the simulated
scenario is arbitrary, we observe that 85% physical nodes
have to be used instead of 60% nodes without any constraints.
Similarly, more links, actually up to 57% links, need to be used
instead of 46% links when comparing VN requests with anti-
affinity constraints with requests that do not have anti-affinity
requirements. These results highlight the need for a provider
to invest or operate more servers and links in order to serve
users with stringent separation and isolation requirements.
The algorithm proposed in this work enable providers to
estimate, dimension and plan their infrastructures accordingly
by running the algorithm for their specific scenarios based
on (precise or estimated) knowledge of their clients typical
requirements and demands.

Fig. 5 provides insight into how the proposed algorithm
scales with the problem size in terms of the increasing number
of VN requests and for SN graph sizes of 50 and 100
nodes. Since we are relying on an underlying ILP formulation,
complexity is high and resolution time increases exponentially
with increasing size. Speeding resolution time has not been
an objective in this paper since the focus is on really under-
standing and assessing the impact of anti-affinity requirements
expressed by users on the provider so the latter can anticipate
the number of additional physical nodes and links they must
acquire, make available and operate compared with a situation
where clients do not have any constraints (corresponding to a
lower bound in the SN size actually).

V. CONCLUSIONS AND PERSPECTIVES

We address a constrained dynamic virtual network embed-
ding problem that integrates clients affinity and anti-affinity
requirements on nodes and links. These requirements apply
not only within VN requests, but also across VN requests from
different clients. We formulate an integer-linear programming
model to place virtual nodes and links jointly and get the op-
timal mapping for each virtual network onto the dynamically
updated physical network. We report performance to provide
insight to cloud service providers on additional investments
in nodes and links they should make to serve clients with
affinity and anti-affinity requirements. They can estimate this
need by running our proposed VNE algorithm on their specific
scenarios. Future works to enhance this algorithm, and make it
even more useful to providers that serve users with heteroge-
neous demands, include: (i) treating the requests in batch and
queuing rejected VN requests for additional attempts to reduce
the rejection rate and (ii) taking into account uncertainty by
adopting a stochastic optimization approach by adding chance
constraints to our ILP-based algorithm.



Fig. 4. Percentage of servers and links used by VN requests with [high, high] anti-affinity and without anti-affinity requirements.

Fig. 5. Convergence time under different topology sizes.

REFERENCES

[1] H., Cao, H., Zhu, and L., Yang, “Collaborative attributes and resources
for single-stage virtual network mapping in network virtualization,”
Journal of Communications and Networks, 2019, vol. 22, pp. 61–71.

[2] A., Fischer, J. F., Botero, M. T., Beck, H., De Meer, and X., Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, 2013, vol. 15, pp. 1888–1906.

[3] Z., Kotulski, T. W., Nowak, M., Sepczuk, and M. A., Tunia, “5G
networks: Types of isolation and their parameters in RAN and CN
slices,” Computer Networks, 2020, vol. 171, pp. 107135.

[4] M., Mechtri, M., Hadji, and D., Zeghlache, “Exact and heuristic resource
mapping algorithms for distributed and hybrid clouds,” IEEE Transac-
tions on Cloud Computing, 2017, vol. 5, pp. 681–696.

[5] Z., Li, Z., Lu, S., Deng, and X., Gao, “A self-adaptive virtual network
embedding algorithm based on software-defined networks,” IEEE Trans-
actions on Network and Service Management, 2018, vol. 16, pp. 362–
373.

[6] Z., Allybokus, N., Perrot, J., Leguay, L., Maggi, and E., Gourdin,
“Virtual function placement for service chaining with partial orders and
antiaffinity rules,” Networks, vol. 71, pp. 97–106.

[7] M., Gao, B., Addis, M., Bouet, and S., Secci, “Optimal orchestration
of virtual network functions,” Computer Networks, 2018, vol. 142, pp.
108–127.

[8] A. S., Jacobs, R. J., Pfitscher, R. L., dos Santos, M. F., Franco, E. J.,
Scheid, and L. Z., Granville, “Artificial neural network model to predict
affinity for virtual network functions,” in proceeding of NOMS 2018
IEEE/IFIP Network Operations and Management Symposium, Taipei,
Taiwan, April 23-27, 2018, pp. 1–9.

[9] X., Shen, Q., Dai, S., Mao, F., Chung, and K. S., Choi, “Network to-
gether: Node classification via cross-network deep network embedding,”

IEEE Transactions on Neural Networks and Learning Systems, 2020,
vol. 32, pp. 1935–1948.

[10] C., Mei, J., Liu, J., Li, L., Zhang, and M., Shao, “5G network
slices embedding with sharable virtual network functions,” Journal of
Communications and Networks, 2020, vol. 22, pp. 415–427.

[11] N., Bouten, M., Claeys, R., Mijumbi, J., Famaey, S., Latré, and J., Serrat,
“Semantic validation of affinity constrained service function chain
requests,” in proceedings of IEEE NetSoft conference and workshops
(NetSoft), Seoul, Korea, June 06-10, 2016, pp. 202–210.

[12] N., Bouten, R., Mijumbi, J., Serrat, J., Famaey, S., Latré, and F.,
De Turck, “Semantically enhanced mapping algorithm for affinity-
constrained service function chain requests,” IEEE Transactions on
Network and Service Management, 2017, vol. 14, pp. 317–331.

[13] A., Fischer, D., Bhamare, and A., Kassler, “On the construction of opti-
mal embedding problems for delay-sensitive service function chains,”
in proceedings of the 28th International Conference on Computer
Communication and Networks (ICCCN), Valencia, Spain, July 29 -
August 01, 2019, pp. 1–10.

[14] F., He and E., Oki, “Shared protection-based virtual network embedding
over elastic optical networks,” IEEE Transactions on Network and
Service Management, 2022, vol. 19, pp. 2869–2884.

[15] T., He, K. W., Chin, H., Ren, and X., Liu, “Maximizing virtual network
embedding requests in RF-charging IoT networks.” IEEE Communica-
tions Letters, 2022 vol. 26, pp. 863-–867.

[16] H., Cao, Y., Zhu, G., Zheng, and L., Yang, “A novel optimal map-
ping algorithm with less computational complexity for virtual network
embedding,” IEEE Transactions on Network and Service Management,
2017, vol. 15, pp. 356–371.

[17] C., Aguilar and J., Rubio, “A novel evaluation function for higher
acceptance rates and more profitable metaheuristic-based online virtual
network embedding,” Computer Networks, 2021, vol. 195, pp. 108191.

[18] L., Gong, H., Jiang, Y., Wang, and Z., Zhu, “Novel location-constrained
virtual network embedding LC-VNE algorithms towards integrated node
and link mapping,” IEEE/ACM Transactions on Networking, 2016, vol.
24, pp. 3648–3661.

[19] S., Wang, J., Bi, J., Wu, A. V., Vasilakos, and Q., Fan, “VNE-TD:
A virtual network embedding algorithm based on temporal-difference
learning,” Computer Networks, 2019, vol. 161, pp. 251–263.

[20] P., Zhang, C., Wang, N., Kumar, W., Zhang, and L., Liu, “Dynamic
virtual network embedding algorithm based on graph convolution neural
network and reinforcement learning,” IEEE Internet of Things Journal,
2021, vol. 9, pp. 9389–9398.

[21] W., Zhang, D., Wang, S., Yu, H., He, and Y., Wang, “Repeatable multi-
dimensional virtual network embedding in cloud service platform,” IEEE
Transactions on Services Computing, 2021, vol. 15, pp. 3499–3512.

[22] S., Khebbache, M., Hadji, and D., Zeghlache, “Virtualized network
functions chaining and routing algorithms.” Computer Networks, 2017,
vol. 114, pp. 95–110.


	Introduction and Related works
	VNE with Node/Link Anti-affinity
	VNE Strategies and Solution Methods
	Motivations and Contributions

	Problem Description
	Network Topology and Attributes
	Constrained Dynamic VNE

	Constrained Dynamic VNE Solution
	Simulation Results
	Conclusions and perspectives
	References

