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Preface

xMLC is the second book of this ‘Machine Learning Tools in Fluid Mechanics’ Series and focuses on
Machine Learning Control (MLC). The objectives of this book are two-fold: First, provide an introduction
to MLC for students, researchers, and newcomers on the field; and second, share an open-source code,
xMLC, to automatically learn open- and closed-loop control laws directly in the plant with only a few
executable commands.

This presented MLC algorithm is based on genetic programming and highlights the learning princi-
ples (exploration and exploitation). The need of balance between these two principles is illustrated with
an extensive parametric study where the explorative and exploitative forces are gradually integrated
in the optimization process. The provided software xMLC is an implementation of MLC. It builds on
OpenMLC (Duriez et al., 2017) but replaces tree-based genetic programming but the linear genetic pro-
gramming framework (Brameier and Banzhaf, 2006). The latter representation is preferred for its easier
implementation of multiple-input multiple-output control laws and of the genetic operators (mutation
and crossover). The handling of the software is facilitated by a step by step guide that shall help new
practitioners to use the code within few minutes. We also provide detailed advice in using the code for
other solvers and for experiments. The code is open-source and a GitHub version is available for future
updates, options and add-ons.

xMLC is the result of collaborations of many students, engineers and researchers in Argentina, Canada,
China, France, Germany, Japan, Jordan, Poland, Sweden, Spain, and USA since almost one decade. We
deeply thank Marc Segond for initiating us into the world of genetic programming, Mattias Wahde for
alerting us to the advantages of the linear version and Marc Schoenauer for advice regarding performance
analysis and improvement. We are indebted to Thomas Duriez and Ruiying Li for sharing their own
implementation of MLC and for their valuable advice. Special thanks are due to our numerous collabora-
tors helping to improve MLC and to gain valuable experience in dozens of experiments and simulations:
Markus Abel, Jean-Luc Aider, Jacques Borée, Jean-Paul Bonnet, Steven L. Brunton, Sylvain Caillou,
Rodrigo Castellanos, Camila Chovet, Laurent Cordier, Christophe Cuvier, Antoine Debien, Joël Delville,
Carine Fourment, Hiroaki Fukumoto, Ignacio de la Fuente, Nan Deng, Dewei Fan, Stefano Discetti, Jean
Marc Foucault, Nan Gao, Nicolas Gautier, Fabien Harambat, Andrea Ianiro, Eurika Kaiser, Laurent
Keirsbulck, Azeddine Kourta, Jean-Christophe Laurentie, Jean-Christophe Loiseau, Hao Li, Songqi Li,
Yiqing Li, Congjun Liu, Yutong Liu, Jiayang Luo, Marc Lippert, Robert Martinuzzi, Lionel Mathelin,
Nicolas Mazellier, Marek, Morzyński, Philipp Oswald, Akira Oyama, Vladimir Parezanovic, Pierre-Yves
Passaggia, Luc Pastur, Cédric Raibaudo, Richard Semaan, Tamir Shaqarin, Ruixuan Shen, Hongke Shi,
Michel Stanislas, Jianguo Tan, Kai, A. F. F. von Krbek and Eliott Varon.

Shenzhen and Paris in July 2022

Guy Y. Cornejo Maceda
François Lusseyran

Bernd R. Noack
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Chapter 1

Introduction

This book shall facilitate a smooth application of machine learning control (Duriez et al., 2017) to
numerical and experimental plants. Focus is placed on linear genetic programming control for nonlinear
dynamics systems and, in particular, fluid flows.

Starting point of any control is the beautiful framework of linear theory (Doyle et al., 1992; Åström
and Murray, 2010). Linear theory has been the key enabler for stabilization of fluid flow instabilities
(Rowley and Williams, 2006; Kim and Bewley, 2007; Sipp et al., 2010) and can provide mathematically
rigorous performance guarantees. Yet, linear dynamics has numerous implications which are uncommon
for complex systems. For instance, the unforced system either converges to a single fixed point or diverges
to infinity. Or, the frequency of periodic actuation does not affect other frequencies of the system. Linear
methods can be extended to weakly nonlinear dynamics, e.g., via a nonlinear transformation to a linear
system (input-output linearization) or via a meaningful local linearization (linear parameter-varying
systems). Linear control theory is inapplicable for frequency crosstalk, i.e., if the actuation or system
frequency effect other system frequencies. Yet, frequency crosstalk is a defining feature and often key
enabler for turbulence control and many dynamical and complex systems.

Recently, machine learning has opened the new avenue of model-free nonlinear control. Machine
Learning Control (MLC) can perform an automated control optimization of multiple-input (multiple-
actuator) multiple-output (multiple-sensor) plants. MLC learns the control laws like mother nature—by
clever trial and error. More specifically, a regression problem of the second kind is formulated in which
the cost is minimized via the MIMO control law. Literature offers several approaches (Brunton and
Noack, 2015; Brunton et al., 2020). The optimization of a parameterized control law, e.g., linear feedback,
invites all methods of optimization, like Bayesian optimization (Blanchard et al., 2022), downhill simplex
descent, Monte Carlo sampling, explorative gradient method (Li et al., 2022), genetic algorithm (Benard
et al., 2016), particle swarm optimization (Shaqarin and Noack, 2022), and numerous other biologically
inspired algorithms (Wahde, 2008). Cluster-based control infers the structure of the nonlinear control
law from flow data and allows for downhill simplex optimization of simple feedbacks in only few dozen
simulations or experiments (Nair et al., 2019).

A spectrum of optimizing general nonlinear laws has been invented in the 1990’s. Neural network-
based control (Lee et al., 1997) has been developed by the team of J. Kim for wall-turbulence skin
friction reduction. Reinforcement learning (RL) (Sutton and Barto, 1998) has become popular in robotics
and has been pioneered in flow control by J. Rabault’s team (Rabault et al., 2019; Tang et al., 2020;
Wang et al., 2022) and others (Fan et al., 2020). Genetic programming control (GPC) was discovered
by Dracopoulos (1997) for stabilizing satellite motion and was later re-invented for turbulence control
(Duriez et al., 2017) under the name Machine Learning Control (MLC). First studies indicate that
RL and GPC have overall similar performance with few application specific differentiations (Castellanos
et al., 2022). Numerous efforts to accelerate and improve the performance of all approaches, e.g., gradient
information has significantly reduced the learning time of GPC (Cornejo Maceda et al., 2021).

In the sequel, the term MLC will be narrowly used for GPC only. GPC is simple regression solver and
seems the best tested version of MLC for turbulence control. In dozens of experiments and simulations,
GPC has consistently outperformed other optimized control laws in their respective plant, often with
unexpected new actuation mechanisms, e.g. frequency crosstalk mechanisms. GPC has even successfully
learned a novel distributed actuation (Zhou et al., 2020). Successful applications include following:

1. Stabilization of a noisy linear oscillator (Duriez et al., 2017).

2. Chaotization of the forced Lorenz system (Duriez et al., 2014).
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2 CHAPTER 1. INTRODUCTION

3. Stabilization of a generalized mean-field system (2 nonlinearly coupled oscillators as derived by
Luchtenburg et al. (2009)) (Duriez et al., 2017)

4. Stabilization of a generalized mean-field system (3 nonlinearly coupled oscillators) (Li et al., 2018).

5. Stabilization of a 2D mixing layer in a direct numerical simulation (open loop) Li et al. (2020).

6. Energetization of a 2D mixing layer in a direct numerical simulation (open loop) Li et al. (2020).

7. Mixing layer energetization in a wind tunnel—feedback with 96 actuators in unison and 19 hot-wire
sensors) (Parezanović et al., 2013; Parezanović et al., 2016).

8. Mixing increase behind a backward-facing step in a wind-tunnel experiment—20 actuators (unison),
3 sensors (Chovet et al., 2017).

9. Recirculation zone reduction behind a backward facing step in a water tunnel—feedback with single
actuator, online PIV flow monitoring (Gautier et al., 2015).

10. Separation control of a turbulent boundary layer over a ramp—feedback with 54 active vortex
generators (unison) and 2 sensors (Duriez et al., 2014; Debien et al., 2016).

11. Smart skin separation control —feedback with 2 × 30 actuators and 58 sensors [HIT 2022].

12. Lift-increase of a NACA0015 airfoil with an emulated plasma actuator in a direct numerical simu-
lation [Joint work with H. Fukumoto & A. Oyama].

13. Lift-increase of a high-lift configuration at high Reynolds number in experiment—Open-loop with
33 actuators and 196 sensors El-Sayed et al. (2019)

14. Mitigation of dynamic bubble burst for stall suppression —feedback with 1 actuator and 1 sensor
under transient conditions (Asai et al., 2021).

15. Open-loop stabilization of a fluidic pinball in a wind-tunnel experiment—open-loop with 3 actuators
(Raibaudo et al., 2017).

16. Stabilization of a fluidic pinball in a simulation—feedback with 3 actuators and 9 sensors (Cornejo
Maceda et al., 2021).

17. Ditto but with drag reduction (Cornejo Maceda et al., 2019).

18. Drag reduction of a D-shaped cylinder in a wind-tunnel experiment—feedback with 2 actuators
and 5 sensors [TU Braunschweig].

19. Drag reduction of an Ahmed body in a wind tunnel—feedback with 4 actuators (unison) and 12
pressures sensors) (Li et al., 2017, 2018).

20. Symmetrization of a bi-modal Ahmed body wake control in a wind tunnel—feedback with 4 actu-
ators and 12 pressures sensors) (Li et al., 2016).

21. Drag reduction and side wind stabilization of a yawed truck model—feedback with 5 actuators and
18 sensors under transients [TU Braunschweig].

22. Jet mixing optimization with a wind-tunnel experiment—multi-frequency open-loop with 1 actuator
(Wu et al., 2018).

23. Ditto but with 6 actuators (Zhou et al., 2020).

24. Vortex-induced vibration of a circular cylinder with 2 jets on the lee side working in unison and 1
sensor signal feeding back the transverse displacement (Ren et al., 2019).

All examples are based on very similar meta parameters of GPC (Duriez et al., 2017). Typically, GPC
is based on linear/tree-based genetic programming with a similar structure and requires 10 generations
with 100 individuals. The genetic operations include elitism (1 individual), replication (10% probability),
mutation (20% probability) and crossover (70% probability). No meta parameter tuning seems necessary
for typical applications. The GPC can be taken ‘off the shelves” and expected to work with the standard
implementation.

This book is organized as follows. Chapter 2 introduces the flow control problem as an optimization
problem and describes the linear genetic programming methodology for function optimization. Chapter 3
constitutes the user guide. The chapter contains the main commands to get started with the code as
well as a description of the content of the code and a list of useful commands. The commands are
exemplified on the stabilization of a Landau oscillator. The xMLC code is then demonstrated on the
net drag reduction of the fluidic pinball in chapter 4. Three types of controllers are optimized: First,
multi-frequency forcing; Second, feedback control; Thirdly, an hybrid control combining multi-frequency
forcing and feedback control. Finally, chapter 5 concludes this book and opens on the future of machine
learning control.



Chapter 2

Machine learning control

This chapter describes the machine learning control framework and the methodology for control law
optimization. First, the flow control problem is described as a regression problem (Sec. 2.1), then the
linear genetic programming control (LGPC) algorithm is detailed (Sec. 2.2), finally, the main parameters
for the optimization are summarized.

2.1 Flow control as a regression problem

A flow control problem consists on deriving the optimal control law K∗ that fulfills a given objective,
such as drag minimization, lift increase, noise reduction, mixing enhancement, etc. A control law is a
mapping between the inputs (b) and the outputs (s) of the system to control:

b = K(h, s). (2.1)

In equation (2.1), the different quantities are:

• b is the actuation command, i.e., the signal sent to the actuators;

• s is the sensor vector that comprises the measurements provided by the sensors;

• h is a vector comprising time-dependent functions such as periodic functions (see Sec. 4.3).

A key enabler for employing machine learning techniques to derive the optimal control law K∗ is to
reformulate the problem as a regression problem. In this framework, the control objective is translated in
a cost function or the loss function, J , to be minimized. The typical control problem can be expressed as
a multi-objective minimization problem. Let J be the cost function to minimize according to the control
law K. J is then the sum of different control objectives that quantifies the control efficiency, it reads:

J = Ja +
∑
k

γkJk (2.2)

where Ja is the quantity to minimize, e.g. drag power, distance to given state, etc. The Jk are the
secondary objectives to be interpreted as optimization constraints. Their contribution is weighted by
the coefficients γk. The most common control problem comprises only two terms, Ja and an actuation
penalization term Jb such as the cost function is reduced to:

J = Ja + γJb (2.3)

The control problem can now be reformulated as an regression problem:

K∗ = arg min
K∈K

J(K) (2.4)

where K : A 7→ B is the space of all possible control laws, also referred as control law space. Here A is the
input space, e.g., the space of sensor signals and B the actuation range. The regression problem (2.4) is
a hard, non-convex problem, possibly including many minima. In this book, we introduce the software
xMLC based on a linear genetic programming to learn a control law K that minimize the cost function
J . Figure 2.1 gives an overview of the system to control and the role of xMLC in the learning loop.

3



4 CHAPTER 2. MACHINE LEARNING CONTROL

Figure 2.1: Control problem overview. The plant is controlled by actuators and monitored by sensors.
The control can be carried out in an open- or closed-loop manner. In closed-loop control, the controller
sends the actuation commands b to the plant based on sensor signals s. The software xMLC builds a
control law K that minimizes the cost function J . The control law is optimized through ‘trial and error’
based on its performance.

2.2 Linear genetic programming control

Machine learning control (MLC) based on genetic programming control (Dracopoulos, 1997, GPC) is an
evolutionary algorithm for function optimization. MLC relies on biological-inspired mechanisms to build
candidates solutions for the regression problem (2.4) in an iterative and stochastic manner.

The main idea of evolutionary algorithms is based on the evolution of a set of candidate solutions
throughout generations thanks to selected recombinations. Following the biological terminology, a candi-
date solution is also called an individual and a set of individuals, a population. The optimization process
relies mainly on three evolutionary principles:

The survival of the fittest: it is the selection of the most fitting individual, or the most efficient
individual according to the environment, to form the next generation. This mechanism allows
that the features of the ‘best’ individuals pass to the next generation to build, eventually, better
individuals;

Crossover: it is one of the two forces of evolution that brings diversity to the population and gives
opportunity to improve individuals; crossover is able to exploit the strengths of individuals by
recombining two or more individuals and generating one or more offspring build from their ‘parents’.

Mutation: it is the second force of evolution; it is the force that brings novelty to the population; new
and more better features are likely to appear thanks to mutation.

It is worth noting that both crossover and mutation are stochastic mechanisms. Indeed, the recombination
and the mutation of given individuals are random processes that, in general, give always different results.
When solving a regression problem with an evolutionary algorithm, the environment corresponds to the
cost function J ; It assess the performance/quality of an individual. Mutation and crossover are referred
as genetic operators.

In the following, we describe the genetic programming control algorithm in the control framework.
First, we present the internal representation of the control laws and how we operate on them to generate
new control laws.

2.2.1 Control law representation

To be able to combine and mutate the control laws throughout the generations, an internal representation
of a mathematical function is needed. The present software xMLC is based on linear genetic programming
(LGP) and adopts a matrix representation for the control laws (Brameier and Banzhaf, 2006).

In LGP, the individuals are considered as little computer programs, using a finite number NInstr

of instructions, a given register of variables and a set of constants. The instructions employ basic
operations (+, −, ×, ÷, cos, sin, tanh, etc.) using inputs (hi time-dependent functions and si sensor
signals) and yielding the control commands as outputs. A matrix representation conveniently comprises
the operations of each individual. Every row describes one instruction. The first two columns define the
register indices of the arguments, the third column the index of the operation and the fourth column
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the output register. Before execution, all registers are zeroed. Then, the last registers are initialized
with the input arguments, while the output is read from the first registers after the execution of all
instructions. This leads to a NInstr × 4 matrix representing the control law K. The name ‘linear’ refers
to the sequential execution of the instructions. If the operation to execute only requires one operand,
only the first column is considered and the second one is ignored. Each column of the matrix has its own
range of values following what it codes. For single input control, i.e. when there is only one controller,
the control law is read in the first register. For Nb controllers, the control laws are read in the first
Nb registers. Finally, to avoid definition problems, the operators such as division and logarithm are
protected to be defined on R the space of all the real numbers, see Duriez et al. (2017).

The registers play the role of memory slots. We distinguish two types of registers:

Variable registers: they are registers that can be overwritten while executing an instruction. They
help to store intermediate results.

Constant registers: they are registers that are protected during the reading of the matrix. They are
used to store random constants or data of the problem.

(a)
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Figure 2.2: (a) Matrix representation of one single operation. The representation is inspired of reverse
polish notation. The vertical column are the indices of the registers. The result of the instruction is stored
in the variable register r2, overwriting its previous value. (b) Transcription of a matrix of instructions
into a control law (expression framed in the bottom). The matrix (middle) has five instructions. The
instruction are displayed on the left and the evolution of the registers after the execution of the first and
fifth instruction on the right. The library of operators (+, −, ×, ÷) and there corresponding index are
displayed on the top. The first three registers (r1, r2, r3) are the variable register and the last three
(r4, r5, r6) are the constant register. The control law is derived from the expression stored in the first
register. In case of multiple input problems the others control laws would be derived from the following
registers.

Figure 2.2a, illustrates how a single instruction is represented in matrix form.
It is worth noting that for a given mathematical expression, there is more than one matrix repre-

sentation. Indeed, as stated before, there are instructions in the matrix that have no impact in the
output registers. Also, the matrix representation takes into account the order of the operations even
for operators that are commutative: the control laws b = s1 + s2 and b = s2 + s1 will be have different
representation while being the same mathematical expression. As consequence, several instances of the
same individual can be present in the population. In order to accelerate the learning, such individuals are
removed. To detect them, the control laws are all evaluated on the same random samplings. If the result
of the evaluation of one individual correspond to a previous evaluation, then the individual is replaced.

Figure 2.2b depicts how a matrix of instructions is read to build a control law. We notice that in
the instruction matrix, not all instruction lines are useful. Indeed, if an instruction line does not affect
one of the output registers then it is, in reality, useless. However, in the process of recombination or
mutation, these instructions lines can be ‘activated’, changing the final control law. Following Brameier
and Banzhaf (2006), these ‘useless’ instruction lines, also called introns, play a major in the process of
building relevant structures.

With enough instructions and operators, any function can be represented in matrix form. LGP can,
for example, reproduce the Taylor expansion of any function until an arbitrary order by deriving the
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coefficients of the power series. Also, using the matrix representation, we do not constrain, a priori, the
structure of the control laws. Of course, the solutions built strongly depend on the library of operators
and control inputs given to the algorithm. Indeed, the richness of these libraries defines the complexity
of the search space for the regression problem. The choice of the function libraries is studied in Sec. A.3
on a dynamical system whereas different sets of control inputs are tested for the control of the fluidic
pinball in Sec. 4.1.

Before giving the genetic algorithm in its final form, we first describe its first, the Monte Carlo step,
as it is an optimization algorithm on its own.

2.2.2 Monte Carlo sampling

A starting point for genetic programming is the random generation of the first set of individuals. This
operation can be seen as a Monte Carlo sampling process. In the LGPC framework, to define a control
law is to chose a library for the operators (+, −, cos, etc.), a library for the inputs (a1, a2, etc.), the
maximum number of instruction NInstr,max, or the number of rows in the matrices, the number of variable
registersNVar and the number of constant registersNCst. From these parameters, we can generate random
matrices that are then read sequentially to form control laws. The number of instructions for each matrix
is randomly drawn from an uniform distribution between 1 and NInstr,max. In theory, a Monte Carlo
process is enough to solve equation (2.4) but a very large number of individuals might be needed to reach
the global optimum of the problem, especially for search spaces of infinite dimension. For pragmatic
reasons and also to emulate limited experiment time, we fixed the total number of individuals tested Ni.
Ni can also be seen as the total number of cost function callings and also the total number of experiments
to run. Figure 2.3 illustrates the Monte Carlo sampling process. Ni individuals are generated randomly,

Figure 2.3: Monte Carlo sampling. A set of randomly generated control laws is evaluated and sorted
following their performances. The red bar on the right of each individual represents their performance.
The smaller the bar, the better the individual performs. The superscript 1 on the individuals Ki means
that they belong to the first generation. The top part of the figure, represents the controller K, receiving
the sensors signals s as input and giving back the actuation command b to the plant P.

they are all tested and sorted following their cost. The final result of the algorithm is the individual with
the lowest cost J , thus the most performing following the cost function criterion. Figure 2.3 depicts the
Monte Carlo process for controlling a plant P (framed in the figure).

In the next section, we describe how to create the next generations of individuals from a set of
individuals generated thanks to a Monte Carlo process.
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2.2.3 The evolution process—Selection and genetic operators

In the following sections, we describe how the natural selection is emulated and the implementation of
the genetic operators. In this section, we detail the steps carried out to create a new population based
on a previous one.

Selection

To create the next generation of individuals, we need, first, to select the most performing individuals to be
combined and mutated. The operation of selection is carried out thanks to a tournament selection. The
idea of a tournament selection is to select NTour individuals among the Ni individuals in the population.
Among the NTour individuals selected, the best one is selected with a probability of PTour. If the best
one is not chosen, the second best is chosen with the same probability PTour and so on for all the selected
individuals. At the end, if no other individual is chosen, the least performing among the NTour is selected.
The choice of NTour and PTour influence the extent to which well-performing individuals are preferred
over least-performing ones. This feature is called selection pressure and is developed in detail in Wahde
(2008).

Crossover for exploitation

(a) (b)

Figure 2.4: (a) Exploitation of the genetic material by recombining two individuals. The parts of the
matrices are switched to build new matrices. (b) Exploration of the search space by creating new
instructions and thus new structures.

Crossover is the operation of recombination of individuals. It has the potential to extract and combine
relevant structures in the individuals. That is why, we refer this genetic operator as the exploitation
operator. To combine the individuals, two individuals are selected in the population, and their matrices
are split in two and the parts are swapped to generate two new individuals, also referred as offsprings.
Figure 2.4a illustrates the crossover operation between two individuals.

It is worth noting that, the crossover operation is defined such as the length of the matrices may
increase or decrease. To avoid that the size of the matrices explodes, we set a upper limit to the number
of rows in the matrix. In practice, this limit is the same NInstr,max. If this limit is exceeded, then the
operation is restarted until offspring with lesser instructions are built.

Mutation for exploration

Mutation is the operator that generates new sequences in the matrices. The role of this operator is to find
new structures, unknown to the population, to improve the solutions. For the mutation of one individual,
each row of the corresponding matrix representation has a probability of PMut to be completely changed.
The parameter PMut is chosen such as at least one row is changed in the matrix. The change of one
line can either have no consequences in the final output, if the instruction stays an intron, or it can
also completely change the final output. To improve our exploration potential, we choose to restart the
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mutation operation when the mutated individual is identical to the original one. Figure 2.4b, depicts the
process of mutation for an individual.

Of course, there are several ways to define the crossover and mutation operators but we choose to
realize the simplest implementation.

Figure 2.5: Principle sketch of the exploitation/exploration potential of crossover and mutation. The
background is a 2D representation of a control landscape. White regions denoting good performances
and dark regions poor performances. Three minima are depicted. After an a priori exploration of the
control landscape with Monte Carlo, crossover and mutation improve the evaluated individuals. Crossover
individuals have the potential to explore the neighborhood of a minimum whereas mutation discovers
new minima by combining good individuals.

From an optimization point of view, crossover is the operator that improves existing solution. Its
role is to ‘explore’ the neighborhood of a minimum, while mutation is the one that explores the control
landscape to discover new minima. The learning principles are illustrated in figure 2.5.

Replication and elitism for memory

In addition to crossover and mutation, we also consider two other operators: replication and elitism. With
replication an identical copy of one individual is copied to the next generation, assuring memory of good
individuals and allowing future recombination. This elitism operation assures that the bests individual
are always in the latest generation so that ‘the winner does not get lost’ throughout the generations. In
this case, the individuals are simply copied to the next generation. The number of individuals selected
by elitism is defined by the elitism parameter NE, usually it is set to NE = 1.

Figure 2.6, illustrates the complete LGPC algorithm. The first generation of individuals is generated
thanks to a random sampling of the individuals (Monte Carlo method). Then, from a generation n,
the individuals are all evaluated and sorted following their performances. The best individuals are then
selected, thanks to a tournament method, to be modified and recombined with crossover and mutation.
Replication and elitism assures a memory of the good individuals. The choice of crossover, mutation
or replication to populate the next generation is controlled by the probabilities PCros, the crossover
probability, PMut, the mutation probability and PRep the replication probability. They are chosen such
as PCros + PMut + PRep = 1. The balance between crossover, mutation and replication is thoroughly
analyzed in App. A.2.

There are several variations of the genetic programming algorithm, where the genetic operators are
not separated but applied one after the other and where the offspring replaces the parent individual in
the population only if it performs better. In this study, we choose to follow the classical evolutionary
algorithm described in Brameier and Banzhaf (2006) and also employed by Duriez et al. (2017).
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Figure 2.6: Linear genetic programming algorithm employed in xMLC.

In the next section, we illustrate the learning process of LGPC by stabilizing a Landau oscillator with
xMLC.
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Chapter 3

User guide

This chapter contains all the elements to download, install and run the xMLC software on a toy system.
This chapter is recommended for a quick start with xMLC. First, the mean features of the software are
described (Sec. 3.1), then the requirements and installation are detailed (Sec. 3.2). Thereafter, the main
commands for a learning process are exemplified on the control of a toy system (Sec. 3.3. Finally, an
overview of the MLC MATLAB class is given and how to change the main parameters (Sec. 3.4). The
user who wants to employ xMLC to her/his own control problem is invited to follow the guide in App. B
to write her/his own parameter file. However, it is suggested to run the commands in this section first
to get familiar with code.

3.1 xMLC features

The xMLC software is an implementation of the linear genetic programming algorithm for control opti-
mization. The software allows in particular for:

Open-loop control: Control laws only depending on time-dependent functions can be optimized to
derive, for example, a multi-frequency controller combining different periodic functions.

Closed-loop control: Of course, closed-loop control laws can be learned by including sensor signals in
the input library.

Hybrid control: An hybrid optimization is also possible by combining sensor information and time-
dependent functions.

From SISO to MIMO control: xMLC is able to optimize control laws for single-input single-output
(SISO) systems as well as multiple-input multiple-output (MIMO) systems. There is no limit on
the number actuators and sensors one can use.

In addition of the optimization process, xMLC includes a variety of post-processing tools to analyze the
learning process and visualize the distribution of evaluated individuals, such as learning curve, extraction
of the best individual and Pareto front. Some of these features are displayed in the next section (Sec.
3.3). Moreover, xMLC includes a set of scripts and commands for a interfacing the optimization code
with numerical simulations on computer clusters and experiments. Finally, the code is not restricted to
control problems as it can be adapted to solve any function regression problem.

3.2 Download and installation

In this section we present the necessary steps to download and install the xMLC software.

Requirements

xMLC is available for both MATLAB and Octave. It has been coded on MATLAB version 9.5.0.944444
(R2018b) and Octave version 4.2.2. any further version should be compatible with the software. No
particular MATLAB or Octave package is needed for the proper functioning of the software.

11
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Installation

The xMLC software can be download from the following links

https://doi.org/10.24355/dbbs.084-202208220937-0 or https://github.com/gycm134/xMLC

under the MIT License (MIT).
Once downloaded, decompress the tar file and copy the MLC/ folder where it is needed. Installation

is then complete. For further information on the content of the MLC/ folder please look at Sec. 3.4 and
the README.md file.

3.3 Quick start

In this section, we present the main commands to optimize control laws. The process is illustrated by
stabilizing the damped Landau oscillator, a dynamical system with a stable limit cycle. The commands
are executed on MATLAB but they can be also ran on Octave. Only the methods containing MATLAB
in their name needs to be replaced by their Octave counterparts.

3.3.1 The damped Landau oscillator

The controlled dynamical system

The damped Landau oscillator is a system of two coupled ordinary differential equations with a nonlinear
damping of the growth rate. Despite its simplicity, it describes a fundamental oscillatory process at the
heart of physical mechanisms such as the von Kármán vortex shedding behind a cylinder (Luchtenburg
et al., 2009). To control the oscillator a forcing term b is introduced in the second equation. The systems
reads:  ȧ1 = σa1 − a2

ȧ2 = σa2 + a1 + b(a1, a2)
σ = (1− a21 − a22)

(3.1)

-1 0 1

-1

0

1

(a)

-1 0 1

-1

0

1

(b)

Figure 3.1: Phase portrait of the oscillator with no actuation (b = 0) with (a1, a2)t=0 = (0.1, 0.1) as
initial condition for (a) and (a1, a2)t=0 = (1.5, 1.5) as initial condition for (b). In both cases the system
converges towards the limit cycle of radius 1.

For b = 0, we have an oscillator of growth rate σ, angular frequency 1, period T = 2π and fixed point
(0, 0). For an initial condition close to the fixed point, the quadratic terms in σ are negligible, leading
to an exponential growth. When the system is far from the fixed point, the growth is damped due to
the quadratic terms, stabilizing the oscillator to the limit cycle of radius

√
1 = 1. The same reasoning

for an initial condition outside the circle of radius 1 shows that the limit cycle is globally stable. The
uncontrolled dynamics are depicted in figure 3.1a and 3.1b. The control on the second equation has
the effect of pushing the system upwards or downwards following the sign of b: Upwards if b > 0 and
downwards if b < 0.

Objective and cost function

The control objective is to bring the system to the fixed point (a1, a2) = (0, 0) from the limit cycle.
Two terms are considered for the cost function: Ja, the averaged distance to the fixed point and Jb, an

https://doi.org/10.24355/dbbs.084-202208220937-0
https://github.com/gycm134/xMLC
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actuation penalization term.
J = Ja + γJb

Ja =
1

Tmax

´
Tmax

0
(a21 + a22)dτ

Jb =
1

Tmax

´
Tmax

0
b2dτ

(3.2)

The penalization parameter γ is taken equal to 0.01, such as the optimization process focuses first on
the primary objective, i.e., stabilizing the oscillator. Both are integrals quantities over 10 periods which
corresponds to Tmax = 20π as we are interested not only in the final solution but also on the trajectory.
In order to assure a general solution, we consider four initial conditions on the limit cycle: (1, 0), (0, 1),
(−1, 0), (0,−1). The cost function J is then a mean value between these four initial conditions. For the
uncontrolled dynamics, we have a21 + a22 = 1 and b2 = 0, therefore Ja = 20π ≈ 62.83 and Jb = 0. The
unforced cost is then J0 = 20π.

In the xMLC software, the damped Landau oscillator system and its resolution is implemented in the
Plant/LandauOscillator/LandauOscillator problem.m file. See Sec. 3.4 for more information and
the content of the code.

3.3.2 First run

We now present the main commands to quickly use the xMLC software.

Initialization

To use the MLC software launch a MATLAB session on the MLC/ folder. We then follow the steps of
the CheatSheet.m file, providing the corresponding outputs and figures. It is advised to not execute
the whole CheatSheet.m script but rather execute it section by section. The first step is to launch
the Initialization.m script to load all the necessary paths. In the following insert, we include the
command and the output.

>> Initialization;

====================== xMLC v0.10 ====================

Welcome to the xMLC software to solve function

regression problems.

In case of error please contact the author :

Guy Y. Cornejo Maceda Website

The MIT License (MIT)

Start by creating a MLC object with : mlc=MLC;

=====================================================

The command output gives a short description of the xMLC code and invites us to create a MLC object.
The MLC object is in fact a structure array containing the parameters, the database and information on
the current generation. Let’s create such MLC object:

>> mlc=MLC;

====================== xMLC v0.10 ====================

Name of the run : TestRun

Problem to solve : LandauOscillator

Problem type : MATLAB

Number of actuators : 1

Number of control inputs : 2

Parameters :

Population size : 10

Elitism : 1

Operator probabilities :

Crossover : 0.600

Mutation : 0.300

Replication : 0.100

To generate a population : mlc.generate_population;

To run N generations : mlc.go(N);

======================================================
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The command output gives information on the problem and parameters in the MLC object. The
‘Name of the run’ is the name of the MLC object. When an optimization is initiated, all its associated
files are stored in a folder with the name of the run. For this example, the folder save runs/ will be
automatically created along with the save runs/TestRun/ folder.

The problem set by default is the stabilization of the Landau oscillator described in Sec. 3.3.1; it
is implemented in the Plant/LandauOscillator/LandauOscillator problem.m file. For this example,
the system of equations (3.1) including the control is solved directly by MATLAB. The xMLC software
can also be interfaced with other solvers or experiments, see App. C for more information.

The output also displays the main parameters. First, the number of actuators and control inputs are
displayed In this case, there is only one actuator, the forcing term b in the second equation and its inputs
are a1 and a2. Then, the main optimization parameters, population size, elitism parameter and genetic
operator probabilities. All these parameters are defined in the MLC tools/default parameters.m file.
Here are some examples on how to modify these parameters:

>> mlc.parameters.Name = ’AQuickTest ’;

>> mlc.parameters.PopulationSize =100;

>> mlc.parameters.Elitism = 1;

>> mlc.parameters.CrossoverProb = 0.6;

>> mlc.parameters.MutationProb = 0.3;

>> mlc.parameters.ReplicationProb = 0.1;

Note that these parameters are modified only for the current MLC object. The user can also modify the
initial parameters by creating her/his own parameter file, see App. B.

Control law optimization

Once the MLC parameters are appropriately set, the optimization process can be begin. There are two
ways to advance the optimization process: either running the commands one after the other or using
the go method. Let’s look at the first method. For this, we follow the instructions displayed on the
command prompt and generate a population with the appropriate command:

>> % Create the first generation

>> mlc.generate_population;

Generating new population

Population size = 100

Generating new individual 1/10 Done.

Generating new individual 2/10 Done.

Generating new individual 3/10 Done.

...

Generating new individual 98/100 Done.

Generating new individual 99/100 Done.

Generating new individual 100/100 Done.

End of generation : population generated in 3.4128 seconds.

No pre -evaluated individuals to be removed.

To evaluate the population: mlc.evaluate_population;

The output displays the creation process of the individuals. Once an individual or a control law is
created it is evaluated on a random set of inputs, if this evaluation returns INF or NAN, then the control
law is discarded an a new is generated. In this example, all the individuals have been properly evaluated
thus the message: ‘No pre-evaluated individuals to be removed’. Now, the population can be evaluated
with the corresponding command:

>> % Evaluate the first generation

>> mlc.generate_population;

Evaluation of generation 1 :

Evaluation of individual 1/100 J= 62.831878

Evaluation of individual 2/100 J= 75.394162

Evaluation of individual 3/100 J= 59.252250

...

Evaluation of individual 98/100 J= 90.154683

Evaluation of individual 99/100 J= 46.342791

Evaluation of individual 100/100 J= 78.925153

No bad individuals to be removed.
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To create the next generation : mlc.evolve_population;

To create the next generation : mlc.evolve_population;

The cost of each individual is displayed next to its evaluation message. The message ‘No bad indi-
viduals to be removed’ means that all the individuals have been properly evaluated. Otherwise, the code
attributes to them a high cost (≈ 1036) so that the selection process automatically eliminates them. The
default parameters are such as the code replaces those ‘bad’ individuals with new ones. The replacement
of bad individuals is repeated until the population does not include any of them. This option is harmless
when the evaluation of the individuals is ‘quick’ but it is advised to deactivate it for time-consuming
evaluations or experiments. This option can be deactivated with the command before launching the
optimization process:

>> % Deactivate the recursive removal of individuals whose evaluation failed.

>> mlc.parameters.RemoveBadIndividuals = 0;

Let’s generate the next generation and evaluate it with the corresponding commands:

>> % Generate the next generation (Gen 2)

>> mlc.evolve_population;

Generation 2

Generating new individual 1/10 Elitism.

Generating new individual 2/10 Crossover.

Generating new individual 3/10 Crossover.

...

Generating new individual 98/100 Replication.

Generating new individual 99/100 Mutation.

Generating new individual 100/100 Mutation.

No pre -evaluated individuals to be removed.

To evaluate the population: mlc.evaluate_population;

>> % Evaluation of the new generation (Gen 2)

>> mlc.evaluate_population;

Evaluation of generation 2 :

Evaluation of individual 1/100 already done (J= 32.039854)

Evaluation of individual 2/100 J= 60.631446

Evaluation of individual 3/100 J= 64.893979

...

Note the presence of the genetic operator that generated the new individual. During the evaluation
of the second generation, the individuals that have already been evaluated are not re-evaluated. One
can force the re-evaluation with the parameter MultipleEvaluations, see App. B. We could continue
the optimization process by alternating the evolution and evaluation commands but there is a simpler
way. One can directly generate and evaluate the next generation with the go method and also directly
indicate the final generation.

>> % Generate and evaluate the next generation (Gen 3)

>> mlc.go;

Generation 3

Generating new individual 1/100 Elitism.

Generating new individual 2/100 Replication.

Generating new individual 3/100 Crossover.

...

Evaluation of generation 3 :

Evaluation of individual 1/100 already done (J= 32.004032)

Evaluation of individual 2/100 already done (J= 51.542092)

Evaluation of individual 3/100 J= 53.512292

...

1 Generation(s) computed in 25.5563 seconds

Cost of the best individual = 3.1794

Its expression =

b = (tanh((s(1) - s(2))) - s(2))
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When the go is employed it also gives back information on the best individual evaluated so far. In
this case, the best control law is tanh(((s(1) - s(2)) - s(2))) which after simplification corresponds
to: tanh(a1 − 2a2). To continue the optimization until generation 10, run the command:

>> % Generate and evaluate the next generation (Gen 3)

>> mlc.go(10);

...

Evaluation of individual 98/100 already done (J= 3.730651)

Evaluation of individual 99/100 J= 5.254885

Evaluation of individual 100/100 J= 22.423008

No bad individuals to be removed.

To create the next generation : mlc.evolve_population;

7 Generation(s) computed in 228.2561 seconds

Cost of the best individual = 1.3074

Its expression =

b = my_div(tanh(my_div(tanh(my_div(tanh((s(1) - s(2))) ,0.59655)) ,0.59655))

↪→ ,0.59655)

Once the process is over, the MLC object can be saved to continue the optimization or post-processing
later.

>> % Save the run

>> mlc.save_matlab;

For this example, the MLC object is saved in save runs/AQuickTest/MLC Matlab.mat. To continue
the optimization later or in a new MATLAB session, first create a MLC object then use the load matlab

method with the name of the run.

>> % To load an existing run on a new MATLAB session.

>> % First create a MLC object.

>> mlc=MLC;

>> % Then load the run with its name

>> mlc.load_matlab(’AQuickTest ’);

For Octave, employ the corresponding methods save octave and load octave. xMLC also allows
intermediate savings of the same MLC object, for more information see Sec. 3.4.

Post-processing and analysis

Once the optimization process is done, the best individual can be accessed with the following method :

>> mlc.best_individual;

Best individual after 10/10 generations (ID :3019):

Its cost : 1.307

Control law : my_div(tanh(my_div(tanh(my_div(tanh((s(1) - s(2))) ,0.59655))

↪→ ,0.59655)) ,0.59655)

Number of instructions (effective): 15 (7)

The output mentions that the best individual has been found in the 10th generation over the 10
generations evaluated. The ID number represents its index in the database. The number of instructions
corresponds to the number of lines in its matrix representation. The number in parenthesis indicate that
among the 15 lines of the matrix only 7 contribute to the final expression of the control law. The give

method also gives a figure displaying the performance of the best individual, see figure 3.2. The code for
the figure is included in the Plant/LandauOscillator/LandauOscillator problem.m file.

For more information on the individual, run the command:

>> mlc.give (3019);

3019-th Individual of the database:

cost (mean over 1 evaluations): 1.307428

1-st evaluation cost : 1.307428

occurrences: 1

control law:

b1 = my_div(tanh(my_div(tanh(my_div(tanh((s(1) - s(2))) ,0.59655))

↪→ ,0.59655)) ,0.59655)
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(b) Visualization of the control law in the phase space.

Figure 3.2: Figures characterizing the control law optimized after 10 generations for the stabilization of
the Landau oscillator. The figures have been generated with the best individual method.

ref:0

>> % Check the informations of the individual in the database.

>> % The matrix representation.

>> mlc.table.individuals (3019).chromosome;

>> % Cost of the individual: J, Ja, Jb.

>> mlc.table.individuals (3019).cost;

>> % Control law.

>> mlc.table.individuals (3019).control law;

Of course these commands can be executed for any ID in the database. Note that the matrix is
referred as chromosome in xMLC to follow the evolutionary terminology. Other features can be extracted
such as the learning process (see figure 3.3a), the Pareto diagram (see figure 3.3b), the cost distribution
(see figure 3.3c) and the spectrogram (see figure 3.3d) thanks to the following commands:

>> % Plot of the learning process.

>> mlc.learning_process;

>> % Plot of the Pareto diagram and front for the first components of the cost

↪→ function.

>> mlc.Pareto_diagram;

>> % Plot of the cost distribution sorted by J.

>> mlc.cost_distribution;

>> % Plot of the distribution of costs in each generation.

>> mlc.spectrogram;
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Figure 3.3: Figures characterizing the optimization process and displaying the distribution of the control
laws evaluated. Figure (b) and (c) share the same color code for the generations. The figures have been
generated with specific methods: (a) learning process, (b) Pareto diagram, (c) cost distribution

and (d) spectrogram.

3.4 Code description

In this section, we give a brief description of the xMLC. First, we detail the content of the code then we
give an overview of the MLC class and its properties. Finally, we provide a list of useful commands for
the analysis and extraction of information from the MLC object.

3.4.1 Content

Figure 3.4 displays the content of the main folder xMLC/. In the following, we give a description of each
element of the folder.

• The folder @MLC/ containing the file MLC.m that defines the MLC class with its properties and
methods;

• The folders, @MLCind/, @MLCpop/, @MLCtable/, defining three other classes that are employed in
the MLC class: MLCind, MLCpop and MLCtable define an individual, a population and a database
respectively;

• The folder MLCtools/ containing additional functions employed during the optimization;
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MLC/............................................................MLC class
MLCind/ ............................................Class for an individual
MLCpop/.............................................Class for a population
MLCtable/...........................................Class for the database
MLC tools/ ...........................................Additional functions
ODE Solvers/

Plant/......................................Contain the different problems
save runs/............................................Contain the savings
CheatSheet.m

Initialization.m .....................................First script to run
LICENSE

README.md

Restart.m ..........................................To restart the session
Version.txt

Figure 3.4: File structure for the xMLC/ folder.

• The folder ODE Solvers/ containing implementations of ODE solvers in particular Runge-Kutta
methods from order 1 to 5;

Plant/..............................................Contains the problems
GMFM/

GMFM parameters.m

GMFM problem.m

LandauOscillator/

LandauOscillator parameters.m

LandauOscillator problem.m

Tanh fitting/

Tanh parameters.m

Tanh problem.m

MyPlant/....................................................See B & C
MyExternalPlant parameters

MyPlant parameters.m

MyPlant problem.m

T maxevaluation.m .............................................See B

Figure 3.5: File structure for the Plant/ folder.

• The folder Plant/ containing different parameter folders for each problem. Three toy problems are
included, the stabilization of the Landau oscillator, the stabilization of the generalized mean-field
model and the fitting of a tanh function (see figure 3.5. Each folder contains a parameter file and
problem file. The parameter file contains all the xMLC parameters and can also include parameters
for the problem. The ‘problem’ represents the plant, it includes the resolution of the corresponding
dynamical. This file is needed only when problems are solved by MATLAB. It is not needed when
the user employs an external solver or experiment. To create a personalized problem, see App. B;

• The folder save runs/ containing the saving files and the outputs of the code. This folder does
not exist on the original code but is created automatically if needed;

• The file CheatSheet.m containing the main commands to start an optimization process, see Sec.
3.3;

• The file Initialization.m that loads all the paths necessary for the code. This script should be
used at the beginning of each session;

• The file LICENSE contains the license of the xMLC code: The MIT License (MIT).

• The file README.md gives a short description of the code along with the main commands to start
an optimization process. This file keeps also track of the updates/upgrades along the versions. If
you encounter any compatibility problem, contact the author at Yoslan@hit.edu.cn;

mailto:Yoslan@hit.edu.cn
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• The file Restart.m that clears all the variables and creates a new MLC object with the default
parameters;

• The file Version.txt containing the version of the code. The version should be communicated in
case of contact with the author.

3.4.2 Description of the MLC class

Once the Initialization.m script is launched, a small description of the problem to be solved is printed.
It contains information about the number of inputs (controllers), the number of outputs (sensors), the
population size and the strategy (genetic operators probabilities). This is shown each time a new instance
of a MLC class object is created. To show it again use the show problem method by using the command
: mlc.show problem;. The MLC object has 6 properties:

individuals ....................... List of ID numbers sorted by their cost
costs .............................................Cost of each individual
chromosome lengths ......Number of instructions and effective instructions
parents .........................................ID number of the parents
operation ........................Operation that generated the individual
generation

evaluation .....................Status of the population: evaluated or not
CreationOrder ........................Order of creation of the individuals

Figure 3.6: Properties of the MLCpop class.

• population is an array of MLCpop. Each one of then containing information of all the individuals
of the a given generation. In particular, the ‘ID’ corresponds to the index of the individual in the
database. Note that the ID refers to a unique matrix representation. Thus, two control laws that
simplify to the same expression will have different ID numbers. However, one of them may be
replaced during the optimization process. Figure 3.6 gives more information on the properties of
each population;

• parameters is a structure object containing all the parameters for a problem. It contains in
particular where all the parameters are defined, be it for the problem, the control law description
or the MLC parameters;

individuals .....................................Array of MLCind objects
non redundant ........................... ID list of all ‘unique’ individuals
number ...............................Total number of individuals explored
control points ...............................................See Sec. B
costlist ..........................List of costs for all individuals explored

Figure 3.7: Properties of the MLCtable class.

chromosome .........................Matrix representation of the individual
costs ..........Array of cell containing the cost J and its components for all
evaluations

control law ...........Array of cell containing the control law components
EI ................................ Information on the effective instructions
occurrences

evaluation time

control points ................................................See Sec B
ref ...................ID of the reference individual if redundant individual

Figure 3.8: Properties of the MLCind class.

• table is the database, it contains all the individuals explored. This number may be superior to the
number of individuals evaluated as some of them are removed due to failed evaluations or screening
options. Figure 3.7 and 3.8 details the content of the MLCtable and MLCind classes respectively;
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• generation display the current generation. It is set to 0 by default when the population is empty.
One generation is counted only if it has been evaluated;

• version contains the version of the MLC object. The structure of the parameter file may be
modified with the new versions thus keeping track of the MLC object version is important.

3.5 Handy commands

We list now useful commands to extract individual information or the analyze the optimization process.

>> % Information on the 5 best individuals evaluated so far.

>> % If an individual is evaluated several times (in case of stochastic problem

↪→ ),

>> % the command gives the best individuals based on an estimated performance.

>> % See the EstimatePerformance parameter in App. A.

>> mlc.list_best_individuals;

>> mlc.list_best_individuals(GEN); % Same as the previous command but up to

↪→ generation GEN.

>> mlc.list_best_individuals(GEN ,NI); % Same as the previous command but gives

↪→ only the NI best individuals.

>> % Information on individual ID:

>> mlc.give(ID);

>> % Re-evaluation of individual ID and plot the control if possible.

>> % Only works for problems evaluated with MATLAB.

>> mlc.plotindiv(ID);

>> % Intermediate save of a run name AQuickTest:

>> mlc.save_matlab(’Gen2’);

>> % The saving file is then stored in save_runs/AQuickTest/Gen2_Matlab.mat

>> % Load an intermediate save of a run named AQuickTest:

>> mlc.load_matlab(’AQuickTest ’,’Gen2’);

>> % Information on the sensor , constant and operation distribution for

↪→ generation GEN.

>> mlc.CL_descriptions(GEN);

>> Distribution of genetic operators through the generations.

>> mlc.genoperatorsdistrib;

>> Relationship matrix between the parents and the offsprings.

>> mlc.relationship;

>> % Print the current figure.

>> % The figure is saved in the save_runs/AQuickTest/Figures/ folder in PNG and

↪→ EPS format.

>> mlc.printfigure(’AQuickTest ’)

>> mlc.printfigure(’AQuickTest ’ ,1) % To overwrite an existing figure.

>> % To initiate a problem different from the default one.

>> % For example , to create a MLC object wit the GMFM problem:

>> mlc=MLC(’GMFM’);

>> % One can also rename a run.

>> mlc.rename(’AFastTest ’);

AQuickTest changed to AFastTest.

>> % If one ’s wish to duplicate a run , just copy -paste the run folder in

↪→ save_runs/ and change it ’s name.

>> % The MLC object can then be loaded with the new name.

>> % The name in the parameters will be automatically updated.
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Chapter 4

Example: Net drag power reduction
of the fluidic pinball

In this chapter, we reduce the net drag power of the fluidic pinball thanks to xMLC software presented
in Sec. 3. For this study, we explore three different search spaces: first we look for a multi-frequency
forcing controller, second we look for feedback control laws and finally we investigate an hybrid search
space comprising periodic functions and sensor signals. Thus, in Sec. 4.1 we present the fluidic pinball
and the regression problem. In Sec. 4.2, we detail an open-loop control study of the fluidic pinball for a
control reference. Lastly, we apply MLC to minimize the net drag power with multi-frequency forcing
(Sec. 4.3), feedback control (Sec. 4.4) and a search space allowing both strategies (Sec. 4.5).

4.1 The fluidic pinball—A benchmark flow control problem

In this section, we describe the fluid system studied for the control optimization—the fluidic pinball.
First we present the fluidic pinball configuration and the unsteady 2D Navier-Stokes solver in Sec. 4.1.1,
then the unforced flow spatio-temporal dynamics in Sec. 4.1.2 and finally the control problem for the
fluidic pinball in Sec. 4.1.3. This section is largely inspired from section 2 of Cornejo Maceda (2021).

4.1.1 Configuration and numerical solver

The test case is a two-dimensional uniform flow past a cluster of three cylinders of same diameter D.
The center of the cylinders form an equilateral triangle pointing upstream. The flow is controlled by the
independent rotation of the cylinders along their axis. The rotation of the cylinders enables the steering
of incoming fluid particles, like a pinball machine. Thus, we refer this configuration as the fluidic pinball.
In our study, we choose the side length of the equilateral triangle equal to be 1.5D. Various side lengths
have been explored numerically in (Chen et al., 2020), revealing a myriad of interesting regimes.

The flow is described in a Cartesian coordinate system, where the origin is located midway between
the two rearward cylinders. The x-axis is parallel to the stream-wise direction. The y-axis is orthogonal
to the cylinder axis. The velocity field is denoted by u = (u, v) and the pressure field by p. Here, u and
v are, respectively, the stream-wise and transverse components of the velocity. We consider a Newtonian
fluid of constant density ρ and kinematic viscosity ν. For the direct numerical simulation, the unsteady
incompressible viscous Navier-Stokes equations are non-dimensionalized with cylinder diameter D, the
incoming velocity U∞ and the fluid density ρ. The corresponding Reynolds number is ReD = U∞D/ν.
Throughout this study, only ReD = 100 is considered.

The computational domain Ω is a rectangle bounded by [−6, 20] × [−6, 6] excluding the interior of
the cylinders:

Ω = {[x, y]T ∈ R2 : [x, y]T ∈ [−6, 20]× [−6, 6] ∧ (x− xi)2 + (y − yi)2 ≥ 1/4, i = 1, 2, 3}.

Here, [xi, yi]
T with i = 1, 2, 3, are the coordinates of the cylinder centers, starting from the front cylinder

and numbered in mathematically positive direction,

x1 = −3/2 cos(30◦) y1 = 0,
x2 = 0 y2 = −3/4,
x3 = 0 y3 = 3/4.

23
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The computational domain Ω is discretized on an unstructured grid comprising 4225 triangles and 8633
nodes. The grid is optimized to provide a balance between computation speed and accuracy. Grid
independence of the direct Navier-Stokes solutions has been established by Deng et al. (2020).

The boundary conditions for the inflow, upper and lower boundaries are U∞ = ex while a stress-
free condition is assumed for the outflow boundary. The control of the fluidic pinball is carried out by
the rotation of the cylinders. A non-slip condition is adopted on the cylinders: the flow adopts the
circumferential velocities of the front, bottom and top cylinder specified by b1 = UF , b2 = UB and
b3 = UT . The actuation command comprises these velocities, b = [b1, b2, b3]T. A positive (negative)
value of the actuation command corresponds to counter-clockwise (clockwise) rotation of the cylinders
along their axis. The numerical integration of the Navier-Stokes equations is carried by an in-house
solver using a fully implicit Finite-Element Method (Noack et al., 2003, 2016). The method is third
order accurate in time and space. The initial condition for the numerical simulations is the symmetric

(a) Symmetric steady solution. (b) Unforced flow at t = 400.

Figure 4.1: Vorticity fields for the unforced fluidic pinball at ReD = 100. Blue (red) regions bounded
by dashed lines represent negative (positive) vorticity. Darker regions indicate higher values of vorticity
magnitude. Figures reprinted from Cornejo Maceda et al. (2021).

steady solution, see figure 4.1a. The symmetrical steady solution is computed with a Newton-Raphson
method on the steady Navier-Stokes. An initial short, small rotation of the front cylinder is used to
kick-start the transient to natural vortex shedding in the first period (Deng et al., 2020). The transient
regime lasts around 400 convective time units. Figure 4.1 shows the vorticity field for the symmetric
steady solution and the natural unforced flow after 400 convective units. The snapshot at t = 400 in
figure 4.1b is the initial condition for all the following simulations.

4.1.2 Unforced reference

The fluidic pinball is a geometrically simple configuration that comprises key features of real-life flows
such as successive bifurcations and frequency crosstalk between modes. Deng et al. (2020) shows that
the unforced fluidic pinball undergoes successive bifurcations with increasing Reynolds number before
reaching a chaotic regime. The first Hopf bifurcation at Reynolds number Re ≈ 18 breaks the symmetry
in the flow and initiates the von Kármán vortex shedding. The second bifurcation at Reynolds number
Re ≈ 68 is of pitchfork type and gives rise to a transverse deflection of jet-like flow appearing between
the two rearward cylinders. The bi-stability of the jet deflection has been reported by Deng et al.
(2020). At a Reynolds number Re = 100 the jet deflection is rapid and occurs before the vortex shedding
is fully established. Figure 4.2a shows an increase of the lift coefficient CL before oscillations set in
and the lift coefficient converges against a periodic oscillation around a slightly reduced mean value.
Those bifurcations are a consequence of multiple instabilities present in the flow: there are two shear
instabilities, on the top and bottom cylinder and a jet bi-stability originating from the gap between
the two back cylinders. The shear-layer instabilities synchronize to a von Kármán vortex shedding.
Figure 4.2 illustrates the dynamics of the unforced flow from the unstable steady symmetric solution to
the post-transient periodic flow. The phase portrait in figure 4.2b and the power spectral density (PSD)
in figure 4.2d show a periodic regime with frequency f0 = 0.116 and its harmonic. Figure 4.2a shows
that the mean value of the lift coefficient CL is not null. This is due to the deflection of the jet behind
the two rearward cylinders during the post-transient regime. During this regime, the deflection of the jet
stays on one side as it is illustrated in figure 4.3a-4.3h over one period and in figure 4.3j in the mean field.
This deflection explains the lift coefficient CL asymmetry. Indeed, the upward oriented jet increases the
pressure on the lower part of the top cylinder leading to an increase of the lift coefficient. In figure 4.2a,
the initial downward spike on the lift coefficient is due to the initial kick. The unforced natural flow is
our reference simulation for future comparisons.

Thanks to the rotation of the cylinders, the fluidic pinball is capable of reproducing six actuation
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Figure 4.2: Characteristics of the unforced natural flow starting from the steady solution (t = 0). The
transient spans until t ≈ 400. (a) Time evolution of the lift coefficient CL, (b) phase portrait, (c) time
evolution of the drag power Ja (blue), actuation power Jb (green) and net drag power J (red) and (d)
Power Spectral Density (PSD) showing the natural frequency f0 = 0.116. The phase portrait is computed
during the post-transient regime t ∈ [900, 1400] and the PSD is computed over the last 1000 convective
time units, t ∈ [400, 1400].

mechanisms inspired from wake stabilization literature and exploiting distinct physics. Examples of those
mechanisms can be found in Ishar et al. (2019). First, the wake can be stabilized by shaping the wake
region more aerodynamically—also called fluidic boat tailing. The shear layers are vectored towards the
center region with passive devices, like vanes (Flügel, 1930) or active control through Coanda blowing
(Geropp, 1995; Geropp and Odenthal, 2000; Barros et al., 2016). In the case of the fluidic pinball, we
can mimic this effect by a counter-rotating rearward cylinders which accelerates the boundary layers
and delays separation. This fluidic boat tailing is typically associated with significant drag reduction.
Second, the two rearward cylinders can also rotate oppositely ejecting a fluid jet on the centerline. Thus,
interaction between the upper and lower shear layer is suppressed, preventing the development of a von
Kármán vortex in the vicinity of the cylinders. Such base bleeding mechanisms has a similar physical
effect as a splitter plate behind a bluff body and has been proved to be an effective means for wake
stabilization (Wood, 1964; Bearman, 1967).

Third, phasor control can be performed by estimating the oscillation phase and feeding it back with a
phase shift and gain (Protas, 2004). Fourth, unified rotation of the three cylinders in the same direction
gives rise to higher velocities, and thus larger vorticity, on one side at the expense of the other side,
destroying the vortex shedding. This effect relates to the Magnus effect and stagnation point control
(Seifert, 2012). Fifth, high-frequency forcing can be effected by symmetric periodic oscillation of the
rearward cylinders. With a vigorous cylinder rotation (Thiria et al., 2006), the upper and lower shear
layers are re-energized, reducing the transverse wake profile gradients and thus the instability of the flow.
Thus, the effective eddy viscosity in the von Kármán vortices increases, adding a damping effect. Sixth
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(a) t + T0/8 (b) t + 2T0/8

(c) t + 3T0/8 (d) t + 4T0/8

(e) t + 5T0/8 (f) t + 6T0/8

(g) t + 7T0/8 (h) t + T0

Figure 4.3: Vorticity fields of the unforced flow. (a)-(f) Time evolution of the vorticity field in the last
period of the simulation. The color code is the same as figure 4.1. T0 is the natural period associated to
the natural frequency f0.

and finally, a symmetrical forcing at a lower frequency than the natural vortex shedding may stabilize
the wake (Pastoor et al., 2008). This is due to the mismatch between the anti-symmetric vortex shedding
and the forced symmetric dynamics whose clock-work is distinctly out of sync with the shedding period.
High- and low-frequency forcing lead to frequency crosstalk between actuation and vortex shedding over
the mean flows, as described by low-dimensional generalized mean-field model (Luchtenburg et al., 2009).

We confirm therefore that the fluidic pinball is an interesting Multiple-Input Multiple-Output (MIMO)
control benchmark. The configuration exhibits well-known wake stabilization mechanisms in physics.
From a dynamical perspective, nonlinear frequency crosstalk can easily be enforced. In addition, even
long-term simulations can easily be performed on a laptop within an hour.

4.1.3 Control objective and regression problem

Several control objectives related to the suppression or reduction of undesired forces can be considered
for the fluidic pinball. We can increase the recirculation bubble length, reduce lift fluctuations or even
mitigate the total fluctuation energy.

In this study, we aim to reduce the net drag power at ReD = 100. The associated objectives are Ja,
the drag power and Jb, the actuation power. The cost Ja is defined as the temporal average of the drag
power of the controlled flow field:

Ja =
1

Tev

ˆ t0+Tev

t0

ja(t) dt (4.1)

with the instantaneous cost function
ja(t) = F x(t) ·U∞ (4.2)
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where F x is the drag and U∞ is the incoming velocity. The control is activated at t0 = 400 convective
time units after the starting kick on the steady solution. Thus, we have a fully established post-transient
regime. The cost function is evaluated until Tev = 525 convective time units. Thus, the time average is
effected over 125 convective time units which corresponds to more than 10 periods T0 of the unforced
flow.

Jb is naturally chosen as a measurement of the actuation energy investment. Evidently, a low actuation
energy is desirable. The actuation power is computed as the power of the torque applied by the fluid on
the cylinders. Jb is the time-averaged actuation power over Tev = 125 time units:

Jb(b) =
1

Tev

ˆ t0+Tev

t0

3∑
i=1

Pact,i dt (4.3)

where Pact,i is the actuation power supplied integrated over cylinder i:

Pact,i = −
‹

biF
θ
s,i ds

where
(
F θs,ids

)
is the azimuthal component of the local fluid forces applied to cylinder i. The negative

sign denotes that the power is supplied and not received by the cylinders.
Thus, the cost function employed for the optimization is J = Ja+γJb. γ is the penalization parameter.

It allows to balance the terms of the cost function. In this study as we aim to reduce the net drag power,
we set γ = 1 so both components Ja and Jb have the same weight.

The instantaneous values of Ja and Jb are plotted in figure 4.2c. Naturally, for the unforced flow, the
actuation power is null, and the cost function is only the drag power. We note that the drag power takes
around 300 convective units to stabilize. The cost of the post-transient regime is J0 = 1.87. J0 serves as
a reference for future comparisons. The cost of the steady flow 4.1a is Jsteady = 1.80 which is lower than
J0 but still high. Therefore, we can assume that stabilizing the symmetric steady solution may not be
the best strategy to reduce the net drag power.

In order to minimize the net drag power, the flow is forced by the rotation of the three cylinders. The
actuation command b = [b1, b2, b3]T is determined by the control law K. This control law may operate
open-loop or closed-loop with flow input. Considered open-loop actuations are steady or harmonic
oscillation around a vanishing mean. Considered feedback includes velocity sensor signals in the wake.
Thus, in the most general formulation, the control law reads the equation described in Sec. 2.1: b(t) =
K(h(t), s(t)) with h(t) and s(t) being vectors comprising respectively time dependent harmonic functions
and sensor signals. The sensor signals include the instantaneous velocity signals as well as three recorded
values over one period as elaborated in the result (Sec. 4.4). In the following, Nb represents the number
of actuators, NH for the number of time-dependent functions and NS for the number of sensor signals.

4.2 Symmetric steady actuation for net drag reduction

First, we carry out an open-loop parametric study to assess the effect of control on the drag power. To
achieve an exhaustive parametric study is a costly task as we need to operate in 3-dimensional parameter
space. That is why we restrict the search to the subspace of symmetric actuations: the front cylinder
does not rotate and the two back cylinders rotate at the same speed but in opposite directions:

b1 = 0,
b2 = −b3.

Thus, we explore the effect of only one parameter b2. b2 is defined so that when it is positive, the flow
is vectored towards the centerline—boat tailing configuration—and when it is negative, the inner flow
is accelerated—base bleeding configuration. Figure 4.4 shows the evolution of Ja, Jb and J = Ja + Jb
as a function of b2. Solely considering Ja, boat tailing is the best strategy to reduce the drag power.
Indeed, drag power decreases monotonously with increasing b2. For a strong actuation, b2 > 3, Ja even
becomes negative and the fluidic pinball becomes a jet. Base bleeding, on the other hand, is not a viable
strategy to reduce the drag power. There is a local minimum around b2 = −4 but its associated drag
power is still higher than the natural unforced flow. When adding the actuation power, there is only one
minimum for the cost function J , around b2 = 1. Its associated cost is JBT/J0 = 0.77. Figure 4.5d shows
the characteristics of the controlled flow with the best boat tailing solution. We note that the regime
is purely harmonic with an increase of the main frequency from f0 = 0.116, for the unforced flow, to
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Figure 4.4: Cost function evolution regarding actuation intensity for symmetric constant actuation.

f1 = 0.128. We also remark a symmetrization of the lift coefficient CL alongside a significant increase of
the oscillations amplitude. The loss of the mean value results in a symmetrization of the flow. Indeed,
figure 4.6 shows that the near jet completely disappeared. We also observe a considerable reduction of
the recirculation bubble, as a consequence, the base pressure behind the back cylinders increases and the
total drag decreases.
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Figure 4.5: Characteristics of the best boat tailing solution starting from the steady solution (t = 0).
The transient spans until t ≈ 400. (a) Time evolution of the lift coefficient CL, (b) phase portrait, (c)
time evolution of the drag power Ja (blue), actuation power Jb (green) and net drag power J (red) and
(d) Power Spectral Density (PSD) showing the frequency f1 = 0.128.
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(a) t + T1/8 (b) t + 2T1/8

(c) t + 3T1/8 (d) t + 4T1/8

(e) t + 5T1/8 (f) t + 6T1/8

(g) t + 7T1/8 (h) t + T1

Figure 4.6: Vorticity fields of the flow controlled by the best boat tailing solution. (a)-(f) Time evolution
of the vorticity field in the last period of the 1000 time units simulation. The color code is the same as
figure 4.1. T1 is the period associated to the frequency f1.
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4.3 Multi-frequency optimization

In this section, we explore the space of open-loop controllers, in particular periodic control laws. In
order to do so, we consider cosine functions as inputs for the control laws. Thus, equation (2.1) becomes:
b(t) = K(h(t)). To enrich our search space and to avoid resonance effects, we choose eight periodic
functions whose frequencies are incommensurable with the natural frequency f0:

h1 = cos(2πΦ−4f0t), h5 = cos(2πΦ1f0t),
h2 = cos(2πΦ−3f0t), h6 = cos(2πΦ2f0t),
h3 = cos(2πΦ−2f0t), h7 = cos(2πΦ3f0t),
h4 = cos(2πΦ−1f0t), h8 = cos(2πΦ4f0t).

The golden ration Φ assures that the periodic function is incommensurable with the natural frequency
f0, i.e. the natural frequency cannot be reconstructed thanks to the algebraic operators (+,−,×,÷).
The rest of the MLC parameters are summarized in table 4.1. We choose the operators probability

Parameter Description Value

Function library
F2 = {+,−,×,÷,

exp, tanh, sin, cos, log}
h Controller inputs hi, i = −4, ..,−1, 1, ..4

NVar Number of variable registers 8 + 3 = 11
NCst Number of constant registers 10

NInstr,max Max. number of instructions 50
NPop.size Population size 100
NG Number of generations 10
NTour Tournament size 7
NE Elitism 1
PCros Crossover probability 0.6
PMut Mutation probability 0.3
PRep Replication probability 0.1

Table 4.1: MLC parameters for multi-frequency forcing optimization.

(PCros, PMut, PRep) = (0.6, 0.3, 0.1) as explained in App. A.2. As we optimize three controllers, we
decided to increase the number of maximum instructions to 50. To build complex control laws, we
employ the function library F2 = {+,−,×,÷, exp, tanh, sin, cos, log}. Also, since we have eight inputs
for the control laws, we need to increase the number of variable registers to include an instance of all
inputs. Thus, we also increase the number of constants. We ran the optimization with a population of
100 individuals evolving through 10 generations. The learning process is illustrated in figure 4.7. Most
of the learning is done during the Monte Carlo step, indeed after 100 random evaluations the cost is
equal to J/J0 = 0.80. Only small improvements are made until the fourth generation where a big jump
manages to reduce the cost lower than the boat tailing solution. From there, only small improvements
are achieved.

The best control law bMF reads:

bMF
1 = −0.13732,
bMF
2 = 0.982511,
bMF
3 = −1.1979,
JMF/J0 = 0.7476

(4.4)

We note that the control is steady and does not contain any hi, suggesting that periodic forcing is not
a viable solution to reduce the net drag power. Indeed, periodic forcing must increase the gradient of
the azimuthal speed, thus increasing the torque and actuation power. bMF resembles a boat tailing
configuration with a slight asymmetry as the bottom cylinders rotates faster than the top one and the
front cylinder also presents a small rotation. We suspect that this asymmetry is typical of pitchfork
bifurcated flows as it was also reported by Raibaudo et al. (2020). The characteristics of the flow
controlled by bMF are shown in figure 4.8. As for the best boat tailing solution, the controlled flow with
bMF is purely harmonic with a slightly lower frequency f2 = 0.126. The amplitude of the oscillations of the
lift coefficient has also increased. However, the slight asymmetry in the control results in a significant
increase of the mean value of the lift coefficient. The mean value variation of the lift coefficient is,



32 CHAPTER 4. EXAMPLE: NET DRAG POWER REDUCTION OF THE FLUIDIC PINBALL

Figure 4.7: Distribution of the costs during the multi-frequency forcing MLC optimization process. Each
dot represents the cost Ja/J0 of one individual. The color of the dots represents how the individuals
have been generated. Black dots denote the individuals which are randomly generated (Monte Carlo).
Blue dots refer to individuals which are generated from a genetic operator. The individuals from each
generation have been sorted following their costs. The red line shows the evolution of the best cost. The
dashed horizontal line corresponds to the best symmetric solution b2 = 1 with a cost of JBT/J0 = 0.77.
The vertical axis is in log scale and has been truncated to help the visualization of the best individuals.

nonetheless, hardly visible on the snapshots in figure 4.9. As the actuation is close to the best boat
tailing control, the controlled flows are also similar. By squinting ones eye, we notice that there is a
small region, at the lower-back part of the front cylinder, with intense vorticity. We can assume that
this small vortex increased the local pressure and thus shifts the mean value of the lift positively.
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Figure 4.8: Characteristics of the flow controlled by bMF starting from the steady solution (t = 0). The
transient spans until t ≈ 400. (a) Time evolution of the lift coefficient CL, (b) phase portrait, (c) time
evolution of the drag power Ja (blue), actuation power Jb (green) and net drag power J (red) and (d)
Power Spectral Density (PSD) showing the frequency f2 = 0.126.
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(a) t + T2/8 (b) t + 2T2/8

(c) t + 3T2/8 (d) t + 4T2/8

(e) t + 5T2/8 (f) t + 6T2/8

(g) t + 7T2/8 (h) t + T2

Figure 4.9: Vorticity fields of the flow controlled by the best boat tailing solution. (a)-(f) Time evolution
of the vorticity field in the last period of the 1000 time units simulation. The color code is the same as
figure 4.1. T2 is the period associated to the frequency f2.
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4.4 Feedback control law optimization

In this section, we allow feedback control laws by adding sensor signals as inputs. Thus, equation (2.1)
becomes: b(t) = K(s(t)). We choose a grid of nine sensor downstream measuring either x or y velocity
components. The coordinates of the sensors are x = 5, 6.5, 8 and y = 1.25, 0, −1.25. The six exterior
sensors are u sensors while v sensors are chosen for the ones on the symmetry line y = 0. The information

Sensor x-coordinate y-coordinate Velocity component

s1 5 1.25 u
s2 6.5 1.25 u
s3 8 1.25 u
s4 5 0 v
s5 6.5 0 v
s6 8 0 v
s7 5 -1.25 u
s8 6.5 -1.25 u
s9 8 -1.25 u

Table 4.2: Summary of sensor information.

of sensors is summarized in table 4.2. Moreover, in order to take into account the convective nature of
the flow, we add time-delayed sensors as inputs of the control laws. The delays are a quarter, half and
three-quarters of the unforced natural period, yielding following additional lifted sensor signals:

si+9(t) = si(t− T0/4), si+18(t) = si(t− T0/2), si+27(t) = si(t− 3T0/4).

Hence, the dimension of the sensor vector s is 9 × 4 = 36 and X ⊂ R36. The time-delayed sensors are
also include as control inputs to mimic ARMAX-based control (Hervé et al., 2012). The same MLC

Parameter Description Value

Function library
F2 = {+,−,×,÷,

exp, tanh, sin, cos, log}
s Controller inputs si(t), i = 1, .., 36

NVar Number of variable registers 36 + 3 = 39
NCst Number of constant registers 10

NInstr,max Max. number of instructions 50
NPop.size Population size 100
NG Number of generations 10
NTour Tournament size 7
NE Elitism 1
PCros Crossover probability 0.6
PMut Mutation probability 0.3
PRep Replication probability 0.1

Table 4.3: MLC parameters for feedback control optimization.

parameters as for Sec. 4.3 have been chosen. The number of variable constants increased as we now have
36 sensor signals. Figure 4.10 shows cost of the individuals during the optimization process. We note
the same learning trend as for multi-frequency forcing optimization. However in this case, the big jump
appeared sooner, directly at the second generation. From there, only small improvements are achieved.
We note also that the Monte Carlo step is less efficient as less individuals have reached a performance
lower than the unforced one. Moreover the best individual of the first generation has a cost of J/J0 = 0.84
which is higher than in the multi-frequency forcing case. This can be explained by the fact that as there
are more inputs, the search space becomes larger thus the drop in performance of Monte Carlo.



36 CHAPTER 4. EXAMPLE: NET DRAG POWER REDUCTION OF THE FLUIDIC PINBALL

Figure 4.10: Same as figure 4.7 but for the feedback optimization MLC.

The expression of the best control law bFB is:

bFB1 (t) = log(s9(t− T0/2)),

bFB2 (t) = exp(0.18549
s1(t− 4T0/3)

s9(t)
),

bFB3 (t) = −1.12724,
JFB/J0 = 0.7451.

(4.5)

MLC managed to successfully combined sensors signals, delayed sensor signals and nonlinear function
to build a controller bFB that reduces even further the cost function compared to the bMF control law.
The actuation command resulting from bFB is plotted in figure 4.11. We note that the control resembles,

Figure 4.11: Time series of the actuation command for the best feedback control law found with MLC.

again, the boat tailing solution, however this strategy is augmented by a phasor control for the front
and bottom cylinder, meaning that the control of the front and bottom cylinder is directly related to the
oscillatory dynamics of the flow (Brunton and Noack, 2015). A spectral analysis shows that the main
frequency of b2 and b3 are both f3 = 0.112, suggesting that it is a direct feedback.

Figure 4.12 shows the characteristics of flow controlled by bFB. The controlled flow is purely har-
monic according to figure 4.12d, but the phase portrait, figure 4.12b, is slightly deformed due to the
third harmonic (not shown in the figure), even though its amplitude is imperceptible. The amplitude
oscillations of the lift coefficient also increased and the mean value is not null. The kinematics of the
flow, figure 4.13, show that the near jet disappeared and the length of the recirculation decreased like the
two last control strategies. However, we note that the recirculation bubble is a bit less reduced. Also,
the vortices stay attached longer before shedding. This is especially true for the bottom part where the
positive vortex stretches unusually, see figure 4.13c, 4.13d, 4.13e and 4.13f. The intensity of the positive
vortices is also lesser than the previous control. This can be explained by the re-energization of the shear
layers, especially the bottom one, due to the periodic component of the forcing, like Protas (2004). The
rotation of the front cylinder has been reported in other studies, such as Cornejo Maceda et al. (2019),
but its effect is not yet fully understood.
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Figure 4.12: Characteristics of the flow controlled by bFB starting from the steady solution (t = 0). The
transient spans until t ≈ 400. (a) Time evolution of the lift coefficient CL, (b) phase portrait, (c) time
evolution of the drag power Ja (blue), actuation power Jb (green) and net drag power J (red) and (d)
Power Spectral Density (PSD) showing the frequency f3 = 0.112.
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(a) t + T3/8 (b) t + 2T3/8

(c) t + 3T3/8 (d) t + 4T3/8

(e) t + 5T3/8 (f) t + 6T3/8

(g) t + 7T3/8 (h) t + T3

Figure 4.13: Vorticity fields of the flow controlled by the feedback control law derived by MLC (a)-(f)
Time evolution of the vorticity field in the last period of the 1000 time units simulation. The color code
is the same as figure 4.1. T3 is the period associated to the frequency f3.
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4.5 General control law optimization: multi-frequency and feed-
back control

Parameter Description Value

Function library
F2 = {+,−,×,÷,

exp, tanh, sin, cos, log}
s, h

Controller inputs
si(t), i = 1..36

hi(t), i = −4, ..,−1, 1, ..4
NVar Number of variable registers 8 + 36 + 3 = 47
NCst Number of constant registers 10

NInstr,max Max. number of instructions 50
NPop.size Population size 100
NG Number of generations 10
NTour Tournament size 7
NE Elitism 1
PCros Crossover probability 0.6
PMut Mutation probability 0.3
PRep Replication probability 0.1

Table 4.4: MLC parameters for general optimization including multi-frequency forcing and feedback
control.

In this last section, we run a hybrid optimization allowing both multi-frequency forcing and feedback
control. We have seen in Sec. 4.3, that periodic forcing has not been selected to control the fluidic pinball,
this may be related to the difficulty to build the proper frequency for control. By adding flow information,
we can expect MLC to build an open-loop periodic forcing modulated by a sensor signal and thus enable
a richer control. Such approach has been successfully employed to reduce the recirculation bubble of a
back-ward facing step at Reynolds number Re = 31500 in Chovet et al. (2017). Then, we allow s and
h as inputs of the controller and equation (2.1) becomes: b(t) = K(s(t),h(t)). The MLC parameters
are summarized in table 4.4. Figure 4.14 illustrates the learning process for the hybrid optimization.

Figure 4.14: Same as figure 4.7 but for the hybrid optimization MLC.

First, Monte Carlo sampling struggles to find a good individual and after 100 random evaluations, the
cost of the best individual is only J/J0 = 0.92. As detailed in Sec. 4.4, this can be explained by the
adding of extra inputs, which enlarges the search space. Contrary to the multi-frequency optimization
and feedback control optimization, we note that significant and regular improvements are made at each
generation until reaching a plateau at JHB = 0.7363 after seven generations. For all generations the
distribution of the individuals looks linear as opposed to the two previous optimizations where there
was an accumulation of good individuals in the final generations. This may be explained by the fact
that as new and more efficient individuals are built at each generation, the is still a lot of diversity in
the population. When the learning is slowed down, then the best individual takes over the population
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thanks to replication. From there, we enter a phase of fine tuning of the control law with only small
improvements and thus an accumulation of good individuals in the generation. Such behavior is likely
to be observed if more generations were computed.

Figure 4.15: Time series of the actuation command for the best feedback control law found with MLC.

The final control law bHB reads:

bHB
1 (t) = cos(cos(s8(t− T0/2)) + 0.88123),
bHB
2 (t) = cos(cos(s8(t− T0/2))),
bHB
3 (t) = −0.36574− s2(t),
JHB/J0 = 0.7363

(4.6)

The control built includes sensor information, a nonlinear function, cos, but no open-loop periodic
function. The three components contain feedback information. The time series of this control are
plotted in figure 4.15. The mean values of all controllers are in line with a boat tailing configuration,
however there is a non-negligible oscillatory component for all actuations. The three cylinders are in
direct feedback as the dominant frequency of the actuation commands are f4 = 0.108, the main frequency
of the flow. So far, bHB is the control that reduces the most the cost function with JHB/J0 = 0.7363.
However, in figure 4.16a and 4.16c, we notice that the transient extends until ≈ 700 convective time
units. The cost of the controlled flow computed on the post-transient regime is J/J0 = 0.7369, showing
that the extended transient only brings a negligible improvement. We note that taking into account
a longer time-window may enable solutions with long transients. We notice in figure 4.16a that the
oscillations of the lift coefficient increased alongside with its mean value. Yet, this asymmetry is not
obvious in the figure 4.17. Controlled with bHB, the flow is similar to the previous feedback control. We
note, nevertheless, that the recirculation bubble is slightly larger. As for bFB, the vortices stay attached
longer thanks to the closed-loop periodic forcing. We notice in particular that the positive vortex is
shed after a longer time interval than the negative vortex, indeed we notice a larger distance between
a positive vortex and the previous negative vortex downstream than between a negative vortex and the
previous positive vortex downstream.
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Figure 4.16: Characteristics of the flow controlled by bHB starting from the steady solution (t = 0). The
transient spans until t ≈ 400. (a) Time evolution of the lift coefficient CL, (b) phase portrait, (c) time
evolution of the drag power Ja (blue), actuation power Jb (green) and net drag power J (red) and (d)
Power Spectral Density (PSD) showing the frequency f4 = 0.108 and its first harmonic.
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(a) t + T4/8 (b) t + 2T4/8

(c) t + 3T4/8 (d) t + 4T4/8

(e) t + 5T4/8 (f) t + 6T4/8

(g) t + 7T4/8 (h) t + T4

Figure 4.17: Vorticity fields of the flow controlled by bHB. (a)-(f) Time evolution of the vorticity field
in the last period of the 1000 time units simulation. The color code is the same as figure 4.1. T4 is the
period associated to the frequency f4.
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4.6 Summary

Search space Control law J/J0 Ja/J0 Jb/J0

Unforced natural - 1 1 0

Symmetric
steady

b1 = 0,
b2 = −b3 = cst

0.7652 0.5695 0.1956

Multi-frequency
forcing

b(t) = K(h(t)) 0.7476 0.5109 0.2368

Feedback control b(t) = K(s(t)) 0.7451 0.4744 0.2706

General control b(t) =
K(s(t),h(t))

0.7363 0.4845 0.2518

Table 4.5: Summary of the performances for the best solutions of each type of optimization. The bold
values are the best for each cost.

In this chapter, we apply the MLC methodology previously described to minimize the net drag power
of the fluidic pinball. First, a parametric study on the subspace of symmetric steady forcing supports
that the boat tailing configuration appears as a key strategy to reduce the drag power. Then three search
spaces are explored, first we allow for multi-frequency forcing, then we optimize a feedback control law,
and finally, we allow both strategies for a hybrid optimization. All three optimizations built control
laws that include a boat tailing-like structure and discard the open-loop periodic functions when they
are in the function library. However, we notice that an asymmetry in the boat tailing is systematically
favored. Some improvement can be achieved with the addition of sensor information, reducing the cost
from JMF/J0 = 0.7476 to JHB/J0 = 0.7363. The costs of all runs are summarized in table 4.5. Thus,
in less than 1000 evaluations, MLC managed to build a control combining asymmetric boat tailing and
phasor control to reduce the net drag power in a model-free and with very few knowledge a priori. MLC
rediscovers, in particular, that to delay the vortex shedding, one can re-energize the shear layer with
periodic forcing and that vectoring the flow towards the centerline helps to increase the base pressure.
The hybrid control built with MLC achieves the most net drag reduction so far.

In this part, we unveiled the forces at play in the learning process of genetic programming and
applied to the reduction of the net drag power of the fluidic pinball. The parametric study of MLC,
carried out in App. A.2, revealed the importance of key meta-parameters. Such analysis serves as a guide
to select adequate parameters for future MLC studies. Applied to the fluidic pinball, MLC successfully
managed to build control laws in different search spaces in less than 1000 evaluations, revealing key
actuation mechanisms, without any prior knowledge, and combining them for further performance: the
best control comprises a combination of asymmetric boat tailing and phasor control.
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Chapter 5

Conclusions and outlook

We have introduced Machine Learning Control (MLC) based on linear genetic programming for a simple
dynamical system. This example is easily reproducible with the provided and documented Matlab code.
This code or small variations thereof have been applied in dozens of plants: nonlinear dynamical systems,
direct numerical simulations and turbulence control experiment (Noack, 2019). The meta parameters
have hardly been changed. The algorithm has reliably and repeatability converged to an assumed global
minimum of the cost function. Hence, MLC can be expected to be successfully applied in many other
nonlinear dynamics systems and flow control simulations or experiments without the need of change
of meta parameters, used functions, etc. While linear control theory provides unrivaled methods for
linear dynamics, MLC becomes more and more competitive with increasing control complexity, e.g., by
the degree of plant nonlinear, dimension of the dynamics, number of actuation commands and sensing
signals and also nonlinearity of the control law.

Yet, a few words of caution are in order. First, MLC is a stochastic optimization method for a
nonlinear plant and comes hence without any performance guarantees, like convergence against a global
minimum. Second, the typical number of sensors and actuators was O(1) − O(10). The learning time,
i.e. the number of individuals to be tested before convergence, is observed to slightly increase with the
number of actuators and sensors. The number of actuation commands is more critical than the number
of sensors. Third, a sensitive control problem where a small change of the control law implies a large
change in performance may not be best targets of vanilla MLC versions and requires caution with any
other control optimization/design as well. Fourth, in engineering applications the performance of the
optimized control law might be affected by a change of initial conditions, measurements noise, plant
uncertainty and changing operating conditions. As rule of thumb, a control law which employs large-
scale/dominant structures can be expected to be robust against such changes while actuation involving
small-scale/secondary structures may be fragile.

Machine learning control is an emerging rapidly evolving field overcoming some key challenges of
linear control theory. Research needs to be done on many fronts, inspired by the success stories of linear
control:

1. Control landscape: Visualization of the learning process. A starting point is offered in the first
book (Duriez et al., 2017).

2. Human interpretable control laws. A cluster-based visualization (Cornejo Maceda et al., 2021;
Castellanos et al., 2022) appears always doable and insightful.

3. Significant reduction of testing time. Here, myriad ideas come to mind, e.g., (1) surrogate modeling
of the cost function as function of the control, (2) model identification from the MLC run as
surrogate test plant, (3) pretesting of the control law to remove the time consuming testing of
similar or unpromising laws.

4. Robustness against measurement noise, plant uncertainty and changes of operating conditions. Cur-
rently, learning the control laws under varying operating conditions and with measurement noise
are a viable tested options.

5. Online adaptivity inspired by extremum seeking. The learning process for new operating conditions
ideally requires only small changes in the operating plant. Gradient-enriched MLC (Cornejo Maceda
et al., 2021) offers one avenue with subplex optimization on a chosen subspace of control laws.

45
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6. Transfer learning. How can the control learning of a new operating conditions be shortened knowing
the MLC run of another operating condition? The task poses a big challenge which seems not
currently addressed by any approach.

7. Failure safety of actuators and sensors. In praxi, actuators and sensors may fail, requiring a prompt
alternative control logic with the new reduced hardware. This is also one of the big challenge
problems formulated already in first book on genetic programming control (Dracopoulos, 1997).

An increasing community of researchers are working on all these research tasks. Enjoy working with
the MATLAB program xMLC and stay tuned for the progress to come!
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Appendix A

MLC parametric dependency

In this appendix, we report the influence of some key parameters of MLC on the optimization process.
In particular, we study the influence of the genetic operator probabilities (PCros, PMut, PRep) (Sec. A.2)
and the balance between population size and number of instructions (Sec. A.3). The parametric study
is carried on the stabilization of the damped Landau oscillator for its short evaluation time and its
relatively simple dynamics. The goal of this section is to establish some rules of thumb for the selection
of these parameters. First, we describe the optimal linear solution (Sec. A.1), employed as reference for
the future optimized control laws.

A.1 Control benchmark and optimal linear solution

A.1.1 Control benchmark

The control benchmark for this parametric study is the stabilization of the damped Landau oscillator
described in Sec. 3.3.1. For this study, we employ the same cost function except that we choose the
penalization parameter γ equal to 1 to assure a fast convergence towards the fixed point. Thus the cost
function employed is:

J = Ja + Jb

Ja =
1

Tmax

´
Tmax

0
(a21 + a22)dτ

Jb =
1

Tmax

´
Tmax

0
b2dτ

(A.1)

A.1.2 Optimal linear solution

We compute the optimal linear control of the control problem thanks to the fminsearch function of
MATLAB. fminsearch is a derivative-free method based on Nelder-Mead simplex method (Nelder
and Mead, 1965). We optimize the parameters of a linear control to stabilize the Landau oscillator.
The optimal linear control is detailed in equation (A.2). This solution has been found with a random
initialization of the fminsearch function. This local minimum may not be the global minimum of the
minimization problem but for the following we will refer to it as the ‘optimal linear control’. In fact, the
control law learned in the following sections, reveal that this solution is not the optimal linear control as
another linear solution performs better. For now, we only focus on the solution in equation (A.2), that is
only a local minimum. The associated cost is Jopt = 3.3403 which corresponding to a ∆Jopt/J0 = 94.70%
reduction of the unforced cost.

bopt = 2.4061a1 − 3.0984a2 (A.2)

Figure A.1 shows the controlled Landau oscillator and the actuation map for the control realized with
equation (A.2).

We notice that the symmetry of the problem is respected and that the system is successfully brought
to the fixed point (a1, a2) = (0, 0) in less than two periods. We recall that the actuation effect is to push
the system upwards (b > 0) or downwards (b < 0). The ratio of the coefficients in front of a1 and a2
define the angle for the separatrix dividing the space in two regions of positive and negative actuation.
The magnitude of the coefficients define the increase rate of the actuation level as the system moves away
from the separatrix. It is both the optimization of the separatrix angle and the actuation increase rate
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Figure A.1: Figures characterizing the optimal linear solution.

that brings the system faster towards the fixed point. It is worth noting that the optimal control leads
the system beyond the limit cycle for a short period of time. Evidently, if the control would be on the
first equation instead of the second, the results would be symmetrical to the a1 = a2 axis.

Our goal is then to stabilize the Landau oscillator with MLC and to find a better solution than the
optimal linear control.

A.2 Influence of genetic operators

In this section, we stabilize the damped Landau oscillator with increasingly complex MLC algorithms.
The starting point is the special case of MLC, where only one generation is employed. This case cor-
responds to a Monte Carlo sampling. Then, we progressively include the genetic operators (crossover,
mutation and replication) and analyze their influence on the algorithm’s performance.

A.2.1 Monte Carlo sampling

As detailed in Sec. 2.2, a Monte Carlo sampling consists in generating random matrices for each individual.
Thus, we must first define the search space, i.e., the space of candidate solutions to the problem.

The search space

Parameter Description Value

Function library F1 = {+,−,×,÷}
s Controller inputs a1, a2

NVar Number of variable registers 3
NCst Number of constant registers 3

NInstr,max Max. number of instructions 5

Table A.1: Parameters for the control ansatz.

In the linear genetic programming framework, the search space is defined by the function and inputs
library. The other parameters that can influence the exploration of the landscape are the number of
variable registers NVar, the number of constant registers NCst and the maximum number of instructions
NInstr,max. Indeed if NVar, NCst and NInstr,max are small then the control laws are bound to contain only
few operations, thus limiting the complexity of the accessible control laws. This aspect is further studied
in App. A.3. Table A.1 summarizes the parameters chosen for the Monte Carlo sampling.
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Based on these parameters, we can compute the total number of control laws in the search space by
listing all the possible combinations. For this, we multiple the possible values for each columns of the
instruction matrix and elevate the result at the power of the number of rows in the matrix. As we allow
matrices of different sizes, we need to add the results for each possible number of rows. Expression (A.3)
gives the order of magnitude of the number of possible control laws with the chosen parameters.

NInstr,max∑
q=1

[NR ×NR ×NO ×NVar]
q ≈ 1.5× 1013 (A.3)

where
NInstr,max: maximum number of instructions.

NR: total number of registers: NR = NVar +NCst.
NO: number of functions in the library or mathematical operators.
NVar: number of variable registers, where to store intermediate calculations.

This number 1.5 × 1013 represents the total number of matrices, i.e., the total number of accessible
control laws. For this estimation, we assume that all registers are initialized with different values, which
is often the case in practice, except for the output registers, i.e., the registers that store the control
laws, that are initialed with zeros. Table A.2 presents the initialization of the registers for the oscillator

Variable registers

r1 0
r2 s1
r3 s2

Constant registers

r4 c1 = −0.94
r5 c2 = −0.05
r6 c3 = −0.72

Table A.2: Initialization of the registers. The constants ci have been randomly taken in the range
[−1, 1].

stabilization problem before the execution of the instruction matrices.
Among the 1.5×1013 possible control law, there are, of course, a lot of identical and equivalent control

laws, due to overwriting, useless instructions, multiplication by 0, etc. This constitutes a valuable feature
as the expression of the global minimum is no longer unique and can be built in different ways, thus
reducing the ‘size’ of the search space.

A randomly generated control law

Figure A.2: Example of randomly generated matrix and its translation to a control law.

Figure A.2 shows an instruction matrix randomly generated and depicts the process of translation.
The resulting control is a constant beyond the actuation limits, thus this control law is equivalent to a
constant forcing at b = 1. Before performing a Monte Carlo sampling, let’s first generate a random control
law. Figure A.3 gives a visualization of the control law. To avoid controls with too strong actuations, we
limit the actuations between -1 and 1 with a clip function. We notice that with such action, the point
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(b) Visualization of the control law in the phase space. The
limit cycle is depicted with a dashed line.

Figure A.3: Visualization of the randomly generated control law b = 1.30. The control being limited
between -1 and 1, this control is equivalent to 1.

(a1, a2) = (−1, 0) becomes a fixed point. Indeed, without control this point is the unique point where
(ȧ1, ȧ2) = (0,−1), thus when adding a constant forcing b = 1, this point becomes a fixed point.

Monte Carlo sampling

Now, let’s perform a Monte Carlo sampling with the parameters of A.1. In order to emulate experimental
conditions, we only perform Ni = 1000 evaluations of the cost functions. Thus, we only generate 1000
control laws to be evaluated. Our Monte Carlo implementation is optimized with the screening of
redundant individuals. More informations are provided in App. D. Figure A.4a shows the distribution of

(a) (b)

Figure A.4: (a) Distribution of the cost of 1000 randomly generated control laws for the stabilization of the
damped Landau oscillator. (b) Envelop of 100 realizations of Monte Carlo sampling for the same problem.
The median realization (ρ = 50th best) is depicted in red. The black horizontal line represents the cost
of the best individual of the median realization. The associated cost reduction is ∆J/J0 = 91.17%. The
dashed line represents the cost of the optimal linear solution (∆Jopt/J0 = 94.70%). The vertical and
horizontal axis are in log scale. In both (a) and (b) the individuals are sorted following their cost.

costs in log-log scale for one realization of Monte Carlo sampling. The values are sorted and normalized
with the unforced cost J0. We notice in figure A.4a, that the performance of the best solution after 1000
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evaluated control laws is not as good as the optimal linear solution. The associated cost reduction is
∆J/J0 = 74%.

However, as we rely on a stochastic process, only one realization of the optimization process is not
enough to estimate the performance of the method. That is why, we perform Nρ = 100 realizations of
Monte Carlo sampling to have statistically relevant realizations. Figure A.4b shows the envelop of the
one hundred realizations of Monte Carlo. The cost reduction of the best individuals in the realization
envelop goes from 58.55% to 94.64%, and the median performance reduces the cost by ∆J/J0 = 91.17%.
In the following the realizations are indexed by ρ and the median performance is defined as the ρ = 50th

best realization. The best control law of the median Monte Carlo realization is

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

(b)

Figure A.5: Visualization of control laws in the phase space. (a) Best control law of the median Monte
Carlo realization (A.2.1). (b) Best control law of the best Monte Carlo realization (A.2.1). The limit
cycle is depicted with a dashed line.

bMC,median = 2.0907(a1 − a2)

and the best control law of the best Monte Carlo realization is

bMC,best = 3.7747(a1 − a2);

Their associated cost reduction are ∆J/J0 = 91.17% and ∆J/J0 = 94.64% respectively. The expressions
have been simplified compared to the expressions computed by xMLC. The two controls have the same
form but with a different coefficient. The coefficients are related to the width of the control band and thus
at the speed of convergence of the oscillator towards the fixed point. This difference can be appreciated
in figures A.5a and A.5b Figure A.6 displays the best individuals of the hundred realizations. We notice
that the first twenty-three control laws are all similar. They are similar to the optimal linear control
with different band width. Starting from the 33rd run, the best individuals takes more than two periods
to reach the fixed point. We remark a majority of linear-like solutions, especially among the best ones.
The first nonlinear solution is ranked 49th and the other ones are ranked beyond the 80th realizations.
We also notice that those nonlinear solutions still present a symmetry in their actuation map. Among
the least performing realizations, there are 15 control laws that are equivalent to −a2 to within one
multiplicative positive constant, resulting on horizontally symmetric solutions. We can expect that the
genetic operators in the following sections combines appropriately a1 and a2 for as faster stabilization.

The study shows that a Monte Carlo sampling is able to build a good performing control laws for such
problem. However, only 1/3 of all realizations achieved a stabilization in less than 2 periods. We note
in particular that the best control law of the median realization is far from an efficient solution as the
solution takes many periods to reach the fixed point. Monte Carlo sampling lacks reproducibility on the
ability to build efficient solutions. In the next sections, crossover and mutation are included progressively
in the learning process, showing that they allow much better performances in terms of speed, solution
and reproducibility.
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Figure A.6: Visualization of the best control laws for each one of the hundred 100 Monte Carlo realiza-
tions. The index ρ denotes the different realizations. The realizations are sorted by the cost of their best
individual. 1 being the best realization and 100 the worst. For simplicity, the trajectories for the four
initial conditions are only plotted for the two first periods only.

A.2.2 Exploitation with crossover

In this section, we improve the Monte Carlo sampling by introducing the crossover genetic operator. We
follow the algorithm described in figure 2.6 but only considering the crossover operator. For this, we
set the genetic operators probabilities to 0 except for the crossover, set to 1. As we rely on a evolution
process, we also set elitism to 1 to assure that the best individual is saved throughout the generations.
The parameters related to the evolution process are detailed in A.3. The remaining parameters are to
same as the one used for the Monte Carlo sampling, see table A.1. Like for the Monte Carlo sampling,
Nρ = 100 realizations of the crossover-only MLC are performed. Each realization consist of a population
of NPop.size = 100 individuals evolving through NG = 10 generations for a total of Ni = 1000 evaluations.
Figure A.7 summarizes the parameters for this study.

Like for Monte Carlo sampling, the 100 realizations are collapsed in a single figure A.8. First, we
note that the median realization of crossover-only MLC performs better than the Monte Carlo sampling
one. Second, the convergence speed is improved, indeed already after 700 evaluations, the cost of the
best individual is lower compared to the Monte Carlo sampling. This shows that a genetic programming
algorithm only including recombination with crossover is already able to stabilize the Landau oscillator
and performs better than Monte Carlo sampling.
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Parameter Description Value

NPop.size Population size 100
NG Number of generations 10
NTour Tournament size 7
NE Elitism 1
PCros Crossover probability 1
PMut Mutation probability 0
PRep Replication probability 0

Table A.3: Parameters for MLC with crossover only.

Figure A.7: Conceptual figure of the Nρ = 100 realizations of MLC. Each graph represents a realization
including NPop.size = 10 generations of 100 individuals. The median realization is denoted ρ = 50 and
colored in red.

The resulting algorithm is an exploitative-only or crossover-only MLC. To have a fair comparison
between Monte Carlo and MLC, we evaluate Ni = 1000 individuals distributed in a population of

NPop.size = 100 individuals that evolves 9 times for a total of Nρ = 10 generations.

The best control law of the median crossover-only MLC is

bC,median = a1 − 2.4876a2 (A.4)

and the best control law of the best realization is

bC,best = 0.63361(4a1 − 5a2); (A.5)

Their associated cost reduction are ∆J/J0 = 93.94% and ∆J/J0 = 94.69% respectively. After sim-
plification of the expressions, both control laws are actually linear with a cost reduction close to the
optimal linear solution (∆Jopt/J0 = 94.70%). We note, in particular, in figures A.9a and A.9b that the
separatrix angle is different for the two solutions leading to a faster convergence for the best realization.
Moreover, figure A.10 shows that 59 of the 100 realizations optimized control laws able to stabilize the
oscillator in less than 2 periods. Most of the best control laws derived are linear and close to the optimal
linear one, except for realizations 24 and 54 that presents nonlinear behaviors. The note that there is
around the same number of horizontally symmetric solutions (13) compared to Monte Carlo sampling.
An explanation may be a poor first generation of individuals that are not able to build better control
laws with crossover only. The explorative power of mutation is expected to generate new individual and
more complex individuals to enrich the population.
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Figure A.8: Costs of individuals for 100 realizations of crossover-only MLC. The gray region represents the
envelop of the 100 realizations. The individuals are divided in 10 groups of 100 individuals representing
the 10 generations. In a given generation the individuals are sorted by their cost. The median realization
is depicted in red. The black horizontal line represents the median cost for the Monte Carlo sampling.
The blue horizontal line represents the median cost (∆J/J0 = 93.94%) for the crossover-only MLC. The
black dotted line represents the cost of the optimal linear control law. The vertical axis is in log scale.

The exploitative-only or crossover-only MLC shows that only with one genetic operator genetic pro-
gramming is more performing than Monte Carlo sampling. Crossover-only MLC builds better control
laws are optimized with less evaluations and has a better reproducibility. Adding an explorative operator
is expected to improve the results.

A.2.3 Exploitation and exploration with crossover and mutation

Parameter Description Value

NPop.size Population size 100
NG Number of generations 10
NTour Tournament size 7
NE Rlitism 1
PCros Crossover probability 0, 0.1, ..., 1
PMut Mutation probability 1− PCros

PRep Replication probability 0

Table A.4: Parameters for crossover-mutation MLC

In this section, we progressively introduce exploration in the optimization process by tuning the
crossover and mutation probabilities. PCros goes from 1 to 0 by steps of 0.1 and PMut increases accord-
ingly. Thus, for (PCros, PMut) = (1, 0) MLC is purely exploitative, like in the previous section, and for
(PCros, PMut) = (0, 1) MLC is purely explorative. Table A.4 summarizes the parameters employed for
this section.

In total 11 configurations are tested. For each couple of (PCros, PMut) 100 realizations have been
carried out. Figure A.11a summarizes the performances of the median realization for each configuration.
We recall that in this study we define the median as the 50th realization. First, we note that an
exploration-only MLC based only on mutation performs worse than any other combination but still better
than Monte Carlo sampling. This shows that random ‘mutation’ of the best individuals throughout the
generations is able to improve the performance of individuals and is better than just a random sampling.
However, exploration-only MLC is less performing than exploitation-only MLC. This may be explained
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Figure A.9: Visualization of control laws in the phase space. (a) Best control law of the median crossover-
only MLC realization (A.4). (b) Best control law of the best crossover-only MLC realization (A.5). The
limit cycle is depicted with a dashed line.

by the fact that crossover recombines individuals that are known to be good whereas mutation still relies
on randomness to improve its best individuals. Second, we note that any combination of crossover and
mutation performs better than crossover and mutation only. In particular, they are 4 configurations
PMut = 0.2, 03, 04, 0.5 that reduce the cost to the same level and close to the performance of the optimal
linear control solution. The two best ones being PMut = 0.3 and PMut = 0.4. Figure A.11b shows the
learning process of the (PCros, PMut) = (0.7, 0.3) configuration. We note in particular that compared
to crossover-only MLC, this configuration learns better control laws and with less evaluations. Indeed,
already after 500 evaluations, an individual performing better than crossover-only MLC has been found.

Figure A.13b shows that for the (PCros, PMut) = (0.7, 0.3) configuration, 79 of the 100 realizations
optimized control laws able to stabilize the oscillator in less than 2 periods. Again, like for crossover-only
MLC, most of the best control laws derived are linear and close to the optimal linear one, except for
realizations 75 and 79 that presents nonlinear behaviors. Moreover, 6 realizations optimized horizontally
symmetric control laws, which is half the number of crossover-only MLC and Monte Carlo sampling.
This shows that the introduction of mutation improves indeed the exploration capability of MLC.

Equation (A.6) is the control law that has been found by the median realizations of the four best
configurations in figure A.11a.

bCM,median = 2a1 − 3a2 (A.6)

This same control law has been in the four configuration. The coefficients have been built by additions
and subtraction of a1 and a2 only, these realizations ignored the random constants in the registers. The
best control law of the best realization of (PCros, PMut) = (0.7, 0.3) MLC configuration is:

bCM,best = 2.4932a1 − 3.1001a2. (A.7)

Again, it is a linear control but whose coefficients have been build from the random constants. The
cost reduction associated to the median and best realization are, respectively, (∆J/J0 = 94.62%) and
(∆J/J0 = 94.69%). Figures A.13a and A.13b displaying their corresponding visualizations. The only
difference noticeably is the angle of the separatrix.

We’ve shown that combining crossover and mutation allows better performances than crossover and
mutation alone. Control laws performing as well as the optimal linear control are built with less evalu-
ations. The reproductivity of the results have also been improved as there are more realizations being
able to quickly stabilize the oscillator. In the next section, we analyze the full-fledge MLC, i.e., including
crossover, mutation and replication.

A.2.4 MLC Optimization with crossover, mutation and replication

In this section, we study the influence of the operators probability (PCros, PMut, PRep). For this, we run
MLC optimizations with different combinations of (PCros, PMut, PRep). We start from (PCros, PMut, PRep) =
(1, 0, 0), full crossover, and we increase and decrease each parameter with a step of 0.1. We recall that
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Figure A.10: Same as A.6 but for crossover-only MLC.

PCros + PMut + PRep = 1. There are in total 66 combination of parameters to test. We run Nρ = 100
realizations for each combination of probabilities. The parameters are summarized in table A.5.

Figure A.14 presents the results of the 66 configurations. The replication-only is, as expected, the
worse configuration. Indeed, this is equivalent to run a Monte Carlo sampling with only Ni = 100 individ-
uals. The addition of crossover and mutation progressively improves the replication-only optimization.
We notice that both crossover-only and mutation-only MLC are less efficient than most of the combina-
tions of crossover, mutation and replication. Also, it is the combination of crossover and mutation that
gives the best results. We note that from configuration (PCros, PMut, PRep) = (0.4, 0.1, 0.5), ranked 52nd,
the median costs are lower than the median cost of Monte Carlo sampling.

It is worth noting that crossover-only MLC (ranked 43rd) is better than mutation-only MLC (ranked
47th). This indicates that crossover and exploration has a better learning potential than the exploitative
power of mutation.

Also, we highlight that the median cost of the 21 first configurations are all equal. Indeed, the median
realizations of these 21 configurations all manage to build the same controller, in 13 different ways:

b = 2a1 − 3a2

that reduces the cost by ∆J/J0 = 94.62%, see Sec. A.2.3 and figure A.13a. Surprisingly, even for such
simple configuration, the replication operator also plays a non-negligible part as the 21 first configurations
are all equivalent. We can conclude that memory is beneficial to explore a search space even when it is
expected to have few minima.

To differentiate the configurations, we look at the cost of the best individual for their 25th realiza-
tion. The five best configurations have similar costs and are in the same region: (PCros, PMut, PRep) =
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(a) (b)

Figure A.11: (a) Performance of MLC regarding the parameters PMut = 1 − PCros. The most cost
reduction (∆J/J0 = 94.62%) is achieved for configurations PMut = 0.2 to PMut = 0.5. The vertical axis
is in log-scale. (b) Same figure as A.8 but for the (PCros, PMut) = (0.7, 0.3) configuration of MLC. The
best median best cost for crossover-mutation MLC is not displayed as it value would overlap with the
cost of the optimal linear solution.

(0.6, 0.2, 0.2), (0.7, 0.2, 0.1), (0.6, 0.3, 0.1), (0.5, 0.2, 0.3), (0.5, 0.4, 0.1). We choose to study the config-
uration at the ‘center’ of them all (PCros, PMut, PRep) = (0.6, 0.3, 0.1). Figure A.15 shows the learning
process of this configuration for the median realization. Like for crossover-mutation (PCros, PMut, PRep) =
(0.7, 0.3, 0) MLC, the learning is accelerated compared to crossover only and the best solution reaches
reduces the cost similarly to the optimal linear solution.

Figure A.16 shows the best control laws of all realizations of (PCros, PMut, PRep) = (0.6, 0.3, 0.1)
MLC. We note, first that 78 realizations manage to stabilize the fixed point in less than two periods.
This number is one less than the crossover-mutation (PCros, PMut, PRep) = (0.7, 0.3, 0) MLC. This is not
surprising as the control laws are less recombined due to the 0.1 replication probability. However, we
note that there are only 2 horizontally symmetric solution, suggesting that memory benefits in building
complex control laws.

The best control law all probability combinations and realizations combined is found for the config-

Parameter Description Value

Function library F1 = {+,−,×,÷}
s Controller inputs a1, a2

NVar Number of variable registers 3
NCst Number of constant registers 3

NInstr,max Max. number of instructions 5
γ Penalization parameter 1

NPop.size Population size 100
NG Number of generations 10
NTour Tournament size 7
NE Elitism 1
PCros Crossover probability PCros

PMut Mutation probability PMut

PRep Replication probability 1− PCros − PMut

Table A.5: xMLC for the optimization. The operators probability (PCros, PMut, PRep) are studied in this
section.
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Figure A.12: Same as A.10 but for the (PCros, PMut) = (0.7, 0.3) MLC configuration.

uration (PCros, PMut, PRep) = (0.5, 0.4, 0.1) and reads after simplification:

bbest =

(
a1 − 2a2

a1

)2

(a1 − a2).

It allows a cost reduction of ∆Jbest/J0 = 94.78%, better than the optimal linear control, revealing that
the linear control is in fact not the global minimum of the problem. It is worth noting that bbest is built
only from a1 and a2. No constants have been used to ‘adjust’ the control law. This may be explained by
the fact that tuning constants from the initial random ones is costly in terms of instructions. Figure A.17
shows the phase portrait of the controlled oscillator with the best control found bbest. The actuation
map displays the nonlinear effect of the control. The actuation is globally similar to the linear control,
however the control intensifies near the fixed point. An absence of control in the diagonal direction
prevents the system to go beyond the limit cycle unlike the optimal linear control and thus converges
even faster. The curvature of the lobes that delimit the control must play a role in the fast convergence
of the system towards the fixed point. We note that the oscillator converges linearly when close enough
to the fixed point. Thus, xMLC manages to find an unexpected structure for the control law that performs
better than the optimal linear control. We can expect that this nonlinear control law can be improved
with adequate constant tuning.

If we take a look at the best individual of the (PCros, PMut, PRep) = (0.6, 0.3, 0.1) combination, all
realizations combined, we notice that the best control law is not only linear:

b(0.6,0.3,0.1),best = 2.4353a1 − 3.1238a2
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Figure A.13: Visualization of control laws in the phase space. (a) Best control law of the median
crossover-mutation MLC realization (A.6). (b) Best control law of the best crossover-mutation MLC
realization (A.7). The limit cycle is depicted with a dashed line.

but the associated cost reduction ∆J/J0 = 94.70% is similar to the ‘optimal’ linear control found with
fminsearch. This shows that the solution (equation (A.2)) is, in fact only a local minimum of the space
of linear control laws. When we run a fminsearch with this new control law as initial condition, we
do not observe any improvement thus we can assume that this new solution is another local minimum
in the space of linear control laws. One explanation of the presence of several minima in such simple
dynamical system may be the nonlinear saturation of the actuation command. We do not display the
phase portrait of the best linear control found with the (PCros, PMut, PRep) = (0.6, 0.3, 0.1) combination
as it is identical to figure A.1 and no differences can be seen with the naked eye.

Here, we shall stop the analysis of the influence of the probability operators (PCros, PMut, PRep) to
focus on other meta-parameters. In the following, we employ MLC with the (PCros, PMut, PRep) =
(0.6, 0.3, 0.1) configuration as it is one that have the lowest median cost value.
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Figure A.14: Performance of MLC regarding the parameters (PCros, PMut, PRep = 1−PCros−PMut). Each
block of the triangle corresponds to one probability configuration. A neighbor block means a variation
of 0.1 of the genetic operator probabilities. Top block is crossover-only (1, 0, 0), bottom-left block is
replication-only (0, 0, 1) and bottom-right block is mutation-only (0, 1, 0). For each configuration 100
realizations have been carried out. The color code symbolize the performance of the best individual
for the median realization of each configuration. The configurations are ranked following their relative
performance, 1 being the best configuration and 66 the worst. The first 21 configurations have all the
same minimum value corresponding to a cost reduction of ∆J/J0 = 94.62%. Configurations 52 to the
66 perform worse than Monte Carlo sampling.

Figure A.15: Same figure as A.8 but for full-fledge MLC with the configuration (PCros, PMut, PRep) =
(0.6, 0.3, 0.1).
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Figure A.16: Same as A.12 but for full-fledged MLC.
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cost function and radius for the controlled case.
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(b) Visualization of the control law in the phase space.

Figure A.17: Figures characterizing the best control law bbest derived thanks to xMLC with the
(PCros, PMut, PRep) = (0.5, 0.4, 0.1) combination.
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A.3 Influence of population size and number of instructions

In this section, we present the influence of other parameters on the learning process of xMLC. In particular,
we investigate the role of the population size NPop.size, the maximum number of instructions NInstr,max

and the choice of the function library.

Parameter Description Value

Function library
F1 = {+,−,×,÷}

F2 =
F1 ∪ {exp, tanh, sin, cos, log}

s Controller inputs a1, a2
NVar Number of variable registers 3
NCst Number of constant registers 3

NInstr,max Max. number of instructions [2,5,10,20,50,100,200,500,1000]
NPop.size Population size [10,20,50,100,200,500,1000]
NG Number of generations [100,50,20,10,5,2,1]
NTour Tournament size 7
NE Elitism 1
PCros Crossover probability 0.6
PMut Mutation probability 0.3
PRep Replication probability 0.1

Table A.6: Parameters for the parametric study of MLC. The studied parameters are in bold. Parameters
are separated in two sets: (top) parameters that define the control laws, (bottom) parameters that define
the learning process.

For a fair comparison between the parameters, we run all MLC optimizations with Ni = 1000 indi-
viduals. Seven population sizes are tested: 10, 20, 50, 100, 200, 500, 1000 with the adequate number
of generations: 100, 50, 20, 10, 5, 2, 1. The 1000 individual run is equivalent to a Monte Carlo op-
timization, Also, we vary the maximum number of instructions NInstr,max, nine values are tested: 2,
5, 10, 20, 50, 100, 200, 500, 1000. This means that for NInstr,max = 2, the instruction matrix only
contains two rows, and one thousand rows for NInstr,max = 1000. Finally, we look at the impact of
the function library in the optimization process. We investigate two libraries: F1 = {+,−,×,÷} and
F2 = {+,−,×,÷, exp, tanh, sin, cos, log}. The rest of the parameters are the same as the previous section
and are summarized in table A.6. The operator probabilities (PCros, PMut, PRep) are chosen according to
Sec. A.2.

To have a relevant estimation of the performance of each combination of parameters, we realize
Nρ = 100 runs for each combination of parameters.

A.3.1 F1 = {+,−,×,÷}
Let’s first look at the results for the library employed in Sec. A.2. In figure A.18, we notice, first, that
there is a favored region in the parameter space for a best median performance. This region includes
NInstr,max ∈ [5, 10] and NPop.size ∈ [50, 100] and the performance decreases smoothly beyond this region.
The best configuration of all is (NInstr,max, NPop.size) = (5, 100).

We remark that for a fixed population size, performance decreases when we increase the maximum
number of instructions. This can be explained by the fact that as we allow more instructions, the search
space becomes all the more bigger. Indeed, with more instructions, more and more complex control
laws can be built, with the possibility to have a high level of function nesting. When a large number of
instructions is employed, a bigger number of generations is preferred. Indeed, as the matrices have many
more rows, several rounds of crossover and mutation are needed to shape the control law by selecting the
adequate operators, registers and avoiding that further instructions destroy the intermediate expressions.
This also shows that too much instructions can be a hindrance for the learning process. For the ‘simple’
problem that is the stabilization of the oscillator where rather simple control laws are expected to
work, a small number of instructions seems to be favored. However, to chose too few instructions is
not advantageous as we lose too much in complexity of the control laws. The maximum number of
instructions should be large enough to include relevant solutions but not too much otherwise, the search
space becomes too large to be effectively explored in a reasonable number of generations.
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Figure A.18: (a) Performance of MLC regarding population size and maximum number of instructions
for the function library F1 = {+,−,×,÷}. The combination of parameters are ranked following the
performance of their median realization. The combination ranked first is (NInstr,max, NPop.size) = (5, 100).
(b) Cost reduction of the median realization of the different combinations. The horizontal axis represent
the rank of the configuration described in (a). (a) and (b) share the same color code.

Concerning the population size, we notice that population sizes around 50 and 100 are favored. Also,
some Monte Carlo samplings, especially with NInstr,max = 2 and 5, perform better than MLC with
NPop.size = 10. This is because small populations are more vulnerable to random variations of the
population due to mutation; a given structure can more easily take over the population even if it is not
the best one, discarding relevant structures and leading the population into a local minimum. This effect
is also referred in biology as genetic drift.

-1 0 1

-1

0

1

Phase space

0 10 20

-1

-0.5

0

0.5

1

Actuation

0 25 50

0

0.5

1

1.5

Cost function

1.51.51.51.5

0 10 20

0

0.25

0.5

0.75

1

1.25

Radius

(a) Phase space, actuation command, instanta-
neous cost function and radius.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

(b) Visualization of the control law in the phase space. The
limit cycle is depicted with a dashed line.

Figure A.19: Visualization of the controlled Landau oscillator with the best control law found for the
function library F1 = {+,−,×,÷}.
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The best control law among all realizations is:

bF1,best =
(a2 − a1)2

(a2 − a1)

−0.69096
− 5(a2 − a1)

(a2 − a1)
− 6(a2 − a1)

− 3(a2 − a1)

and is depicted in figure A.19. This complex expression, nesting divisions, has been found with the
combination (NInstr,max, NPop.size) = (20, 200) and reduces the cost by ∆J/J0 = 95.50%. Even though
a limit a 200 instructions was needed to find it, we note that the matrix of this control law has in fact
23 rows. Figure A.19 shows that the convergence of the oscillator towards the fixed point is not as fast
as previous solution, indeed, we can still distinguish oscillations after the second period. However, this
solution seems to favor less intense actuation and thus reducing the Jb component of the cost function.
Indeed, the cost of the linear optimal control is as follows: Jaopt/J0 = 2.16%, Jbopt/J0 = 3.14% and the
cost of bF1,best is: Ja/J0 = 1.76%, Jb/J0 = 2.74%

A.3.2 F2 = F1 ∪ {exp, tanh, sin, cos, log}
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Figure A.20: (a) Performance of MLC regarding population size and maximum number of instruc-
tions for the function library F2 = F1 ∪ {exp, tanh, sin, cos, log}. The combination of parameters
are ranked following the performance of their median realization. The combination ranked first is
(NInstr,max, NPop.size) = (5, 100). (b) Cost reduction of the median realization of the different combi-
nations. The horizontal axis represent the rank of the configuration described in (a). (a) and (b) share
the same color code.

We now add nonlinear functions in the function library, allowing oscillations with cos and sin, expo-
nential and logarithm growth with exp and log and saturation with tanh. As we allow more complex
expressions, we can expect to find complex and more efficient solutions than the linear optimal control.
Figure A.20 show similar tendencies for the median realization as for the F1 library. We note however
that the performances have dropped in general. This can be explained by the fact, as we augment the
function library, the search space becomes bigger and more individuals are needed to explore more control
law structures. The combination (NInstr,max, NPop.size) = (5, 100) stands out from the other combinations
as the best one with a reduction of ∆J/J0 = 93.40% of the unforced cost.

The best configuration for the F2 library is (NInstr,max, NPop.size) = (5, 100) as it is ranked first in
terms of median cost.

The all time best control law has been found for the combination (NInstr,max, NPop.size) = (20, 50)
and reduces the cost by ∆J/J0 = 97.08% with a matrix containing 28 rows. We shall not show the
control law as it is exceedingly complex. It comprises 215 instances of cos, 217 instances of ÷, 216
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instances of (a1 − a2) and two times the same constant. Following the number of occurrences of the
operators, we can assume that the same pattern has been repeated and nested to shape the control law.
However, we cannot trust this solution as it appears to exploit the rather coarse time step chosen for
integration. Indeed, the dynamics and cost of this control law vary considerably when the integration
time step decreases.

The success of MLC is that it managed to detect and exploit the most receptive state of the oscillator
to efficiently control it with minimum actuation energy. The most difficult task for MLC may have been
to build the transient part of the control, to guide the system towards the state of interest. Indeed, the
best strategy found by MLC has been to let the system evolve freely until it gets to the region where the
forcing is the most efficient, see figure A.17. Such strategy balances effectively stabilization and actuation
power. It has been built thanks to nonlinear functions and we can assume that augmenting the function
library with more nonlinear functions, such as inequality signs (> or ≤) and boolean operators, can help
the learning of better control laws. However, one must select the function library carefully since a too
diverse library lowers the general performance.
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Appendix B

Define user’s problem

The definition of a MLC problem and its parameters is done by two files: MyProblem problem.m and
MyProblem parameters.m respectively. In Sec. B.1, the Plant/MyPlant/MyProblem parameters.m file
is detailed. This file should be used as a template to build one’s own parameter file. A template for the
definition of a MATLAB problem is also given in Sec. B.2. To adapt the parameter file to her/his own
problem, the user is invited to create a new folder in Plant/ with a name related to her/his problem.
There is no restriction on the name of the folder as it is not used in the code.

B.1 User’s parameter file

The Plant/MyPlant/MyProblem parameters.m is a basis to define one’s own parameter file. In this sec-
tion, we provide comments and suggestions on how to choose the parameters. The parameters displayed
are just examples, they are coherent between them but do not represent any real problem.

1 function parameters = MyPlant_parameters ()

2 % Template file to write one ’s own parameter file.

3 % Every instance of "MyPlant" should be replaced by an adequate name.

4 % Lines ending with a "*" should not modified.

5 %

6 % Guy Y. Cornejo Maceda , 2022/07/01

7 %

8 % See also default_parameters.

9

10 % Copyright: 2022 Guy Cornejo Maceda (gy.cornejo.maceda@gmail.com)

11 % The MIT License (MIT)

12

13 %% Options

14 parameters.verbose = 2;

The parameter file is divided in four main sections. First, the general parameters define the type of
problem and how the xMLC code handles it.

16 %% General parameters

17 parameters.Name = ’TestRun ’; % Name used to save the MLC object.

18 % Name of the problem file. This name corresponds to the first part of

19 % the MyPlant_problem.m file.

20 % Of course , one can have several parameter files referring to the same

21 % problem.

22 parameters.EvaluationFunction = ’MyPlant ’;

23 % Following if the plant is a MATLAB file or an external

24 % solver/experiment:

25 % - ’MATLAB ’ : when there is a *_problem.m file.

26 % - ’external ’: should be used when a numerical solver is

27 % employed.

28 % - ’LabView ’ : should be used when xMLC is interfaced with an

29 % experiment using LabView.

30 % For the last options , the EvaluationFunction parameter does not

31 % matter.

67
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32 parameters.ProblemType = ’MATLAB ’; % ’MATLAB ’, ’external ’ or ’LabView ’

33 % Path for external evaluation.

34 % When the code is interfaced with an external solver or LabView ,

35 % files are exchanged via the folder in the PathExt path.

36 % For ’MATLAB ’ type problems , this path is useless.

37 parameters.PathExt = ’/Costs’; % Folder to exchange information.

Secondly, the problem parameters define the inputs and outputs of the controller, and some parame-
ters related to the system to control.

39 %% Problem parameters

40 % Inputs and outputs definition

41 % The inputs and outputs are considered from the controller point

42 % of view. Thus , outputs corresponds to the actuation commands and

43 % the inputs are the sensors signals or time dependent functions.

44 % Outputs ---Control laws

45 ProblemParameters.OutputNumber = 2; % Number of control laws

46 % Inputs ---Sensors and time dependent functions

47 % si(t)---Sensor signals

48 ProblemParameters.NumberSensors = 2;

49 % Name of the variables in the solver.

50 % Here ’a1 ’ and ’a2 ’ represent state vectors.

51 ProblemParameters.Sensors = {’a1’,’a2’};

52 % hi(t)---Time dependent functions

53 ProblemParameters.NumberTimeDependentFunctions = 2;

54 % Include the list of time dependent functions in the

55 % MATLAB/Octave syntax. The time variable should be ’t’.

56 ProblemParameters.TimeDependentFunctions = ...

57 {’sin(2*pi*1.5*t)’,’sin(2*pi *2.5*t)’};

58 % Include the list of time dependent functions one more time in

59 % the solver ’s syntax (Fortran , MATLAB , LabView , ...).

60 % If no time dependent functions are employed then comment.

61 ProblemParameters.TimeDependentFunctions (2,:) = ...

62 {’sin(2*pi*1.5*t)’,’sin(2*pi *2.5*t)’};

63 % Consistency test. %*

64 ProblemParameters.InputNumber = ... %*

65 ProblemParameters.NumberSensors +... %*

66 ProblemParameters.NumberTimeDependentFunctions; %*

67 % Control syntax definition. %*

68 Sensors = cell(1, ProblemParameters.NumberSensors); %*

69 TDF = cell(1, ProblemParameters.NumberTimeDependentFunctions); %*

70 for p=1: ProblemParameters.NumberSensors %*

71 Sensors{p} = [’s(’,num2str(p),’)’]; %*

72 end %*

73 for p=1: ProblemParameters.NumberTimeDependentFunctions %*

74 TDF{p} = [’h(’,num2str(p),’)’]; %*

75 end %*

76 ControlSyntax = horzcat(Sensors ,TDF); %*

The plant parameters are divided in two groups: The parameters that are essential because used in
the code, and additional parameters employed in the problem file. The user is free to add any parameters
she/he wants it this part. All parameters are sent to the problem for the evaluation of one individual.

99 % Plant parameters.

100 % Essential problem parameters used in the code.

101 ProblemParameters.T0 = 0; % Not always used

102 ProblemParameters.Tmax = 10; %

103 % Actuation limitation : [lower bound ,upper bound]

104 ProblemParameters.ActuationLimit = ...

105 [-2 ,2;... % Boundaries for the first actuator.

106 -1,1]; % Boundaries for the second actuator.

107 % The evaluation of the cost function and the control points

108 % will be rounded to the ’RoundEval ’ parameter.

109 ProblemParameters.RoundEval = 6;

110 % Estimate performance
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111 % When a control law is evaluated several times , its

112 % performance can be computed by taking the average of all the

113 % evaluations.

114 % Other options are also possible if there is a drift , such as:

115 % - ’last ’ : takes the cost of the evaluation

116 % - ’worst ’: takes the cost of the worst evaluation

117 % - ’best ’ : takes the cost of the best evaluation

118 ProblemParameters.EstimatePerformance = ’mean’;

119

120 % Problem parameters used in the *_problem.m file.

121 % Maximum evaluation time otherwise returns a bad value

122 ProblemParameters.TmaxEv = 5;

123 % Penalization parameter

124 % It is a vector that multiplies the secondary components of

125 % the cost function such as:

126 % J = Ja + gamma (1)*Jb + gamma (2)*Jc

127 ProblemParameters.gamma = [0.01 ,10];

128 % Other parameters used by the solver or normalization of the

129 % cost function.

130 ProblemParameters.ReynoldsNumber = 100; % For example.

131 ProblemParameters.J0 = 1; % For example.

132 ProblemParameters.Jmin = 0; % For example.

133 ProblemParameters.Jmax = inf; % For example.

134 % ...

135

136 % Assignation

137 parameters.ProblemParameters = ProblemParameters; %*

Then, the control law parameters define the space of the matrices, i.e., the space of control laws. The
following parameters define the maximum number of lines (or instructions) in the matrix, the range of
each column, i.e., the mathematical operations, and the registers (constant and variable).

118 %% Control law parameters

119 % Number of instructions.

120 % InitMin and InitMax define the range of number of instructions when

121 % the matrices are generated randomly.

122 % The number of instructions for each matrix is then chosen randomly

123 % with an uniform distribution.

124 % Max defines the maximum number of instructions during the learning

125 % process. This is used during the crossover operation as the number of

126 % instructions can grow larger than the initial number.

127 ControlLaw.InstructionSize.InitMax =20;

128 ControlLaw.InstructionSize.InitMin =1;

129 ControlLaw.InstructionSize.Max =20;

130

131 % Operators.

132 ControlLaw.OperatorIndices = [1:5 ,7:9];

133 % implemented: - 1 addition (+)

134 % - 2 subtraction (-)

135 % - 3 multiplication (*)

136 % - 4 division (%) - protected (my_div)

137 % - 5 sinus (sin)

138 % - 6 cosines (cos)

139 % - 7 logarithm (log) - protected (my_log)

140 % - 8 exp (exp)

141 % - 9 tanh (tanh)

142 % - 10 square (.^2)

143 % - 11 modulo (mod)

144 % - 12 power (pow)

145 % Precision of the evaluation of the control laws.

146 % The default value is 6.

147 % If this value is changed , one must also update the protected

148 % operators: my_div and my_log.

149 ControlLaw.Precision = 6;

150
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151 % Definition of the registers.

152 % Number of variable registers.

153 % The minimum number is the sum between the number of inputs and

154 % outputs.

155 VarRegNumberMinimum = ProblemParameters.OutputNumber +... %*

156 ProblemParameters.InputNumber; %*

157 % More variable registers can be added if necessary.

158 ControlLaw.VarRegNumber = VarRegNumberMinimum + 3;

159 % Number of constant registers.

160 % Here , we only set random constants in the constant registers but

161 % one can also include sensor signals.

162 ControlLaw.CstRegNumber = 4;

163 % Range of the random constants constants.

164 % In this example , the range of the four constants is [ -1;1].

165 ControlLaw.CstRange = repmat ([-1,1], ControlLaw.CstRegNumber ,1);

166 % Total number of registers.

167 ControlLaw.RegNumber = ... % Total number of operands *

168 ControlLaw.VarRegNumber + ... % Number of variable registers *

169 ControlLaw.CstRegNumber; % Number of constant registers *

170 % Register initialization (recommended)

171 NVR = ControlLaw.VarRegNumber;

172 RN = ControlLaw.RegNumber;

173 r{RN}=’0’;

174 r(:) = {’0’};

175 % Variable registers

176 for p=1: ProblemParameters.InputNumber

177 r{p+ProblemParameters.OutputNumber} = ControlSyntax{p};

178 end

179 % Constant registers

180 minC = min(ControlLaw.CstRange ,[] ,2);

181 maxC = max(ControlLaw.CstRange ,[] ,2);

182 dC = maxC -minC;

183 for p=NVR +1:RN

184 r{p} = num2str(dC(p-NVR)*rand+minC(p-NVR));

185 end

186 % Assignation

187 ControlLaw.Registers = r; %*

To accelerate the learning, individuals with originally different mathematical expression but exactly
equal after simplification are searched to be removed. For this, the control laws are evaluated on random
sensor samplings. Those samplings are referred as ‘control points’ in the code. Random time samples
are also generated for the time dependent functions.

189 % Control law estimation.

190 ControlLaw.ControlPointNumber = 1000;

191 % Sensor range to define the sampling points.

192 % In this case , the range of all sensors is [-2,2].

193 ControlLaw.SensorRange = repmat ([-2 2],...

194 ProblemParameters.NumberSensors ,1);

195 % Definition of random sampling points (ControlPoints) and random

196 % time samplings for the control law estimation

197 Nbpts = ControlLaw.ControlPointNumber; %*

198 Rmin = min(ControlLaw.SensorRange ,[] ,2); %*

199 Rmax = max(ControlLaw.SensorRange ,[] ,2); %*

200 dR = Rmax -Rmin; %*

201 ControlLaw.EvalTimeSample = rand(1,Nbpts)*ProblemParameters.Tmax;%*

202 ControlLaw.ControlPoints = ... %*

203 rand(ProblemParameters.NumberSensors ,Nbpts).*dR+Rmin; %*

204

205 % Assignation

206 parameters.ControlLaw = ControlLaw; %*

Finally, the MLC parameters define the optimization process. In addition to the genetic operators
probabilities parameters, there are also some screening of the individuals options.
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208 %% MLC parameters

209 % Population size

210 parameters.PopulationSize = 10;

211 % Optimization options

212 % Optimization of the first generation only (Monte Carlo).

213 % It removes the duplicated individuals , redundant , etc.

214 parameters.OptiMonteCarlo = 1;

215 % Remove individuals whose evaluation failed (bad)

216 parameters.RemoveBadIndividuals = 1;

217 % Remove already evaluated individuals

218 parameters.RemoveRedundant = 1;

219 % Remove the individuals if they have already been evaluated in a

220 % earlier generations.

221 parameters.CrossGenRemoval = 1;

222 % Evaluate the initial condition of the registers (here:b=0)

223 parameters.ExploreIC = 1;

224 % The crossover and mutation operators are until new individuals are

225 % generated or MaxIterations iterations is reached.

226 parameters.MaxIterations = 100;

227 % Reevaluation of the individuals for stochastic problems.

228 % This parameter implicitly set to 1 for experiments.

229 % - 0: No revaluation

230 % - 1: Force the reevaluation of the replicated and "elitism" indiv.

231 % - n: Each individual is reevaluated n times.

232 parameters.MultipleEvaluations = 0;

233 % Selection parameters.

234 parameters.TournamentSize = 7;

235 parameters.p_tour = 1;

236 % Genetic operator parameters

237 parameters.Elitism = 1;

238 parameters.CrossoverProb = 0.6;

239 parameters.MutationProb = 0.3;

240 parameters.ReplicationProb = 0.1;

241 % Other genetic parameters

242 % How many mutations per matrix (MutationType)?

243 % - ’classic ’: depends on the mutation rate. The mutation rate is

244 % the probability that a given line changes.

245 % - ’at_least_one ’: the mutation rate is set such as there is at

246 % least one mutation per matrix.

247 % - ’number_per_chromosome ’: the mutation rate is set such as

248 % there is at least MutationNumber mutations per matrix.

249 % least one mutation per matrix.

250 parameters.MutationType = ’number_per_matrix ’;

251 parameters.MutationNumber = 1;

252 parameters.MutationRate = 0.05;

253 % Number of cuts in the matrices for the crossover operation.

254 parameters.CrossoverPoints = 1;

255 % If CrossoverMix =1, the offsprings are built by alternating their

256 % parents sections , if CrossoverMix =0, the sections are selected

257 % randomly.

258 parameters.CrossoverMix = 1;

259 % The crossover operation gives two offsprings by crossover operation.

260 parameters.CrossoverOptions = {’gives2 ’};

261 % Other parameters

262 % Cost value for individuals whose evaluation failed.

263 parameters.BadValue = 10^36;

264 % Remove the individuals that do not satisfy a given test.

265 % The removed individuals are referred as "wrong" individuals.

266 parameters.Pretesting = 0;

267

268 %% Constants

269 parameters.PHI = 1.61803398875;

270

271 %% Other parameters
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272 % Parameter that stores the list of saving times.

273 % Can help to keep track of the latest version.

274 parameters.LastSave = ’’;

275

276 end

B.2 User’s MATLAB problem file

In this section, we describe the typical structure of MATLAB problem file. We detail in particular, the
types of the inputs and outputs.

The input of the function, Arrayb, is a Nb × 1 ‘cell’ array, where Nb is the number of components of
the control law. The elements of the array are string of characters that define the control law.

1 function J_out = MyPlant_problem(Arrayb ,parameters ,visu)

2 % MYPLANT_PROBLEM is a template file to define one ’s own problem file to

3 % be solved with MATLAB.

4 % The user can also include a calling to his solver in this file.

5 % Several initial conditions can be used.

6 % To help understand the commands , we illustrate the commands with

7 % Arrayb set to {’1.34’,’a1+a2*sin(2*pi *1.5*t)’}, for example.

8 % This example could correspond to the case where the individual is:

9 % {’1.34’,’s(1)+s(2)*h(1) ’}.

10 % The values of s(1), s(2) and h(1) are replaced before the evaluation by

11 % the values set in the parameter file , see MyPlant_parameters.m

12 %

13 % Guy Y. Cornejo Maceda , 2022/07/01

14 %

15 % See also LandauOscillator_problem.

16

17 % Copyright: 2022 Guy Cornejo Maceda (gy.cornejo.maceda@gmail.com)

18 % The MIT License (MIT)

19

20 %% Parameters

21 ActuationLimit = parameters.ProblemParameters.ActuationLimit;

22 ActMin = ActuationLimit (:,1);

23 ActMax = ActuationLimit (:,2);

24 gamma = parameters.ProblemParameters.gamma;

25 BadValue = parameters.BadValue;

26 RoundEval = parameters.ProblemParameters.RoundEval;

27

28 %% Control law synthesis

29 % Bound the actuation with a clip function.

30 BoundArrayb = limit_to(Arrayb ,ActuationLimit);

31 % The results of this command is then:

32 % 2x1 cell array

33 %

34 % ’clip (1.34,-2,2)’

35 % ’clip(a1+a2*sin(2*pi *1.5*t) ,-1,1)’

36

37 % Control law

38 % The i-th control law is the i-th element of Arrayb.

39 bx1=BoundArrayb {1};

40 bx2=BoundArrayb {2};

41 % Definition

42 eval([’b = @(t,a1,a2)[’,bx1 ,’;’,bx2 ,’];’]);

43

44 %% Objective

45 % Stabilization of the fixed point (example)

46

47 %% Some problem parameters

48 % Parameter A

49 A = 1;

50 % Parameter B
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51 B = 1;

52 % Initial conditions

53 initial_conditions = [0;0.1];

54

55 %% Resolution parameters

56 % Solver

57 solver = ’ode5’;

58 % Time discretization

59 % Number of time steps

60 N = 500;

61 T0 = parameters.ProblemParameters.T0;

62 Tmax = parameters.ProblemParameters.Tmax; % frequency =1

63 time = linspace(T0,Tmax ,N+1);

64 TmaxEv = parameters.ProblemParameters.TmaxEv;

In this example, a solver with fixed size step is employed to integrate the ODE, however when a solver
with a variable size step is chosen (like ode45) the integration time can significantly increase. Thus, we
add a function T maxevaluation to limit the integration time. This function returns an error when the
integration time is larger than the variable TmaxEv, triggering the exception in the try function.

67 %% Equation resolution

68 % Equations

69 % Unforced dynamical system (example)

70 DynSys = @(t,a)[(A-a(1).^2-a(2) .^2).*a(1)-B*a(2) ;...

71 (A-a(1).^2-a(2) .^2).*a(2)+B*a(1)];

72

73 % Controlled dynamical system

74 ConDynSys = @(t,a) (DynSys(t,a) + b(t,a(1),a(2)) +...

75 T_maxevaluation(TmaxEv ,toc)*[0;0]);

76

77 %% Time integration

78 % A try function is employed to treat the case where the evaluation fails.

79 try

80 % Resolution

81 tic

82 y = feval(solver ,ConDynSys ,time ,initial_conditions);

83

84 %% Cost function

85 % Ja (example)

86 ja = y(:,1) .^2+y(:,2) .^2;

87 Ja = mean(ja);

88 % Jb (example)

89 % Evaluate the control law -> cell structure

90 b_cell = arrayfun(b,time ’,y(:,1),y(:,2),’UniformOutput ’,false);

91 % Convert in matrix

92 b_matrix = cell2mat(transpose(b_cell));

93 jb = sum(b_matrix .^2 ,2);

94 Jb = mean(jb);

95 % Jc (example)

96 Jc = rand;

97 J = Ja+gamma (1)*Jb+gamma (2)*Jc;

98

99 catch err

100 J_out = {BadValue ,BadValue ,BadValue ,BadValue };

101 fprintf(err.message);

102 fprintf(’\n’);

103 return

104 end

The output, J out, is also a cell array. Its dimension is the number of components of the cost function
+1. It this example, J is composed of three elements, thus the output is: J, Ja, Jb, Jc. A cell type is
chosen for the output to allow cost function of different types (boolean, string of characters, etc.).

105 %% Output

106 J_round = round(J,RoundEval);
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107 Ja_round = round(Ja,RoundEval);

108 Jb_round = round(Jb,RoundEval);

109 Jc_round = round(Jc,RoundEval);

110 J_out = {J_round ,Ja_round ,Jb_round ,Jc_round };

111

112 %% Plot

113 if nargin > 2 && visu

114 figure

115 % Include your figure here.

116 end

117 end



Appendix C

Interfacing with an external
numerical solver or an experiment

In this appendix, we give some guidance on how to interface xMLC with an external numerical solver or
an experiment.

C.1 External numerical solver

For external numerical solver, e.g., based on Fortran or Python, there is mainly two ways to interface
the codes. If the evaluation time of each individual takes a few seconds, the simplest way is to call the
solver directly from the problem file along with the adequate parameters. When the computation of one
individual takes several dozens of minutes or even a few hours in a single processor, it is recommended
to evaluate the individuals in parallel on a computer cluster. xMLC includes several scripts that help the
management of the control laws to evaluate and the cost files once the computation is over.

The first script is MLC tools/External evaluation START.m:

1 % EXTERNAL_EVALUATION_START starts the run.

2 % This script generates the first generation of individuals and

3 % creates a file Gen1population.mat , a cell array containing the

4 % control laws to evaluate.

5 % The file is locate in save_runs/RUNNAME/Populations.

6 %

7 % Guy Y. Cornejo Maceda , 2022/07/01

8 %

9 % See also external_evaluation_CONTINUE , External_evaluation_END.

10

11 % Copyright: 2022 Guy Cornejo Maceda (gy.cornejo.maceda@gmail.com)

12 % The MIT License (MIT)

13

14 Initialization;

15 %% Start

16 mlc=MLC(’MyExternalPlant ’);

17 mlc.parameters.PathExt=’’;

18

19 %% Generate population

20 mlc.generate_population;

21

22 %% Save

23 mlc.save_matlab(’Gen0’);

This script creates a MLC object with the ‘MyExternalPlant’ problem. This problem is similar to the
‘MyPlant’ one, except that the Name and ProblemType parameters are set to ExternalTestRun and
‘external’, respectively. The script creates a MAT file (Gen1population.mat) containing the control
laws to be evaluated in cell array. This file is located in save runs/MyExternalPlant/ in this example.
The script also saves the MLC object generated under the name Gen0. The index ‘0’ indicates that the
first generation has not been evaluated yet. Once this script is executed, the evaluation of the individuals
on a computer cluster can start.

75
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The expected output of each individual evaluation is a file containing the components Jk of the cost
function. The files should be in ASCII format and named GenXIndY.dat where X is the generation
number and Y the creation order of the individual. Here is an example of such file for the evaluation of
the 14th individual of the 2nd generation.

1.345 2.050 0.767

All these files should be located in the folder defined by the variable PathExt; its value is modified
on line 17 of External evaluation START.m. No cost file is expected for individuals whose evaluation
failed.

Once the evaluation the evaluation of all individuals is done, to continue the optimization process,
one needs to run the function MLC tools/External evaluation CONTINUE.m with the generation that
has been evaluated.

1 function External_evaluation_CONTINUE(gen)

2 % EXTERNAL_EVALUATION_CONTINUE continues the run.

3 % To be used after the evaluation of the individuals of generation GEN.

4 % Retrieves the cost information and makes the population evolve.

5 % New control laws are generated in the Population folder and ready to

6 % be evaluated.

7 %

8 % Guy Y. Cornejo Maceda , 2022/07/01

9 %

10 % See also External_evaluation_END , External_evaluation_START.

11

12 % Copyright: 2022 Guy Cornejo Maceda (gy.cornejo.maceda@gmail.com)

13 % The MIT License (MIT)

14

15 %Evolve_population_script

16 Initialization;

17 mlc=MLC(’MyExternalPlant ’);

18 %% Load

19 mlc.load_matlab(’ExternalTestRun ’,[’Gen’,num2str(gen -1)]);

20

21 %% Complete

22 matJ = External_build_matJ(mlc.parameters ,gen);

23 complete_evaluation(mlc ,gen ,matJ);

24

25 %% Evolve

26 evolve_population(mlc);

27

28 %% Save

29 mlc.save_matlab ([’Gen’,num2str(length(mlc.population) -1)]);

The script loads the previous save of the MLC class object, loads the cost files, generates the next gen-
eration of individuals and create the associated MAT file containing the control laws. The function that
loads the cost files is External build matJ (line 22), its output is a matrix containing the components
of the cost function (the columns) for each individual (the rows). One is free to adapt the code and espe-
cially External build matJ to her/his own file system. The function External evaluation CONTINUE

needs then to be iterated to advance the generations.
For the final generation the External evaluation END function needs to be run with the final gen-

eration as input. External evaluation END does exactly the same as External evaluation CONTINUE

except generating the next generation. The optimization process can then be resumed by running the
External evaluation CONTINUE function.

In practice, these three scripts (‘START’, ‘CONTINUE’ and ‘END’) are meant to be ran directly at
the start of MATLAB. Once they are executed, the MATLAB session can be ended. The best way to
use them is in shell script comprising all the commands. Here is an example of such script in bash:

#!/bin/bash

# Parameters

GenMax =10

# --- Start ---
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matlab -r "External_evaluation_START;"

# Evaluation

# ...

# Initialization of the generation counter

Gen=1

# --- Optimization loop ---

while [ "$Gen" != "GenMax" ]

do

matlab -r "External_evaluation_CONTINUE($Gen)"

# Evaluation

# ...

# Increment Gen

Gen=$(($Gen +1))

done

# --- Complete the final generation

matlab -r "External_evaluation_END($Gen)

C.2 Experiment

The xMLC code, running on MATLAB, has been interfaced with several experiments via LabVIEW and
dSPACE/Simulink-based platforms. For an experiment, there are essentially two main loops:

• The fast evaluation loop, that runs at the sampling frequency. It contains the plant, sensors,
actuators and real time controller.

• The slow learning loop, that updates the control laws once they are evaluated. Its characteristic
frequency is much lower than the evaluation loop. It contains the real time controller and the
MATLAB session.

The first step to interface the code with an experiment is to be able to run a real-time control loop for
any control law or mathematical expression. Here are some elements the user needs to take into account
to run a real-time control loop and to ease the interface with xMLC :

• The graphic model of the experiment shall include a clip function for the actuation command sent
to the actuators. This assures the actuators are not harmed by out of range inputs.

• The sampling frequency is well chosen such as the frequencies of interest are well resolved. The
Nyquist theorem requires the sampling frequency to be at least twice the largest frequency.

• Automatic saving of the time series under a unambiguous.

Once any control law can be evaluated, there are essentially two ways to interface the xMLC with the
experiment:

• Update the set of control law at each generations. This approach has been employed when interfac-
ing xMLC with dSPACE/Simulink. The external option needs to be chosen as ProblemType in the
parameters. The idea is to have a Simulink model including a list of control laws that is compiled
and sent to the real time controller. The list of control laws is a function that takes as input the
sensor signals, an integer and a gives back the actuation command as output. The integer is used
to ‘select’ the control law in the list. In xMLC , this function can be automatically generated with
the method @MLC/expe create control select.m. The function is named ControlLawSelect.m

and is located in save runs/tmp/. This approach needs a recompilation of the Simulink once every
generation. Once, the generation is evaluated and the time series saved, the cost of each individual
can be computed and sent to xMLC to create the generation. This approach is the more complex as
it requires an extra Python or Bash layer to command the real time controller and the MATLAB
session.
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• Another approach is to update the control laws one by one. This approach has been employed when
interfacing with a LabVIEW system. The LabView option needs to be chosen as ProblemType in
the parameters for this approach. Instead of sending the control law to a MATLAB function, xMLC
creates a script, LabViewControlLaw.txt, containing the control law and readable by LabVIEW.
The LabViewControlLaw.txt file is created in the external path defined by PathExt in the param-
eters. This approach does not require any compilation as it employs a control law parser. Once
the evaluation is done and the time series saved, the costs can be computed and send to xMLC. The
process will then continue automatically. This approach is the most simple but an extra step of
control law simplification may be needed if the parsing takes too much time compared to sampling
time. The user is free to modify:

– The MLC tools/CreatefunctionLabview.m function to create the LabViewControlLaw.txt

file that suits her/his needs;

– The @MLCind/evaluate ind.m method in the ‘LabView’ section to send the control law to
LabVIEW and compute the cost from the time series.

We shall not detail the interfacing any longer as it often depends on the experiment. For more information
on the interfacing of the code with LabVIEW, dSPACE/Simulink or any other platform please contact
Guy Y. Cornejo Maceda at: Yoslan@hit.edu.cn.

mailto:Yoslan@hit.edu.cn


Appendix D

Accelerating the learning

In this appendix, we describe some accelerators that manage to increase the learning rate of MLC. The
main idea of these accelerators is to avoid redundant evaluations, meaning to prevent the evaluation of
the same control laws. First, we need to detect equivalent control laws. However, this is not an easy task
as simplification of two mathematical expressions is not guaranteed to give the same results because of
the commutative operators. Moreover, another complication is the protection of the ÷ and log operators.
Because of the protection, these functions present a discontinuous behavior near 0 that prevents from
simplification. Thus, we propose another way to detect equivalent expressions. To detect if two control
laws are similar, we evaluate them on random sample inputs and we compare the control outputs. These
methods allows to detect mathematical equivalent control laws even though their expressions are very
different. Indeed, thanks to such test, control laws that are beyond the actuation thresholds will also be
ruled out. For example, the control laws b = 1.01 and b = 1023 will be considered as the same control
laws if the threshold is set to 1. Moreover, the random samples are taken in the range of the sensors
signals making the comparison between the control laws even more meaningful. In practice, each time
a new control law is built, we evaluate it over 1000 random sample inputs and store the result in the
database. Each new control law is then compared to the database to verify if it has not been already
evaluated.

Equivalent control laws can then be filterer out in two ways:

In the population: if a new individual is equivalent to an individual already present in the population,
then it is discarded and a new individual is built (randomly if it is the first generation or with one
of the genetic operators).

In the database: if a new individual is equivalent to a previous individual in the current or past
generations, then it is discarded and a new individual is built.

Of course the second option includes the first one. Those rules do not apply for individuals generated
thanks to replication and elitism as their role is to emulate memory through the generations. Those
filtering assures that the population of individuals is always moving towards unexplored regions of the
control landscape and backward steps are not possible.
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K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scientists and Engineers.
Princeton University Press, Princeton, 2010.

F. Ren, C. Wang, and H. Tang. Active control of vortex-induced vibration of a circular cylinder using
machine learning. Phys. Fluids, 31(9):093601, 2019.

C. W. Rowley and D. R. Williams. Dynamics and control of high-Reynolds number flows over open
cavities. Ann. Rev. Fluid Mech., 38:251–276, 2006.

J. Seifert. A review of the Magnus effect in aeronautics. Progress in Aerospace Sciences, 55:17–45, 2012.

T. Shaqarin and B. R. Noack. A fast converging particle swarm optimization through targeted, position-
mutated, elitism (pso-tpme. Technical Report 2207.00900 [cs.NE], arXiv, 2022.

D. Sipp, O. Marquet, P. Meliga, and A. Barbagallo. Dynamics and control of global instabilities in
open-flows: a linearized approach. Appl. Rev. Mech., 63:251–276, 2010.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press Cambridge, 1998.

H. Tang, J. Rabault, A. Kuhnle, Y. Wang, and T. Wang. Robust active flow control over a range
of Reynolds numbers using an artificial neural network trained through deep reinforcement learning.
Phys. Fluids, 32:053605, 2020.

B. Thiria, S. Goujon-Durand, and J. E. Wesfreid. The wake of a cylinder performing rotary oscillations.
J. Fluid Mech., 560:123–147, 2006.



84 BIBLIOGRAPHY

M. Wahde. Biologically Inspired Optimization Methods: An Introduction. WIT Press, 2008.

Q. L. Wang, L. Yan, G. Hu, C. Li, Y. Xiao, H. Xiong, J. Rabault, and B. R. Noack. DRLinFluids – An
open-source python platform of coupling deep reinforcement learning and OpenFOAM. Phys. Fluids,
in print, 2022.

C. J. Wood. The effect of base bleed on a periodic wake. Journal of the Royal Aeronautical Society, 68
(643):477–482, 1964.

Z. Wu, D. Fan, Y. Zhou, R. Li, and B. R. Noack. Jet mixing enhancement using machine learning
control. Exp. Fluids, 59:131:1–17, 2018.

Y. Zhou, Fan D., B. Zhang, , R. Li, and B. R. Noack. Artificial intelligence control of a turbulent jet. J.
Fluid Mech., 897:A27:1–46, 2020.



Authors

Guy Y. Cornejo Maceda is a postdoctoral researcher at Harbin Institute of Tech-
nology at Shenzhen, working on turbulence control with machine learning methods for
a fast learning of robust, feedback control laws and their visualization. He obtained
his Ph.D. in 2021 at Paris-Saclay University (France) under the supervision of Profs.
Bernd R. Noack and François Lusseyran with whom he accelerated the learning of
feedback control laws by a factor 10 compared to previously employed machine learn-
ing control. His methodology has been demonstrated on numerical and experimental
MIMO plants. Examples include drag reduction and stabilization of the fluidic pinball, stabilization of
the open cavity flow, lift increase and drag reduction of a high-Reynolds number airfoil, drag reduction
and side-force mitigation of a yawed truck model and even the challenging feedback smart-skin separation
control over a smooth ramp with 30 actuators and 56 sensors.

François Lusseyran is currently Emeritus Research Director at the CNRS in a
laboratory of Paris-Saclay University, LISN (France). His career as a fluid mechanics
experimentalist has always followed the thread of the expression of nonlinearities in the
space-time dynamics of various flow contexts. This began with the creation of vortex
circulation at the Max Planck Institut für Strömungsforschung in 1978 in Göttingen
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